
https://doi.org/10.1007/s10846-022-01577-5

REGULAR PAPER

Autonomous Learning in a Pseudo-Episodic Physical Environment

Kevin P. T. Haughn1 ·Daniel J. Inman1

Received: 26 May 2021 / Accepted: 13 January 2022
© The Author(s) 2022

Abstract
For practical considerations reinforcement learning has proven to be a difficult task outside of simulation when applied
to a physical experiment. Here we derive an optional approach to model free reinforcement learning, achieved entirely
online, through careful experimental design and algorithmic decision making. We design a reinforcement learning scheme
to implement traditionally episodic algorithms for an unstable 1-dimensional mechanical environment. The training scheme
is completely autonomous, requiring no human to be present throughout the learning process. We show that the pseudo-
episodic technique allows for additional learning updates with off-policy actor-critic and experience replay methods. We
show that including these additional updates between periods of traditional training episodes can improve speed and
consistency of learning. Furthermore, we validate the procedure in experimental hardware. In the physical environment,
several algorithm variants learned rapidly, each surpassing baseline maximum reward. The algorithms in this research are
model free and use only information obtained by an onboard sensor during training.

Keywords Autonomous systems · Experience replay · Model-free · Reinforcement learning · Robot learning

1 Introduction

Reinforcement learning (RL) has gained significant atten-
tion in the field of artificial intelligence over the past
several years. Although reward-based learning algorithms
are not a new concept, recent advancements in hardware and
increased data accessibility have made it possible to achieve
accurate estimation of nonlinear models using large quan-
tities of data [4, 26, 28]. Artificial neural networks (ANN),
deep ANNs specifically, are frequently the preferred method
of function approximation in supervised learning tasks and
have gained popularity in the reinforcement learning com-
munity. There is now a subset of RL dedicated to the use
of multilayered ANNs called deep reinforcement learning
(DRL). This is not without merit, for they have led to super-
human performance in Atari game environments, Dota 2,
and Go, as well as many simulated physics environments
offered by the OpenAI libraries and MuJoCo to name a

� Kevin P. T. Haughn
kevpatha@umich.edu

Daniel J. Inman
daninmana@umich.edu

1 The University of Michigan Department of Aerospace
Engineering, 1320 Beal Ave, Ann Arbor, MI 48109, USA

few [6, 27, 28, 35, 36]. While this is impressive, and cer-
tainly beneficial for the reinforcement learning community,
it is necessary to build from what we’ve learned using sim-
ulated environments, where data accumulation is plentiful
and instrumental wear and tear plays no role, and apply that
knowledge to real-world environments and robotics.

While there has been substantial success in the simulated
DRL environments, the data-hungry nature of ANNs has
led to solutions geared towards artificially increasing the
amount of data available to these nonlinear approximation
functions. Many examples in the literature use transfer
learning techniques to train an agent in a simulated environ-
ment and then load the pre-trained policy onto the physical
agent of a real-world environment [2, 40, 41]. Other
examples use imitation learning, manually guiding the agent
through the motions desired for acceptable performance
[21, 29]. Both methods are popular ways to limit the
time spent training on hardware, and reduce wear and tear
on equipment; however, not all environments lend them-
selves easily to accurate simulation. In many cases, manual
examples may not be desirable, or even possible, to produce.

In this research we aim to show an option for model-free
reinforcement learning that can be achieved autonomously
and entirely online. In this work we consider training
time and equipment safety through careful experimental
design and algorithm decision making. Due to the limited
availability of data and the computationally expensive

/ Published online: 8 February 2022

Journal of Intelligent & Robotic Systems (2022) 104: 32

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01577-5&domain=pdf
http://orcid.org/0000-0002-8219-8983
mailto: kevpatha@umich.edu
mailto: daninmana@umich.edu

nature of ANNs, we chose to forgo the use of these
nonlinear function approximators, opting instead for linear
function approximation. Although ANNs were not used in
this work, we leverage some techniques that found success
in DRL. We chose to design our experiment to imitate the
episodic style of many simulated reinforcement learning
problems while maintaining strict autonomy of the agent.
Additionally, we take advantage of our pseudo-episodic
format to create additional opportunities for learning, where
traditionally there are none, by using time and actions taken
during the preparation of subsequent training episodes to
perform policy updates. The rest of this paper is organized
in the following manner. Section 2 provides background
information and related work in reinforcement learning, the
algorithms used for our research, and methods for overco-
ming obstacles faced in real-world RL. Section 3 presents
the theory and methods we followed to achieve learning and
preliminary simulation work used to determine algorithm
viability and hyperparameter values. Section 4 describes the
experimental setup used to demonstrate and validate our
training scheme a real-world environment. In Section 5 we
discuss the results of our experiments. The conclusions and
future work are found in Section 6.

2 Background and RelatedWork

This section begins by introducing background information
including basic concepts in reinforcement learning and
the three baseline algorithms used in this research. The
following two parts of this section present relevant research,
including methods for reinforcement learning outside of
simulation and their application to environments similar to
our own, to provide context for where our contribution fits
into the current state of the art.

2.1 Reinforcement Learning

Reinforcement learning is a subset of machine learning
(ML) that, through trial and error and the use of a
reward system, is capable of autonomously developing
controllers for agents in a variety of environments. Agents
and environments are the two fundamental pieces of any RL
problem, where the agent is the subject of policy-determined
actions, and the environment is the defined space within
which the agent may act. The RL problem is traditionally
further defined by a Markov decision process (MDP),
consisting of every possible state-action combination, and
their state outcomes, for the agent within the environment.
Depending on the goal of the agent, certain state-action pairs
may be preferable over others. The preferability of a state
is defined by its value, and is determined by calculating
the long-term reward obtained by the agent, from the

environment, after residing in the specified state. In many
algorithms the state values are used to determine the agent’s
policy, which is a map deciding which actions are to be
taken given the current state. In the simplest cases, values
can be recorded in a table; however, when environments be-
come more complicated, requiring a continuous state space,
they must be approximated. In recent years, ANNs have
been the cutting-edge function approximation method of
choice for many in the field of RL, and for good reason. Gi-
ven the correct structure and enough data, ANNs are incre-
dibly proficient at accurately approximating nonlinear func-
tions. The success of DRL has brought a surge in popularity
for the RL community, resulting in new algorithms and
techniques to improve speed of learning and final overall
performance. This is particularly true for traditional baseline
environments, including Atari games and MuJoCo physics
simulators for higher dimensional problems [16, 34, 43].

