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Abstract
In this paper, we present a Decomposition Coordination (DC) method applied to solve the problem of safe trajectory planning
for autonomous Unmanned Aerial Vehicle (UAV) in a dynamic environment. The purpose of this study is to make the UAV
more reactive in the environment and ensure the safety and optimality of the computed trajectory. In this implementation,
we begin by selecting a dynamic model of a fixed-arms quadrotor UAV. Then, we define our multi-objective optimization
problem, which we convert afterward into a scalar optimization problem (SOP). The SOP is subdivided after that into smaller
sub-problems, which will be treated in parallel and in a reasonable time. The DC principle employed in our method allows us
to treat non-linearity at the local level. The coordination between the two levels is achieved after that through the Lagrange
multipliers. Making use of the DC method, we can compute the optimal trajectory from the UAV’s current position to a final
target practically in real-time. In this approach, we suppose that the environment is totally supervised by a Ground Control
Unit (GCU). To ensure the safety of the trajectory, we consider a wireless communication network over which the UAV
may communicate with the GCU and get the necessary information about environmental changes, allowing for successful
collision avoidance during the flight until the intended goal is safely attained. The analysis of the DC algorithm’s stability
and convergence, as well as the simulation results, are provided to demonstrate the advantages of our method and validate
its potential.

Keywords Autonomous navigation · Optimal control · Trajectory planning · Unmanned aerial vehicles

1 Introduction

Autonomous unmanned aerial vehicles have raised interest
during the last decades amongst the community of
researchers [1]. Initially, different types of flying vehicles
and robots were created for military applications [2],
but they quickly became widely used in various civilian
applications [3], given the effectiveness of these robots
and their capability to improve the quality of man’s life.
For example, in the actual context of the global pandemic,
drones are extensively used in the fight against Covid-19 in
many countries so far, and for many purposes in [4] Euchi, J
explains how drones are used to solve logistical problems of
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medicines delivery for medical home care, during the time
of public isolation.

Looking through recent papers, we find that there are
still several open questions that need to be resolved, like
the modeling and control of various autonomous UAVs
[5], target tracking [6], and UAVs wireless communication
networks as in [7]. In this work, we propose a solution
to the problem of safe trajectory planning for autonomous
quadrotor, which is one of the most challenging topics
in this field [8, 9]. Several mathematical methods have
been suggested to solve this problem. Most of them are
based on Genetic Algorithm (GA) [10], or hybrid Neuro-
genetic algorithm, which is an upgraded version of GA
where the output of the GA is used to train the Artificial
Neural Network (ANN) [11]. Nevertheless, in real-time
implementations. These approaches are not the best options,
especially for highly complex and/or large-size problems,
given the difficulty of their convergence to the Pareto
front. To overcome such difficulties, we propose a novel
theoretical approach, that falls into the category of global
navigation approaches, as described in [12], where the
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UAV receives all the needed information from an on-land
computer, called in this paper a Ground Control Unit (GCU)
[13], which monitors the entire environment, while the UAV
flies towards its destination. Using the Decomposition-
Coordination (DC) algorithm [14], we compute a first
optimal trajectory from the current position, pi of the UAV
to a desired position of our choice pd .

To ensure safe navigation, the GCU supervises the whole
environment, and finds every potential collision. Then,
using an obstacle avoidance algorithm, it gives a safe
position regarded as an intermediate goal for the UAV to
escape the upcoming collision. The intermediate goals are
meticulously chosen based on the orientation, speed, and
size of the obstacle. The UAV navigates in accordance with
the GCU instructions, and computes sub-trajectories from
the current position to the next intermediate goal each time
an obstacle is detected on the road until the destination is
reached efficiently. This paper is an extended version of
a previous conference paper [15]. It aims to describe, in
a more thorough way, the DC algorithm and the global
approach employed in this work.

We start with a description of the quadrotor’s dynamic
model utilized in this work. It is worth mentioning that the
latter was designed based on a number of interesting recent
papers [16] and [17].

Then, we define our objective functions that must be
optimized in a conflicting situation. We proceed afterward
with the resolution of the multi-objective optimization
problem using a decomposition-coordination principle
that consists of decomposing the problem into separable
subproblems, easily processed in parallel, and in almost
real-time, allowing the nonlinearity to be treated locally.
The coordination is subsequently carried out using the
Lagrange multipliers.

In this approach, the nonlinear equality constrained opti-
mization problem is converted into a Scalar Optimization
Problem (SOP) with a single objective function, and the
SOP is solved through mapping the differential equations
into the corresponding difference equations, simulated by
discrete-time computing units.

The strength of this method lies in the decomposition and
the parallel processing, to ensure the efficiency of solving
different nonlinear optimization problems as in previously
published works [12] and [14].

This paper is organized as follows: Section 2 is dedi-
cated to the presentation of the quadrotor’s dynamic model.
In Section 3 we introduce the problem statement and its
conversion to an equivalent SOP with a single objective
function. Then, the analysis of the problem is given in
Section 4, where the DC method is presented meticu-
lously, along with the study of the stability of the algo-
rithm. The principle of our approach for trajectory plan-
ning and obstacle avoidance is described in Section 5.

Then, Section 6 is devoted to the results of our sim-
ulation on Matlab. Finally, a conclusion is provided in
Section 7.

2 The Quadrotor’s Dynamic Model

The quadrotor is an under-actuated system that has
six degrees of freedom. Three correspond to rotational
movement around the x, y, and z axes, the other three
correspond to translational movement along those axes. We
consider a dynamic model of a fixed-arms quadrotor system,
Fig. 1 represents the quadrotor’s configuration used in this
study: E and B are the earth and body frames, respectively.

