
https://doi.org/10.1007/s10846-021-01501-3

REGULAR PAPER

MP-RRT#: a Model Predictive Sampling-based Motion Planning
Algorithm for Unmanned Aircraft Systems

Stefano Primatesta1 · Abdalla Osman2 · Alessandro Rizzo2

Received: 20 June 2021 / Accepted: 9 September 2021
© The Author(s) 2021

Abstract
This paper introduces a kinodynamic motion planning algorithm for Unmanned Aircraft Systems (UAS), called MP-RRT#.
MP-RRT# joins the potentialities of RRT# with a strategy based on Model Predictive Control to efficiently solve motion
planning problems under differential constraints. Similar to other RRT-based algorithms, MP-RRT# explores the map
constructing an asymptotically optimal graph. In each iteration the graph is extended with a new vertex in the reference
state of the UAS. Then, a forward simulation is performed using a Model Predictive Control strategy to evaluate the motion
between two adjacent vertices, and a trajectory in the state space is computed. As a result, the MP-RRT# algorithm eventually
generates a feasible trajectory for the UAS satisfying dynamic constraints. Simulation results obtained with a simulated
drone controlled with the PX4 autopilot corroborate the validity of the MP-RRT# approach.

Keywords Unmanned aerial vehicles · Unmanned aircraft · Kinodynamic motion planning ·
Sampling-based motion planning · Model predictive control

1 Introduction

The use of Unmanned Aircraft Systems (UAS) has
increased progressively across a wide range of applications
such as remote sensing, search and rescue, security and
surveillance, precision agriculture, infrastructure inspection
and urban planning, to name a few [35]. Such extensive
use of UAS triggered the rapid growth of various related
research topics, of which autonomous flight has been
driving great interest [3]. The great availability of powerful
and efficient computational capabilities has enabled the
extensive use of optimal control strategies and machine
learning to address the problem of autonomy. However,
autonomous flight remains a very challenging task [39],
whose solution extends across diverse aspects: perception,

� Alessandro Rizzo
alessandro.rizzo@polito.it

1 Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Torino, Italy

2 Department of Electronics and Telecommunications,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Torino, Italy

localization and mapping, and motion planning and
control [36].

Notably, the motion planning problem is ubiquitous in
most of autonomous robotics applications, beside UAS.
In simple words, motion planning is defined as the
computation of the control input needed to drive a vehicle
from an initial state to a target state satisfying the
vehicle kinematic and dynamic constraints, while avoiding
obstacles and other forbidden zones [21]. Typically, the
motion planning problem is subdivided into two sub-
problems: path planning and path tracking. Much effort
has been devoted to deal with both tasks. The authors
in [14] adopted a potential field approach for planning,
followed by a multi-constrained Model Predictive Control
(MPC) strategy for tracking. The authors in [7] proposed
a two-stage approach where path planning is computed
by leveraging the Rapidly-exploring Random Tree (RRT)
algorithm, associated with a Linear Quadratic Regulator
(LQR) controller for the tracking of the resulting reference
trajectory. Similarly, in [26] the planned reference trajectory
provided by the RRT algorithm was post-optimized using
MPC to determine a feasible trajectory plan. However,
none of the mentioned two-stage approaches guarantee the
dynamic feasibility of the computed path.

Alternatively, another classical approach for path plan-
ning breaks the problem into two phases: a continuous

/ Published online: 9 November 2021

Journal of Intelligent & Robotic Systems (2021) 103: 59

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01501-3&domain=pdf
http://orcid.org/0000-0002-2386-3146
mailto: alessandro.rizzo@polito.it

collision-free path is generated in the first phase, while in
the second phase a low-cost trajectory is computed along the
previously generated path, respecting dynamic constraints.
However, this approach may lead to infeasible or ineffi-
cient trajectories, due to the possible incompatibility of
the cost function used by the optimization engine in the
first and the second phase. For example, minimizing the
Euclidean distance in the first phase may result in a continu-
ous collision-free path that is incompatible with the dynamic
constraints of the second phase. This becomes more evident
when the motion planning is required to avoid obstacles in a
time-varying environment. Hence, a more suitable approach
would be to consider both the kinematic and dynamic con-
straints simultaneously, while constructing the trajectory
during the planning phase. To address this issue, kinody-
namic motion planning algorithms can be employed in order
to satisfy at the same time both the kinematic and the
dynamic constraints of the motion planning model [8]. A
considerable number of kinodynamic strategies makes use
of various primitive curves to define a path, such as Bezier
curves [22], harmonic potential fields [27], or using learning
approaches [25].

Recently, incremental sampling-based planners have
been successfully employed to solve the kinodynamic
motion planning problem as a two-point boundary value
problem in the dynamic state space of the robot system.
Sampling-based planners, such as Rapidly-exploring Ran-
dom Tree (RRT) and the Probabilistic Roadmap (PRM), are
employed even in high dimensional spaces to solve motion
planning problems [23]. Generally, sampling-based plan-
ners search for the motion planning solution in one of the
following spaces: the state space X , representing the possi-
ble states of the vehicle; the control space U , representing
the possible control input configurations applied to drive the
vehicle; and the reference space Y , representing the possible
desired vehicle states. A sampling-based kinodynamic algo-
rithm was proposed for the first time by LaValle and Kuffner
in [24], in which an RRT algorithm samples the control
input of the vehicle and, then, predicts its corresponding
motion in order to construct a tree of trajectories in the state
space. As a consequence, the computed trajectory satisfies
by design the constraints imposed by the vehicle dynamics
and can be easily executed by the vehicle. Several sampling-
based planners have been developed since then by extending
and improving such approach [10, 13]. The authors in [17]
proposed the RRT∗ algorithm, one of the most widely used
sampling-based techniques. RRT∗ constitutes an improve-
ment of the original RRT algorithm toward the attainment of
a near optimal solution. Moreover, the RRT∗ algorithm has
been further improved for specialized purposes such as real-
time path planning [31], anytime planning [18], multi-agent
planning [6], and others [32].

