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Abstract
This article concerns the problem of a dense mapping system for a robot exploring a new environment. In this scenario,
a robot equipped with an RGB-D camera uses RGB and range data to build a consistent model of the environment.
Firstly, dense mapping requires the selection of the data representation. Secondly, the dense mapping system has to deal
with localization drift which can be corrected when loop closure is detected. In this article, we deal with both of these
problems, and we make several technical contributions. We define local maps which use the Normal Distribution Transform
(NDT) stored in the 2D structures to represent the local scene with varying 3D resolution. This method directly utilizes the
uncertainty model of the range sensor and provides information about the accuracy of the data in the map. We also propose
an architecture that utilizes pose and covisibility graphs to correct a global model of the environment after loop closure
detection. We show how to integrate the dense local mapping with the pose graph and keyframes management system in the
ORB-SLAM2 localization. Finally, we show the advantages of the view-dependent model over the methods that uniformly
divide the space to represent objects in the environment.

Keywords Mapping · Reconstruction · Graph-based dense mapping

1 Introduction

Mobile robots are becoming increasingly popular in facto-
ries, warehouses, houses, and even hospitals. They support
activities, such as autonomous transport, floor cleaning, or
facility surveillance. When the robot is equipped with a
robotic arm, the number of possible applications signif-
icantly increases. The robot can support the production
process, object pick-and-place, load and unload machines
with parts or materials, palletize, or assemble objects. In
domestic applications, mobile manipulating robots are used
to bring objects on demand. In all those applications robots
should localize themselves and build a dense model of the
environment to avoid collisions with obstacles and navigate
safely in the previously unknown environment.

This work is motivated by the imperfections of the exist-
ing dense mapping techniques. Simultaneous Localization
and Mapping Systems match the current view to the global

� Dominik Belter
dominik.belter@put.poznan.pl

1 Institute of Robotics and Machine Intelligence, Poznan
University of Technology, Poznan, Poland

model (map). When the robot explores a priori unknown
environment and localizes itself, the localization error accu-
mulates and the estimated pose differs significantly from
the real pose of the robot (Fig. 1a). The dense mapping
sensors like RGB-D cameras or LiDAR provide depth mea-
surements (point cloud) which are later used to update
the dense model of the environment (Fig. 1c). Because
storing the raw measurements (point clouds) is not mem-
ory efficient and computationally expensive during motion
planning, the measurements are used to update the envi-
ronment representation (voxels, cells, mesh, or surfels).
Incorrect pose estimate causes incorrect update of the global
map. However, modern localization systems enable robot
re-localization when part of the environment is re-observed.
Then, the localization drift is reduced and the whole trajec-
tory of the robot is corrected (Fig. 1b). Unfortunately, the
global dense model cannot be corrected because all mea-
surements are already integrated in the map. In the proposed
approach the global map is closely coupled with the graph-
based localization system thus it allows for the correction
of the global map whenever the loop closure is detected
(Fig. 1d) and the drift of the trajectory is reduced.

The second problem that we tackle in this research
is the representation of the map. The dense model of
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Fig. 1 Typical scenario and the application of the proposed method:
a robot explores a new environment, localizes itself (a), and builds
a dense model using depth measurements. Whenever the robot re-
observes the previously seen part of the environment, the localization

system closes the loop and corrects the trajectory (b). In contrast to
global maps like OctoMap or NDT-OM (c), the proposed model of the
environment is corrected after loop closure detection (d) and can be
later used for collision avoidance and task planning

the environment might be represented by the elevation
map [24], OctoMap [19], Normal Distribution Transform
Occupancy Map (NDT-OM) [36], mesh model [37] or
sufels [39, 46]. In contrast to sparse maps used for robot
localization, which contain features useful for matching
the current view to the map [30], the dense map should
contain precise information about the shape of the objects
in the environment and allow collision avoidance and
finding the collision-free motion of the robot. Most of
the mapping methods uniformly divide 3D space. As
a result, all objects are represented in the map with
the same accuracy. Nevertheless, the perception system
of the robot has defined properties and in most cases,
the objects which are closer to the sensor are measured
with higher accuracy than distant objects. Thus, when we
integrate measurements in a global map based on voxels,
we lose information about the shape of close objects. The
model of the environment should also preserve information
about the accuracy of the measurements, which is often
solved by storing an uncertainty map that corresponds to

the geometrical map [11] and utilizes the most accurate
measurements.

To deal with this problem, we propose a graph-based
structure of the local maps. Local maps in the graph are
connected by the SE3 transformation which is directly
connected to the graph-based structure of the keyframes
in the localization system (e.g. ORB-SLAM2). Thus, each
local map (node in the graph) is related to the corresponding
keyframe created by the localization system. The poses
of local maps are modified whenever the localization
system improves the estimation of the camera trajectory.
This approach allows us to integrate measurements from
neighboring frames into a local dense map and later, align
local maps to improve the quality of the global map.
Moreover, we build local maps in the keyframe pose and
integrate measurements in the image space. As a result, we
obtain the 3D model which directly utilizes the uncertainty
model of the sensor used on the robot (RGB-D camera
in this research) and represents objects with accuracy
depending on the distance from the sensor.
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2 RelatedWork

2.1 3DMapping

The basic geometrical representation of the environment
used in robotics to model the shape of the obstacles is
a 2.5D elevation map [16, 24]. The first implementation
proposed by Kweon and Kanade builds a map from multiple
sensors. The elevation map is also used to localize the
robot by matching the current view to the global map. The
locus method which uses the range sensor model is used
to interpolate the terrain surface [16]. Elevation maps are
widely used when the robot is high above the terrain e.g.
on wheeled, tracked, flying, and walking robots [11]. The
elevation map can be also extended by the information about
the terrain type [4]. The terrain classification is performed
with the utilization of voxel-based 3D structures. Plageman
et al. solve a regression problem to build a model of the
terrain. To this end, the Gaussian Process (GP) is applied.
As a result the proposed model naturally deals with the
measurement noise and fills in small gaps.

The elevation map cannot properly represent the envi-
ronment when the obstacles are higher than the robot. The
space below higher objects like tunnels or bridges is filled
in because the cell of the map stores the highest measured
value. To deal with these situations the Multi-Level Surface
Maps (MLS) have been proposed [34]. The MLS builds a
stack of elevation maps that properly represent gaps below
high objects.

