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Abstract
A deep reinforcement learning approach for solving the quadrotor path following and obstacle avoidance problem is
proposed in this paper. The problem is solved with two agents: one for the path following task and another one for the
obstacle avoidance task. A novel structure is proposed, where the action computed by the obstacle avoidance agent becomes
the state of the path following agent. Compared to traditional deep reinforcement learning approaches, the proposed method
allows to interpret the training process outcomes, is faster and can be safely trained on the real quadrotor. Both agents
implement the Deep Deterministic Policy Gradient algorithm. The path following agent was developed in a previous work.
The obstacle avoidance agent uses the information provided by a low-cost LIDAR to detect obstacles around the vehicle.
Since LIDAR has a narrow field-of-view, an approach for providing the agent with a memory of the previously seen obstacles
is developed. A detailed description of the process of defining the state vector, the reward function and the action of this
agent is given. The agents are programmed in python/tensorflow and are trained and tested in the RotorS/gazebo platform.
Simulations results prove the validity of the proposed approach.

Keywords Unmanned aerial vehicles · Obstacle avoidance · Path following · Deep reinforcement learning · LIDAR ·
Deep deterministic policy gradient

1 Introduction

Recent years are revealing an exponential growth on
the research and applications on the deep reinforcement
learning (DRL) field. It has been applied to a large number
of different computer science, engineering and control
problems with outstanding results [1–5]. In [6] a DRL
algorithm was implemented to solve the path following
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(PF) problem with adaptive velocity for a quadrotor
obtaining successful experimental results. In this paper,
the capabilities of this learning paradigm are taken further
by implementing a deep reinforcement learning agent for
solving the reactive obstacle avoidance problem. This agent
is combined with the one developed in [6] configuring a path
following and obstacle avoidance autonomous solution.

The obstacle avoidance (OA) problem has been solved
by many different classic techniques including Model
Predictive Control (MPC), Potential Field methods or
Rapidly-exploring Random Trees (RRT) [7–10]. However,
machine learning theory is becoming more popular to
solve this problem due to its good results. Most of the
approaches used to solve the OA problem on UAVs by
means of machine learning theory are based on the use of
Convolutional Neural Networks (CNN). That is, a type of
deep neural network where the inputs may be images. In
[11] CNNs are used to extract the information of an obstacle
from the images of a monocular vision system. Then, this
information is used as the state input of an actor-critic RL
algorithm that designs the trajectory to avoid the obstacle.
In other cases, the obstacle avoidance algorithms based on
DRL implement the Deep Q-Network (DQN) [12, 13] or
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the Double DQN [14–16]. These algorithms are variants
of Q-Learning that use CNNs. They receive raw images of
a camera (or cameras) as the reinforcement learning state.
Applications of the DQN algorithm for the OA problem are
also found in other systems such as marine vessels [17] and
mobile robots [18].

Other approaches implementing the Deep Deterministic
Policy Gradient (DDPG) algorithm for the UAV OA
problem are also found in the literature. The main difference
between DQN and DDPG is that in DQN the state inputs
of the agent are images, while DDPG is especially designed
for continuous state-action spaces. In [19] a DDPG-based
approach for a fixed-wing UAV that performs ground
target tracking while avoiding obstacles is presented. This
approach uses Long Short-Term Memory (LSTM) neural
networks to approximate the state of the environment
from the obstacle detection distance measures. The LSTM
networks are a type of recurrent neural networks (RNN)
that use a sequence as their input data. That is, the
training results at each step are determined by both the
current training data and the historical training data. The
obstacle detection sensor used in [19] has a field-of-view
(FOV) of 180◦ . The proposed approach is trained and
validated in a simulated environment. In [20] an adaptation
of the Recurrent Deterministic Policy Gradient (RDPG)
algorithm, a DDPG-like algorithm specially designed for
partially observable Markov decision processes, is used to
solve the UAV obstacle avoidance problem. The DDPG
algorithm updates the weights of the networks step-by-
step making use of the newest experience. Rather than
that, the RDPG only updates the weights when an episode
ends, using the entire episode experience. Thus, unlike
DDPG, RDPG is not sample-efficient. In this paper a Fast-
RDPG algorithm is designed in such a way that it permits
learning online by updating its weights in terms of history
trajectories instead of the entire episode. The proposed
algorithm uses the distance measures of a range sensor with
a 180◦ of field-of-view and is validated through simulation
results. A LIDAR-based approach for multirotor navigation
based on the DDPG algorithm is presented in [21]. Their
objective is to develop an agent capable of driving the
vehicle to a goal position avoiding obstacles in the vehicle’s
route. They use the measures of a LIDAR with a FOV
of 270◦ as part of the environment state. The reward is
designed using an Artificial Potential Field. The agent is
trained in RotorS and is validated with real experimental
results.

In this paper, a deep reinforcement learning approach
is developed to solve the path following and reactive
obstacle avoidance problem. Two agents, based on the
implementation of the DDPG algorithm, are used. The OA
training environment is developed in the RotorS/Gazebo
framework. The resulting agents are trained in the RotorS

simulated environment following a path while dealing with
static obstacles and tested with different configuration
of obstacles (static, single, multiple, cluttered, different
shapes, different sizes, etc). The contributions of this paper
are: (i) The reactive obstacle avoidance approach uses the
processed measures of a low-cost LIDAR sensor as states
of the agent. In contrast to the LIDAR sensors used in
the state-of-the-art obstacle avoidance approaches, which
usually provide a map of the environment in the 360◦ field-
of-view (or similar FOVs), this LIDAR only provides 8
distance measures in a horizontal space of 48◦ . This makes
the problem significantly more challenging. (ii) Since the
obstacle detection sensor has a narrow field-of-view, an
approach for providing the agent with a memory of the
previously seen obstacles is developed. Though recurrent
neural networks are able to interpret historical data, they
are not included in the algorithm’s structure since they
would make the training process slower. Instead, a simpler
and effective solution that consists only on mathematical
relations is proposed. (iii) The main problem is solved by
implementing a novel structure that consists on two DRL
agents: One that solves the path following problem and
another one for the reactive obstacle avoidance problem.
The novelty relies in the fact that the action computed
by the OA agent directly modifies the state of the PF
agent, converting it into a cascade structure. Compared to
traditional DRL methods, it allows to interpret the training
process outcomes and is faster. Furthermore, it can be safely
trained on the real quadrotor platform.