RRT∗ has improved the path quality of the original RRT
through employing two new major mechanisms: rewiring
and best neighbor search. RRT∗ incrementally adds new
connections to the existing tree whenever a new sample
is generated. Such a rewiring procedure gives RRT∗ the
chance to gradually improve its path-cost, asymptotically
approaching the lowest-cost path as the number of iterations
increases. However, this rewiring is performed on a local
basis, preventing a global propagation of the changes in the
graph and a consequent optimization at the global level.
An improvement is constituted by RRT#, which generates
a guaranteed asymptotically optimal graph that always
contains the lowest-cost path [2].

Another common concern in sampling-based approaches
is related to the random sampling of the control space,
instead of the random sampling of the reference space of the
robot [20]. While sampling in the reference space always
generates feasible trajectories, sampling in the control space
may often result in the selection of inputs that can lead
to infeasible trajectories, due to the presence of dynamic
constraints. This typically yields longer execution times and
an inefficient management of the algorithm. To address
this problem, the authors in [20] proposed the closed-loop
RRT (CL-RRT), in which the samples are drawn from the
reference space instead of the control space. The sampled
reference is then used to compute a trajectory using the
closed-loop model of the robot. A similar approach is also
used in [1] with the RRT# algorithm. Similarly, in [16] a
kinodynamic RRT∗ is realized using Dubins curves as a
primitive curve defining the reference path between the new
sample and the existing tree, whereas an LQR controller is
used in [33] to compute the cost of tracking the reference
path.

This paper presents a kinodynamic motion planning
algorithm called MP-RRT#, where RRT# [2] is enhanced
by the use of Model Predictive Control (MPC) [5] to
compute the cost between vertices evaluated in the rewiring
of the new sample. The proposed sampling-based planner
avoids the local rewiring limitation of RRT∗ by employing
RRT# [2], and draws its samples from the reference space
instead of the control space, as proposed in [20]. Then, given
an input sample of the closed-loop system, i.e., a reference
r in the reference space Y , the proposed algorithm uses
MPC [5] to perform a forward simulation obtaining a state
trajectory and the optimal control input to track the sampled
reference.

The proposed MP-RRT# concurrently constructs two
graphs: (i) a graph GY ∈ Y to explore the reference space
Y , and (ii) a graph GX ∈ X in the state space X to evaluate
the UAS motion between vertices of GY using the MPC
strategy. Practically, GX consists of a graph of trajectories
in the state space of the UAS.

59 Page 2 of 13 J Intell Robot Syst (2021) 103: 59

The proposed strategy is more efficient than other
kinodynamic RRT-based approaches [10, 13, 24], since
it guarantees the feasibility of the trajectory for each
sampled reference state passed to the MPC strategy.
Obstacle avoidance is encapsulated in the approach by
labeling trajectories containing obstacles as unfeasible
and consequently discarding them, rather than frequently
invoking a costly trajectory repairing due to the presence
of obstacles. Hence, the proposed strategy requires fewer
samples to construct an exploration tree and, consequently,
less effort to compute an optimal trajectory. Additionally,
the use of the MPC strategy guarantees that the computed
trajectory satisfies input constraints. Anyway, the feasibility
of the resulting trajectory is further examined later by
the algorithm in a verification step to ensure collision
avoidance. Importantly, sampling in the reference space Y
rather than the state space X is generally more efficient,
especially for vehicles with complex dynamics where the
reference space has smaller dimension than the state space.
For instance, here the UAS state space had a dimension of 8
variables, whereas the reference space had a dimension of 3
variables only.

Figure 1 illustrates the proposed strategy to generate a
graph of feasible trajectories using the MP-RRT# algorithm.
Given a sample drawn from the reference space, MP-RRT#

incrementally extends the graph GY ∈ Y by adding a new
vertex and an edge. Then, following a primitive curve (i.e.,
a Dubins curve in this work) the reference path connecting
the new vertex to the existing graph is defined, and MPC is
used to construct the corresponding trajectory in the graph
GX ∈ X , respecting the vehicle dynamics and control input

Fig. 1 Example of graphs constructed with MP-RRT#. The graph GY

consists of vertices (in black) and edges (in blue) in the reference state.
On the other hand, the graph GX consists of trajectories (in magenta)
obtained through evaluating the edges of GY using the MPC strategy.
An edge of GY is labeled as invalid if its corresponding trajectory in
GX crosses an obstacle

constraints. Note that obstacle avoidance is implemented for
the computed trajectory rather than the edges, i.e., even if
the edge crosses an obstacle, it will not be discarded unless
its corresponding trajectory enters the obstacle space.

Here, the proposed MP-RRT# strategy is specifically
used to solve the motion planning problem of a multicopter
to find a feasible trajectory for the UAS satisfying dynamic
constraints. The novelty of the presented work resides in
the use of the MPC in the graph construction of a RRT-
based algorithm, which introduces evident benefits due to its
ability of generating a forward path that is compatible with
the vehicle constraints. In this way, the execution of feasible
trajectories with maneuvers that are compatible with the
vehicle constraints is guaranteed.

The rest of the paper is organized as follows. Section 2
defines the optimal motion planning problem. The proposed
algorithm is described in Section 3, with a detailed
description of the pseudocode, the UAS model and the
MPC strategy adopted. Section 4 describes the experimental
results, while our conclusions are drawn in Section 5.

2 Problem Formulation

This section defines the motion planning problem studied in
this paper. First, the UAS dynamic model is described as

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ R
nx is the system state with dimension nx ,

and u(t) ∈ R
nu is the control input with dimension nu. Both

states and control inputs should respect specific constraints.
Specifically, the vehicle state must belong to the free state
space Xfree = X \ Xobs, in order to navigate through an
obstacle-free trajectory. This constraint is expressed by

x(t) ∈ Xfree, (2)

where X is the state space and Xobs is the space occupied
by obstacles. Moreover, the control input is constrained as

u(t) ∈ U , (3)

where U is the space of the admissible inputs (roll,
pitch and thrust commands) in order to meet the mission
specifications.