As usual, the following assumptions are given to simplify
the modeling:

– The quadrotor is a symmetric and rigid body,
– The quadrotor’s center of mass coincides with the origin

of the body frame,
– The rotation directions of the four rotors are fixed,
– The air resistance and the wind effect are neglected.

Let [x, y, z] be the three axes of translations for the
quadrotor with respect to the earth frame E, and [φ, θ, ψ]
the three angles of rotation around the those axes, where φ is
the roll angle around the x-axis, θ is pitch angle around the
y-axis and ψ the yaw angle around the z-axis. The matrices
of rotation around the three axis from the earth frame to the
body frame are:

Rφ =
[

1 0 0
0 Cφ Sφ

0 −Sφ Cφ

]
, Rθ =

[
Cθ 0 −Sθ

0 1 0
Sθ 0 Cθ

]
, Rψ =

[
Cψ Sψ 0
−Sψ Cψ 0

0 0 1

]
,

Fig. 1 The quadrotor’s structure
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Where C(.) and S(.) designate respectively cos(.) and
sin(.). The transition matrix from the body frame to the
earth frame is then represented as:

Rt = (RφRθRψ)T =

⎡
⎢⎢⎣

CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθSφ + CφCψ SψSθCφ − CψSφ

−Sθ CθSφ CθCφ

⎤
⎥⎥⎦

(1)

To describe the translation dynamics of the quadrotor, we
use the total thrust force Fth, given by the combination of
the thrust force of the four motors.

Fth =
4∑

i=1

Fi = k.
4∑

i=1

ω2
i (2)

Where Fi and ωi are respectively the lift force, and the
angular velocity of the ith rotor for i = 1, ..., 4, and k is the
lift constant.

The total lift force in the body frame is:
−−→
FthB

= [0, 0, Fth]T (3)

According to Eqs. 1 and 3, the lift force in the earth frame
is:
−−→
FthE

= Rt
−−→
FthB

(4)

Then, we have the gravity force of the quadrotor,
described according to Newton’s Second Law in the earth
frame as follows:
−→
FgE

= [0, 0, mg]T (5)

Where; m and g are respectively the mass of the
quadrotor, and acceleration of gravity, and they are both
supposed to be constants.

In compliance with the Newton’s second law, and
from the equations above, the translation dynamics of the
quadrotor, without considering external disturbances, can be
described as:

ẍ = Fth(SθCφCψ+SφSψ )

m

ÿ = Fth(SθCφSψ+SφCψ)

m

z̈ = Fth(CθCφ−mg)

m

(6)

For the rotational dynamics of the quadrotor, let
[ωx, ωy, ωz]T be the angular velocity of the quadrotor,
about the principal axes in the body-fixed frame B.

According to Euler’s equations for rotations, the resultant
torque acting on the quadrotor is described as:⎡
⎢⎢⎢⎣

τx

τy

τz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ixω̇x + ωyωz(Iz − Iy)

Iyω̇y + ωxωz(Ix − Iz)

Izω̇z + ωxωy(Iy − Ix)

⎤
⎥⎥⎥⎦ (7)

Where τx , τy , and τz the three components of the torque
in the three directions; x, y, and z. While, Ix , Iy , and Iz are
the three rotary inertias, with respect to the axes x, y, and z

respectively.
The torques in the three directions x, y, and z are

respectively τφ , τθ , and τψ , given by:⎡
⎢⎢⎢⎣

τφ

τθ

τψ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

l(F3 − F1)

l(F4 − F2)

D4 + D2 − D3 − D1

⎤
⎥⎥⎥⎦ (8)

Where Di = dω2
i is the drag force of the ith rotor, and

constant d is the drag coefficient, and l is the quadrotor’s
arm length.

Then, Mgx , Mgy , and Mgz are the three components of
the gyroscopic torque during flight around the axes x, y, and
z, respectively, denoted by:⎡
⎢⎢⎢⎣

Mgx

Mgy

Mgz

⎤
⎥⎥⎥⎦ = Ir

⎡
⎢⎢⎢⎣

ωx�

ωy�

0

⎤
⎥⎥⎥⎦ (9)

Where � = (ω2 +ω3 −ω1 −ω4) while Ir represents the
rotor inertia.

Using Eqs. 7, 8, and 9, we have the following angular-
motion dynamics equations:

Ixω̇x = (Iy − Iz)ωyωz − Irωy� + lk(ω2
4 − ω2

2) (10)

Iyω̇y = (Iz − Ix)ωxωz + Irωx� + lk(ω2
3 − ω2

1) (11)

Izω̇z = (Ix − Iy)ωxωy + d(ω2
4 + ω2

2 − ω2
3 − ω2

1) (12)

The angular velocity of the quadrotor [ωx, ωy, ωz]T , in
the coordinate system B, can be expressed in the coordinate
system E as:⎡
⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 Sφtθ Cφtθ

0 Cφ −Sφ

0 Sφ

Cθ

Cφ

Cθ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ωx

ωy

ωz

⎤
⎥⎥⎥⎦ (13)

With t(.) = tan(.).
To simplify the equations, we assume that [φ̇, φ̇, ψ̇]T =

[ωx, ωy, ωz]T . This assumption holds true for small angles
of movement. Thus, the rotational dynamic model in the
inertial frame becomes:

φ̈ = (Iy − Iz)θ̇ ψ̇ − Ir θ̇� + lk(ω2
4 − ω2

2)

Ix

θ̈ = (Iz − Ix)φ̇ψ̇ + Ir φ̇� + lk(ω2
3 − ω2

1)

Iy

ψ̈ = (Ix − Iy)φ̇θ̇ + d(ω2
4 − ω2

3 + ω2
2 − ω2

1)

Iz

(14)
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From Eqs. 6 and 14, we obtain the following quadrotor
dynamic model:

ṗ = M1(p).p + M2(p).u + C (15)

For which the control is represented by the variable:
u = [u1, u2, u3, u4]T .