The rest of the paper is organized as follows: In
Section 2 the problem addressed in the paper is defined.
Section 3 describes the elements that form the environment
of the agent. In Section 4 the designing process of the
proposed deep reinforcement learning approach for obstacle
avoidance is presented. Section 5 describes how the path
following and obstacle avoidance agents are implemented
and how they are integrated to solve the proposed problem.
The training process of the agents is evaluated in Section 6.
Section 7 reports the simulation results of the agents and
discusses their performance. Finally, section Section 8
details the conclusions.

2 Problem Statement

The aim of this paper is to develop a reactive obstacle
avoidance approach by means of deep reinforcement
learning theory. The resultant system must be able to
follow a predefined generic path with adaptive velocity.
That is, preserving the same functionality of the DRL path
following agent presented in [6]. Furthermore, the system
must be able to avoid static obstacles that may appear in the
vehicle’s route. To do so, the agent must use only the local
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Fig. 1 Reinforcement learning structure employed in this work

information of the environment provided by the obstacle
detection sensor, a frontal LIDAR.

Reactive obstacle avoidance is understood as a path
planning algorithm that only considers local information
of the vehicle’s environment to design an alternative route
when an obstacle appears in the vehicle’s route. That is, it
plans online a trajectory that prevents collisions in the last
minute.

The algorithm selected to solve the reactive OA
problem is the Deep Deterministic Policy Gradient, the
same algorithm that was used in [6] to solve the path
following problem. It is an actor-critic reinforcement
learning algorithm; the actor computes the optimal action
in function of the environment state and the critic estimates
the value function and computes the loss function that is
used to train both the actor and the critic. This algorithm
is off-policy because the policy that is used to compute
the loss function is different from the one that is being
improved, and it is model-free since it estimates directly the
optimal policy making no effort to learn the dynamics of the
environment. It uses particular characteristics of other DRL
algorithms, such as the replay buffer, the target network
concept [22] or the batch normalisation technique [23].
Details on this deep reinforcement learning algorithm are
given in [6, 24, 25].

The structure proposed to solve the described problem
relies on maintaining the PF agent developed in [6] and
creating a new agent that is in charge of providing the
reference path to the PF controller in such a way that
the main functionalities of the PF agent are kept while
being able to avoid static obstacles. The path following and
obstacle avoidance problem might also be addressed by a
unique agent. However, considering the amount of training
episodes needed to learn to follow a path selecting the
optimal vehicle’s velocity depending on the path radius, and
considering the difficulty of the reactive obstacle avoidance
problem itself, the number of training episodes and the size

of the network structures could also increase dramatically.
This is the main reason to divide the solution into two agents
in this work.

The main elements of the reinforcement learning
structure employed in this work are shown in Fig. 1.
In this case, the agent is the OA algorithm, and the
environment includes the rest of elements that interact with
the agent, which are the path following agent, the autopilot,
the quadrotor, the reference path and the quadrotor’s
environment. Note that the OA agent receives the original
reference path and is in charge of computing the reference
path that is commanded to the path following agent, pd2(γ ).
In this paper the autopilot is formed by a set of PID-based
controllers.

3 Agent Environment

The quadrotor of the agent’s environment is the Asctec
Hummingbird (Fig. 2). The agent is trained in a simulated
environment to preserve the integrity of the experimental
platform. Details of the quadrotor model, the obstacle

Fig. 2 Asctec Hummingbird Quadrotor
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detection system and the training environment of the
reactive obstacle avoidance agent are given next.

3.1 Quadrotor Model

The model of the quadrotor employed in this work has
twelve states and four inputs. The states are the position
in the world frame (x, y and z), the Euler angles (φ-
roll, θ -pitch and ψ-yaw), the body velocities (u, v and w)
and the angular velocities (p, q and r). The inputs are
four digital signals that are related to the thrust force (uz)
and torques on each axis of the body frame (uφ , uθ and
uψ ). More information of the Asctec Hummingbird model
in [26].

3.2 Obstacle Detection

The sensor used to perform the obstacle detection task is the
Leddar VU8 LIDAR. This LIDAR has a horizontal field-
of-view of 48◦ and a vertigal FOV of 3◦ . The Leddar
VU8 divides its field-of-view in 8 horizontal segments,
as it is shown in Fig. 3. That is, this sensor provides a
vector of 8 values representing the minimum distance to
an obstacle in that segment. Each segment has a FOV
of 6◦ x 3◦ . Distances are given with a precision of
1cm.

In this work the data provided by the LIDAR sensor is
processed to eliminate the ground detections. To do so, an
estimation of the distance to the ground detected by each
LIDAR beam (dG,i) in function of the vehicle’s altitude in
the world frame (z) and the pitch (θ ) and roll (φ) angles is
computed. This estimation is shown in Eq. 1, where ψL,i

is the angle of the i-th LIDAR beam with respect to the x

axis of the sensor. If the distance measured by the sensor
is equal or larger to the estimated ground distance, this
value is set to infinite (it is considered that no obstacles are
detected). Due to noise or inaccuracies of the sensor, the
measured distance to the ground can be slightly different

Fig. 3 Leddar VU8 detects obstacles in 8 segments (original image
from leddartech.com)

to the estimated one. For this reason, a margin of +20% is
applied to the estimated ground distances. Note that Eq. 1 is
only valid when both pitch and roll angles are different from
zero. Therefore, other simpler formulas are used to estimate
the ground distances when pitch or roll are zero.

dG,i =
z sin

(
arctan

(
sin(θ)
sin(φ)

))

cos(θ) cos
(

π/2 − arctan
(

sin(θ)
sin(φ)

)
− ψL,i

) (1)

3.3 Path Following Agent

The path following problem [27, 28] is defined as
making the vehicle follow a predefined path (pd(γ ) :=
[xd(γ ), yd(γ ), zd(γ )]T ) in the space without any time
constraint. That is, unlike the trajectory tracking approach
where the trajectory is defined as a function of time, in the
path following approach the path is parametrized by a scalar
parameter, γ , known as the virtual arc. This approach results
in many advantages over the standard trajectory tracking
approach [29, 30].