Given the initial state of the UAS x0 = x(0) at time t = 0
and the target state defined by the goal region Xgoal ⊂ R

nx ,
the aim of the motion planning problem is to compute an
optimal state trajectory x∗ : [0, tf] ∈ Xfree and an optimal
control input sequence u∗ : [0, tf] ∈ U over a finite time
horizon from 0 to tf able to drive the vehicle from the
initial state x(0) = x0 to a final state within the goal region
x(tf) ∈ Xgoal. x∗ and u∗ are computed minimizing a cost
function Cost(·), while satisfying the constraints imposed

Page 3 of 13 59J Intell Robot Syst (2021) 103: 59

by Eqs. 2 and 3. Hence, the optimal motion is the solution
of the following problem

x∗, u∗ = arg min Cost(x(t), u(t))

subject to x(0) = x0

x(tf) = xgoal ∈ Xgoal

x(t) ∈ Xfree, ∀t ∈ [
0, tf

]

u(t) ∈ U , ∀t ∈ [
0, tf

]
.

(4)

Here, we will solve such a motion planning problem
using the proposed MP-RRT# algorithm. In particular, the
proposed algorithm solves the motion planning problem
in Eq. 4 by constructing a graph of optimal trajectories
GX in the state space and, then, by selecting the best
complete trajectory in the graph from the start to the goal
state. Specifically, optimal trajectories of the graph GX

are computed using a Model Predictive Control strategy
that takes into account the UAS dynamic model in Eq. 1,
satisfying the constraints imposed by Eqs. 2 and 3.

3 TheMP-RRT# Strategy

This section introduces the proposed MP-RRT# algo-
rithm (Model Predictive Rapidly-exploring Random Tree
“sharp”), which enhances the RRT# algorithm [2] using a
MPC strategy to compute a near-optimal trajectory for UAS
respecting the dynamic and kinematic constraints, while
avoiding obstacles.

Similar to other kinodynamic RRT-based algorithms, our
MP-RRT# algorithm explores the search space by construct-
ing an incremental graph rooted from the start. Specifically,
the MP-RRT# generates two graphs simultaneously: (i) GY

in the reference space Y , and (ii) GX in the state space X .
The former graph, i.e., GY , consists of vertices and edges

in the reference space Y . It is constructed incrementally by
sampling vertices and growing the graph to uniformly explore
the reference space. This is equivalent to any other graph
generated to other algorithms of the RRT family. On the other
hand, the latter graph, GX , consists of a graph of trajectories
computed through MPC. GX is built concurrently with GY

and, practically, it is used to evaluate the motion between
vertices of GY , generating a graph of feasible trajectories
in the state space. Figure 1 shows a simple example of the
proposed strategy, where the graph GY in blue is constructed
in the reference state, while the corresponding graph GX in
the state space is colored in magenta.

As can be observed in Fig. 1, collisions with obstacles
are accounted for by graph GX . If a trajectory in GX enters
the obstacle space, the corresponding edge in GY will not be
included in the resulting graph. On the contrary, as can be
observed in Fig. 1, even if an edge in GY crosses an obstacle,
it will not be discarded if its corresponding trajectory in GX

does not collide with obstacles. This choice is motivated by
the fact that, in general, the reference state has generally a
lower dimension than the dimension of the vehicle state. As
a consequence, it is more efficient to generate a graph in the
reference space than in the state space.

3.1 Algorithm

The proposed algorithm is based on the the RRT# algorithm
proposed in [2]. The RRT# is a special variant of the
Rapidly-exploring Random Graph (RRG) that ensures a
globally optimal graph in the search space.

The main pseudocode of MP-RRT# is defined in Algo-
rithm 1. The inputs of the algorithm are the initial state
x0, the goal region Xgoal, the reference space Y and the
state space X in which the motion planning searches for a
feasible solution.

First, both graphs GY and GX are initialized (lines 2
to 4). In particular, the initial vertex in the reference state
is defined using the initial state x0 (line 3). In fact, we
assume that the reference space Y is a subset of the state
space X and, as a consequence, an element r ∈ Y can be
derived from a state x ∈ X . Then, the iterative procedure
of the construction of the graph starts and continues until a
certain number N of vertices are sampled and added to the
graph (lines 5 to 8). Specifically, a vertex rrand is randomly
sampled (line 6) and both graphs GX and GY are extended
by adding the new vertex (line 7). The Replan() function
propagates this update on the graphs (line 8). Both the
Extend() and Replan() functions are detailed in Algorithms
2 and 4, respectively. Finally, the branch T X connecting the
initial and the target states is extracted from the graph GX

(line 9) and returned as the solution of the algorithm.

Algorithm 1 The MP-RRT# algorithm.

1 MP-RRT#(x0,Xgoal,Y,X)
2 GX ← {x0};
3 r0 ← x0;
4 GY ← {r0};
5 for i = 0 to N do
6 rrand ← Sample();
7 GX ,GY ← Extend(GX ,GY , rrand);
8 Replan(GX ,GY);

9 T X ← SpanningTree(GX);
10 return T X

The Extend procedure is a crucial element for the
proposed approach; it is responsible for the expansion of
both graphs by adding a new vertex, after which the cost of
the state trajectory is computed using MPC. This procedure

59 Page 4 of 13 J Intell Robot Syst (2021) 103: 59

is detailed in Algorithm 2. Initially, the new vertex r is
connected to the nearest vertex rnearest in the graph GY

(line 2). Then, the Nearest() function finds the vertex with
the minimum Euclidean distance from r . Hence, the states
xnearest and x are defined from rnearest and r , respectively
(lines 3 and 4). The ComputeTrajectory() function (line 5)
uses MPC to compute the optimal state trajectory x moving
from xnearest to x. Then, if the computed trajectory is valid,
i.e., it does not collide with obstacles, the cost-to-come of
vertex r , denoted by g(r) is computed by adding the cost at
the previous vertex to the cost of the trajectory x, denoted
by c(x) (line 7). In line 8, all the neighbor vertices of r

are added to the neighbor set N and, then, the vertex r is
included in the neighbor set of its neighbors (lines 8 to 10).

The Near() function selects the M-nearest vertices as
defined in [17]. Specifically, the number M of neighbors
evaluated is defined as

M = e(1 + 1/d) log |V |, (5)

where d is the dimension of the reference space Y , and the
notation |V | defines the cardinality of the set of vertices, i.e.
the number of vertices in the graph GY . According to [17],
Eq. 5 ensures the asymptotic optimality of the algorithm.

The FindParent() function searches for the neighbor
vertex of r that provides the minimum cost-to-come g()

including the vertex r to the graph GY and, similarly, the
corresponding state x to the graph GX (line 11). Then, the
vertex r is included in the priority queue q (line 12) used in
the Replan() to propagate any updated cost in the graph GY .