Where:⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k(ω2
1 + ω2

2 + ω2
3 + ω2

4)

lk(ω2
4 − ω2

2)

lk(ω2
3 − ω2

1)

d(ω2
4 + ω2

2 − ω2
3 − ω2

1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

While the state variable is expressed by:

p = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇ , ψ̇]T

We define state matrix M1(p) ∈ R
12×12, the control

matrix M2(p) ∈ R
12×4, and C ∈ R

12 the constant matrix
below:

M1(p) =
⎡
⎢⎣

O3,3 I3,3 O3,3 O3,3
O3,3 O3,3 O3,3 O3,3
O3,3 O3,3 O3,3 I3,3
O3,3 O3,3 O3,3 A1

⎤
⎥⎦ ,M2(p) =

⎡
⎢⎣

O3,1 O3,3
A2 O3,3

O3,1 O3,3
O3,1 A3

⎤
⎥⎦

C = [0, 0, 0, 0, 0, −g, 0, 0, 0, 0, 0, 0]T

With O3,3 ∈ R
3×3 and O3,1 ∈ R

3×1 are null matrices,
and I3,3 ∈ R

3×3 the identity matrix.
While A1, A2 and A3 are given by:

A1 =

⎡
⎢⎢⎣

θ̇ (Iy−Iz)

Ix

−Ir�
Ix

0
Ir�
Iy

0 φ̇(Iz−Ix )
Iy

0 φ̇(Ix−Iy )

Iz
0

⎤
⎥⎥⎦ , A2 = 1

m

[
SθCφCψ + SφSψ

SθCφSψ + SφCψ

CθCφ

]
,

A3 =
⎡
⎢⎣

1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

⎤
⎥⎦

3 The Statement of the Problem

The aim of this study is to optimize and plan the trajectory
of a quadrotor UAV, knowing the initial position pi , and
the arrival position pd . Using the DC method, we can solve
the nonlinear problem of the optimal trajectory. Then, with
the assistance of the GCU, which supervises the indoor
environment, and provides the necessary instructions at the
right time. We can enable the UAV to be more responsive
in a dynamic environment and enable it to reach its final
destination safely.

In this global approach, we first start by solving the
problem of optimal navigation for the quadrotor, using

the DC algorithm. To apply this algorithm properly, we
have to change the dynamic model from continuous-time to
discrete-time using N steps forward Euler method:

pk+1 =dt .

[(
1

dt
.I12,12 + M1(pk)

)
.pk + M2(pk).uk + C

]
(17)

Where I12,12 ∈ R
12×12 is the identity matrix.

To simplify the equation, we put dt = 1 s. We obtain:

pk+1 = [
I12,12 + M1(pk)

]
.pk + M2(pk).uk + C (18)

To proceed with the resolution of this problem, we
consider the following non-linear discrete-time systems:⎧⎪⎨
⎪⎩

pk+1 = f (pk, uk) k ∈ [|0, N − 1|]
p0 = pi given

yellowpd = pN given

(19)

Where pk is the state, and uk the control at the instant
tk , and tN is the moment when the UAV reaches its goal
pd = pN .

For any nonlinear problem, we have several objective
functions J1(y

∗) ≥ J1(y),
J2(y

∗) ≥ J2(y), ..., Jn(y
∗) ≥ Jn(y), that have to be

satisfied in a conflicting situation.
Of two objective functions, the one with the smaller

maximum is then preferable, and the optimum procedures
are those with the minimax property of minimizing the
maximum loss. This method is a decision rule, used here to
compute the smallest value of the maximum values of the
objective functions Ji .

We put wi the weight of the i objective function, where∑n
i=0 wi = 1. (To simplify, the functions to be maximized

are converted as follows: maxJi(p, u) = −min(−Ji(p, u))

so that we assume that all our objective functions are to be
minimized).

For our navigation problem, We aim to calculate
the optimal control to make the quadrotor reaches its
destination, i.e., the sequence of control inputs u∗

k(k =
0, 1..., N − 1) that enabling a desired state pd to be reached
at the time tN , which minimizes the cost function of control
efforts, for this end, we consider the objective function
below:

J1(p, u) = 1

2

N−1∑
k=0

‖uk‖2 (20)

Where uk is the control input computed at the instant tk .
The second objective is to reach the desired stated

optimally which could be represented by the objective
function J2:

J2(p, u) = 1

2
‖pN − pd‖2 (21)
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Where pN represent the computed state at the instant tN ;
i.e., the final iteration of the algorithm, and pd is the desired
state.