The reinforcement learning methods used in this research
fall under a category called temporal difference (TD) learn-
ing. TD learning allows for a policy development from
experiences gathered directly from agent-environment inter-
action. This presents an opportunity for training to be model
free, meaning there is no need to approximate any dynam-
ics of the environment to achieve control. Additionally,
bootstrapping is used, which applies previously learned
approximations to update current estimations so that learn-
ing takes place after every timestep [39]. This work focuses
only on policy gradient methods, specifically actor-critic
based methods, to achieve learning. Actor-critic methods
consist of two function approximators, an actor and a critic.
The actor is a parameterized policy function and uses a
soft-max distribution to represent each action as a proba-
bility. The critic is a parameterized value function, akin to
the Q-functions used in many action-value methods, and
behaves as a judge for the actor’s decisions by estimating
the expected total reward, or value, of any given state in the
available state space. Actor and critic weight updates, Δθ

and Δw, are performed with gradient decent, using

Δw = αδ∇v̂(S,w), (1)

and

Δθ = αδ∇πθ(A|S, θ), (2)

where α is the learning rate. v̂(S,w) is the value of the
current state, S, given the critic weights, w. For linear
function approximation, the gradient of v̂(S,w) is equal to
the state features, x(S, w), for which we used 3rd order
Fourier cosine basis functions [23]. For updating the actor’s
weights, θ , we use the natural log gradient of the trained
policy, πθ , calculated as

∇lnπθ(A|S, θ) = x(S, A) −
∑

b
πθ (b|S, θ)x(S, b), (3)

32 Page 2 of 14 J Intell Robot Syst (2022) 104: 32

where A is the current action. To perform both of these
updates we must first calculate the temporal difference
error, δ, found as

δ = R + γ v̂(S′,w) − v̂(S,w), (4)

the difference between the current value and the combina-
tion of the expected value of the next state, S′, and the newly
obtained reward, R. In this work, the discount factor, γ , is
equal to one. The algorithms of choice are Advantage Actor-
Critic (A2C), Actor-Critic with Eligibility Traces (A2C(λ)),
and Proximal Policy Optimization (PPO) [34, 39]. Eligibil-
ity traces are a means to use information gathered from each
time step and propagate it through parameters updated in
previous time steps, according to the contribution of the pre-
vious states. The update equations for the actor and critic
including eligibility traces are

zw ← γ λwzw + ∇v̂(S,w), (5)

zθ ← γ λθzθ + ∇lnπθ(A|S, θ), (6)

Δw = αδzw, (7)

and

δθ = αδzθ . (8)

When calculating the eligibility trace vectors for the actor
and critic, zθ and zw respectively, trace decay rates, λθ and
λw, are used to adjust an update’s impact on previous states.
PPO is one of the current leading on-policy actor-critic
algorithms, showing impressive performance in several high
dimensional MuJoCo physics environments. This perfor-
mance improvement was achieved through the introduction
of clipping. Clipping is a simple implementation for an idea
akin to trust region policy optimization (TRPO), meant to
limit the size of policy updates and mitigate overshooting
[33, 34]. This is done by looking at the ratio, r , between
an action’s probability under the new and old policies, and
limits that ratio to fall within 1 ± ε, where ε is the clip-
ping parameter. We used the suggested value ε = 0.2. This
relationship is described by the objective function,

L
CLIP (θ) = Ê[min(r(θ)δ, clip(r(θ), 1 − ε, 1 + ε)δ]. (9)

2.2 RL in the Physical World

Learning in real-world environments, such as robotics
and vehicles, emphasizes different challenges in the
reinforcement learning problem [11]. This research will
focus primarily on safety constraints and learning from
limited opportunities for data collection. Due to the innate

cost of completing training in the physical environment,
including wear and tear on equipment from extended use
and time necessary to accumulate experience required for
learning, some researchers choose to take their learning off-
line, using batch updates or simulated environments [13, 14,
24, 41]. When accurate simulations aren’t easily attainable,
and learning must be performed online, sample efficiency
becomes very important. Improving sample efficiency is
a common research problem in RL. Many have adopted
creative methods to incorporate models during training to
accelerate learning [3, 5, 8]. Others have delved into the
field of meta RL, where the goal of an algorithm is to learn
how to learn more quickly [12].

Reinforcement learning is a powerful tool to solve com-
plex problems; however, these problems often take hundreds
of thousands or millions of iterations to solve. Because of
this, the push for autonomy in RL is highly preferable.
Instead of human intervention, some RL problems in the
literature are performed in environments with already well
established means of control, and the goal of the RL algo-
rithm is to discover a more optimal policy [38]. This can
provide a safety net for the agent for cases where explo-
ration approaches a known portion of the state space prone
to damaging equipment, and allows for simple episode reset.
However, this technique is limited to well understood envi-
ronments. Haarnoja et al. use Soft Actor-Critic to train a
four-legged robot to locomote over a variety of walking
surfaces [15]. This was achieved model free and without
simulation, but human intervention was necessary for reset-
ting the environment when the robot fell over or wandered
too far from the initial state. Zhu et al. pushed towards true
autonomy in RL, abandoning the use of resetting mecha-
nisms and relying solely on the robots’ own sensors for state
observation and reward signaling [44]. In this research we
aim to continue this push toward autonomous RL, adhering
to the constraints regarding sensing and reward systems, but
do so in a pseudo-episodic manner for an environment that
is not inherently stable.

2.3 RL in Aerial Environments

One such inherently unstable environment is UAV flight.
UAV flight and maneuverability provide interesting control
problems, particularly when operating in variable environ-
ments where adaptability offers a great benefit. Although
our experiment doesn’t truly fly and has relatively sim-
ple dynamics, it offers a step toward autonomous learning
on an aerial system by achieving propeller driven control
in an unstable environment. We are not the first to aspire
toward this objective. The ability to autonomously adapt
to aerial environments is an exciting goal that many in
the reinforcement learning community are pursuing. The
literature has many examples where control is achieved

Page 3 of 14 32J Intell Robot Syst (2022) 104: 32

in simulated flight environments. Bohn and his colleagues
achieve attitude control competitive with traditional propor-
tional integral derivative (PID) methods using PPO for a
simulated fixed wing UAV [7]. Koch et al. achieved simi-
lar results, outperforming PID methods when using PPO to
train an open-source simulation for quadrotor flight [22]. In
addition to attitude control, navigating a simulated environ-
ment is another challenge frequently accomplished with RL
methods [18, 19]. Each of these cases shows the power of
RL in simulation, but impressive work has been achieved
in the real world as well. In 2003, Ng et al. used reinforce-
ment learning to achieve autonomous control for a heli-
copter [30]. More recently, a trained quadrotor was capable
of recovering from complex initial conditions, including
an upside-down position [17]. However, in both cases a
model or simulation was first developed for training, and no
training was performed in real-time on the physical equip-
ment. In 2018, navigation of an unknown environment was
achieved in by a Parrot AR quadrotor drone; however, PID
was used to aid in control of the UAV and, due to the con-
straint of battery life, human intervention was allowed for
learning to continue after a UAV failure [31].