The FindParent() procedure is detailed in Algorithm 3.
For each near vertex of r , the state trajectory from x and
xnear is computed to select the best parent vertex (from lines
2 to 9). Then, the selected rnear is defined as parent of r (line
8) and, similarly, xnear is defined as parent of x (line 9).

The priority queue has a crucial role in the RRT#

algorithm [2], since it is a queue of vertices that is evaluated
in the Replan() procedure to propagate any update on the
graph. Vertices of the queue are ordered based on their cost
f (r) from the highest to the lowest. Specifically, the cost
f (r) is the estimated cost to reach the goal passing through
the vertex r , inspired by the well-known cost function
defined in the A∗ algorithm [12]

f (r) = g(r) + ĥ(r). (6)

Function g(r) represents the cost-to-come at the vertex r ,
i.e. the cost of moving between the start vertex r0 and r ,
with g(r0) = 0. Function ĥ(r) is the estimated cost-to-go to
reach the goal state, with ĥ(rgoal) = 0.

In particular, the Replan() procedure is detailed in
Algorithm 4. This procedure is based on an iterative loop
that updates only promising vertices (lines 2 to 15), i.e.,
vertices that can improve the current solution in the graph.

Algorithm 2 The Extend procedure.

1 Extend(GX ,GY , r)
2 rnearest ← Nearest(GY , r);
3 xnearest ← rnearest;
4 x ← r;
5 x ← ComputeTrajectory(xnearest, x);
6 if isTrajectoryValid(x) then
7 g(r) ← g(rnearest) + c(x);

8 N (r) ← Near(GY , r);
9 foreach rnear ∈ N (r) do

10 N (rnear) ← N (rnear) ∪ {r};
11 FindParent(r, x);
12 UpdateQueue(r);
13 return GX ,GY

Specifically, the set of promising vertices Vprom ⊂ V

contains vertices inside the relevant region Yrel ∈ Y
Yrel = {r ∈ Yfree : f (r) < g(r∗

goal)}, (7)

where r∗
goal is the vertex in the goal region with the

minimum cost-to-come. Notably, the heuristic cost ĥ(r)

used to compute f (r) must be admissible, i.e., it should not
overestimate the cost-to-go, discarding vertices that would
lead to the optimal solution. The evaluation of promising
vertices is essential to avoid the propagation toward vertices
that cannot improve the current solution, speeding up the
algorithm. The first element of the queue is selected (line 3)
and removed from q (line 5). Then, the procedure verifies
if the current vertex can improve the cost-to-come of its
neighbors (lines 6 to 15) as a new parent vertex. This is
verified by computing the cost-to-come of the resulting state
trajectory of moving from x to xnbh. Similar to Algorithm
3, line 10 checks if the neighbor vertex rnbh ∈ N is a
promising vertex and, in line 11, if r can be the new parent
vertex of rnbh. If this condition occurs, the vertex rnbh is
included in q to be evaluated in the Replan() procedure. In

Algorithm 3 The FindParent procedure.

1 FindParent(r, x)
2 foreach rnear ∈ N (r) do
3 xnear ← rnear;
4 x ← ComputeTrajectory(xnear, x);
5 if isTrajectoryValid(x) then
6 if g(rnear) + c(x) < g(r) then
7 g(r) = g(r) + c(x);
8 P(r) = rnear;
9 P(x) = xnear;

Page 5 of 13 59J Intell Robot Syst (2021) 103: 59

particular, rnbh is defined in the reference space, while xnbh

is the corresponding state in the state space.

Algorithm 4 The Replan procedure.

1 Replan(GX ,GY)
2 while f (q.top()) ≺ g(r∗

goal) do
3 r = q.top();
4 x ← r;
5 q.pop();
6 foreach rnbh ∈ N (r) do
7 xnbh ← rnbh;
8 x ← ComputeTrajectory(x, xnbh);
9 if isTrajectoryValid(x) then
10 if g(r)+ c(x)+ ĥ(rnbh) < g(r∗

goal) then
11 if g(r) + c(x) < g(rnbh) then
12 g(rnbh) = g(r) + r(x);
13 P(rnbh) = r;
14 P(xnbh) = x;
15 UpdateQueue(rnbh);

3.2 UASModel

Here, we adopt a multicopter, with a dynamic motion model
linearized around its hovering condition [15], in which small
variations of the attitude angle are assumed and the vehicle
heading is aligned with the x-axis of the multicopter inertial
frame. Hence, the linear model of the UAS is defined as

ẋ(t) = Acx(t) + Bcu(t), (8)

where Ac is the state matrix in continuous time

Ac =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −ax 0 0 g 0
0 0 0 0 −ay 0 0 −g

0 0 0 0 0 −az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (9)

Bc is the input matrix in continuous time

Bc =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
kφ

τφ
0 0

0 kθ

τθ
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (10)

and where ax , ay and az are the drag coefficients, g is the
gravity acceleration, τφ is the roll time constant, τθ is the
pitch time constant, kφ is the roll gain and kθ is the pitch

gain. The state vector is x = [
pT vT Wφ Wθ

]T
, where p

is the position vector of the UAS in the three-dimensional
space, v is the velocity vector, Wφ and Wθ are the roll and
pitch angles in the inertial frame W. The input vector is

u = [
Wφd

Wθd T
]T

, where Wφd and Wθd are the roll and
pitch control commands in the inertial frame and T is the
thrust control command.

Since we will use a controller implemented in the discrete
time, the UAS model is discretized as

A = eAcTs , (11)

B =
∫ Ts

0
eAcdτ dτBc, (12)

where Ts is the sampling time.

3.3 Model Predictive Control

In order to construct the graph GX ∈ X incrementally,
the MP-RRT# algorithm uses MPC to compute the optimal
state trajectory between every newly added vertex and its
adjacent vertices and, then, to evaluate the cost of such a
trajectory.

Based on the UAS model previously defined, in this work
we implement a Linear Model Predictive Control inspired
by [15].