The scalar optimization problem can be described by:

E(p, u) = max1≤i≤n {wiJi(p, u)} (22)

While, the system bellow describes the multi-objective
optimization problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(u∗
i /0≤i≤N−1)E(p, u)

pk+1 = f (pk, uk)

p0, given

k ∈ [|0, N − 1|]
(23)

4 The Analysis of Problem

This section is devoted to the mathematical approach
applied to solve the problem Eq. 23, defined in the previous
section. To proceed with the decomposition of the system
Eq. 19, into N static subsystems, allowing us to switch
from a nonlinear dynamic system to a set of N static
interconnected subsystems, as shown in Fig. 2, where the
new variable zk represents the output of the subsystems k.

zk = f (pk, uk) k ∈ [|0, N − 1|] (24)

pk = zk−1 k ∈ [|1, N |] (25)

The purpose now is to minimize the objective functions
Eqs. 20 and 21, under the constraints Eqs. 24 and 25:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(u∗
k/0≤k≤N−1)E(p, u)

zk = f (pk, uk) k ∈ [|0, N − 1|]
pk = zk−1 k ∈ [|1, N |]
p0 = pi , given

pd = pN , given

(26)

To solve the problem of derivation for the objective
function, we construct the ordinary Lagrange function.

L =
N−1∑
k=0

Lk (27)

L0 = 1

N
E(p0, u0) + μT

0 (f (p0, u0) − z0) (28)

Lk = 1

N
E(pk, uk)+μT

k (f (pk, uk) − zk)+βT
k (pk − zk−1)

(29)

f ork ∈ [|1, N − 2|]

LN−1= 1

N
E(pN−1, uN−1) + μT

N−1 (f (pN−1, uN−1)−pd)

+βT
N−1 (pN−1 − zN−2) (30)

The Lagrange multipliers βk and μk are used here to
take into consideration the constraints Eqs. 24 and 25. By
deriving Ordinary Lagrange function and in accordance
with the Karush-Khun-Tucker conditions [14]. We can
change the equality constrained optimization problem Eq.
26 into differential equations, considering an equilibrium
point (p∗

k , u
∗
k, μ

∗
k, β

∗
k , z∗

k) , which satisfies the equations
below:

∇pk
L = 1

N

∂E

∂pk

(p∗
k , u

∗
k) + μ∗T

k

∂f

∂pk

(
p∗

k , u
∗
k

) + β∗T
k = 0

(31)

f or k ∈ [|1, N − 1|]
∇uk

L = 1
N

∂E
∂uk

(p∗
k , u

∗
k) + μ∗T

k
∂f
∂pk

(
p∗

k , u
∗
k

) = 0

(32)

f or k ∈ [|0, N − 1|]
∇μk

L = f
(
p∗

k , u
∗
k

) − z∗
k = 0 f or k ∈ [|0, N − 1|]

(33)

∇zk
L = −μ∗T

k − β∗T
k+1 = 0 f or k ∈ [|0, N − 2|]

(34)

∇βk
L = p∗

k − z∗
k−1 = 0 f or k ∈ [|1, N − 1|]

(35)

The resolution of the above system Eqs. 31 - 35,
is actually equivalent to resolution of our optimization
problem Eq. 26.

Fig. 2 Overall system made up of N static interconnected sub-system in a serial structure
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4.1 TheMethod of Decomposition-coordination

The principle of the DC method has been neatly presented
in previous papers as in [14]. And in this section, we
reintroduce this principle, which relies on the subdivision
of the system of differential equations Eqs. 31 -35 into two
levels. This decomposition is made to gather at the lower
level all the sub-problems k that would only involve the
unknown variables of indices k (k ∈ [|1, N − 1|]).

In fact, we decompose the treatment of the system
Eqs. 31 - 35 between two levels. An upper level, which
treats the Eqs. 34 - 35, responsible for fixing the initial
values zk for k ∈ [|0, N − 2|], and βk for k ∈ [|1, N − 1|],
then proposing them to the lower level that solves the
system Eqs. 31, 32, and 33, so that the decomposition of the
problem Eq. 26 is achieved.

The following systems represent our N interconnected
sub-problems: Sub-problem 0:⎧⎪⎨
⎪⎩

p0 given by the upper level

min E(p, u)

Subject to f (p0, u0) = z0

Sub-problem k, for k ∈ [|1, N − 2|]:⎧⎪⎨
⎪⎩

zk and βk given by the upper level

min E(p, u) + βk(pk − zk−1)

Subject to f (pk, uk) = zk

Sub-problem N − 1:⎧⎪⎨
⎪⎩

zN−2 and βN−1 given by the upper level

min E(p, u) + βT
N−1(pN−1 − zN−2)

Subject to f (pN−1, uN−1) − pd = 0.

The resolution of each sub-system k corresponds now to
the treatment of the system of Eqs. 31, 32, and 33, for each
βk (k = 1...N − 1) and zk (k = 0...N − 2) received from the
upper level. And using the gradient method, we end up with
the differential equations below:

dpk

dt
= −λp∇pkL (36)

duk

dt
= −λu∇ukL (37)

dμk

dt
= λμ∇

μk
L (38)

With λp > 0, λu > 0, and λμ > 0.

By applying the Forward Euler method, we convert the
differential Eqs. 36, 37, and 38 into the following equations
in discrete-time. We consider the step of discretization dt =
1:

p
(i+1)
k = p

(i)
k − λp∇pk

L, k ∈ [|1, N − 1|] (39)

u
(i+1)
k = u

(i)
k − λu∇uk

L, k ∈ [|1, N − 1|] (40)

μ
(i+1)
k = μ

(i)
k + λμ∇μk

L, k ∈ [|0, N − 1|] (41)

To ensure the coordination, the upper level treats in
parallel the coordination parameters βi

k , and zi
k , which are

known within the lower level and used to enable a local
resolution of the system of difference equations Eqs. 39
- 41 to find the values of p∗

k

(
zi
k, β

i
k

)
, u∗

k

(
zi
k, β

i
k

)
, and

μ∗
k

(
zi
k, β

i
k

)
that satisfy the Eqs. 39 - 41. The computed

values p∗
k

(
zi
k, β

i
k

)
and μ∗

k

(
zi
k, β

i
k

)
are then forwarded to the

upper level to solve the system and check if the earliest
values of zi

k and βi
k were correct, or correct them if

necessary.
zi
k and βi

k are given by:

z
(i+1)
k = z

(i)
k − λz∇zk

L, k ∈ [|0, N − 2|] (42)

β
(i+1)
k = β

(i)
k + λβ∇βk

L, k ∈ [|1, N − 1|] (43)

With λz > 0, λβ > 0.
The treatment is repeated in the coordination loop of the

algorithm until the coordination between the two levels is
obtained, as shown in Fig. 3.