A representation of a full 3D model of the environment
is a multi-volume occupancy grid [9]. The cells are grouped
into vertical volumes to save memory. Another idea is
to store information about 3D voxels in the octree. This
approach is used in the OctoMap [19]. The size of the
voxel is a design parameter and it influences memory usage,
computation time, and more importantly the accuracy of the
map. The 3D space is discretized and we lose information
about details inside each voxel. The space inside each cell
is better represented in the Normal Distributions Transform
Occupancy Map (NDT-OM) proposed by Saarinen et al.
[36]. In this map, each voxel stores information about
the occupancy and also the mean value and covariance of
measurements inside the voxel, thus it better represents
the occupied space inside each cell. The method was
successfully applied in a large-scale [35] and for highly
dynamic environments [36].

Other 3D example representations of the environment
are triangle meshes and surfels. FastFusion represents
the surface of the object by a triangle mesh with
variable resolution [37]. It also uses an octree structure
to efficiently use the memory. In BundleFusion, the dense
3D reconstruction is performed online simultaneously with
tracking the motion of the camera [7]. The localization

is based on sparse features and dense geometric and
photometric matching. The scene model utilizes truncated
signed distance (TSDF) stored in the volumetric grid
of voxels. The method returns globally optimized poses
which are used to re-estimate the 3D mesh model of the
environment. Also Canelhas et al. utilize TSDF in the
3D model of the environment [6]. The TSDF is used to
represent the alignment error and estimate the motion of
the camera. In [13] the TSDF model is extended by the
information about object categories. An example of surfel
representation can be seen in [39]. In this case, surfels are
stored in multi-resolution maps (octrees). View-dependent
maps are used because they can be processed efficiently
on CPU and matched to localize a robot [22]. Similarly
to our approach, the key views are used to estimate the
camera motion but in our research, we are focused on
dense mapping and reconstruction and we do not contribute
in the field of localization. The environment can be also
represented by geometric structures like planes [42] or
objects with semantic meanings [25].

2.2 Localization

SLAM methods can be divided into few groups according
to the core idea. In the first group, the depth measurements
are used directly. Because 3D points matching is computa-
tionally expensive these methods use GPU units to process
data. The example method is Kintinuous [45]. Other meth-
ods utilize sparse visual features and optimize their poses
in the 3D space to estimate the motion of the camera. In
ORB-SLAM2 [30] the depth measurements are utilized to
solve the scale ambiguity problem and obtain proper metric
information. The matching of visual (RGB) features only is
advantageous, because the direction to the feature is mea-
sured with higher accuracy than measuring the distance
to the feature by the depth sensors. Relying on the depth
measurements introduces significant noise. On the other
hand, the optimization of the camera pose using 2D fea-
tures only is more demanding. Another method to recover
scale in the monocular system is used in Visual-Inertial
Simultaneous Localization and Mapping and Inertial-Visual
Odometry [29] which predicts the next pose of the cam-
era based on the IMU measurements. The motion of the
camera can be also estimated using intensity changes on
the RGB images like in LSD-SLAM [10]. In this paper,
we show the advantages of using local maps stored in the
pose-based graph. We propose the use of view-dependent
NDT-OM maps coupled with ORB-SLAM2 which uses
keyframes (RGB images) organized in a graph to represent
the transformation between camera poses [30].

The localization error strongly influences the quality of
the obtained dense map. An incorrect position of a sensor
causes erroneous updates of the global map. This error is
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later difficult to correct and as a result, the map contains
phantom objects. Wrong measurements can be removed
when the localization error decreases and the environment is
revisited. Then, the new measurement corrects the previous
changes. Incorrect objects can be also removed from the
map by checking visibility [19]. In this case, phantom
objects from the map are removed if they occlude the
currently observed objects.

Most of the mapping methods assume that the trajectory
of the robot is known, but there are some examples where
the localization is integrated with dense mapping. An
interesting approach to an integrated dense mapping and
localization was presented by David Droeschel et al. [8].
The robot creates local 3D maps that are later aligned to
compute the position of the robot and provide a consistent
model of the environment. In BundleFusion, the motion of
the camera and model of the environment are estimated
simultaneously [7]. Also, Stuckler et al. localize the robot
using a dense model but in this case, it is based on
surfels [39]. The extended version of ElasticFusion uses
semantic segmentation of the RGB images to extract
objects from the scene and improve the reconstruction
accuracy. Each surfel in the map is described by the
recognized instance of the object class which helps with
data association from the current view and data in the map.
Similarly, a globally consistent map of fused surfels is
created in [26]. In [25] the produced semantic map, which
contains objects only, is based on the Truncated Signed
Distance Function (TSDF). Objects and camera poses are
stored in the pose-based graph. In [11, 12] the localization
and dense mapping are independent, but the accuracy of
the localization system is taken into account. The model is
based on the elevation mapping, but the map is local and
always moves with the robot (the robot is in the center
of the map). More importantly, the uncertainty of the map
increases for the regions which are far from the current pose
of the robot due to the localization drift.

2.3 Mapping with Local Maps

In this article, we propose using local maps which are
later aligned to improve a global model. The mapping
with submaps is standardized for 2D maps [1]. Strom and
Olson introduced graph-based representation to store local
maps [38]. Google Cartographer SLAM uses 2D local
submaps consisting of probability grids which are built from
2D scans [17]. The submaps are organized in the graph
structure and are used for loop closing. In this article, we
show that the graph of local maps can be used to create 3D
models.