The path following agent used in this paper was
developed in a previous work [6]. It also implements the
Deep Deterministic Policy Gradient algorithm. The PF
agent’s state vector is formed by the cross-track error, the
angle error between the vehicle and the path, the angle error
in a forward point on the path, which provides the ability
of anticipate the curves, and the velocity of the vehicle.
The PF agent acts on the derivatives of the yaw angle
and the vehicle’s velocity. The reward function depends
on the cross-track error and on the vehicle’s velocity
projected on the path’s tangential frame of reference. A
simulation environment combining the Gazebo/RotorS and
the python/tensorflow frameworks was build. The PF agents
presented in [6] were trained in this environment and
tested outdoors experimentally with successful results. The
resulting PF agent was able to find a generalized solution
of the PF problem following accurately any reference path
while selecting the optimal vehicle’s velocity according to
the path’s shape and vehicle’s dynamics.

3.4 Autopilot

The autopilot is formed by a set of six PID-based
controllers; two for controlling the velocities on the x

and y axis, one for controlling the altitude (z) and three
for controlling the attitude angles (φ, θ and ψ). The
performance of these controllers was tested in experimental
results [26]. Moreover, real and simulated response were
very similar, which proves the reliability of the model.
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3.5 Training Environment

RotorS [31], a realistic and complete multirotor simulator
built in the Gazebo/ROS platform, is used as the training
environment for the agent. A model of the sensors was
included and adjusted to resemble the sensors of the actual
quadrotor platform. Rubı́ et al. [6] describes some of the
modifications that were made in the RotorS framework
to obtain a training environment for the DRL PF agents.
However, to perform obstacle avoidance experiments it is
necessary to include new elements in this simulator. The
LIDAR sensor of the real platform was modelled in the
RotorS simulation environment. This model includes the
visual part, the dynamics part and the generated ROS topic.
Gaussian noise on the LIDAR measurements was included.
Furthermore, to perform OA experiments, a key element
is necessary: the obstacle/s. In this work, obstacles are
modelled as cylindrical objects. The generated obstacle has
a radius of 1m and a height of 2m. Figure 4 shows a
screen capture of the RotorS/gazebo framework with the
Hummingbird quadrotor, the generated obstacle and the
modelled LIDAR sensor.

The reactive OA agent, just as the PF agent [6], was
programmed in Python 3.5, and it communicates with the
ROS framework by means of the rospy library. Tensorflow
and tflearn libraries were used to generate the neural
networks and to train them. Obstacles can be spawned
and deleted using the spawn sdf model and delete model
gazebo services. These services are used to define the initial
position of the obstacle and to create multiple instances
of the same object. In the defined training framework,
obstacles are generated by calling those services in the
Python script that implements the OA agent.

4 DDPG for Reactive Obstacle Avoidance

This section gives details of each of the elements that
form the DDPG approach that was developed in this

Fig. 4 Capture of RotorS/Gazebo including the Hummingbird
quadrotor with the LIDAR sensor and an obstacle

work to solve the reactive obstacle avoidance problem.
That includes the employed control structure, the action,
state and reward of the agent, the structures of the
neural networks and other parameters related to the DDPG
algorithm.

4.1 Action

Figure 1 shows the reinforcement learning structure. In
this structure, the OA agent receives the reference path
(pd(γ )) calculates the obstacle free path (pd2(γ )) to be
sent to the PF agent. The reference path is given by two
vectors, one for each component (xd and yd ), discretized by
parameter γ with a precision of 0.01. There are different
ways of sending the modified path to the PF agent. For
instance, the full path could be sent at each step, however,
this would be computationally expensive and inefficient.
Otherwise, a small section of the path, corresponding to the
part that is being currently followed, could be sent, but it
could still become too demanding for the communication
channel. Furthermore, making the OA agent compute the
full sequence of path points would become a challenging
problem. Instead, in this work a simple and efficient way
of sending the path to the PF agent was considered;
sending only the RL state vector of the PF agent. That
is, the real environment’s state vector of the PF agent
is calculated in the obstacle avoidance script, and the
OA agent computes certain variations or increments over
this state. In this way, the PF agent is blind about the
reference path and only receives the modified RL state
vector, and the OA agent can generate the state increments
to modify the state/path in such a way that obstacles are
avoided.

At this point, it is important to recall that the state vector
of the PF agent is formed by four elements [6]; the cross-
track error, the angle error, the angle error in a point forward
on the path and the velocity of the vehicle (Section 3.3). The
vehicle’s velocity is an intrinsic state of the vehicle, but the
rest of the states depend on the path that is being followed.
Thus, modifying these states is equivalent to changing the
reference path. In the present work, only the cross-track
error state will be modified, leaving the other three states
unchanged.

Modifying the cross-track error state is equivalent to
having an offset to the reference path, as it is represented in
Fig. 5. That is, this action can be interpreted as the original
path displaced in the y axis of the path tangential frame, {T }.
Controlling the offset to the path, the agent will generate the
corresponding trajectories to avoid the appearing obstacles.
It is important to mention that, as the angle error state is
computed as the angle between two vectors (x-body axis
and x-tangential axis), it remains constant even if the path
is translated.
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Fig. 5 Action of the agent modifies the path offseet doff

The distance offset to the path is named doff . To maintain
a smooth profile of this path offset, the action of the OA
agent is set to be an increment over it. That is, the action is
set to be the derivative of the path offset. This is represented
in Eq. 2. This equation shows, at time step k, how the
modified cross-track error state (ed2,k) is computed from
the distance offset (doff,k), and how the distance offset is
obtained from the action (ak) of the OA agent, where Δt is
the time step of this agent. The derivative of the path offset
is limited to 3m/s , which was considered to be a sufficiently
high lateral speed to execute a reactive manoeuvre.

ed2,k = ed,k + doff,k | doff,k = doff,k−1 + ak Δt (2)