4.2 The Stability Analysis

In this part, we discuss the stability and consistency of our
DC algorithm. To this end, we will demonstrate that its con-
vergence can be reduced to that of the level of coordination.
To simplify the notations, we use the new variable
Vk = (pk, uk)

T , where V ∗
k (z∗

k, β
∗
k ), μ∗

k(z
∗
k, β

∗
k ), z∗

k , and
β∗

k are the sought solution. The variables V ∗
k (zi

k, β
i
k), and

μ∗
k(z

i
k, β

i
k) are to be found by the lower level Eqs. 39, 40

and 41, and satisfy locally Eqs. 31, 32, and 33, while the
values of zi

k , and βi
k(the coordination variables), are to be

adjusted in the upper level Eqs. 42 and 43.

Our problem can be presented in a condensed form as
follows:

Lower level equations

⎧⎪⎨
⎪⎩

Xk (Vk, μk, βk) =
(

∇pk
L

∇uk
L

)

Pk (Vk, zk) = ∇μk
L

Upper level equations

{
Rk (Vk, zk−1) = ∇βk

L

Sk (μk, βk+1) = ∇zk
L
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Fig. 3 Coordination between
the upper and the lower level

We can write the solution sought as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X∗
k =

(
1
N

∂E
∂pk

+ β∗
k + μ∗

k
∂f
∂pk

1
N

∂E
∂pk

+ μ∗
k

∂f
∂pk

)
= 0

P ∗
k = f (p∗

k , u
∗
k) − z∗

k = 0

R∗
k = p∗

k − z∗
k−1 = 0

S∗
k = −μ∗

k − β∗
k+1 = 0

(44)

For each iteration i at the coordination loop:

{
Xi

k = 0

P i
k = 0

(45)

And we define the errors at the ith iteration as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
(i)
Vk

= V ∗
k (z

(i)
k , β

(i)
k ) − V ∗

k (z∗
k, β

∗
k )

e
(i)
μk

= μ∗
k(z

(i)
k , β

(i)
k ) − μ∗

k(z
∗
k, β

∗
k )

e
(i)
Tk

= z
(i)
k − z∗

k

e
(i)
βk

= β
(i)
k − β∗

k

Theorem 1 Let e
(i)
Vk
, e

(i)
μk
, e

(i)
zk

and e
(i)
βk

be the errors at the

ith iteration of the coordination loop.
e
(i)
Vk

and e
(i)
μk

converge to zero, if e
(i)
zk

and e
(i)
βk

converge to
zero.

Proof The linearization of the lower level’s equations in
the neighborhood of the solution allows us to obtain the
following equations:

X
(i)
k � X∗

k + ∂X∗
k

∂Vk

e
(i)
Vk

+ ∂X∗
k

∂μk

e(i)
μk

+ ∂X∗
k

∂βk

e
(i)
βk

(46)

P
(i)
k � P ∗

k + ∂P ∗
k

∂Vk

e
(i)
Vk

+ ∂P ∗
k

∂zk

e(i)
zk

(47)

Then, considering Eqs. 44 and 45 we can write:

∂X∗
k

∂Vk

e
(i)
Vk

+ ∂X∗
k

∂μk

e(i)
μk

+ ∂X∗
k

∂βk

e
(i)
βk

= 0 (48)

∂P ∗
k

∂Vk

e
(i)
Vk

+ ∂P ∗
k

∂zk

e(i)
zk

= 0 (49)

Which proves that: when e
(i)
zk

−→ 0 and e
(i)
βk

−→ 0 , we

have e
(i)
Vk

−→ 0 and e
(i)
μk

−→ 0.

By studding the variation of the errors e
(i)
zk

and e
(i)
βk

at
the coordination loop, over the iterations, we can prove the
convergence of the algorithm in Fig. 3.

For this purpose, we use the Lyaponov function below to
study the convergence:

Φ(i) = 1

2

N−1∑
k=0

(
e
(i)T
βk

e
(i)
βk

+ e(i)T
zk

e(i)
zk

)
� 0 (50)

The change of the this Lyapunov function is :

ΔΦ(i) = Φ(i + 1) − Φ(i) (51)
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ΔΦ(i) = 1

2

N−1∑
k=0

(
e
(i+1)T
βk

e
(i+1)
βk

− e
(i)T
βk

e
(i)
βk

+e(i+1)T
zk

e(i+1)
zk

− e(i)T
zk

e(i)
zk

)
(52)

Then, we develop Eq. 52 to have:

ΔΦ(i) =
N−1∑
k=0

(
e
(i)T
zk

Δe
(i)
zk

+ e
(i)T
βk

Δe
(i)
βk

+ 1
2

(
Δe

(i)T
zk

Δe
(i)
zk

+ Δe
(i)T
βk

Δe
(i)
βk

) ) (53)

Where

Δe(i)
zk

= e(i+1)
zk

− e(i)
zk

= −λS
(i)
k (54)

Δe
(i)
βk

= e
(i+1)
βk

− e
(i)
βk

= λR
(i)
k (55)

And λ = λz = λβ .