This previous work is impressive and has advanced
the field of autonomous flight through reinforcement
learning. The research presented here is meant to build
from that foundation toward greater autonomy in training,
requiring no human intervention, and doing so with only the
experience gained by the agent while training in the physical
environment. In other words,we chose not to take advantage
of policy optimization that took place in simulation nor
a model of the environment’s dynamics. This is achieved
through making novel decisions in experimental and
algorithmic design. To the best of the authors’ knowledge,
this is the first example of combining two temporal
difference learning algorithms to alternate on-policy and
off-policy updates between episodes to accelerate learning.

3 Theory and Simulation

In this section we cover the theory behind the decisions
made and methods used in order to achieve learning in
our air-sled environment. We first describe our approach
to achieve sufficient exploration while considering the
safety of our equipment. Subsequently we present the
additional updates we chose to implement during the
“exploration episodes” that are at the heart of the pseudo-
episodic training method. Although this method is designed
to perform in physical environments, we investigated its
viability in simulation to reduce unnecessary wear and tear
on experimental hardware. The simulated training was not
used to accelerate real-world learning, but is described at the
end of this section for completeness.

3.1 Exploration and Safety

Exploration is essential for achieving optimal control
through reinforcement learning; however, it often comes at
the expense of compromised safety when operating in the
real world. Because of this, methods are often implemented
to limit the exploration necessary to achieve sufficient
learning, including transfer learning and imitation learning,
as mentioned earlier. For the purposes of this research, with
the goal of fully autonomous learning, we chose to use
only online and model-free temporal difference learning
methods; therefore, any exploration of the environment
must be achieved by the physical agent itself.

In this work, we achieved exploration by means that
are often successful in simulated environments, including
randomized initial positions, negative rewards, and epsilon-
greedy. The latter two are easily implemented in the
physical environment as well as in simulation. The use of
negative rewards facilitates exploration when the adjustable
weights of our approximation function are initialized to
zero, presetting the values for each state-action combination
to zero. When rewards are negative, a value of zero is
only achieved when the goal is met perfectly, which is
impossible to reach for practical purposes. At this point,
any action taken in any state will result in a reward less
than what is expected, resulting in different future action
selections when following the learned policy. This method
is known as optimistic initial values, and is particularly
useful early in learning and for stationary tasks specifically
[39]. To achieve this technique, we assign rewards as the
negative squared distance between the current position and
the target. Another common technique used to facilitate the
exploration of the action space is epsilon-greedy [39]. At
the time of action selection there is a set probability, ε,
that a random action is selected. For our case the ε value
of choice was 0.1, prompting for random action selection
approximately 10% of the time. The other 90% of actions
selected are considered “greedy” and follow the agent’s
trained policy, πθ , for achieving highest expected reward.
Performing RL in simulated environments lends itself easily
to an episodic format that comes with built-in exploration.
At the conclusion of each individual training episode, the
environment may be reset with any initial conditions within
the state space, allowing for the potential of a previously
unseen, or rarely seen, state to be visited. By randomizing
this initial position, the agent may explore the state space
in a relatively uniform manner. Unfortunately, selecting an
initial state for an agent that has yet learned to control itself
can be difficult. Additionally, for the sake of autonomy,
setting this initial state via human intervention is not an
option. To overcome this, we chose to alternate training
episodes with what we called “exploration episodes,” in
which the agent selects actions randomly from a modified

32 Page 4 of 14 J Intell Robot Syst (2022) 104: 32

action space for half the number of steps in a training
episode. This allowed each training episode to begin in a
pseudo-randomized state; however, we found that, due to
a slight bias in the action space, the agent would end the
exploration episode predominantly in a portion of the state
space below the target position. To enable more complete
exploration of the state space, we split the exploration action
space into two modified spaces, one containing the six
lowest motor outputs and another containing the six highest.
By alternating between these two action spaces for each
exploration episode we ensured initial states occurring both
above and below the target position.

While this method allowed for ample exploration of
the state space, choosing random actions for extended
series of consecutive timesteps is potentially hazardous to
the equipment, running the risk of relatively high-speed
collision between the air-sled and the end of the air-track. To
account for this, we implemented several safety precautions,
one of which is achieved during action selection. If the air-
sled comes within a specified distance of either end of the
air-track, 5 centimeters, and does not have a velocity of at
least 0.1 m/s toward the center of the air-track, then the
maximum or minimum action is selected appropriately and
automatically to accelerate the air-sled back toward the safe
exploration zone.

3.2 Exploration Updates

Implementing this method of alternating learning episodes
with exploration episodes as a means of randomized initial
position has benefits for exploring the state space but is
accomplished at the cost of time. The period of each explo-
ration episode occurs without updating any weights for the
actor or critic, yet the equipment still experiences the wear
and tear of additional use and fuel or energy consumption.
This time, although not wasted, could be spent more effi-
ciently by including additional updates. The two methods
studied in this work are using off-policy updates and
applying an experience replay (ER) during the exploration
episodes.

Off-Policy Actor-Critic (Off-PAC) is an algorithm intro-
duced by Thomas Degris et al. for updating both the actor
and critic from actions made using a decision process other
than the trained policy [10]. For our case, these updates
are performed using the randomized actions selected during
exploration episodes. As with any off-policy algorithm,
an importance sampling ratio is included to estimate the
expectation of the trained policy when given a sample from
the acting policy. Off-PAC traditionally uses an eligibility
trace format to perform updates; however, for the purposes
of this research, we chose to set the trace decay rates to
zero so that the updates were equivalent to that of a one-
step TD algorithm. We chose to do this because our goal

is not to further complicate traditional learning algorithms
with additional parameters in need of tuning, but to illustrate
the advantage of exploiting time otherwise ignored during
autonomous training in a physical experiment.

Experience replay is another tool commonly used in RL
to increase the speed of learning and mitigate catastrophic
forgetting in deep learning by keeping a memory of previous
quadruples, (S, A, S′, R), each containing a state and
action with the following state and corresponding reward
earned [20, 25, 32]. More recently, this technique has been
applied to actor-critic methods and has become incredibly
popular for deep reinforcement learning methods due to
its ability to provide series of uncorrelated data for batch
updates of neural networks [1, 42]. In our case we built
a mini-batch that can hold 5 episodes’ worth of the most
recent quadruples, from which they are selected randomly
in sets of 10 for each timestep of an exploration episode.