During the training process, an Ornstein–Uhlenbeck
noise function (Eq. 3) is added to the action of the agent for
exploration purposes. The modified PF state including this
noise function is computed in Eq. 4. The influence of this
noise function is decreased continuously with the number of
training episodes (j ) in such a way that a transition between
exploration and exploitation of the policy is achieved during
the learning process. Parameter λ regulates the velocity of
this transition.

nk = nk−1 + θn (μn − nk−1) Δt + σndWt (3)

ed2,k = ed,k + doff,k−1 +
(

ak + nk

j/λ + 1

)
Δt (4)

4.2 State

The state vector of the OA agent has 14 states and it is
represented in Eq. 5. Next paragraphs detail each of the
parameters included in this state vector.

s = {
doff , L1 · · · L8, ed , u, k(γmin), nL,l, nL,r

}
(5)

The state vector (5) includes the path offset, doff . Since
the action computed by this agent is the derivative of
this parameter, knowing this state is necessary to perform
the correct offset modifications over the path. Next, the
treated LIDAR measures, L1 · · · L8 (see Section 3.2) are
included to provide the OA agent with information about the
environment and possible obstacles. The cross-track error
(i.e. the first state of the PF agent, ed ) is also included in the
state vector. The agent needs to know the distance from the
vehicle to the reference path to localize the vehicle in space.
The velocity of the vehicle in the x axis, u, is included since
the avoidance manoeuvre depends on the vehicle’s velocity.
As the optimal avoiding trajectory depends on the shape
of the path too, the curvature of the path, k(γ ), is also set
as a parameter of the state vector. Specifically, this state is
computed as the average of the path’s curvature in a section
of 5 meters around γmin (path closest point to the vehicle
given by γ ), Eq. 6, where γmin,i and γmin,f are the initial
and final points of the average window and n is the number
of points used to calculate the average.

k(γmin) =
⎛
⎜⎝

γmin,f∑
γ=γmin,i

∥∥∥ dpd (γ )

dγ
× d2pd (γ )

dγ

∥∥∥
∥∥∥ dpd (γ )

dγ

∥∥∥
3

⎞
⎟⎠

/
n (6)

With the introduced set of states, the system is capable of
following the path in a correct way and, when the LIDAR
detects an obstacle in the vehicle’s route, it is able to
perform a reactive action to start avoiding it. However, since
the LIDAR has a FOV of 48◦ , as soon as the vehicle starts
evading the obstacle, it disappears from the LIDAR’s field-
of-view. When this happens, the OA agent considers that the
vehicle has already avoided the obstacle and moves back to
the path provoking a collision. This situation is represented
in Fig. 6, where the trajectory of the vehicle is represented
with a grey line and the collision instant is marked with
a red star. That behaviour occurs because, in the DDPG
algorithm, the action computed according to this agent’s
policy only considers the current information provided by
the state vector, without taking into account the historical
data. Therefore, if this agent notices that the vehicle is out
of the path and no obstacles are detected, it will always try
to converge back to the reference path.

To deal with that, it is necessary to supply historical
information of the obstacles to the OA agent. Other
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Fig. 6 Vehicle crashes if only instantaneous information of LIDAR is
used

works provide the historical information by using recurrent
neural networks, such as [19] where LSTMs networks are
integrated in the DDPG algorithm. The issue of RNNs is
that convergence is not always achieved and the training
process becomes slower. In this work a simpler and
functional solution has been chosen: defining two states,
nL,l and nL,r , that increase when the LIDAR is detecting
an obstacle and decrease otherwise. To compute these
states, if an obstacle is detected, the inverse of the distance
measured by each LIDAR beam is integrated. And when
there are no near obstacles in the LIDAR’s field-of-view,
the states decrease with a predefined rate. That is, these
states are equivalent to an integral of the LIDAR detections.
Therefore, the agent can learn that positive values of these
states mean that some obstacle has been recently detected.
Thus, the vehicle will not move back to the path until this
state reaches low values.

In this work, two LIDAR integral states (nL,l and nL,r )
are defined: one state for the detections of the left-side
beams of the LIDAR (nL,l) and another state for the
detections on the right-side beams (nL,r ). This agent does
not only know that an obstacle has been recently detected,
but it also can determine whether it was detected on the
left or on the right side of the vehicle. With this approach,
the trained OA agents acquired the ability of deciding when
to avoid the obstacles by the left-side and when by the
right-side, depending on the vehicle, path and obstacle’s
situation.

The formal definition of nL,l and nL,r states is shown
in Eqs. 7 and 8, respectively, where dL,i is the distance
detected by the ith beam of the LIDAR. To determine
whether a detection is occurring or not, a distance threshold,

dT , is used. The values of kc and kd constants (charging and
discharging rates of the state, respectively) determine the
dynamics of this integral state. Note that nL is constrained
to avoid negative values and to have a maximum value of
nL,max . The maximum value, nL,max , permits to regulate
the time that the vehicle must take to converge back to the
path after the avoiding manoeuvre has started.

if ∀i ∈ [1, 2, 3, 4] ∃! dL,i < dT then nL,l = max
(
0, nL,l − kd

)

otherwise nL,l = min

(
nL,max , nL,l +

4∑
i=1

kc

dL,i

)
(7)

if ∀i ∈ [5, 6, 7, 8] ∃! dL,i < dT then nL,r = max
(
0, nL,r − kd

)

otherwise nL,r = min

(
nL,max , nL,l +

8∑
i=5

kc

dL,i

)
(8)

4.3 Reward

To define the reward function, two virtual zones around
the obstacle were created: the banned zone and the safety
zone. These zones are represented in Fig. 7, which shows
the obstacle in blue surrounded by two circles that represent
the two zones. The banned zone is a concentric cylinder
of the obstacle with a radius 0.5m larger than it while the
safety zone has a radius 0.75m larger than the obstacle. In
this figure the vehicle is represented proportionally to the
obstacle and to the defined zones.