The idea of local maps connected with pose graph and
the possibility to correct global map was presented in our
previous work [3]. A similar approach is utilized in [27], but

we use view-dependent representation as a local map which
is memory efficient and better represents the uncertainty of
the perception system. Also, Ho et al. correct the global
map after loop closure detection [18], but they use Virtual
Occupancy Grid Maps. In contrast, ElasticFusion uses a
dense surfel-based model obtained by dense frame-to-frame
camera tracking without graph optimization [44, 46]. Choi
et al. fuse the range images to obtain a surface mesh
from a defined number of frames [41]. In our case, the
number of frames used to update a local model is dynamic
and depends on the number of re-observed visual features
from the keyframe. The mapping system presented in [21]
creates a new submap when the number of re-observed
voxels drops below a threshold. Each scene is represented
by the TSDF-based and subsampled depth images that
are used for relocalization and loop closure detection. An
approach that uses a set of local maps which are connected
with covisibility graph is presented in [28]. The strategy
is similar to our approach but we use NDTOM instead
of TSDF to represent the local maps. In [43] the ORB-
SLAM2 [30] is combined with InfiniTAM [20]. The ORB-
SLAM2 is used for precise localization, while InfiniTAM
is applied for dense volumetric fusion. The keyframes are
used only to update the dense model. In our approach,
we create dense local models because our goal is to
integrate multiple depth frames into a local model and
estimate the distribution of the measurements (covariance
matrix).

2.4 Approach and Contribution

In this article, we propose a mapping system that is coupled
with the localization system. Data from the RGB-D sensor
are integrated in local maps which are connected to unique
views (keyframes). This approach allows reducing the
influence of the sensor noise on the map quality. When the
camera moves and observes a new part of the environment,
the new local map is created. The local maps are connected
by the SE3 transformations and are stored in the pose graph.
The relative pose between maps can be freely modified.
The pose of the local maps is provided by the localization
system. To this end, we applied ORB-SLAM2 [30] which
is based on keyframes and creates a pose graph in the
back-end.

To represent local maps, we choose a view-dependent
representation. Instead of dividing a 3D space into a regular
grid, like in OctoMap or NDT-OM, we represent objects on
the image plane. We propose a new representation which is
based on Normal Distribution Transform Occupancy Maps
(NDT-OM) [36]. The NDT-OM is computed on the regular
2D grid on the image plane. As a result, the objects which
are close to the camera are represented naturally with higher
accuracy than distant objects.
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The global map of the environment, which can be
later used for collision avoidance and motion planning, is
represented by the set of ellipsoids defined in the 3D space.
The pose of the local maps is used to compute the pose
of the ellipsoids in the 3D space. We use the model of
the camera to project ellipsoids on the keyframes and to
choose the most accurate model of the observed region of
the environment.

This article presents a unified method for localization
and mapping of a new environment. The proposed structure
of the map allows for correction of the global map after
loop closure which is presented in our previous work [3].
The local maps were based on standard view-independent
NDT-OM which accuracy does not depend on the distance
from the camera. We were also using our own method for
covisibility-graph management and loop closure detection.
In this article, we present a mapping architecture that is
integrated directly with the state of the art pose-based
localization system ORB-SLAM2. In this research, we show
that the proposed view-dependent model of the environment
is more efficient than the 3D model (NDT-OM or OctoMap)
because it adapts the size of the cells of the map to
the distance between the sensor (RGB-D camera) and the
objects in the environment. The initial work on the view-
dependent local maps was presented in our conference
paper [47].

The rest of this paper is organized as follows. Section 3
describes the proposed graph-based mapping system.
Section 4 provides the results of the evaluation of the
proposed method, and Section 5 concludes the article.

3 Graph-basedMapping

3.1 General Architecture

We designed the mapping system taking into account the
properties of the real localization systems. Until the loop
closure is detected, the global map contains a set of local
maps. However, the larger the distance between local maps,
the larger the localization drift is. In this case, the global
map accumulates the error caused by the localization drift.
The robot can use the information about neighboring local
maps only which are less affected by the localization drift.
The example of this strategy is presented in [11], where
the local map stores only recent measurements. After loop
closure detection, the localization drift can be reduced. We
utilize this property of the localization system in the dense
mapping module by storing local maps in the pose graph.
When the pose graph is corrected, the alignment of local
maps and consistency of a global map is improved.

The structure of the proposed map is presented in Fig. 2. The
global map consists of a set of local maps related to

keyframes ki. The local maps are stored in a pose-based graph.
The pose of each local map Ki is defined w.r.t. the first
keyframe and is represented by the SE3 transformation.
We also store edges in the graph that represent covisibility
between keyframes ci,j. The covisibility factor defines the
percentage of the scene re-observed between keyframes.
The covisibility factor allows reducing the time needed
to find submaps that describe the same region of the
environment. In contrast to our previous work, where the
covisibility factor is directly computed from the number
of detected features on the keyframes [3], we take the
covisibility values directly from the ORB-SLAM2 [30].

3.2 View-dependent Local 3DMap

Our mapping strategy is directly based on the NDT-OM
mapping method proposed by Saarinen et al. [36]. Each
cell of the map stores information about occupancy and
the covariance matrix which represents the distribution of
measurements inside cells, and mean position ([x, y, z]T ).
Ellipsoid obtained from the covariance matrix describes the
shape of the object inside the voxel. With the same cell
size, the NDT-OM better represents the shape of objects
in comparison to OctoMap [19]. We utilize this property
of the NDT-OM in the proposed method. Additionally, we
propose to store NDT in the structures which change the
resolution with respect to the distance from the camera to
better represent the uncertainty of the depth measurements
from range sensors [33].

The main disadvantage of using a 3D map, which divides
the space into regular voxels, is the constant resolution of
the model. As a result, we lose information about objects
which are close to the camera and are measured with high
precision. To deal with this problem, we propose a view-
dependent model, which naturally utilizes the uncertainty
model of the camera. The general idea of the local view-
dependent map is presented in Fig. 3. The container which
stores ellipsoids is updated according to the current RGB-D
frame. The size of the container is set to cover 1280×960 px
image and should be larger than the resolution of the
keyframe because we update the container from neighboring
camera poses and the points from other frames are projected
outside the borders of the keyframe. The size of the cell
in the container defines the number of pixels in the image
covered by this cell. In the experiments presented in the
article, the size of each cell is set to 5×5 px which is a
good compromise between the accuracy of the map and the
number of cells in the map. The points from the current
point cloud are projected on the keyframe and used to
update cells. Even though we use the 2D container, the map
stores information about 3D shapes (ellipsoids).