Algorithm 1: Exploration with Off-PAC or Experience
Replay.
Input: Off-PAC ← Boolean

Input: REPLAY← Boolean

initialization;
NE ← Number of episodes;
NS ← Number of steps per episode;
NR ← Number of updates from replay buffer;
for iteration=0,1,...,NE do

if iteration is even then
for step=0,1,...,NS do

Follow policy πθ ;
Update θ and w;
if REPLAY is True then

Save (S,A,S’,R) to replay buffer;
end

end
else

for step=0,1,...,NS/2 do
Follow random action policy if Off-PAC is
True then

Update θ and w using Off-PAC;
end
else if REPLAY is True then

for replays=1,2,...,NR do
Sample (S,A,S’,R) from replay
buffer;
Update θ ;

end
end

end
end

end

Page 5 of 14 32J Intell Robot Syst (2022) 104: 32

The quadruples contain enough information to calculate a
current gradient and perform an update similar to that which
we performed when using Off-PAC, but with an importance
sampling ratio of one since actions were selected following
the trained policy. This allowed for the agent to continue to
learn from past experiences when updates would otherwise
not occur. The implementations of these methods are further
illustrated in Algorithm 1.

3.3 Simulations

Due to wear and tear experienced by equipment from reg-
ular use, it is preferable to limit time spent tuning and
training in the physical environment. Because of this, we
decided to perform preliminary tests in a simulated environ-
ment, where many repetitions of training can be used for
tuning hyperparameters and testing algorithm designs, with-
out the consequence of equipment damage. The environ-
ment that we are simulating is depicted in Fig. 1. For this
air-sled/air-track environment, the target position for the
air-sled is 0.6 meters from the end of the air-track. The
state space is continuous and two dimensional, capturing all
position values within the range of 0 and 1.2 meters and
velocities falling between -1 and 1 meters per second. Set
at a 10-degree incline, the sled has an analog DC propeller
motor that must produce a force output for position con-
trol. The incline renders the open loop system unstable. The
physics of the air-track/air-sled environment are captured by
these iterative kinematic equations:

xk+1 = xk + Tk − G

2
Δt2 + vkΔt (10)

and

vk+1 = vk + (Tk − G)Δt . (11)

Here G is the acceleration due to gravity, which in this
case is 0.52 m/s2 to account for the air-track incline,Tk is
the acceleration from thrust, Δt is the simulation timestep
size of 0.05 seconds, xk is the position at timestep k, and
vk is the velocity at time step k. An air-sled mass of 0.170
kg is used to determine Tk . These equations are used to
determine the air-sled’s state (position and velocity) over the
400 timesteps of each training and testing episode as well as
the 200 timesteps of each exploration episode.

This research aims to achieve learning in a real-world
environment; thus, it is important to create as accurate a
simulation as possible. Incorporating the noise produced by
the propeller thrust output is crucial to accurately model
the uncertainty experienced by the controller. Modeling the
propeller thrust noise is achieved by first measuring samples
of the output force produced by the propeller at a series
of motor values. We chose to make force measurements
for ten different motor values ranging from 25 to 250. These
measurements were taken at 1000 Hz for 5 seconds each,
resulting in 5000 force output readings for each determined
motor value. These samples created a series of non-
Gaussian distributions best represented by the triangular
distribution function in python’s “scipy” statistics library.
Due to the 0.05 second timestep, a force output for a given
motor value was determined by averaging fifty samples
from the respective triangular distribution. Following the
central limit theorem, this leads to Gaussian distributions
of force outputs for each motor value. These average
acceleration values, calculated using the air-sled’s mass, and
their standard deviations are shown in Fig. 2. As illustrated,
90% of the average acceleration from the propeller is
achieved by a motor value of 100, after which the increase
in propeller force diminishes. Because of this we chose to
limit the discrete action space to 11 evenly spaced motor
values ranging from 0 to 100. The average motor values
not covered by the original data set were estimated with the

Fig. 1 Air track and air-sled
environment: because the track
is tilted at a 10-degree angle, the
system is inherently unstable,
requiring constant feedback
control to maintain the
air-sled’s position

32 Page 6 of 14 J Intell Robot Syst (2022) 104: 32

Fig. 2 Average acceleration due
to propeller output for each
measured motor value: a fitted
line represents the sampling
mean during simulation. The
shaded area is 1 standard
deviation from the averaged
measurement values

fitted curve also depicted in Fig. 2. The average standard
deviation of force output samples for motor values up to 100
was 0.005. We used this to determine the distributions from
which the acceleration values were sampled in simulation.

To mimic the real-world environment as closely as
possible, we used the unique exploration methods described
in Section 3.2. This required forgoing the traditional
random initialization of each episode to instead incorporate
alternating exploration episodes, simulating the pseudo-
episodic format of the physical experiment. Additionally,
during exploration episodes, we implemented the safety
zones meant for aided collision prevention.Throughout
each training iteration, the total reward earned from every
other training episode was stored for later comparison
between algorithms. This was done to account for the
alternation of action spaces between exploration episodes
so that recorded rewards came from episodes with similar
initial positions given our pseudo-episodic format. Although
training occurred during these episodes in the same way
as experienced in the other training episodes, we denote

these episodes as “testing episodes” for clarification. It is
important to keep in mind that although we performed a
total of 101 episodes for each rendition of training, the
graphs only consider the testing episodes, starting with the
first, to set a baseline performance without training, and
then occurring every fourth episode subsequently.

Figure 3 presents the learning curves for each base
algorithm and their respective variants in the simulated
environment. Because consistency is crucial when applying
RL to real-world applications, several iterations of training
occur. For our simulated case, we chose to average 10
iterations for each base algorithm and its variants, each
iteration with random seeds ranging from 0 to 9. Since
our final goal wasn’t to achieve learning in simulation, but
instead on the physical system, we will only briefly describe
the simulation results. Off-PAC appears to accelerate
learning for each of the baseline algorithms; however,
the average reward earned appears to converge on values
slightly less than that achieved by the baseline algorithms.
The inclusion of ER during exploration shows the fastest

Fig. 3 Average reward earned per testing episode in simulated training
for each baseline algorithm (A2C, A2C(λ), and PPO) and exploration
episode update variants (Off-PAC and Experience Replay). It is impor-
tant to note that a combined total of 101 episodes of traditional training

and exploration were completed for each round of training. Testing
episodes occurred every other training episode (every fourth episode
when including exploration) to improve initial position consistency for
testing and reward comparison

Page 7 of 14 32J Intell Robot Syst (2022) 104: 32

learning of all algorithm variations for A2C and PPO, and,
in all cases, earned the highest average reward. These results
are encouraging for when learning is conducted completely
online in the experimental hardware.

As with any implementation of RL, hyperparameter tun-
ing is a necessity. This intermediate step allowed us to pin-
point hyperparameter values for each algorithm that found
success in this reinforcement learning problem. Several of
these hyperparameters will remain unchanged when learn-
ing is moved to the experimental environment. Only the
learning rates for each algorithm, α, αOP and αER will be
subject to change, but the relationships between the explo-
ration update learning rates, αOP and αER , and the common
learning rate, α, will be maintained. These relationships and
all other hyperparameters are given in Table 1. Determining
these hyperparameters was one of two main purposes of this
simulation work. The second of which being a justification
to the merit of applying our training format, including pol-
icy updates during exploration episodes, to this RL problem
before real-world implementation. So, although our experi-
ment did not use any offline training, we did use simulation
to determine a reasonable approach for hardware autonomy.