If the vehicle enters the banned zone, it is considered
that a collision has occurred, and the simulation is stopped.
Thus, the vehicle is not allowed to enter this zone. If the
vehicle enters the safety zone while training, the OA agent
will receive a negative reward, but the training episode will
continue. Therefore, the trained agent will learn to avoid
entering this zone to maximise the received reward. The
safety zone is only present while training, so, if the vehicle

Fig. 7 Obstacle surrounded by the banned zone and the safety zone
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enters the safety zone while performing a test, nothing will
happen.

Defining a banned zone is always necessary to keep a
proper distance to the obstacle when avoiding it. However,
when only the banned zone is defined, the trained agents
will always learn to avoid the obstacle travelling around the
edge of the banned zone. Therefore, due to sensor noise or
external disturbances, the vehicle often enters the banned
zone and the experiment is stopped. The mentioned safety
zone prevents this issue.

The reward function defined in this work is shown
in Eq. 9. This function has three terms. The first term,
−10|doff |, penalizes the path offset distance. This is to
force the OA agent to send the real cross-track error state
(with no path offset) to the PF agent when no obstacles
are present. The second term, −50SZ, penalizes the vehicle
when it enters the safety zone, where SZ is a boolean
parameter that is 1 when the vehicle is in the safety zone
and 0 otherwise. And the third term, −2000BZ, penalizes
the vehicle when it enters into the banned zone, where BZ

is another boolean parameter that is 1 when the vehicle
enters the banned zone and 0 otherwise. Note that this third
term can only be activated once in an episode, since when
the vehicle enters the banned zone it is considered that a
collision has occurred and the episode is terminated. The
reward function also includes a positive reward of 10 units
given at each step. This positive reward term doesn’t add
any new information to the reward function but it helps
to the interpretation of the training data, since with it the
accumulated episode reward converges to a positive value
during the training process of the agent.

r = −10|doff | − 50SZ − 2000BZ + 10 (9)

It is important to mention that this is the reward that
provided the best results in terms of path following error
and obstacle avoidance capability. Several other reward
functions were also tested with poorer results. For instance,
instead of the defined constant penalty when entering
the safety zone (−50SZ), a penalty proportional to the
inverse of the obstacle’s distance (similar to an artificial
potential field) was tested. However, the agents trained with
this reward presented problems for converging to a stable

Fig. 8 Actor NN structure: 2 feed-forward hidden layers

Fig. 9 Critic NN structure: 2 feed-forward hidden layers

solution. Furthermore, another reward based on the LIDAR
measures was also tested. In this case the agents were able
to converge faster in the training process, but they showed
worse obstacle avoidance capabilities.

4.4 Structure of the DDPG agent

The structure of the actor neural network is shown in
Fig. 8. The number of elements of each block is given
in parenthesis. The input is the state vector (14) and the
output is the action (1) of the agent. The critic neural
network is shown in Fig. 9, where the inputs are the state
vector (14) and the action (1) and the output is the Q-
value function (1). Both networks have two hidden layers of
400 and 300 neurons, respectively. They use rectifier linear
unit (RelU) as activation function. The batch Normalization
(BN) technique [23] is included in some layers to normalise
the units, and hence, to help the neural networks to learn
properly and to generalize the solution of the problem.
Some parameters of the agent, such as the learning rates,
discount factor or the minibatch size, were tuned during the
first stages of the learning tests, leading to the values given
in Table 1. The agent time step is fixed by the frequency
of GPS sensor of the real platform (10hz) that is used to
compute the position and velocity states.

Table 1 Parameters of the OA agent

Symbol Description Value

ηθ Learning rate of actor network. 0.0001

ηφ Learning rate of critic network. 0.001

τ Soft target update parameter. 0.001

γ Discount factor for critic updates. 0.99

- Replay buffer size. 1,000,000

N Minibatch size. 64

Δt Agent time step. 0.1 s

θn Mean reversion rate of noise function. 0.15

σn Volatility of noise function. 3

λ Ratio of exploration-exploitation transition. 500

- Maximum steps of one episode. 3000
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5 Implementation of the PF and Reactive OA

Two python 3.5 scripts are programmed to implement the
path following and reactive obstacle avoidance procedure.
In Fig. 10 the flowchart of these two scripts is presented,
where communication elements are represented in grey. It
can be observed that the PF script includes two control
modes: the path following mode and the hover mode. In the
path following mode, the DDPG PF agent is in charge of
following the reference path that is received from the OA
script in the form of subsequent PF state vectors. In the
hover mode a PID controller is used to hover the vehicle
around a reference point in space. In both control modes, the
path following commands (ψcmd , zcmd , ucmd and vcmd ) are
sent to the autopilot controller. The PF script starts in hover
mode and waits for the OA script to proceed with the path
following task.

The path to be followed and the transition between the
two control modes is supervised by the OA script. In the
OA script, first, the definition of the reference path is made,
and then, the DDPG OA agent is launched. This agent
computes the path offset action, which is used to obtain
the PF state that is sent to the PF script. Once the path
following task is finished, the OA script sends the PF script
back to hover mode. There are two ways of finishing the
PF task: by reaching the end of the path or when a collision

is produced. In the simulated framework, it is considered
that a collision is produced when the vehicle enters the
banned zone (Fig. 7). When this happens, the obstacle is
deleted from the gazebo framework and the hover mode is
activated. In the simulated framework the OA script is also
in charge of generating obstacles and place them randomly
along the path and around it. This procedure is made after
the reference path is defined.

6 Training process

The training process of the agent was made in the environ-
ment described in Section 3.5. The training environment is
integrated in a linux Xubuntu virtual machine with a dedica-
tion of 8GB RAM and four 1.80GHz processors (i7-8550U
CPU), and the training process is performed in real time.

The path following and obstacle avoidance problem can
become very complex because many different situations can
occur. That is, obstacles can appear at different locations
while following diverse path shapes. To obtain a complete
and functional OA agent to deal with the stated problem, a
very rich training framework must be generated.