The local map is updated using the current RGB and
depth images. The color point cloud is obtained from
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Fig. 2 General structure of the
graph-based map. Each node of
the graph is related to a local 3D
map. Nodes are connected by
the SE3 transformation Ki and
the covisibility factor c

the RGB-D images and transformed to the pose of the
considered keyframe. Before the loop closure, the current
keyframe is the last added keyframe in the map. After
loop closure, the update order changes according to the
detected re-visited keyframe number. Then, we use NDT
update methodology [36] to obtain the position, color, and
covariance matrix describing an ellipsoid inside each cell
of the 2D container associated with the keyframe. First, we
compute a transformation matrix T between the keyframe
and current camera pose:

T = K−1
0 · Ki , (1)

where K0 is the global pose of the keyframe, and Ki is the
global pose of the i-th RGB-D frame from the camera. We
use the obtained transformation T to compute position of

points P = {p1, ...,pN } in the current keyframe coordinate
system K0:

p0 = T · pn, (2)

where p0 is the position of the n-th point in the keyframe
coordinate system K0 and pn is the position of the point in
the current camera frame.

Later, an inverse model of the camera is used to compute
the position of the considered point on the 2D container
related to the keyframe. Then, points are grouped according
to the u and v coordinates. Each group is used to update the
ellipsoid related to cell cu,v in the 2D keyframe container.
We use NDT update method [36] to update position of the
ellipsoid xu,v and the covariance matrix Σu,v . The N new
points added to the cell and current mean value xt computed

Fig. 3 Local map of the
environment: 3D normal
distribution transforms
(ellipsoids) stored in a 2D
container
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Fig. 4 Example local map
generated using, consecutively,
1, 2 and 10 frames, obtained for
the freiburg1 desk
sequence from the TUM
dataset [40]: 2D container with
ellipsoids (a,b,c) and the
enlarged region of the local map
(d,e,f)

from total M points are used to update the mean position of
the ellipsoid xt+1:

xt+1 = xtM + ∑N
n=1 pn

M + N
. (3)

The update procedure is repeated whenever a new point
cloud from the sensor is provided. The iterative procedure
requires the computation of the sum sssM = ∑M

m=1 pppm and
the total number of points M used to update the considered
cell (ellipsoid). We update the covariance matrix using:

Σt+1 = Σt +
N∑

n=1

(
pn − sN

N

)
·
(
pn − sN

N

)′ +

M

N(M + N)

(
N

M
sM − sN

) (
N

M
sM − sN

)′
, (4)

where sN = ∑N
n=1 pn and N is the size of point cloud used

to update the voxel. To update the color of the voxel, we use:

ct+1 = M · ct + scN

M + N
, (5)

where scN
= ∑N

n=1 cn is the sum of colors for points P
used to update voxel, ccct is the current mean color of the
voxel.

After each cell update, the total number of points used
to update a single ellipsoid is increased M = M + N .
In Fig. 4 we show the set of ellipsoids stored in the
2D container after 1, 2, and 10 update iterations. In the
first iteration, the ellipsoids are updated from a single
pair of RGB-D images. Their position and covariance
depend on the shape of the object, but the error of
the single measurements also plays an important role.
The larger size of the ellipsoids naturally represents the
larger uncertainty of the measurements. In the following
iterations the shape described by the ellipsoids becomes
more smooth (compare enlarged region in Fig. 4 after 1 and
10 iterations).

3.3 Integration with the Localization System

We integrated our graph-based mapping system with the
ORB-SLAM2 [30]. In Fig. 5 we show the architecture of the
final system that consists of two main blocks: localization

Page 7 of 20    28J Intell Robot Syst (2021) 103: 28



Fig. 5 Architecture of the mapping method integrated with the graph-based localization system

and dense mapping subsystems. We utilize the ORB-
SLAM2 with the proposed graph-based mapping system.
However, we do not modify the localization system. We
use out-of-the-box implementation of the ORB-SLAM2 and
modify the sources that allow us to access the pose graph
for the keyframes, covisibility graph, and the identifier
of the current keyframe. Both sub-systems (mapping and
localization) use RGB and depth images. ORB-SLAM2
returns the current pose of the camera. We modified the
ORB-SLAM2 software to get information from the back-
end of the SLAM. The modified version of the ORB-
SLAM2 replaces the methods which we used to define and
manage keyframes in our previous work [3].

The obtained pose graph, active keyframe number, and
the current pose are used to update the local map. When
the camera is close to the current keyframe the pose drift
is small. Thus, the localization error has a small influence
on the quality of the local map. When the camera moves
further from the previous keyframe, the ORB-SLAM2
system creates a new keyframe and the next measurements
update another local map. When the robot moves in a
new environment, the localization drift between keyframes
increases. Generally, the larger distance between keyframes,
the larger the localization error we can expect. This error is
also reduced by the ORB-SLAM2 when the loop closure is
detected.

3.4 Data Filtering

When the point cloud obtained from the RGB-D image is
projected on the keyframe, the surfaces of two objects may
be measured in a single cell. If the distance between two
surfaces is large, the resulting ellipsoid does not properly

represent the surface of two objects. This situation happens
on the edges of the objects. We propose the procedure which
allows removing incorrect ellipsoids from the local map.

We use the uncertainty model of the RGB-D sensor [14]
to remove incorrect ellipsoids that appear on the edges of
the objects. The covariance matrix computed using NDT
updating procedure is closely related to the uncertainty
model of the RGB-D sensor [2]. In the filtering procedure,
we compare the model of the sensor with the obtained
ellipsoids. From the uncertainty model of the sensor, we
know the size of the ellipsoids that we can expect at the
given distance. The filtering procedure removes ellipsoids
that are too long in 3D space according to the uncertainty
characteristic of the given RGB-D sensor. Ellipsoids with
center points close to the camera origin should have a much
smaller magnitude than those further away according to the
sensor model. For results obtained from various datasets,
we use the same generic uncertainty model of the Kinect
sensor [14]. The model of the camera used for filtering data
is presented in Fig. 6.

Moreover, to reduce the influence of sparse and
erroneous data, we carefully treat the numerical stability
when calculating the sample covariance like in [39]. We
require a minimum number of samples (>10) to create the
covariance matrix.