4 Experimental Demonstration
and Validation

The objective of this research is to present an autonomous
training scheme for developing learned controllers in a
physical environment that would typically require human
intervention or an additional controller for environment
reset. In this section we introduce the experimental setup
chosen to demonstrate such an environment, including the
additional safety measures put in place to mitigate hardware
damage. Additionally, we describe an adjustment made to
the action selection strategy used in the traditional learning
algorithm, and our reasoning for making this adjustment for
hardware implementation.

Table 1 Algorithm hyperparameters

Hyperparameter A2C A2C(λ) PPO

α 0.01 0.01 0.01

αOP 3α 3α 3α

αER 0.5α 0.2α 0.1α

αzw 0.01 0.01 0.01

λ – 0.4 –

ε – – 0.2

aThe variant learning rates, αOP and αER , are listed as relationships
to common learning rate, α
bα is adjusted to 10e − 4 when training on experimental equipment

4.1 Experimental Environment

Stability is the cost of maneuverability for aerobatic aircraft,
requiring autonomous feedback control to maintain trim
without explicit piloting. Using sensor input to accomplish
equilibrium in an unstable environment provides an appro-
priate analog for such maneuverable flight vehicles. There-
fore, to demonstrate the capability of our pseudo-episodic
training scheme with exploration updates we chose to
develop a controller for an air-sled such that it maintains a
desired position on an inclined one-dimensional air-track, as
seen in Fig. 1. A pump is used to force air through a series
of holes set along the length of the track to allow for a near
frictionless surface for the sled to slide along, controlled
by a single propeller, simulating one dimensional trimmed
flight. The propeller output is connected through a motor
control board to an Arduino Nano microcontroller. In addi-
tion to providing a motor value signal between 0 and 100 to
the motor control board, the Arduino Nano receives position
information from an infrared distance sensor and communi-
cates with external devices through USB. Distance gauged
by the infrared sensor is used to calculate the velocity of the
air-sled after each 0.05 second timestep. The USB connec-
tion allows information to be relayed between the air-sled
and a laptop. The laptop runs a custom Python-based RL
script that takes state data (position and velocity) as inputs
and outputs the selected action for each timestep. Distance
values are continually measured and stored as averaged sets
of two in the Arduino Nano’s serial buffer. At each timestep,
when the learning algorithm asks for the air-sled position,
the two most recent averaged values are read into the Python
script to be averaged again and the serial buffer is emptied.
This is done to limit the amount of data stored in the serial
buffer and to smooth the noisy distance data obtained from
the infrared sensor.

After moving to the hardware environment, two physical
safety measures were put in place, in addition that imple-
mented by the exploration’s action selection, to mitigate
the severity of any impact that may occur. The first physical
safety measure occurred naturally through the placement of
the power supply wiring and communication wires between
the air-sled’s Arduino Nano and the computer. By using the
correct length and placement of this wiring, mounted above
and centered over the air-track, the air-sled may move freely
about most of the state space; however, when the air-sled
moves closer to either end of the air-track, an additional
force is applied to air-sled toward the center of the air-track
due to the weight of the wiring. This reduced the velocity of
the air-sled and often prevented a collision all together. This
safety measure does come at a cost. Any movement experi-
enced by the wire caused momentum and placed additional
external force on the air-sled. This creates a greater variance
in the accelerations experienced by the air-sled that must be

32 Page 8 of 14 J Intell Robot Syst (2022) 104: 32

overcome during training. In case this safety measure failed
to prevent the air-sled from bumping into either end of the
air-track, we included padding at either end of the air-track
to mitigate any damage that may occur.

4.2 Deterministic Policy Gradient

Each of the algorithms chosen for this experiment are
actor-critic methods which are typically stochastic in their
decision-making processes. While stochasticity has many
benefits for certain environments and allows for exploration
to be more implicit in an algorithm’s action selection,
a stochastic controller will continue to take suboptimal
actions after training. Although this undesirable decision-
making is infrequent, it can lead to less stability in the
final control of the air-sled, particularly when training time
is limited. One option to get around this issue is to use a
stochastic policy during training and then only select the
action of highest probability during testing; however, this
too failed to guarantee sufficient control after a short period
of training in our experiment. As mentioned, one point of
concern for training in a hardware-based environment is the
amount of time necessary to achieve sufficient control of our
air-sled. While time is always a constraint in RL, it becomes
more influential in the physical setting due to wear and tear
on equipment, potential accidents, and fuel consumption.

We found that by switching to a deterministic action
selection during training, not only was the air-sled capable
of smoother control, but it learned to do so in a much
shorter training period, completing training in under 30
minutes. Figure 4 highlights this improved learning speed.
To account for the loss of intrinsic exploration, we
chose to implement an epsilon greedy action selection,
as described in Section 3.2. Although deterministic policy

gradient methods have been used before, as in [37], we
took an approach similar to a simple off-policy update,
using an importance sampling ratio between the stochastic
probability of an action’s occurrence, defined by trained
policy, and the probability defined by the action selection
policy. When following the deterministic action selection
policy this probability is equal to one; however, when the
action is selected following the random policy, occurring
10% of the time due to epsilon-greedy, the action selection
probability is the inverse number of available actions. This
leads to the full update equation,

Δθ = αδ∇lnπθ(A|S, θ) ∗ πθ(A|S, θ)

πb

(A|S) (12)

5 Results

In this section we apply our autonomous learning concepts
to hardware, taking that step toward self-adaptive flight.
After tuning the common learning rate, α, we found that
a value of 10e-4 allowed for learning to be fast enough
to complete training in 101 episodes (25 minutes) for all
but one case, but slow enough to be stable and allow
for recognizable differences between algorithm variants.
All other hyperparameter values are available in Table 1.
Although the values of the exploration update learning
rates were adjusted for real-world training, their relation
to the common learning rate was maintained as described
in Table 1. All other hyperparameters were consistent with
those used in simulation.