The generated training framework consists on making
the vehicle follow a straight line of 10m followed by a half
asymmetrical lemniscate path (Eq. 10) where the value of

Fig. 10 Flowchart of the two
scripts that implement the PF
and Reactive OA approach
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its two radius (A1 and A2) change every episode, taking
a random value between 3m and 10m with a uniform
probability distribution. This path, without the straight line
path, was used to train the PF agent. Following paths with
different curves and with straight lines allows the OA agent
to learn the avoiding manoeuvres at different situations.

xd (γ ) =
{

2A1 cos (γ ) if 0 ≤ γ ≤ π
4

2A2 cos (γ ) if π
4 < γ ≤ π

2

yd (γ ) =
{

A1 sin (2γ ) if 0 ≤ γ ≤ π
4

A2 sin (2γ ) if π
4 < γ ≤ π

2

(10)

The straight line at the beginning of the path is used to
prevent from having an obstacle just in front of the vehicle
when starting an episode. Therefore, no obstacles are
placed in this line. This is coherent with real experiments,
since the human supervisor would not launch the vehicle
with an obstacle in front of it. Furthermore, this starting
line on the path permits to place obstacles in any point
along the Lemniscate path, which allows the OA agent
to learn avoiding manoeuvres with different path’s shapes.
Also, the straight line path permits to reach the cruise
velocity before starting the lemniscate path, preventing the
avoidance manoeuvres at the transient phase.

Obstacles are generated in each episode with a probabil-
ity of 75%, so, in average, 1 out of 4 episodes is carried
out without an obstacle. That allows the OA agent to learn
the policy when no obstacles are present. The obstacles are
placed at random locations along the lemniscate path, with
a uniform probability distribution, in a range of ±2m of dis-
tance to the path. That allows this agent to learn to avoid
obstacles that are centred on the path as well as obstacles
that are close to it, deciding which side is better to avoid
them, depending on the location of the obstacle, the vehicle
and the path shape. Furthermore, it is trained with obsta-
cles that are out of the vehicle’s route in such a way that the
LIDAR detects them but no avoidance manoeuvre is needed.

The OA agent is trained in ideal conditions. That is,
the system uses ground truth measurements and the vehicle
starts each episode at the initial position of the path with the
yaw angle oriented tangentially to it. It is important to recall
that the orientation and velocity of the vehicle are controlled
by the autopilot and that the path following problem is
solved by the PF agent developed in [6]. Therefore, these
two control blocks are also included while training the OA
agent.

It is interesting to mention that, without the processing
of LIDAR measurements to eliminate ground detections,
most of the trained OA agents had problems interpreting the
distance measurements provided by this sensor. The agents
trained in these conditions converged to a solution where
the vehicle always followed the path at certain distance
to it. That is, the vehicle remained at am enough large

distance to elude all the obstacles that appeared. When the
LIDAR measurements are treated, this peculiar behaviour
disappears.

The results of the training process of the OA agent with
the state defined in Eq. 5 and the reward function stated in
Eq. 9 are shown in Fig. 11. This agent was trained during
10500 episodes. As can be observed, the average path
distance and velocity increase over the episodes, reaching a
stable value of around 0.31m and 1.24m/s , respectively. The
accumulated reward stabilizes around 2053. The moving
average of the boolean parameter that represents whether
a collision in the episode occurred or not, stabilizes to a
value of 0.048. This value can be considered an indicator
of the probability of having a collision. This indicator
remains close to 0 in the first episodes, since this agent
cannot properly follow the path yet, and starts increasing
when it improves the path following performance because
obstacles are placed near to the path. This indicator reaches
a maximum value of around 0.25, meaning that 1 out of 4
episodes ends in a collision. However, the stabilized value
of 0.048 can be considered of having a collision every 20
episodes. It is important to mention that the noise function
can increase the probability of having a collision.

7 Results

This section presents the results obtained with the OA
agent that achieved the best performance in terms of path
following error and obstacle avoidance capabilities among
the different agents that were trained. The training process
of this agent is presented in Fig. 11. Two paths are used
to test the approach: a lemniscate and a spiral. Moreover,
the approach is tested in situations never seen before during
the training phase: multiple obstacles, larger and smaller
obstacles and different shaped obstacles. These simulation
results are shown in next subsections.

7.1 Lemniscate Path

This section evaluates the OA agent with a lemniscate path
(11), where the amplitude, A, is set to 5m, and γ ranges
from 0 to 2π , corresponding to a full lap on the path.

xd (γ ) = 2A cos (γ )

yd (γ ) = A sin (2γ )
(11)

Table 2 compares the results obtained by the PF agent
developed in [6] with the ones obtained by the PF+OA
approach presented in this paper. That is, the approach that
combines the two DRL agents to solve the path following
and obstacle avoidance problem. These results evaluate the
performance of both approaches performing one lap of
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Fig. 11 Average distance error,
average velocity, a boolean
parameter that indicates if a
collision occurred or not
(1-collision, 0-no collision) and
accumulated reward on each
episode during training phase of
the OA agent; gray dashed lines
are real values and black lines
are a 1000-episodes moving
average

the lemniscate path without any obstacle. The table shows
the average cross-track error, the total time to perform the
lap on the path and the average velocity of the vehicle.
The PF agent alone achieves a slightly better performance
in terms of path distance error. Therefore, it is shown
that having the OA agent can affect the PF performance
somehow.

Next, the proposed approach is tested performing a full
lap of lemniscate with an obstacle at different positions
(centred on the path and not centred). Figure 12 shows
the trajectory in the xy plane performed by the proposed
approach in some of these simulations. In this figure and
the rest of the figures of this paper, the initial position of
the vehicle is marked with a red arrow pointing to the initial
x-body orientation. From left to right and top to bottom,
these figures correspond to the simulations with the obstacle
placed at γobs = 1.2, γobs = 2.4, γobs = 1.6 and γobs =
4.4, respectively. These results show diverse examples of
obstacle avoidance manoeuvres: at the long straight line, at
the short straight line, at left-sided curves and at right-sided
curves.

Table 3 summarizes the results presented in Fig. 12. This
table shows the path position of the obstacle, given by γobs ,
and the distance from the center of the obstacle to the path,
dobs , and presents the same parameters evaluated in Table 2,
that is, the average cross-track error, the total time and the
average velocity.