3.5 Merging Local Maps

The local maps are efficient structures that decrease the
influence of the localization error. However, a global map
is required to plan the motion of the robot. In our previous
work [3], we compute the position of each ellipsoid in
the global frame. Then, for the obtained set of ellipsoids,
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Fig. 6 Example model of the
depth camera used to remove
incorrect ellipsoids from the
local map

we sample 3D points and as a result, we obtain a 3D
point cloud. This global representation can be used directly
for motion planning or used to update the global model
of the environment like the OctoMap. However, in this
research, we propose a local map that is view-dependent,
and each ellipsoid is obtained from the different distances
between the camera and the object. The measurement
and obtained ellipsoids that are closer to the object are
more accurate than ellipsoids obtained for the same object
observed from a distant position. The procedure which
merges the local maps should take into account these
properties of the mapping system and preserve details of the
objects.

We merge local maps to obtain the global model (set
of ellipsoids) in two stages. In the first stage, we merge
ellipsoids from local maps connected by the edges in
the covisibility graph. The local maps connected by the
covisibility edges cover a similar region in the 3D space and
some parts of the map overlap. In Fig. 7a and in Fig. 7b
we show two local maps that overlap. In Fig. 7c we show
the local maps in the same coordinate frame. The borders
between maps are well visible because the map from Fig. 7b
has darker colors, but most of the ellipsoids overlap each
other. Thus, we can merge ellipsoids that are close to each
other in the 3D space. Because searching for neighboring
ellipsoids in the 3D space is computationally demanding we
merge ellipsoids on the image (keyframe) plane. We create
groups of local maps connected by the covisibility edges and
define the map which is in the center of the group. Then, we

project ellipsoids from the neighboring maps to the center
keyframe using the inverse pinhole camera model: [2]:

⎡

⎣
u

v

d

⎤

⎦ =
⎡

⎢
⎣

x·fx

z
+ xc

y·fy

z
+ yc

z

⎤

⎥
⎦ , (6)

where [u, v, d]T is the position of the ellipsoid on the
keyframe, [x, y, z]T is the 3D position of the ellipsoid in
the camera frame, xc, yc define the position of the optical
axis on the image plane, fx and fy are focal lengths of
the camera. The ellipsoids that are projected on the same
2D cell cu,v in the keyframe are grouped using mean shift
clustering. We do not cluster ellipsoids if the distance
between them is larger than the threshold (0.25 m) which
means that the ellipsoids represent two different surfaces.
It might also mean that the localization error is large and
the local maps do not align with each other. This error
might be corrected when the loop closure is detected. Then,
the considered ellipsoids will be merged correctly. For
ellipsoids that are located in the same cluster, we compute
the mean position, covariance matrix, and color. The results
of the clustering are presented in Fig. 7d. The proposed
procedure reduces significantly the number of ellipsoids in
the global map and smooths out their positions.

In the second stage, we merge information about objects
from the local maps which are not connected in the
covisibility graph. This situation happens when the part
of the scene is observed from a significantly different
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Fig. 7 Merging two local maps
(a,b): maps in the common
coordinate frame (c) and the
obtained set of ellipsoids (d)

perspective and the distance between the camera and/or the
orientation of the camera differs significantly. As a result,
the ellipsoids which represent the same model also differ
significantly. The goal of this procedure is to remove from
the map ellipsoids, which occlude other ellipsoids and have
larger uncertainty. We use a procedure that is similar to the
one from the previous step. We create groups of local maps
that are neighbors in the covisibility graphs, but we also
add local maps that are not connected in the covisibility
graph but are close to each other in the 3D space (Euclidean
distance and the angle between camera axes are below the
threshold). Then, we check whether ellipsoids from the local
maps are occluded by ellipsoids from the other viewpoint
(local map). Again, we use the forward and inverse model
of the pinhole camera. To speed up computations we store
coordinates of each ellipsoid on the keyframe. For the map
with 100 local maps, the filtering procedure takes less than
5 s.

4 Results

We performed experiments on various datasets to show the
properties of the proposed method1. In Fig. 8 we show the
example keyframe (local map) of the freiburg3 desk
sequence from the TUM dataset [40]. In this experiment,

1short video from experiments is available at
https://https://www.dropbox.com/s/4uasiuoqkf8gh03/map.mp4?dl=0

we do not estimate the motion of the camera using ORB-
SLAM2. We use the ground truth trajectory of the camera
registered for the sequence because we test the properties of
the dense mapping system only. In Fig. 8 we show the set
of ellipsoids resulting from the covariance matrices stored
in the 2D container. The map contains information about
3D objects even though the measurements are stored in the
2D structure. The information about the part of the scene
is collected for the close camera poses of the keyframe.
The properties of the map are well visible in the enlarged
regions in Fig. 8. The ellipsoids which are closer to the
camera are much smaller than the distant ones. On the other
hand, the ellipsoids, which are located on the edges of the
objects (a cup, a coke, and a mouse in Fig. 8), are elongated
due to measurements (depth values) along the z axis of the
camera.

In the second experiment, we show the filtering results of
the local view-dependent map. The results of the proposed
filtering method are presented in Fig. 9. In Fig. 9a, we show
the ellipsoids computed for all cells of the keyframe-based
2D structure. Some ellipsoids are computed for depth values
located on the edges of the objects. The measured values
inside a cell belong to various surfaces that are distant to
each other. It does not represent the surface of the object, but
data belonging to two surfaces, and the obtained uncertainty
is larger than the uncertainty resulting from the camera
model [14]. In Fig. 9b we show the local map without
ellipsoids removed according to the uncertainty model of
the camera (Fig. 6).
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Fig. 8 Local map obtained for
the freiburg3 desk
sequence from the TUM
dataset [40]. The enlarged
regions of the map are in the red
and blue frames

Fig. 9 Filtering of a depth image: 3D ellipsoids obtained from a single depth image (a) and 3D ellipsoids related to the planar surfaces (b) after
removing ellipsoids resulting from potentially erroneous measurements. Arrows indicate ellipsoids on the edges

Fig. 10 Occluding ellipsoids
removal procedure which allows
keeping ellipsoids which
represent objects with the
highest precision: before (a) and
after filtering (b)
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In the third experiment, we show the results of
the occluding removal procedure. The example scene is
presented in Fig. 10. In Fig. 10a, we show all ellipsoids
computed for the local maps and transformed into the global
map frame. Some measurements are obtained from distant
views, in other cases, the camera was closer to the objects.
As a result, the ellipsoids have various sizes. The goal of the
occluding ellipsoids removal procedure is to keep only the
ellipsoids that represent the object with the highest accuracy.
The results of the procedure are presented in Fig. 10b. When
the procedure is applied, the uncertain measurements of the
scene are removed and the most accurate data is used to
represent parts of the scene.