Specifically, the MPC searches for an optimal trajectory
by optimizing the cost function

J (x, u) =
(Hp−1∑

k=0

(xk − xref,k)
T Qx(xk − xref,k)

+(uk − uk−1)
T R�(uk − uk−1)

)

+(xHp − xref,Hp)
T Qfinal(xHp − xref,Hp), (13)

where Hp is the prediction horizon. The input vector is
u = [u0 u1 . . . uHp]T , with uk ∈ R

3, for k = 0, . . . , Hp − 1.
The state vector is x = [x0 x1 . . . xHp]T , with xk ∈
R

8, for k = 0, . . . , Hp. The vector reference state is

xref = [
xref,0 xref,1 . . . xref,Hp

]T
, with xref,k ∈ R

8, for
k = 0, . . . , Hp. Matrices Qx, R� and Qfinal are positive
semidefinite matrices indicating the penalty matrix on the
state error, the penalty matrix on the variation of the control
input, and the terminal cost matrix on the last state error. The
computation of Qfinal is carried out by iteratively solving a
suitable Algebraic Riccati Equation [4].

59 Page 6 of 13 J Intell Robot Syst (2021) 103: 59

Fig. 2 Example of reference trajectory computed using Dubins curves
and connecting two adjacent vertices. The green line is the reference
trajectory, whereas magenta arrows are the state trajectory computed
using MPC

Hence, the following convex optimization problem is
solved

x∗, u∗ = min
U,X

J (x, u) (14)

subject to xk+1 = Axk + Buk (15)

uk ∈ U (16)

x0 = x(t0) (17)

The optimization problem of Eq. 14 requires a reference
trajectory xref. In this work, the reference trajectory is
defined using Dubins curves [9]. Compared to other
primitive curves used to find the shortest path between two

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Co
nt

ro
l C

om
m

an
d

(r
ad

)

Roll
Pitch

Fig. 3 The roll and pitch control inputs computed by MPC to follow the trajectory of Fig. 2

configurations, and for our purposes of building the graph
iteratively from curve segments extending the existing path
with a new vertex, Dubins curves are a suitable solution to
achieve flyable paths, since they are forward-only curves,
whereas other curves like Reeds-Shepp require backward-
motion [23]. The Dubins curvature radius generally affects
motion planning, whereby different curvature radii yield
different planned paths. As a fundamental requisite, the
curvature radius should reflect the minimum curvature
that the vehicle can execute, compatible with kinodynamic
constraints. Here, we are considering a multicopter that,
theoretically, has zero curvature radius (i.e., it can rotate
around its axis in place). However, since we are assuming a
constant nonzero cruise velocity in the motion planning, a
lower bound for the curvature radius needs to be set.

Dubins curves refer to the shortest path between two
poses in the two-dimensional space considering a constant
radius curvature. This solution fits perfectly with our work,
since the algorithm is implemented in the two-dimensional
space. However, Dubins curves are also extended to the
three-dimensional space [29] and with a variable radius
curvature [11] being able to be used also in more complex
scenarios.

Given the two-dimensional pose of the aircraft[
px py pβ

]
and assuming a constant speed, the differential

equations of Dubins curves are

ṗx = cos(pβ), (18)

ṗy = sin(pβ), (19)

ṗβ = uc, (20)

Page 7 of 13 59J Intell Robot Syst (2021) 103: 59

Table 1 Parameters used for the UAS model

Parameter Value

ax 0.01
ay 0.01
az 0
kφ 0.9
kθ 0.9
τφ 0.250 s
τθ 0.255 s

where uc is normalized in the range between −1 and 1 with
respect to the maximum curvature radius of the aircraft.
The shortest path between two poses can be expressed as
a combination of no more than three motion primitives [9].
Hence, only three values of uc are defined uc ∈ {−1, 0, 1}.
The value uc = 0 describes a straight motion (S), uc = −1
describes a right (R) turn, and uc = 1 describes a left (L)
turn, thus obtaining six possible curves

{LRL, RLR, LSL, LSR, RSL, RSR}. (21)

The optimization problem of Eq. 14 is solved following
the reference trajectory. Then, in accordance with the MPC

philosophy, only the first control input is applied and
the optimization is solved iteratively. Figure 2 shows an
example of reference trajectory generated using Dubins
curves and followed through MPC. Figure 3 illustrates the
roll and pitch control commands computed to follow the
trajectory.

4 Results

4.1 Implementation

The proposed strategy is implemented in C++ using the
Robot Operating System (ROS) [34] framework and the
Open Motion Planning Library (OMPL) [38], which pro-
vides many state-of-the-art sampling-based algorithms and
many additional functionalities to facilitate the development
of new algorithms.

The MP-RRT# algorithm is implemented considering
a two-dimensional space, i.e., flying at a fixed altitude.
Hence, the selected configuration space is the Special

Fig. 4 The construction of the
exploration tree using the
MP-RRT# algorithm. The start
and target positions are in green
and in red, respectively. The
graph GY in the reference space
is colored in blue, while the
computed path obtained from
the graph GX in the state space
is colored in magenta. In (a), the
graph consists of 10 vertices
rooted from the start pose
finding an initial solution in the
map with a cost (i.e., the path
length) of 66.44 m. In (b), the
graph with 20 vertices, in which
the solution is improved with a
cost of 45.09 m. In (c), the graph
consists of 60 vertices, but the
solution is not improved. In (d),
the graph has 100 vertices
obtaining a solution with cost
38.70 m

59 Page 8 of 13 J Intell Robot Syst (2021) 103: 59

Euclidean Group SE(2) in which each admissible configu-
ration is a pose in the two-dimensional space free to trans-
late and rotate. Each reference sampled by the algorithm in
the reference space Y consists therefore of three parameters,
i.e., two defining the position of the UAS and one defining
its orientation, corresponding to the flight direction. Each
time the MP-RRT# algorithm evaluates the motion between
two states, a reference trajectory is computed using Dubins
curves and the MPC computes the optimal state trajectory
and control input to track it.

The motion-cost of the trajectory is computed consider-
ing the path length of the resulting trajectory

c(x, u) =
M∑

i=1

‖xi − xi−1‖2, (22)

with xi ∈ x, and M is the size of the trajectory. On the other
hand, the cost-to-go ĥ(r) is computed as the length of the
Dubins curve between the vertex r and the goal region Xref.