In the simulation results presented in Fig. 12, the OA
agent always chooses the most convenient side of the
obstacle to avoid it. Nevertheless, occasionally, this agent
may also choose the wrong side of the obstacle, as it is
evident in the simulation of Fig. 13. In this simulation, the
obstacle is located on the left of the path at 1.5m, however,
this agent unnecessarily avoids it taking the longest route.

Table 2 Simulation results for one lap on the lemniscate path with no
obstacles

d (m) time (s) ‖v‖ (m/s)

PF Agent 0.0765 44.6 1.3798

OA Agent + PF agent 0.1191 46.2 1.3223
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Fig. 12 Simulation results following the lemniscate path. The two figures above have the obstacle centred in the path while in the figures below
the obstacle is out of the path

This behaviour may be caused by the fact that when the
vehicle sees the obstacle for the first time, it is at its right.
Therefore, as this agent cannot predict the upcoming right-
sided curve (it only has local information of the path),
it starts the avoidance manoeuvre by the left side of the
obstacle. Nevertheless, even in the scenario of Fig. 13, this
behaviour only happens in very few occasions.

Sometimes, the OA agent can also drive the vehicle to
a collision, as shown in Fig. 14. Colliding is really a very
rare event and it is more likely to happen on the starting part
of the path. That is, when the vehicle is still accelerating
and an obstacle suddenly appears in the LIDAR’s field of
vision.

Table 3 Simulation results for one lap on the lemniscate path with an
obstacle

γobs dobs d (m) time (s) ‖v‖(m/s)

1.2 0 0.3839 55.4 1.1265

2.4 0 0.2902 50.6 1.2514

1.6 1 0.3969 56.5 1.0923

4.4 1 0.2124 55.3 1.1235

In addition to the simulations presented in this section,
the approach was tested following the same lemniscate path
with obstacles in different positions all around the path,
either centred or at different distances from it. In more
than the 99% of these simulations the vehicle was able to
properly avoid the obstacle, having an average distance error

Fig. 13 Trajectory on the xy plane of a simulation where the OA agent
avoids the obstacle by the wrong side
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Fig. 14 Trajectory on the xy plane of a simulation that ended in a
collision

in each simulation between 0.2 and 0.4m and an average
velocity between 1.1 and 1.25m/s . Having only problems
with some obstacles that are located at γobs ≥ 1 because the

OA agent was not trained to avoid obstacles in the transient
phase.

7.2 Spiral Path

In this section the PF+OA approach is tested with a spiral
path, a path never seen before in the training phase of either
the PF agent nor the OA agent. The spiral path is defined
in Eq. 12, where A is set to 1.25 and γ ranges from 0 to
3π . Again, the vehicle starts at the initial point on the path,
oriented tangentially to it.

xd = −Aγ cos (γ )

yd = Aγ sin (γ )
(12)

The trajectories in the xy plane of the proposed approach
when following the spiral path with different obstacle
positions are shown in Fig. 15. From left to right and top to
bottom, these simulations correspond to γobs = 5.6, dobs =
0; γobs = 8, dobs = 0; γobs = 4, dobs = 2 and γobs =
8.8, dobs = −1.5, respectively. Note that in a spiral path

Fig. 15 Simulation results following the spiral path with different obstacle positions
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Table 4 Simulation results for one lap on the spiral path with different
obstacle positions

γobs dobs d(m) time (s) ‖v‖ (m/s)

5.6 0 0.3768 49.3 1.1954

8 0 0.3216 52.1 1.1347

4 2 0.1835 48.8 1.1696

8.8 –1.5 0.1779 48.8 1.1951

the preferred side to avoid the obstacle is the outside of the
curve. However, if the obstacle is placed shifted to the left of
the path from the vehicle’s point of view, the OA agent will
avoid the obstacle from the inside of the curve, as is the case
of the simulation with γobs = 8.8, dobs = −1.5 (bottom-left
in Fig. 15).

The results obtained in the simulations presented in
Fig. 15 are shown in Table 4. Other simulations with
obstacles located at different positions of the spiral path
were also carried out. In these simulations the approach
achieves an average cross-track error in each simulation
between 0.3 and 0.4m, very similar to the results obtained
with the lemniscate path.

The proposed approach is shown, with the previous
results, to avoid obstacles following a path different from
the trained one. Thus, it is shown how a generalized solution
of the problem for different path shapes is achieved.

7.3 Multiple Obstacles

The proposed approach is trained with single cylindrical
obstacles of fixed radius. In this section it is evaluated with
different obstacle’s configurations. That is, with multiple
obstacles, cluttered environments, obstacles of different
sizes and obstacles of different shapes. The trajectory on
the xy plane following a straight line path of 30m with
different obstacle configurations is shown in Fig. 16. These
simulations and other simulations with similar obstacle’s
configurations resulted in a successful performance.

7.4 Algorithm Evaluation and Comparison

Following the comparison methodology applied in [9],
the algorithm developed in this paper is compared with
the ones of the literature review and the result of the
comparison is summarized in Table 5. Only reactive
algorithms are considered. The evaluation metrics are:
velocity constraint (VC), which considers the velocity of the
obstacle in the solution; Static and Dynamic Environment
(SDC), which is true when obstacles are allowed to move;
Swarm Compatibility (SC), which includes some sort
of communication means to tackle this issue; Multiple
Obstacles (MO), true when the algorithm can handle more
than one obstacle; Different Size Obstacles (DSiO) and
Different Shape Obstacles (DShO), true when the algorithm
can handle obstacles of apparent different sizes and shapes,
respectively.

It is difficult to compare a new algorithm with the ones
available in the literature since several details condition the
comparison. Each paper presents a setup (vehicle speed,
sensors, type and dynamics of obstacles, etc.) in which its
algorithm avoids the obstacles. Nevertheless, it is interesting
to compare the conditions of the present paper’s results with
the available from the literature review. The usual speeds
range between 0.7m/s and 3.5m/s [32–34] while the mean
speed in the experiments of this paper is around 1.2m/s.
[19, 21, 32] use DRL to solve the avoidance problem,
their sensory setup is similar to the one used here but
the control structure is different. They use an end-to-end
solution, providing the references to the attitude controller
while the agent presented in this paper is only responsible
for modifying the reference trajectory. In [32] trajectories
other than those used for the training are successfully tested
like in this paper with the spiral trajectory while some
authors focus on straight trajectories [33–35]. Finally, the
number of obstacles, the size, shape and dynamics is richer
in works like [33, 35] while such study remains as future
work in the present paper.