We also show the global map obtained for the fr3 long
sequence from the TUM dataset [40]. The visualization of
the global set of ellipsoids is presented in Fig. 11. The global
map contains 358258 ellipsoids after merging local maps
and removing occluding ellipsoids. The obtained number is
smaller than the number of pixels in a single RGB image
which shows the compression rate for the proposed method.
Despite the reduced number of ellipsoids we still keep
detailed information about the objects. In Fig. 11, we show
the enlarged regions of the global map. Some areas of the
map are registered with higher precision because they were
measured from a closer distance than other regions of the
environment.

In Table 1, we show the properties of the global maps
obtained on the three sequences from the TUM dataset [40].
The initial number of ellipsoids in the global map Σe is
892232 for the model presented in Fig. 11. After merging
the ellipsoids and removing occlusions the number of
ellipsoids Σ ′

e is more than two times smaller. A similar
reduction rate is obtained for other sequences presented in
Table 1. We also check the time needed to obtain a global
map. The maximum value is 14.2 s which is obtained for the
graph with 161 local maps. For fr2 desk sequence, where
the number of local maps is 88, the global map is generated
in less than 4 s. The results presented in Table 1 are obtained
on the computer with i5-8250U CPU.

In the next experiment, we compare three mapping
methods: OctoMap [19], NDT-OM, and the proposed
view-dependent approach. We test the method on the
freiburg1 room sequence from the TUM dataset [40].
In Fig. 12a, we show the single RGB image from
the sequence which shows the configuration of the
environment. The obtained maps are shown in Fig. 12b-d
(OctoMap, NDT-OM, and the proposed method). The voxel
size in the OctoMap and NDT-OM is set to 0.1 m. When the
voxel size is decreased the accuracy of the map increases.
Also, the number of updated voxels and computation time
increases. The shape of the objects is better represented
by NDT-OM than OctoMap, but it comes with a higher
computational cost. Our approach, presented in Fig. 12d,

Table 1 Parameters of the maps obtained on the fr3 long office,
freiburg1 room, and fr2 desk sequences from the TUM dataset

sequence fr3 long fr1 room fr2 desk

submaps no. 161 88 99

Σe 892232 405137 390435

Σ ′
e 358258 189434 90719

tg [s] 14.2 4.8 3.9

We compare the total number of ellipsoids in the local maps Σe,
ellipsoids after clustering and filtering Σ ′

e, and time required to
generate global map tg

provides a 3D map with varying resolution. The details of
the objects included in the map are much better visible.

The last experiment related to the proposed mapping
system is performed to compare the accuracy of the view-
dependent ellipsoids and the OctoMap [19]. The results
are presented in Table 2. We use the living room kt3
sequence from the synthetic ICL-NUIM dataset [15],
because it contains the ground truth model of the
environment. Also, the sensor data does not contain the
noise and we can compare the influence of the mapping
methods on the accuracy of the model. For each experiment,
we use the ground truth trajectory, raw RGB, and depth
images to update the map. We compare the obtained map of
the environment with the reference mesh model. To this end,
we create a point cloud from the OctoMap and 3D ellipsoids
by taking the centers of these geometric structures. Then,
we compute the accuracy of the model using CloudCompare
tool2. To this end, we align the obtained map with the model
manually and then we use Iterative Closest Point (ICP) to
align precisely the point cloud obtained from the map to the
model. For the obtained alignment, we compute the RMSE
values between the point cloud and the reference model
(Table 2).

In Table 2 we show reconstruction results for the
OctoMap [19] and we compare the results to our approach.
We show the results for the set of local maps and results
for the global map obtained after merging local maps and
removing occluding ellipsoids. In Table 2, we show that
decreasing the size of the voxel in the OctoMap improves
the model of the environment. Obviously, the number of
voxels significantly increases (to 328660 when the voxel
size is 0.02 m). The Root Mean Squared Error (RMSE)
is 15.27 mm for the OctoMap with 0.02 m voxel size.
Further decreasing the voxel size increases significantly the
memory consumption. The reconstruction error is much
smaller when the proposed view-dependent model is used.
Even when the cell size is set to 15×15 px the RMSE is
9.8 mm and the number of ellipsoids is only 23620. The

2CloudCompare, https://github.com/cloudcompare
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Fig. 11 Global map obtained for
the fr3 long sequence from
the TUM dataset [40]. The
enlarged regions of the map are
in the red and blue frames

number of ellipsoids is almost 14 times smaller than the
voxels in the OctoMap and RMSE is 0.64 times smaller
for the view-dependent ellipsoids than for the OctoMap.
However, the view-dependent map with 15×15 px cell size
and OctoMap with 0.1 m voxel size is sparse and many
details about the environment are missing.

The better results for our system results also from the fact
that the number of points measured with higher accuracy
is higher in the map. The objects which are closer to the
camera are densely sampled by the proposed method. On the
other hand, the distant objects which are naturally measured
with smaller precision are represented by a small number
of points in the view-dependent local maps. In OctoMap
the environment is sampled uniformly and independently
on the measurement accuracy. We can also observe that the
global model is more accurate after merging local maps.

However, we also observe that merging local maps reduces
the accuracy of the model on the edges and corners of
the rooms because the ellipsoids belonging to two different
surfaces are merged.

The next part of the results section describes the
experiments with the dense mapping system integrated with
the SLAM method. We show the advantages of the proposed
method in the reconstruction task of the new environment.
Because the ground truth model of the environment is not
available for the TUM dataset, we show the experiments
on the ICL NUIM dataset. In this dataset, the model of the
living room is publicly available. Thus, we can compare
the obtained model with the ground truth data and compare
results. The results of the experiments with the whole
pipeline performed on the ICL NUIM living room
kt0, ..., kt3 sequences are presented in Table 3.