The optimization problem of the MPC is solved using
CVXGEN [28], a tool for code generation for convex
optimization. CVXGEN can be used to generate fast custom
code for small, QP-representable convex optimization
problems. The mathematical problem is translated into a
high speed solver that is twelve-to thousand-times faster
than other popular optimizers [28]. Hence, the linear model
of the UAS and the Linear MPC problem of Eqs. 13 and 14
are included and solved with CVXGEN.

Experimental tests are performed considering the mul-
ticopter Asctec Firefly and using the parameters listed in
Table 1.

The MP-RRT# is executed considering a maximum
cruise velocity of 2.5 m/s and the reference trajectory is
computed with Dubins curves with a curvature radius of
2 m. The admissible control input is defined through the
following constraints:

− 0.436 rad ≤ Wφd ≤ 0.436 rad (23)

−0.436 rad ≤ Wθd ≤ 0.436 rad (24)

−4.80 N ≤ T ≤ 10.19 N. (25)

The MPC is manually tuned by setting matrices Qx and
R� through trial-and-error to attain a satisfactory behavior
in tracking the reference trajectory. Specifically, Qx, and
R� are set as

Qx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

40 0 0 0 0 0 0 0
0 40 0 0 0 0 0 0
0 0 60 0 0 0 0 0
0 0 0 20 0 0 0 0
0 0 0 0 20 0 0 0
0 0 0 0 0 25 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (26)

0 20 40 60 80 100
Number of Vertices

40

45

50

55

60

65

70

75

Av
er

ag
e

Co
st

Fig. 5 The average cost of the solution path against the number of
vertices in the MP-RRT# algorithm. The average cost is computed
running the algorithm 50 times in the same scenario of Fig. 4

R� =
⎡

⎣
0.3 0 0
0 0.3 0
0 0 0.0025

⎤

⎦ . (27)

Table 2 Trajectory tracking performance indices collected over 20
trajectories

Trajectory Length [m] Vertices Avg Tracking Error [m]

1 47.178677 17 0.04951

2 43.488594 17 0.04924

3 49.000358 16 0.04934

4 48.921484 16 0.04940

5 48.720384 18 0.04930

6 47.986777 19 0.05003

7 46.894054 16 0.04931

8 44.604293 15 0.04949

9 51.149531 16 0.04875

10 45.98843 15 0.04938

11 48.523593 18 0.04869

12 47.661833 15 0.05003

13 43.958282 16 0.04825

14 43.825664 14 0.04939

15 49.610042 16 0.04799

16 48.843731 15 0.04838

17 49.636594 17 0.04898

18 45.822011 15 0.04950

19 45.370298 16 0.04885

20 45.527057 16 0.05007

Page 9 of 13 59J Intell Robot Syst (2021) 103: 59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Experiment

0.0475

0.048

0.0485

0.049

0.0495

0.05

0.0505
Av

g
Tr

ac
ki

ng
Er

ro
r [

m
]

Fig. 6 The average tracking error for 20 trajectories running the same
scenario of Fig. 4

Moreover, Qfinal is computed by iteratively solving the
Algebraic Riccati Equation [4].

Figure 2 illustrates an example of reference trajectory
computed with Dubins curves and connecting two vertices.
The trajectory is followed by the MPC that reaches the
target vertex computing the roll and pitch control commands
plotted in Fig. 3.

4.2 Simulation Results

The proposed MP-RRT# algorithm is tested in different sce-
narios to evaluate its behavior in computing UAS trajectories.

Figure 4 shows the evolution of the graph during
the exploration of the reference space (i.e., the map).
Specifically, in Fig. 4(a), the algorithm computes a graph
with 10 vertices finding an initial solution that is far from
the optimal one. In Fig. 4(b), the graph consists of 20
vertices, improving the solution path. On the contrary, the
solution is not improved in Fig. 4(c), with a graph with

Fig. 7 Trajectories computed
with the MP-RRT# by
constructing a graph with 400
vertices. The start and target
positions are in green and in red,
respectively. In blue, the graph
GY in the reference space, while
in magenta, the computed path
obtained from the graph GX in
the state space. In (a) and (b),
the target is in a similar position,
but with opposite orientation. As
a consequence, the solution is
completely different, yielding
different paths

Fig. 8 Example of trajectory computed with the MP-RRT# by
constructing a graph with 400 vertices. The start and target positions
are in green and in red, respectively. In blue the graph GY in the
reference space, while in magenta the computed path obtained from
the graph GX in the state space

60 vertices. Finally, in Fig. 4(d), a better solution is found
with a graph with 100 vertices. The previously described
test highlights the ability of the proposed algorithm to
explore the map and to compute a feasible trajectory for
the UAS. The quality of the computed trajectory increases
with the number of vertices in the graph, converging toward
the optimal solution. In order to demonstrate the above
mentioned pattern, we performed 50 tests using the same
scenario of Fig. 4. The average cost of the resulting solution
path against the number of iterations of the MP-RRT#

algorithm is shown in Fig. 5.
Considering the same scenario of Fig. 4, we evaluate

the ability of the MPC in tracking the reference trajectory

59 Page 10 of 13 J Intell Robot Syst (2021) 103: 59

defined using Dubins curves. Table 2 reports the average
trajectory tracking error in 20 tests. The average tracking
error is the average Euclidean distance between the
setpoints of the reference trajectory defined using Dubins
curves and their corresponding states in the actual state
trajectory computed using the MPC and satisfying dynamic
constraints. The average tracking error along the whole path
was found to be reasonably small, being always smaller than
0.05 m along trajectories with a length ranging between 43
and 51 m. Figure 6 illustrates the average tracking error for
each of the 20 tests.

Other tests in more complex maps are shown in Figs. 7
and 8. In particular, Fig. 7 shows an interesting scenario,
in which Figs. 7(a) and (b) present the target in similar
positions but with opposite directions. As a consequence,
the algorithm computes different solutions in order to reach
the target with the desired flight direction.

Fig. 9 In (a), the trajectory computed with the MP-RRT# algorithm by
constructing a graph of 100 vertices. In (b), the computed trajectory is
executed by the PX4 autopilot in a simulation

Similarly, in Fig. 9(a), the MP-RRT# algorithm explores
a map with a graph of 100 vertices, computing a solution.
The trajectory computed in Fig. 9(a) is also executed
in a realistic simulation environment, using Gazebo and
SITL frameworks. Gazebo is an open-source multi-robot
simulator fully compatible with ROS [19] able to simulate
robots, sensors, and rigid body dynamics. SITL (Software
In The Loop) [37] is a software to execute an autopilot on a
computer, without using a specific and dedicated hardware.
In this work, the simulation uses the PX4 autopilot [30],
an open-source flight control software for drones and other
autonomous vehicles.