Fig. 16 Simulation results following a straight path with multiple obstacles, with different shapes and sizes
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Table 5 Comparison between the DDPG OA approach and state of the
art approaches). (∗ denotes metric not explicitly stated in the paper or
unclear)

VC SDC SC MO DSiO DShO

[32] × � × � × �
[33] � � × × ∗ ∗
[34] × � × × � �
[19] × × × � � �
[21] × � × � � �
[35] � � � � × ×
Own × × × � � �

8 Conclusions

The aim of this paper is to develop a deep reinforcement
learning solution for the path following and obstacle
avoidance problem. To this end, a novel structure formed by
two agents; the OA agent developed in this paper and the
PF agent developed in [6], is proposed. The main novelty
of the approach is that the OA agent computes an action
that directly modifies the state of the PF agent, converting
it into a cascade structure. Specifically, when an obstacle
is detected on the vehicle’s route the OA agent modifies
the path distance error state of the PF agent, which at the
same time modifies the reference path to avoid a possible
collision. This structure results in many advantages, such
as being more interpretable, reducing the training time and
permitting to train it safely in the real platform.

A reactive obstacle avoidance agent, based on the
application of the Deep Deterministic Policy Gradient
algorithm, is developed. It receives the data of the obstacle
detection system, which consists on a low-cost LIDAR
sensor treated to eliminate ground detections. This paper
explores different solutions to solve this problem and a
detailed explanation is given on how the action, the state
vector and reward function are obtained. The main issue
addressed in this work is caused by the fact that the low-
cost LIDAR sensor has a limited field-of-view of 48◦
which compromises the detection of an obstacle. This
paper proposes a solution to this problem that consists on
including information of the historical data of the LIDAR
sensor in the state vector. This historical information is
generated by integrating the inverse of the range data
provided by each LIDAR beam. If no obstacles are near, this
state is progressively decreased until it reaches zero. In this
way, if the integral LIDAR state is positive, it means that an
obstacle has been recently seen. The closer the obstacle is to
the vehicle, the larger this state will be. This state is divided
in two; one for each side of the LIDAR sensor, providing
more information to the agent to know in what side of the
vehicle the obstacle is. Its performance is compared with

state of the art approaches using a table where the evaluation
metrics of the different algorithms are presented. The mean
speed in the experiments is within the interval of speeds
reported in the literature.

The OA agent is trained in the RotorS/Gazebo environ-
ment with the model of the Asctec Hummingbird vehicle.
This agent is programmed in pyhton by using the tensor-
flow library to generate and train the neural networks. A
cylindrical obstacle of 1m radius is used in both the training
phase and the tests. This agent is trained by following a half
asymmetrical lemniscate path with random radius and with
obstacles placed randomly on the path in a range of ±2m of
distance to the path.

The path following and obstacle avoidance approach is
tested in the RotorS environment by following a lemniscate
path and a spiral path with obstacles at different positions.
Moreover, the performance of the approach is evaluated
with different obstacle’s configurations, such as multiple
obstacles, cluttered environments and obstacles of different
sizes and shapes. The simulations results show how it
successfully avoids obstacles while following a path. The
OA agent is able to choose the side to better perform the
avoidance manoeuvre depending on the obstacle and vehicle
positions and the path’s shape. This agent takes into account
the vehicle’s velocity and the path’s shape to generate
this manoeuvre. The path following performance without
obstacles is very similar to the one obtained by the PF agent.
In conclusion, a generalized solution for the path following
and obstacle avoidance problem for different path’s shapes
and obstacle configurations is achieved.

The approach presented in this paper is an initial
framework where the main purpose is to solve the PF and
OA problem in the simplest manner, extending the work
made in [6] with the PF agent, and proving that this problem
can be solved by means of DRL. That is the main reason
of some of the decisions that were made, as for instance
solving the problem with two agents or creating new states
to provide historical obstacle information to the OA agent.
Nevertheless, the aim is to keep improving this approach to
make it more robust and proficient. Therefore, future work
is to modify the structure of the DDPG algorithm to give the
algorithm the intrinsic ability of using historical data. This
can be done by using recurrent neural networks, for instance
LSTM networks, which use a sequence as input data. Other
future work is to implement a unique agent for solving
the PF and OA problem and compare it with the presented
approach. To this end, the state information and reward
functions of both the developed PF and OA agents could
be combined to generate the new PF and OA agent. Even
this would increase the difficulty of the problem, and hence,
the amount of training time needed to converge, it would be
interesting to see if better results are obtained. Future work
is also to obtain an approach that achieves a generalized
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solution for different obstacle shapes and scenarios. That
may include providing more information of the obstacle to
the OA agent as well as training it with different types of
obstacles and in multiple obstacle scenarios. In any case,
next immediate step is to implement the resulting approach
in the real experimental platform. Both the PF and OA
agents were already integrated in ROS and the LIDAR
system was already installed in the real platform where the
PF agent alone has already successfully tested. Therefore,
next step would be to build a safe experimental framework
containing obstacles, as well as creating a safety protocol to
avoid possible collisions.
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Catalunya (UPC) in 2003 respectively. He has been lecturing in UPC
since 1994. He has long experience in teaching modelling and control
of dynamic systems. His research has been focussed on modelling,
simulating, control and supervising water systems and UAV. His
research and teaching also includes data analysis.

Page 17 of 17    62J Intell Robot Syst (2021) 103: 62


	Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
	Abstract
	Introduction
	Problem Statement
	Agent Environment
	Quadrotor Model
	Obstacle Detection
	Path Following Agent
	Autopilot
	Training Environment

	DDPG for Reactive Obstacle Avoidance
	Action
	State
	Reward
	Structure of the DDPG agent

	Implementation of the PF and Reactive OA
	Training process
	Results
	Lemniscate Path
	Spiral Path
	Multiple Obstacles
	Algorithm Evaluation and Comparison

	Conclusions
	Declarations
	References