Fig. 12 Global maps obtained
for the freiburg1 room
sequence from the TUM
dataset [40]: example RGB
image (a), OctoMap (b),
NDT-OM (c) and our approach
(d)
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Table 2 Comparison of OctoMap and proposed VD approach in the reconstruction task for the ICL-NUIM kt3 sequence

OctoMap VD

0.1 m 0.075 m 0.05 m 0.035 m 0.02 m 15×15 px 9×9 px 5×5 px 3×3 px

RMSE 31.19 29.27 22.44 18.61 15.27 10.03 7.75 7.92 6.84

[mm] 9.80 7.41 6.46 6.35

Σv 7858 15089 37117 80799 328660 56511 207771 724514 1244615

23620 83821 171112 596759

Values in bold are obtained after local maps merging and removing occluding ellipsoids

For the kt0, ..., kt2 sequences we are able to show
only the reconstruction accuracy (Table 3). The ORB-
SLAM2 localization system does not detect loop closure.
As a result, the pose graph and the dense maps are not
corrected. The most interesting results are obtained for
the kt3 sequence. In this case, the ORB-SLAM2 detects
the loop closure at the end of the sequence. We can
register the reconstruction error before and after the loop
closure detection. Before the loop closure, the RMSE and
MAE are 4.12 cm and 3.45 cm, respectively. After loop
closure detection the error is reduced for the RMSE and
MAE, respectively. The experiments presented in Table 3
are performed on the synthetic data. We can compare the
accuracy for the obtained results, but the environment is
not really challenging and the localization drift is relatively
small. Thus the loop closure, if detected, does not improve
the results significantly. Thus, we introduced the noise to
the parameters of the camera which represents the imperfect
camera calibration and more realistic scenario. In this case,
the trajectory obtained from the ORB-SLAM2 differs from
the ground truth trajectory more than for the perfect camera
parameters. In this case, the loop closure detection and
trajectory correction reduces the reconstruction error by
10% and 25% for the RMSE and MAE, respectively.

The visualizations of the obtained maps before and
after loop closure detection are presented in Fig. 13.
The model of the room presented in Fig. 13a and in
Fig. 13c is deformed due to the localization drift. After
the correction of the pose graph, the dense model can
be also corrected. The results are presented in Fig. 13b

and in Fig. 13d. In Fig. 14, we show the error histogram
computed for the global map before and after loop closure
detection. The number of places where the error is high and
the maximum error of the model is significantly limited.
When we increase the localization drift by introducing
imperfect camera parameters the localization drift (Fig. 1a
and Fig. 1c), correction of the camera trajectory (Fig. 1b),
and improvement of the global dense model after loop
closure detection are better visible (Fig. 1d).

We’ve compared the proposed method to state-of-the-
art methods in the reconstruction task on the ICL-NUIM
living room dataset. The ICL-NUIM living room
dataset contains information about the ground truth
trajectory of the camera and the real model of the room used
to generate synthetic images. However, the ORB-SLAM2
used as a backbone of our method does not perform well
in this dataset. However in the future, it can be replaced,
e.g. by a new version of ORB-SLAM which utilizes inertial
measurements [5]. ORB-SLAM2 loses tracking and creates
local maps that are not positioned properly in the global
frame (results in Table 3). It

also does not detect loop closures and does not correct
these errors for all trajectories. Thus, in the comparison
experiment, we use the ground truth trajectory of the
camera. Our main contribution is the system that can
improve the accuracy of the obtained dense map after loop
closure detection. This is not possible when global maps
like Octomap, NDT-OM, or TSDF are used. The system
used in this comparison that localizes the camera and
simultaneously reconstructs the scene is ElasticFusion [46].

Table 3 Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) reconstruction error computed for the ICL NUIM living room
kt0, ..., kt3 sequences

sequence kt0 kt1 kt2 kt3 NLC kt3 LC kt3∗ NLC kt3∗ LC

RMSE [cm] 3.22 7.32 5.06 4.12 3.35 4.2 3.76

MAE [cm] 3.03 6.74 3.84 3.45 3.10 4.15 3.11

The error values for the kt3 NLC and kt3 LC sequences are obtained before and after the loop closure, respectively. The values for the kt3∗
trajectory are obtained for the SLAM with reduced accuracy
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Fig. 13 Global map obtained for the ICL NUIM living room kt3
sequence before (a,c) and after loop closure (b,d): global point cloud
(a,b), and comparison between the obtained and reference models (c,d)

(green color represents larger error). Arrows indicate regions corrected
after loop closure detection

Fig. 14 Error histogram
obtained for the ICL NUIM
living room kt3 sequence
before and after loop closure

Table 4 Comparison of the reconstruction error computed for the ICL NUIM living room kt0, ..., kt3 sequences

RMSE (m)

System kt0 kt1 kt2 kt3

ElasticFusion 0.006 0.009 0.010 0.048

Voxblox (GT Poses) 0.010 0.017 0.014 0.011

Our (GT Poses) 0.007 0.008 0.010 0.006

Our (GT Poses + merged maps) 0.008 0.008 0.010 0.007
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Table 5 Root Mean Square Error computed for the maps obtained in
the experiments on the mobile manipulating robot in the laboratory

head base

LC RMSE [cm] std RMSE [cm] std

seq1 no 9.39 10.70 18.22 18.63

yes 8.67 10.43 16.87 16.00

seq2 no 9.57 9.88 13.65 14.50

yes 7.51 9.21 13.49 13.65

seq3 no 14.56 17.13 19.31 17.38

yes 13.92 15.67 18.69 17.63

The results are presented in Table 4. The ElasticFusion [46]
performs the best even though it has to localize the camera.
However, the ElasticFusion also “bends” the surface of
objects to improve the accuracy of the reconstruction. Our
system performs similarly when the ground truth poses
are used to reconstruct the environment. The accuracy
of the reconstruction does not change significantly when
the proposed procedure of merging local maps is applied.
We compared the results to Voxblox that uses TSDF for
reconstruction [31]. In this case, the ground truth poses are
also used to reconstruct the scene. The reconstruction results
are 29-53% better when the proposed local maps with NDT
are used (Table 4).