Episode reward is a common metric used to gauge an
algorithm’s ability to learn. Additionally, due to noise and
randomness that occurs naturally in physical environments,

Fig. 4 Average reward earned
per testing episode for stochastic
and deterministic PPO
throughout training on the
physical experiment. The shaded
area includes all reward values
earned by each random seed in
respective testing episodes

Page 9 of 14 32J Intell Robot Syst (2022) 104: 32

consistency becomes increasingly important for measuring
the viability of an algorithm. To account for consistency,
each algorithm of consideration, and its two additional vari-
ants, were repeated 5 times. The rewards from the 5 rendi-
tions, each with a different random seed ranging from 0 to
4, are averaged to represent the reward for that algorithm or
variant thereof. These values, along with the standard devi-
ation of reward earned per episode, are available for each
algorithm and the additional variants in Fig. 5. While stan-
dard deviation may not be specifically meaningful for these
small distributions, it can still be a useful means to quantify
spread, and therefore consistency, of our algorithm’s opera-
tion. In addition to consistency, another metric we consider
for an algorithm’s performance is speed of learning. This
is crucial for learning in a real-world environment. In addi-
tion to the increased wear and tear placed on the equipment
during lengthy training sessions, this extends the period in
which poor actions may be taken, putting the agent in poten-
tially dangerous positions. A black dashed line is included
to represent the highest reward earned for each of the base
algorithms, allowing us to quantify the speed of learning as
the number of episodes required for each algorithm variant
to surpass the base algorithm’s maximum reward.

Figure 5 shows that with the basic A2C algorithm, the se-
parate additions of Off-PAC and ER during the exploration
episodes dramatically accelerate learning in the first several
episodes, approaching and surpassing the maximum after
11 and 7 testing episodes for the addition of Off-PAC and
ER respectively. The baseline A2C did not achieve this
until the 22nd testing episode. The standard deviation plots
show that incorporating Off-PAC and ER during explo-

ration episodes both have improved the consistency of the
algorithm’s learning. One thing to note when looking at
the standard deviation plots is that, across all three base
algorithms, the standard deviation is always highest when
the algorithm is doing most of its learning and the reward
is still increasing. We can gauge when similar performance
is achieved between iterations as the episode in which
the standard deviation drops below and maintains a value
beneath a defined low point. This speaks to the consistency
of an algorithm’s learning. After 9 test episodes, A2C has
relatively high standard deviation. This means that although
one of the algorithm’s iterations may have approached
its highest reward, and learned a suitable policy, several
iterations have yet to do so. We see that this is true even
after training has concluded; however, this changes with
the addition of Off-PAC or ER. Adding Off-PAC to the
algorithm allows for consistency in learning after 17 test
episodes. For the case of ER, consistency is almost achieved
as early as test 7, but there are two high peaks in standard
deviation that occur around tests 10 and 15, and then
again a smaller spike at 19. Because of this, we define
the metric of “achieving consistency” (σ < 4) as the first
test episode in which the standard deviation drops below 4,
represented by the red dotted line in the Fig. 5, and then
remains below 4 until training is complete. Additionally,
we chose to record the total number of test episodes with
standard deviations below 4. With this metric we can say
A2C with ER achieved consistency after 21 episodes and
had a total number of 13 test episodes where learning was
consistent. These comparisons, in addition to the number
of test episodes needed to reach the baseline algorithm’s

Fig. 5 Performance comparison
between baseline algorithms
(A2C, A2C(λ), and PPO) and
their exploration episode update
variants (Off-PAC and
Experience Replay) in
real-world training. The top 3
plots show the average reward
earned per testing episode. The
dashed black line represents the
maximum average reward
achieved by the respective
baseline algorithm. Consistency
in learning performance is
gauged by the bottom three plots
illustrating the standard
deviation of rewards earned per
training episode for each
algorithm and its variants. We
consider a standard deviation
held below 4 as an indication of
consistent learning performance

32 Page 10 of 14 J Intell Robot Syst (2022) 104: 32

Table 2 Hardware learning performance metrics

Algorithm Max avg. reward TTBM σ < 4(total)

A2C –10.7 22 (4)

A2C Off-PAC –6.02 11 17 (12)

A2C ER –5.85 7 21 (13)

A2C(λ) –6.05 12 11 (15)

A2C(λ) Off-PAC –5.88 25 10 (18)

A2C(λ) ER –4.71 6 23 (14)

PPO –5.62 23 13 (18)

PPO Off-PAC –4.83 10 8 (22)

PPO ER –3.78 2 5 (24)

aMetrics include the maximum average reward achieved, the number
of test episodes needed to reeach the baseline maximum rewared
(TTBM), and the earliest test episode in which teh reward standard
deviation dropped below and maintained a value less than 4 through
the remainder of training (σ < 4)
bThe total number of test episodes achieving a standard deviation less
than 4 during training is also listed under σ < 4 in parenthesis

maximum reward (TTBM) as well as the overall maximum
reward of each variant, are made for each of the three base
algorithms and presented in Table 2.

Through these metrics we can see several patterns that
begin to develop. In each case, the addition of Off-PAC
or ER improved the overall learning achieved by the base-
line algorithm when comparing highest average rewards
achieved during training, with the ER variant consistently
earning the highest average rewards overall. With regards
to learning speed, measured by TTBM, the implementation
of ER surpassed both the baseline and Off-PAC variant for

Fig. 6 Position over time of the
air-sled on the air track for the
best performing policy from
each baseline algorithm (A2C,
A2C(λ), and PPO) and their
exploration episode update
variants (Off-PAC and
Experience Replay). Two initial
positions are included, each
located ±0.4 meters (±1.31 ft)
from the target. The target
position of 0.6 meters (1.97 ft) is
represented as a red dashed line
and positions of 10% error from
the target are black. Reward
earned for each time series and
the combined total reward are
given in the bottom right corner
of each plot

each of the three algorithms; however, the addition of ER
didn’t frequently aid in learning consistency. This is well
illustrated in both the A2C and A2C(λ) cases. Although
implementing ER would typically achieve standard devi-
ation values below 4 early in training, as the training
continued the standard deviation would frequently spike,
briefly increasing to a value above 4. These spikes would
frequently only last for one episode, but at times the spike
would require 3 testing episodes before reducing back to
a value representative of consistent learning. On the other
hand, introducing Off-PAC updates during the exploration
phase improved consistency in every case. Off-PAC was
not the fastest algorithm variant when comparing TTBM.
When added to A2C(λ), Off-PAC was slower than the base-
line. However, adding Off-PAC updates during exploration
achieved learning consistency after the fewest number of
testing episodes for 2 of the 3 algorithms. Interestingly, this
was not the case for PPO, where ER proved to give an
advantage in speed and also showed capability in consistent
learning. This could be due to PPO’s clipping mecha-
nism that is designed specifically to prevent updates from
becoming too large and overshooting, potentially improving
learning consistency. Although PPO’s baseline algorithm
does not appear to be as fast at achieving consistency as
A2C(λ) according to σ < 4, this could be due to PPO’s
slower learning speed, not reaching its maximum average
reward until episode 23. Therefore, when another algorithm
is used to accelerate learning, such as ER, the result is a fast
learning algorithm where the overall standard deviation of
reward is able to remain low.