Then, we linearize the equations of the upper level in
the neighborhood of the solution to obtain the following
equations:

S
(i)
k 	 S∗

k + ∂S∗
k

∂μk

e(i)
μk

+ ∂S∗
k

∂βk+1
e
(i)
βk+1

(56)

R
(i)
k 	 R∗

k + ∂R∗
k

∂Vk

e
(i)
Vk

+ ∂R∗
k

∂zk−1
e(i)
zk−1

(57)

From Eqs, 44, 56, and 57 we have:

Δe(i)
zk

= −λ

(
∂S∗

k

∂μk

e(i)
μk

+ ∂S∗
k

∂βk+1
e
(i)
βk+1

)
(58)

Δe
(i)
βk

= λ

(
∂R∗

k

∂Vk

e
(i)
Vk

+ ∂R∗
k

∂zk−1
e(i)
zk−1

)
(59)

And using Eqs. 58 and 59 we can write the change of the
function Φ as:

ΔΦ =
N−1∑
k=0

λ

[(
− e

(i)T
zk

∂S∗
k

∂μk
e
(i)
μk

− e
(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

+e
(i)T
βk

∂R∗
k

∂Vk
e
(i)
Vk

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1

)

+ 1
2λ2

(
S

(i)T
k S

(i)
k + R

(i)T
k R

(i)
k

)]
= A(i)λ2 + B(i)λ

(60)

With

A(i) = 1

2

N−1∑
k=0

S
(i)T
k S

(i)
k + R

(i)T
k R

(i)
k ≥ 0 (61)

And

B(i) =
N−1∑
k=0

(
− e

(i)T
zk

∂S∗
k

∂μk
e
(i)
μk

− e
(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

+e
(i)T
βk

∂R∗
k

∂Vk
e
(i)
Vk

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1

) (62)

Theorem 2 Let as consider λ the adaptive coefficient for
the coordination algorithm. The convergence is guaranteed
if one matrix of (∂X∗

k /∂Vk)
T for (k = 0, 1, ..., N − 1)

is positive definite, and the others are only positive semi-
definite and if A(i) 
= 0, with λ chosen as: 0 < λ <

|B(i)/A(i)|.

Proof Knowing that (∂X∗
k /∂βk)

T = (∂R∗
k /∂Vk), we can

write:

B(i) =
N−1∑
k=0

(
− e

(i)T
zk

∂S∗
k

∂μk
e
(i)
μk

− e
(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

+e
(i)T
βk

∂X∗T
k

∂βk
e
(i)
Vk

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1

) (63)

We also have (∂X∗
k /∂μk)

T = (∂P ∗
k /∂Vk), and using

Eq. 46 we have:

e
(i)T
βk

∂X∗T
k

∂βk

= −e
(i)T
Vk

∂X∗T
k

∂Vk

− e(i)T
μk

∂P ∗
k

∂Vk

(64)

Using Eqs. 63 and 64 we can write:

B(i) =
N−1∑
k=0

(
− e

(i)T
zk

∂S∗
k

∂μk
e
(i)
μk

− e
(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

−e
(i)T
Vk

∂X∗T
k

∂Vk
e
(i)
Vk

− e
(i)T
μk

∂P ∗
k

∂Vk
e
(i)
Vk

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1

)

=
N−1∑
k=0

(
− e

(i)T
μk

(
∂S∗T

k

∂μk
e
(i)
zk

+ ∂P ∗
k

∂Vk
e
(i)
Vk

)

−e
(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1 − e

(i)T
Vk

∂X∗
k

∂Vk
e
(i)
Vk

)
(65)

We remark that
(
∂S∗

k /∂μk

)T = (
∂P ∗

k /∂zk

) = −I , and
according to Eq. 49 we have:

∂S∗T
k

∂μk

e(i)
zk

+ ∂P ∗
k

∂Vk

e
(i)
Vk

= 0 (66)

Then we have:

B(i) =
N−1∑
k=0

(
− e

(i)T
zk

∂S∗
k

∂βk+1
e
(i)
βk+1

+ e
(i)T
βk

∂R∗
k

∂zk−1
e
(i)
zk−1

−e
(i)T
Vk

∂X∗
k

∂Vk
e
(i)
Vk

) (67)

Making use of the fact that(
∂S∗

k /∂βk+1
) = (

∂R∗
k /∂zk−1

) = −I , we obtain:

B(i) =
N−1∑
k=0

(
e(i)T
zk

e
(i)
βk+1

− e
(i)T
βk

e(i)
zk−1

− e
(i)T
Vk

∂X∗
k

∂Vk

e
(i)
Vk

)

(68)
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βk and zk are not defined respectively for k = N and
k = 1, thus e

(i)
βN

= e
(i)
z−1 = 0.