The next experiments are performed on our mobile-
manipulating platform Robot 4.0 [23]. The robot is
equipped with two RGB-D cameras (Kinect Xbox One).
The first camera is installed in the head of the robot and
it is tilted down by 45◦. The camera is used to observe
the table in front of the robot and to support manipulation
tasks. The second camera is mounted on the base of the
robot and is used for navigation and collision avoidance.
In the experiment, we teleoperate the robot and register
the data from both cameras. The three trajectories of the
robot estimated by the ORB-SLAM2 and the point cloud
representing the environment are presented in Fig. 16. Later,
data from the cameras are used to build the model of the
room and verify the proposed system. The reference model
of the room is built using a Surphaser 100HSX 3D scanner
and is presented in Fig. 15.

The results obtained on the mobile-manipulating plat-
form are presented in Table 5. For each sequence, we reg-
ister the RMSE before and after loop closure detection and
correction of the pose graph. We also show the results for
the camera mounted on the head and the base of the robot.
For each registered trajectory, the error computed after loop
closure detection is reduced. With the mean error, the stan-
dard deviation of the error also decreases. The reduction of
the reconstruction error is not significant, because the exper-
iment is performed in a room that is relatively small and the
trajectory of the robot is relatively short. The localization
drift, which results from the fame-to-frame motion estima-
tion, is not high. Thus, the reduction of the reconstruction
error after LC detection is also not high.

In the last two experiments, we show the possible
applications of the proposed mapping method. First, we
present a possibility to add information about detected
objects to the local maps. In Fig. 17, the example objects
(displayed in yellow) are added to the map. In the map,
we store information about the category and the instance
of the object and the 3D pose w.r.t the local coordinate
system. The objects can be detected using the RGB-D
images associated with the local map or a container of local
ellipsoids. After successful object detection, the ellipsoids
in the map can be replaced with 3D mesh models of
the known objects. Moreover, searching for the object in
the map is computationally efficient because we use the
graph-like structure.

In the last experiment, we show the application of the
global map in collision-free path planning. The set of local
maps is converted to the global map which is later used for
collision avoidance and motion planning. The overlapping
regions of local maps are merged into a single model. The
result is presented in Fig. 18. We remove the ellipsoid which
belongs to the ground from the global map because we plan
the motion for the differential-drive mobile robot. We use
the mesh model of the ellipsoids and mesh model of the
robot to detect collisions because our global map, in contrast
to local maps, does not provide constant access time to the
cells like OctoMap or NDT-OM. To this end, we applied
the FCL collision detection library [32]. To find the path
between the current and goal position of the robot we use

Fig. 15 Mobile manipulating platform Robot 4.0 during the experiment in the laboratory (a) and the reference model of the room (b)
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Fig. 16 Trajectories of the robot estimated by the ORB-SLAM2 during the experiment in the laboratory

Fig. 17 Local map obtained for
the freiburg2 desk
sequence from the TUM
dataset [40] and three objects
stored in the map: an office
chair, two coffee cups, and a pen

Fig. 18 Path planning with
RRT-Connect algorithm on the
global map (set of ellipsoids)

Page 17 of 20    28J Intell Robot Syst (2021) 103: 28



the RRT-Connect method. The obtained path is presented in
Fig. 18. The planning time in the range 5 m is below 0.5 s.

5 Conclusions

In this article, we focus on the dense mapping problem of
a new environment explored by a mobile robot. The main
contribution of this work lies in:

– a new view-dependent representation of a local map
that utilizes the properties of the sensor. The proposed
representation stores NDT transforms in the 2D grid.
The measurements directly represent the uncertainty
model of the sensor;

– an improved method for local map filtering which
utilizes the reference uncertainty model of the camera.
The proposed method removes cells that lie on the
edges of the objects and contain measurements from
multiple surfaces;

– a new architecture of the mapping system which utilizes
the properties of the pose graphs. The local maps are
organized in a graph-like structure that defines the pose
of each local map;

– integration of the graph-based dense mapping system
with the keyframe-based localization system (ORB-
SLAM2). In the proposed architecture local maps are
created when the new keyframe is added to the ORB-
SLAM2. Local maps are updated from the neighboring
poses of the camera and use the pose estimated by the
localization subsystem. When the scene changes the
new local map is created;

– procedures that create a global map of the environment
from the graph of local maps. The proposed procedure
utilizes the forward and inverse model of the camera to
project the measurements from neighboring local maps;

– capability of the system to correct the global map when
the loop closure is detected;

We also show the practical properties of the proposed
system in the experiments on the publicly available datasets
and the experiments with the real robot in the laboratory.
We also compare the method to the OctoMap to show the
advantages of the view-dependent representation. We also
provide the application of the system in collision-free path
planning and we also show that the map can be used to store
the information about the poses of the detected objects. The
graph-based architecture also eases searching for objects
which are stored in the map. To summarize, we show that
with the small number of the ellipsoids we can represent
accurately the environment (Table 2). We also show that
the accuracy of the reconstruction can be improved after
loop closure detection (Table 3, Figs. 11, 14, Table 5). We
compare the proposed environment model to the Octomap

(Table 2) and TSDF (Table 4). Finally, we show that the
local maps can be quickly merged into a global map and
used to find a collision-free path of the mobile-manipulating
robot. The planning time for the proposed environment
model in the range of 5 m is below 0.5 s.

However, this method has some limitations. It inherits
the properties of the localization system. If the loop closure
is not detected the global map is not corrected. As a
result, the local maps which represent the same part of
the environment do not overlap. In the visualization of the
global map, we can observe two or more layers of the same
surface. This behavior will be corrected when the drift is
reduced and the surface is close enough to be merged by
the proposed methods which generate a local map. Also,
the localization method influences the number of local
maps. Sometimes, it creates a high number of keyframes.
This happens especially when the camera rotates. We see
the potential of new neural-based methods which should
improve the quality of the loop closure detection methods
and keyframes selection.

In the future, we are going to work on the procedures
which merge local maps. We are going to improve methods
that align the matching surfaces independently on the
current distance like in ElasticFusion [46]. We are also
going to simultaneously provide feedback to the localization
system about the results of the local maps matching and
improve the camera pose estimation. The utilization of
information about the uncertainty of the measurements
should also improve the matching accuracy [2]. In the
future, we are also going to use GPU to improve the frame
rate and time needed to generate the global map.
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