In addition to reward earned throughout training, it is
important that the policy learned by the algorithms can

Page 11 of 14 32J Intell Robot Syst (2022) 104: 32

control the air-sled to a satisfactory degree after training is
completed. In Fig. 6 we see the position values over a period
of 20 seconds for the random seed of best performance
for each of the base algorithms and their variants. In each
plot we see the behavior for two initial positions, one near
each end of the air-track. Due to the noise of the infrared
sensor, we applied an averaging technique for smoothing
the data to improve recognition of the air-track’s position
for each timestep. The black dotted lines represent locations
of 10% error from the target position of 0.6 meters from
the end of the air-track. In many cases of control, metrics
such as rise time and settling time are used to gauge
performance. However, our controllers were trained based
on another metric, earned reward, which we can use again
to compare overall performance between learned policies
for the two initial conditions. When considering traditional
metrics, A2C(λ) with Off-PAC achieves the best control
from an initial position of 0.2 meters and the baseline A2C
algorithm trained the best policy for control from an initial
position of 1 meter, needing only 4.2 and 6.25 seconds to
settle between the 10% error margins respectively. However,
when we compare the rewards earned over the duration of
the control test, although these algorithms did generate the
best control for their respective initial positions, the overall
best performance was achieved by the PPO algorithm with
Off-PAC exploration updates, earning a combined reward
of -11.35. The next best performances in order came from
A2C(λ) with ER, A2C(λ) with Off-PAC, and A2C with ER,
each earning a combined reward greater than -13. The top
4 performances came from algorithms with the addition of
Off-PAC or ER. This suggests that the inclusion of some
form of off-policy update during the exploration episodes
can benefit training for control with a variety of actor-
critic algorithms, assuming performance is measured by the
system used to direct learning.

6 Conclusion and FutureWork

The implementation of reinforcement learning in physical
experiments has proven to be a difficult task. In this work
we developed a pseudo-episodic approach for the autono-
mous training of an RL agent in a one-dimensional, unstable
environment. Our method is model-free and uses only infor-
mation gathered by an on-board sensor. Although training is
achieved entirely online, its structure allows for additional
policy updates to occur between training episodes. Addi-
tionally, we validated this autonomous training method in
experimental hardware. The addition of ER and Off-PAC
updates during the exploration episodes showed training
benefits such as improved speed and consistency in learn-
ing respectively. When paired with PPO, ER performed
particularly well, overcoming its weakness in maintaining

learning consistency. Further improvement was displayed in
controller performance when using reward as the compared
metric.

This work focuses on using novel techniques to improve
speed and consistency in learning, while maintaining safety
and autonomy in a real-world environment; however, the
resulting controllers lack accuracy. Learning quickly and
safely may be prioritized over accuracy in many environ-
ments, such as a UAV with precious cargo adapting to a new
environment where it is more important to quickly learn safe
flight than to achieve optimum performance.With that being
said, there are several environments where final perfor-
mance is the priority; therefore, future work should be dedi-
cated to achieving optimal control, at the sacrifice of speed
if necessary. Another potential avenue for this work is to
implement neuromorphic chips to allow fast and continu-
ous hardware based learning in this unstable system, taking
another step toward in flight adaptation [9].

Acknowledgements We are grateful to Professor Peter Washabaugh,
at the University of Michigan’s Department of Aerospace Engineering,
for providing the air-sled and air-track experiment and to Connor
Stadler, an undergraduate in the same department for working to
determine an efficient method of communicating state and action
information between the Arduino and Python script.

Author Contributions Both authors contributed to the concept and
design of the experiment presented in this article. Algorithm design,
experimental setup, data collection and analysis where completed by
Kevin Haughn. The first draft of this manuscript was written by Kevin
Haughn. Both authors were active in revising the first draft, and all
subsequent versions, and approve of the final manuscript.

Funding This work is supported in part by the US Air Force Office
of Scientific Research under a grant number AFOSR-FA9550-19-
0213, titled “Brain Inspired Networks for Multifunctional Intelligent
Systems in Aerial Vehicles” and in part by grant number FA9550-16-1-
0087, titled “Avian-Inspired Multifunctional Morphing Vehicles” both
monitored by Dr BL Lee.

Availability of data andmaterial Not applicable

Code Availability Code used to exemplify methods implemented in
this paper may be available upon request.

Declarations

Ethics approval This article has the approval of both authors.

Consent to participate Both authors gave consent to participate in this
article.

Consent for Publication Both authors authorized the publishing of this
article.

Conflict of Interests The authors have no conflict of interest.

32 Page 12 of 14 J Intell Robot Syst (2022) 104: 32

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ahang, S., Sutton, R.S.: A deeper look at experience replay.
arXiv:1712.01275 (2017)

2. Andrychowicz, O.M., Baker, B., Chociej, M., Jozefowicz, R.,
McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G.,
Ray, A., et al: Learning dexterous in-hand manipulation. Int. J.
Robot. Res. 39(1), 3–20 (2020)

3. Atkeson, C.G., Santamaria, J.C.: A comparison of direct
and model-based reinforcement learning. In: Proceedings of
International Conference on Robotics and Automation, vol. 4,
pp. 3557–3564. IEEE (1997)

4. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.:
Reinforcement learning through asynchronous advantage actor-
critic on a gpu. arXiv:1611.06256 (2016)

5. Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe
model-based reinforcement learning with stability guarantees.
arXiv:1705.08551 (2017)

6. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C.,
et al: Dota 2 with large scale deep reinforcement learning.
arXiv:1912.06680 (2019)

7. Bøhn, E., Coates, E.M., Moe, S., Johansen, T.A.: Deep
reinforcement learning attitude control of fixed-wing uavs using
proximal policy optimization. In: 2019 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 523–533. IEEE
(2019)

8. Caarls, W., Schuitema, E.: Parallel online temporal difference
learning for motor control. IEEE Trans. Neural Netw. Learn. Syst.
27(7), 1457–1468 (2015)

9. Chen, Y.: Brain-inspired synaptic resistor circuits for self-
programming intelligent systems. Advanced Intelligent Systems,
p 2000219 (2021)

10. Degris, T., White, M., Sutton, R.S.: Off-policy actor-critic.
arXiv:1205.4839 (2012)

11. Dulac-Arnold, G., Mankowitz, D., Hester, T.: Challenges of real-
world reinforcement learning. arXiv:1904.12901 (2019)

12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for
fast adaptation of deep networks. In: International Conference on
Machine Learning, pp. 1126–1135. PMLR (2017)

13. Fujimoto, S., Conti, E., Ghavamzadeh, M., Pineau, J.: Bench-
marking batch deep reinforcement learning algorithms.
arXiv:1910.01708 (2019)

14. Fujimoto, S., Meger, D., Precup, D.: Off-policy deep reinforce-
ment learning without exploration. In: International Conference
on Machine Learning, pp. 2052–2062. PMLR (2019)

15. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In: International Conference on Machine
Learning, pp. 1861–1870. PMLR (2018)

16. Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G.,
Dabney, W., Horgan, D., Piot, B., Azar, M., Silver, D.: Rainbow:
Combining improvements in deep reinforcement learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32 (2018)

17. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a
quadrotor with reinforcement learning. IEEE Robot. Autom. Lett.
2(4), 2096–2103 (2017)

18. Imanberdiyev, N., Fu, C., Kayacan, E., Chen, I.M.: Autonomous
navigation of uav by using real-time model-based reinforcement
learning. In: 2016 14th International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV), pp. 1–6. IEEE (2016)

19. Kersandt, K.: Deep Reinforcement Learning as Control Method
for Autonomous uavs. Master’s thesis, Universitat Politècnica de
Catalunya (2018)

20. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al.: Overcoming catastrophic forget-
ting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

21. Kober, J., Peters, J.: Imitation and reinforcement learning. IEEE
Robot. Autom. Mag. 17(2), 55–62 (2010)

22. Koch, W., Mancuso, R., West, R., Bestavros, A.: Reinforcement
learning for uav attitude control. ACM Trans. Cyber-Phys. Syst.
3(2), 1–21 (2019)

23. Konidaris, G., Osentoski, S., Thomas, P.: Value function
approximation in reinforcement learning using the fourier
basis. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25 (2011)

24. Lange, S., Gabel, T., Riedmiller, M.: Batch reinforcement
learning. In: Reinforcement Learning, pp. 45–73. Springer
(2012)

25. Lin, L.J.: Self-improving reactive agents based on reinforcement
learning, planning and teaching. Mach Learn 8(3-4), 293–321
(1992)

26. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep
reinforcement learning. In: International Conference on Machine
Learning, pp. 1928–1937. PMLR (2016)

27. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., Riedmiller, M.: Playing atari with deep
reinforcement learning. arXiv:1312.5602 (2013)

28. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland,
A.K., Ostrovski, G., et al: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

29. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select
and generalize striking movements in robot table tennis. Int J
Robot Res 32(3), 263–279 (2013)

30. Ng, A.Y., Kim, H.J., Jordan, M.I., Sastry, S., Ballianda, S.:
Autonomous helicopter flight via reinforcement learning. In:
NIPS, vol. 16. Citeseer (2003)

31. Pham, H.X., La, H.M., Feil-Seifer, D., Nguyen, L.V.: Autonomous
uav navigation using reinforcement learning. arXiv:1801.05086
(2018)

32. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.:
Experience replay for continual learning. Advances in Neural
Information Processing Systems 32, 350–360 (2019)

33. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.:
Trust region policy optimization. In: International Conference on
Machine Learning, pp. 1889–1897. PMLR (2015)

34. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov,
O.: Proximal policy optimization algorithms. arXiv:1707.06347
(2017)

Page 13 of 14 32J Intell Robot Syst (2022) 104: 32

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1705.08551
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1910.01708
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1801.05086
http://arxiv.org/abs/1707.06347

35. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., et al: Mastering the game of go with deep neural
networks and tree search. Nature 529(7587), 484–489 (2016)

36. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al:
A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144
(2018)

37. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
Riedmiller, M.: Deterministic policy gradient algorithms. In:
International Conference on Machine Learning, pp. 387–395.
PMLR (2014)

38. Smart, W.D., Kaelbling, L.P.: Effective reinforcement learning
for mobile robots. In: Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 4, pp. 3404–3410. IEEE (2002)

39. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduc-
tion. MIT Press (2018)

40. Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless
navigation. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 31–36. IEEE (2017)

41. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel,
P.: Domain randomization for transferring deep neural networks
from simulation to the real world. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 23–30.
IEEE (2017)

42. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., de Freitas, N.: Sample efficient actor-critic with
experience replay. arXiv:1611.01224 (2016)

43. Wu, Y., Mansimov, E., Liao, S., Grosse, R., Ba, J.: Scalable trust-
region method for deep reinforcement learning using Kronecker-
factored approximation. arXiv:1708.05144 (2017)

44. Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh,
A., Kumar, V., Levine, S.: The ingredients of real-world robotic
reinforcement learning. arXiv:2004.12570 (2020)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kevin PT. Haughn received the B.S. degree in aerospace engineering
from the University of Michigan, Ann Arbor, MI, in 2018. He is
currently pursuing a Ph.D. in aerospace engineering, also at the
University of Michigan. He began his research career as a research
assistant during his final two semesters of undergraduate study in 2017
and 2018. After graduation he continued his research as a graduate
student research assistant and in the spring of 2019 earned promotion
to Ph.D. candidacy. Mr. Haughn’s current research interests include
combining machine learning methods with smart material driven,
multifunctional morphing aerospace structures to develop intelligent,
adaptive uncrewed aerial vehicles.

Daniel J. Inman received his Ph.D. from Michigan State University
in Mechanical Engineering in 1980 and is the Harm Buning
Collegiate Professor and former Chair of the Department of Aerospace
Engineering at the University of Michigan. Since 1980, he has
published eight books (on vibration, energy harvesting, control, statics,
and dynamics), eight software manuals, 20 book chapters, over 400
journal papers and 671 proceedings papers, given 72 keynote or
plenary lectures, graduated 68 Ph.D. students, and supervised more
than 75 MS degrees. He works in the areas of applying smart materials
and structures to solve aerospace engineering problems including
energy harvesting, structural health monitoring, vibration suppression
and morphing aircraft. He is a Fellow of the American Institute
of Aeronautics and Astronautics, American Society of Mechanical
Engineers, International Institute for Acoustics and Vibrations, Society
of Experimental Mechanics and American Academy of Mechanics.
He won the ASME Adaptive Structures Award in April 2000, SPIE
Smart Structures andMaterials Lifetime Achievement Award in March
of 2003, he received the ASME Den Hartog Award for lifetime
achievement in teaching and research in vibration, the 2009 Lifetime
Achievement award in Structural Health Monitoring, and the AIAA
Structures, Structural Dynamics, and Materials Award, in 2014. He
is currently Technical Editor of the Journal of Intelligent Material
Systems and Structures (1999-present).

32 Page 14 of 14 J Intell Robot Syst (2022) 104: 32

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/2004.12570

	Autonomous Learning in a Pseudo-Episodic Physical Environment
	Abstract
	Introduction
	Background and Related Work
	Reinforcement Learning
	RL in the Physical World
	RL in Aerial Environments

	Theory and Simulation
	Exploration and Safety
	Exploration Updates
	Simulations

	Experimental Demonstration and Validation
	Experimental Environment
	Deterministic Policy Gradient

	Results
	Conclusion and Future Work
	References