B(i) = −
N−1∑
k=0

e
(i)T
Vk

∂X∗
k

∂Vk
e
(i)
Vk

+
N−2∑
k=0

e
(i)T
zk

e
(i)
βk+1

−
N−1∑
k=1

e
(i)T
βk

e
(i)
zk−1

= −
N−1∑
k=0

e
(i)T
Vk

∂X∗
k

∂Vk
e
(i)
Vk

+
N−1∑
k=1

e
(i)T
zk−1e

(i)
βk

−
N−1∑
k=1

e
(i)T
βk

e
(i)
zk−1

(69)

Also we have e
(i)T
zk−1e

(i)
βk

= e
(i)T
βk

e
(i)
zk−1 , which implies :

B(i) = −
N−1∑
k=0

e
(i)T
Vk

∂X∗
k

∂Vk

e
(i)
Vk

(70)

For A(i) we have two cases according to Eq. 61, the first
is where A(i) = 0 ⇒ ΔΦ(i) = λB(i)

We have then, ΔΦ(i) < 0, if B(i) < 0. And according
to Eq. 70, B(i) < 0 only if one of the matrices (∂X∗

k /∂Vk)
T

is definite positive while the others are only positive semi-
definite for k = 0, 1..., N − 1.

The second case is where A(i) > 0, then the equation
ΔΦ(i) = 0 has two distinct roots, 0 and −(B(i)/A(i)).
So ΔΦ(i) < 0 if B(i) < 0 (i.e., exactly one matrix of
(∂X∗

k /∂Vk)
T for k = 0, 1..., N − 1 is definite positive

and the others are only positive semi-definite according to
Eq. 70 with λ chosen as :

0 < λ < −B(i)

A(i)
=

∣∣∣∣B(i)

A(i)

∣∣∣∣ (71)

The meticulous choice of the Lyapunov function helped
to find the ideal values of our adaptive coefficient λ, by
enabling a compromise to be reached, between maintaining
the stability of the algorithm and increasing the speed of
computation, which is not easy to achieve using the Gradient
Method, as the coefficient λ is not bounded above by any
value. In addition, this algorithm processes repeatedly all
sub-problems at the lower level for every iteration of the
coordination loop.

5 The Obstacle Avoidance

Now that we have presented the DC method, used for
computing the optimal trajectory of a quadrotor UAV from
an initial position pi(xi, yi, zi) to a goal pd(xd, yd, zd).
This section, focuses on the description of the obstacle
avoidance principle, which enables the autonomous UAV to
navigate safely. In this approach, we suppose that the UAV
is performing its task in an indoor environment. We also
assume that the environment is completely supervised by
a GCU, which communicates with the UAV via a wireless
communication network. Initially, we can choose a desired
position pd (i.e. the system’s input) then, the GCU sends
instructions to the UAV, so that the later computes the
optimal trajectory T0 = [pi , p1 . . . pk . . . ..pd ] from its
actual position pi to pd (see Fig. 4a) using the algorithm
of DC. The computed trajectory T0 is sent back after that
to the GCU, to check whether the trajectory is safe or not,

Fig. 4 The obstacle avoidance
principle
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Table 1 Values of quadrotor
parameters used in this
simulation

Parameter Symbol Value

Drag constant d 1,31

Lift constant k 3,74

Length of the quadrotor’s arm l 0,2 m

The total mass of the UAV m 0,5 kg

Gravitational acceleration g 9,8 m/s2

Moment of inertia along the x axis Ix 2e3 kgm2

Moment of inertia along the y axis Iy 2,9e3 kgm2

Moment of inertia along the z axis Iz 4,8e3 kgm2

Rotor’s inertia Ir 2,02e5 kgm2

and returns a decision. The UAV can start executing the
trajectory and flies towards its goal in case the trajectory
is safe. Otherwise, the UAV will receive the coordinates
of a new intermediate goal pk,1 from the GCU to be
reached instead of the pk the unsafe state in the initial
trajectory T0. The UAV calculates the new safe trajectory
T1 form pi to pk,1 then, form pk,1 to pd , so that the
new trajectory T1 = [pi , p1,1 . . . pk,1, pk+1,1 . . . pd ]
allows the UAV to avoid the collision at the state pk (see
Fig. 4b). As soon as another obstacle appears, the GCU
will find the next accurate intermediate goal pk+1,2, as
Fig. 4c shows, the UAV computes the next safe trajectory T2.
These intermediate goals are supposed to be meticulously
chosen, considering to the obstacles’ sizes, speeds and
orientations. This process continues until the autonomous
quadrotor arrives safely to the final destination pd , as shown
in Fig. 4d.

The pseudo-code below summarizes the obstacle avoid-
ance principle:

• Start: n = 0;
• Compute the optimal trajectory Tn =

[pi, p1,n, ...pk,n...pd ] using DC algorithm from
the actual position to the state pd ;

• While pd is no reached yet:

– If an obstacle will collide with the UAV:

n = n + 1;
correct the trajectory compute a
safe trajectory using DC algo-
rithm from pi to pk,n(given by
the GCU) then to final destina-
tion pd ;

Fig. 5 The optimal trajectory T0
computed in a collision free
environment (case.1), using the
DC algorithm from the initial
position pi to the desired
position pd
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– Otherwise continue to execute trajectory
Tn;

• Repeat until the state pd is reached.

6 Simulation and Results

In this section, a simulation on Matlab is presented to
show the relevance of the DC method in solving the
trajectory planning problem for a small quadrotor UAV.
In this simulation, we put N = 10. The quadro-
tor’s parameters used in this simulation are represented
in Table 1.

In this simulation, we consider the first case where
the environment is mainly safe, i.e. no static or dynamic
obstacles are present.

Then, a second case, where the environment is hazardous
and the UAV is supposed to avoid collisions by following
the GCU’s instructions.