In particular, the state trajectory computed with MP-
RRT# is uploaded on the PX4 autopilot and, then, executed
as shown in Fig. 9(b). Although the environment of Fig. 9(b)
does not correspond to the map of Fig. 9(a), the executed
trajectory in Fig. 9(b) is the same generated in Fig. 9(b).

5 Conclusions

In this paper, we have introduced a novel kinodynamic
sampling-based motion planning algorithm called MP-
RRT#, which enhances the RRT# using a Model Predictive
Control strategy to compute an optimal trajectory for UAS.

Similar to RRT#, the proposed algorithm explores
the map constructing an asymptotically optimal graph.
Specifically, two graphs are concurrently constructed: GY

and GX . First, the graph GY explores the reference space
of the UAS. Then, the MPC strategy is used to iteratively
evaluate the feasibility of each newly added vertex and to
compute the cost of its corresponding edge constructing a
graph GX of feasible trajectories in the state space. The
resulting trajectory computed by the proposed MP-RRT#

algorithm is a near-optimal trajectory that respects both the
kinematic and dynamic constraints of the UAS.

The proposed MP-RRT# algorithm differs from other
kinodynamic RRT-based algorithms in sampling the input
reference of the closed loop system instead of directly
sampling the control input. This gives rise to considerable
advantages, especially when dealing with vehicles with
complex dynamics where the reference space dimension is
considerably smaller than the control space and state space
of the vehicle.

The simulation results obtained from the implementation
of the proposed MP-RRT# algorithm demonstrate good
trajectory quality even for complex maps. Moreover, the
computed trajectory is executable by a UAS equipped with
a professional autopilot.

Although the proposed algorithm is tested in a simplified
scenario, i.e., in a two-dimensional space using a linearized
model of the UAS, the proposed MP-RRT# algorithm

Page 11 of 13 59J Intell Robot Syst (2021) 103: 59

can be extended to more complex scenarios by increasing
the complexity of the algorithm. Moreover, although the
work presented here focuses on UAS, the proposed motion
planning strategy has a general validity, and can be easily
adapted to other kinds of robots, such as ground robots,
autonomous cars, and underwater vehicles.

Future works will extend the current algorithm to solve a
three-dimensional motion planning problem. The proposed
MP-RRT# strategy will be adapted for real-time motion
planning problems like the one described in [1, 20]. In
addition to that, experimental tests will be conducted on a
physical robotic platform to evaluate the performance under
realistic conditions.

Author Contributions SP conceived the research and designed a first
version of the algorithm, AO collaborated to the development of
the algorithm, implemented the Model Predictive Control Strategy,
performed the simulations, and evaluated the results. SP and AO
drafted a first version of the manuscript. AR supervised the research
and produced a revised version of the manuscript. All the authors
finally revised and agreed on the final version of the manuscript.

Funding Open access funding provided by Politecnico di Torino
within the CRUI-CARE Agreement. This work is partially supported
by Compagnia di San Paolo and by an Amazon Research Award
granted to Dr. A. Rizzo.

Data Availability Not applicable, as no real data have been used to
realize this work.

Code Availability The code will be made available upon request.

Declarations

Ethics approval Not applicable. (This study does not involve human
participants, their data or biological material).

Consent toparticipate and for publication The manuscript is approved
by all authors for publication.

Conflict of Interests The authors declare neither conflict of interest,
nor competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Arslan, O., Berntorp, K., Tsiotras, P.: Sampling-based algorithms
for optimal motion planning using closed-loop prediction. In:
2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4991–4996. IEEE (2017)

2. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In: 2013 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2421–2428. IEEE (2013)

3. Bloise, N., Primatesta, S., Antonini, R., Fici, G.P., Gaspardone,
M., Guglieri, G., Rizzo, A.: A survey of unmanned aircraft
system technologies to enable safe operations in urban areas. In:
2019 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 433–442. IEEE (2019)

4. Borrelli, F., Bemporad, A., Morari, M.: Predictive Control
for Linear and Hybrid Systems. Cambridge University Press,
Cambridge (2017)

5. Camacho, E.F., Alba, C.B.: Model predictive control. Springer
Science & Business Media (2013)

6. Čáp, M., Novák, P., Vokřı́nek, J., Pěchouček, M.: Multi-agent
RRT*: Sampling-based cooperative pathfinding. arXiv:1302.2828
(2013)

7. Chen, Y., Peng, H., Grizzle, J.W.: Fast trajectory planning and
robust trajectory tracking for pedestrian avoidance. IEEE Access
5, 9304–9317 (2017)

8. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion
planning. J. ACM (JACM) 40(5), 1048–1066 (1993)

9. Dubins, L.E.: On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

10. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning
for agile autonomous vehicles. J Guid. Control Dyn. 25(1), 116–
129 (2002)

11. Hansen, K.D., la Cour-Harbo, A.: Waypoint planning with Dubins
curves using genetic algorithms. In: 2016 European Control
Conference (ECC), pp. 2240–2246. IEEE (2016)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst.
Sci. Cybern. 4(2), 100–107 (1968)

13. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory
generation for wheeled mobile robots. Int. J. Robot. Res. 26(2),
141–166 (2007)

14. Ji, J., Khajepour, A., Melek, W.W., Huang, Y.: Path planning and
tracking for vehicle collision avoidance based on model predictive
control with multiconstraints. IEEE Trans. Veh. Technol. 66(2),
952–964 (2016)

15. Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear MPC for
trajectory tracking applied to rotary wing micro aerial vehicles.
IFAC-PapersOnLine 50(1), 3463–3469 (2017)

16. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning
using incremental sampling-based methods. In: 49th IEEE
Conference on Decision and Control (CDC), pp. 7681–7687.
IEEE (2010)

17. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal
motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

18. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller,
S.: Anytime motion planning using the RRT. In: 2011 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 1478–1483. IEEE (2011)

19. Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo,
an open-source multi-robot simulator. In: 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), vol. 4, pp. 2149–2154. IEEE (2004)

59 Page 12 of 13 J Intell Robot Syst (2021) 103: 59

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1302.2828

20. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.:
Real-time motion planning with applications to autonomous urban
driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–1118
(2009)

21. Latombe, J.C.: Robot motion planning, vol. 124. Springer Science
& Business Media (2012)

22. Lau, B., Sprunk, C., Burgard, W.: Kinodynamic motion planning
for mobile robots using splines. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2427–
2433. IEEE (2009)

23. LaValle, S.M.: Planning Algorithms. Cambridge University Press,
Cambridge (2006)

24. LaValle, S.M., Kuffner, J.r., J. J.: Randomized kinodynamic
planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

25. Li, L., Miao, Y., Qureshi, A.H., Yip, M.C.: MPC-MPNet: Model-
predictive motion planning networks for fast, near-optimal plan-
ning under kinodynamic constraints. arXiv:2101.06798 (2021)

26. Lin, P., Chen, S., Liu, C.: Model predictive control-based
trajectory planning for quadrotors with state and input constraints.
In: 2016 16th International Conference on Control, Automation
and Systems (ICCAS), pp. 1618–1623. IEEE (2016)

27. Masoud, A.A.: Kinodynamic motion planning. IEEE Robot.
Autom. Mag. 17(1), 85–99 (2010)

28. Mattingley, J., Boyd, S.: CVXGEN: A code generator for
embedded convex optimization. Optim. Eng. 13(1), 1–27 (2012)

29. McLain, T., Beard, R.W., Owen, M.: Implementing Dubins
airplane paths on fixed-wing (UAVs) (2014)

30. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based
multithreaded open source robotics framework for deeply
embedded platforms. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6235–6240. IEEE (2015)

31. Naderi, K., Rajamäki, J., Hämäläinen, P.: RT-RRT* a real-time
path planning algorithm based on RRT. In: Proceedings of the
8th ACM SIGGRAPH Conference on Motion in Games (MIG),
pp. 113–118 (2015)

32. Noreen, I., Khan, A., Habib, Z., et al.: Optimal path planning using
RRT* based approaches: a survey and future directions. Int. J.
Adv. Comput. Sci. Appl 7(11), 97–107 (2016)

33. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-
Perez, T.: LQR-RRT*: Optimal sampling-based motion planning
with automatically derived extension heuristics. In: 2012 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2537–2542. IEEE (2012)

34. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating
system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5
(2009)

35. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z.,
Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.:
Unmanned aerial vehicles (UAVs): A survey on civil applications
and key research challenges. IEEE Access 7, 48572–48634 (2019)

36. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to
autonomous mobile robots. MIT press (2011)

37. SITL contributors: SITL guide http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html (2020)

38. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion
planning library. IEEE Robot. Autom. Mag. 19(4), 72–82
(2012). https://doi.org/10.1109/MRA.2012.2205651. http://ompl.
kavrakilab.org

39. Tang, S., Kumar, V.: Autonomous flight. Annual Review of
Control, Robotics, and Autonomous Systems 1, 29–52 (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Stefano Primatesta is a postdoctoral Assistant Researcher in the
Department of Mechanical and Aerospace Engineering. He received
his Ph.D. in Computer and Control Engineering from Politecnico di
Torino in 2019, his M.Sc. in Mechatronic Engineering, and his B.Sc.
in Electronic Engineering from Politecnico di Torino in 2014 and
2011, respectively. His field of research is the use of Remotely Piloted
Aircraft Systems in urban environments including virtual modeling
and multi-dimensional risk analysis. His research interests include
also autonomous navigation and service robotics, with applications to
unmanned aerial vehicles and unmanned ground vehicles.

Abdalla Osman is a Ph.D. student in the Department of Electronics
and Telecommunications at Politecnico di Torino, Italy. He received
his M.Sc. in Mechatronic Engineering from Politecnico di Torino in
2016. In 2017, he started his Ph.D. within in the Complex Systems
Laboratory, directed by Prof. Alessandro Rizzo, and the PIC4SeR
(Interdipartimental center for service robotics), directed by Prof.
Marcello Chiaberge, researching on computer vision and control
systems for robotic applications.

Alessandro Rizzo received the Laurea degree (summa cum laude)
in computer engineering and the Ph.D. degree in automation and
electronics engineering from the University of Catania, Italy, in 1996
and 2000, respectively. In 1998, he worked as a EURATOM Research
Fellow with JET Joint Undertaking, Abingdon, U.K., researching on
sensor validation and fault diagnosis for nuclear fusion experiments.
In 2000 and 2001, he worked as a Research Consultant at ST
Microelectronics, Catania Site, Italy, and as an Industry Professor of
robotics with the University of Messina, Italy. From 2002 to 2015,
he was a tenured Assistant Professor with the Politecnico di Bari,
Italy. Since 2012, he has been a Visiting Professor with the New York
University Tandon School of Engineering, Brooklyn, NY, USA.

In November 2015, he joined Politecnico di Torino, where
he is an Associate Professor in the Department of Electronics
and Telecommunications and established the Complex Systems
Laboratory. Dr. Rizzo is engaged in conducting and supervising
research on complex networks and systems, modeling and control of
nonlinear systems, and cooperative robotics. He is the author of two
books, two international patents, and about 190 papers on international
journals and conference proceedings. He has been a recipient of the
Award for the Best Application Paper at the IFAC world triennial
conference in 2002 and of the Award for the Most Read Papers in
Mathematics and Computers in Simulation (Elsevier) in 2009. He
has also been a Distinguished Lecturer of the IEEE Nuclear and
Plasma Science Society and one of the recipients of the 2019 Amazon
Research Awards.

Page 13 of 13 59J Intell Robot Syst (2021) 103: 59

http://arxiv.org/abs/2101.06798
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://doi.org/10.1109/MRA.2012.2205651
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

	MP-RRT#: a Model Predictive Sampling-based Motion Planning Algorithm for Unmanned Aircraft Systems
	Abstract
	Introduction
	Problem Formulation
	The MP-RRT# Strategy
	Algorithm
	UAS Model
	Model Predictive Control

	Results
	Implementation
	Simulation Results

	Conclusions
	Declarations
	References