Case 1 We consider the following positions, randomly
chosen:

– The initial position: pi = [5, 7, 2, 0, 0, 0, 0, 0, 0, 0,

0, 0]T
– The desired position: pd = [10, 33, 45, 0, 0, 0, 0, 0,

0, 0, 0, 0]T

These two positions are the inputs of our system.
The outputs of the system is the optimal trajectory
T0 = [pi, p1...pk ...pd ], and the associated control
sequence U0 = [u1, u2...uk ...uN − 1] computed for
each instant tk for k ∈ [|0, N − 1|], where pk =
[xk, yk, zk, ẋk, ẏk, żk, φk, θk, ψk, φ̇k,

θ̇k, ψ̇k]T and uk = [u1,k, u2,k, u3,k, u4,k]T .
As shown in Fig. 5, the generated trajectory T0 is

obviously the most optimal (straight line), which confirms
the efficiency of our algorithm.

The Fig. 6 illustrates the variation of the associated
control uk = (u1,k, u2,k, u3,k, u4,k). Along with these
results, we can represent the variation of the four angular
velocities (ω1, ω2, ω3, ω4) of the UAV’s rotors (case 1) by
solving the system Eq. 16, taking into consideration the
following assumptions:

– The rotors 1 and 3 are rotating counterclockwise (i.e.,
the angular velocities ω1 and ω3 are positive).

– The rotors 2 and 4 are rotating clockwise (i.e., the
angular velocities ω2 and ω4 are negative).

Fig. 6 The variation of the control uk = (u1,k, u2,k, u3,k, u4,k)

associated to the optimal trajectory T0, computed in a collision free
environment (case.1)

We obtain the equations bellow, allowing as to represent
the variation of angular velocities ωi for (i = 1, 2, 3, 4):

ω1 = +
√

1

4
(u1/k − 2u3/lk − u4/d)

ω2 = −
√

1

4
(u1/k − 2u2/lk + u4/d)

Fig. 7 The variation of the four angular velocities (ω1,k, ω2,k, ω3,k, ω4,k)

at each state pk for the optimal trajectory T0, computed in a collision
free environment (case.1)
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Fig. 8 The safe optimal
trajectory T1 computed
according to the GCU
instructions enabling the UAV to
avoid the collisions (case. 2),
where T1 = [Td,1, Td,2, Td ]

ω3 = +
√

1

4
(u1/k + 2u3/lk − u4/d)

ω4 = −
√

1

4
(u1/k + 2u2/lk + u4/d)

The Fig. 7, shows the variation of the angular velocities
for (case 1).

Fig. 9 The variation of the control uk = (u1,k, u2,k, u3,k, u4,k)

associated to the first optimal sub-trajectory Td,1 (case. 2) (i.e. from pi

to pd,1)

Case 2 In this case, we use the same inputs pi and pd used
in Case 1, and we suppose that the environment is dynamic.

This time, the computed trajectory T0 Fig. 5 is sent to
the GCU, The latter checks whether there are any obstacles.
We consider some virtual obstacles that UAV can avoid
following a set of safe sub-trajectories calculated according
to the instructions of GCU.

To avoid these virtual collisions, the GCU provides a first
intermediate goal pd,1, so that the UAV can calculate its
first safe sub-trajectory Td,1 from pi to pd,1. To ensure safe

Fig. 10 The variation of the control uk = (u1,k, u2,k, u3,k, u4,k)

associated to the second optimal sub-trajectory Td,2 (case. 2) (i.e. from
pd,1 to pd,2)
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Fig. 11 The variation of the control uk = (u1,k, u2,k, u3,k, u4,k)

associated to the third optimal sub-trajectory Td (case. 2) (i.e. from
pd,2 to pd )

and smooth navigation, the GCU monitors continuously the
indoor environment, and gives a second goal pd,2 allowing
the UAV to avert more collisions, and compute the next safe
sub-trajectory Td,2 from pd,1 to pd,2.

After all of the obstacles have been successfully avoided,
the GCU transmits information to the UAV, instructing
it to compute the lats sub-trajectory Td toward the final
goal pd .

Fig. 12 The variation of the four angular velocities (ω1,k, ω2,k, ω3,k, ω4,k)

at each state pk for the first optimal sub-trajectory Td,1, computed
computed to avoid collisions (case.2)

Fig. 13 The variation of the four angular velocities (ω1,k, ω2,k, ω3,k, ω4,k)

at each state pk for the second optimal sub-trajectory Td,2, computed
computed to avoid collisions (case.2)

We put:

– The first intermediate goal: pd,1 = [6, 13, 20, 0, 0, 0,

0, 0, 0, 0, 0, 0]T .
– The second intermediate goal:pd,2 = [9, 20, 25, 0, 0,

0, 0, 0, 0, 0, 0, 0]T .

The Fig. 8 shows the safe trajectory T1 = [Td,1, Td,2, Td ],
computed by the UAV in accordance with the GCU
instructions. The Figs. 9, 10 and 11 depict the variation of

Fig. 14 The variation of the four angular velocities (ω1,k, ω2,k, ω3,k, ω4,k)

at each state pk for the third optimal sub-trajectory Td , computed
computed to avoid collisions (case.2)
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Fig. 15 The evolution of λ the adaptive coefficient, adjusted according
to the condition 0 < λ < |B(i)/A(i)|

the associated control uk of the sub-trajectories Td,1, Td,2,
and Td respectively. In the Figs. 12, 13 and 14, we represent
the variation of the angular velocities of the four rotors, ωi

(for i = 1, 2, 3, 4), respectively for the sub-trajectories Td,1,
Td,2 and Td .

The algorithm generates also the values of the adaptive
coefficient λ, adjusted according to the condition 0 <

λ < |B(i)/A(i)|, as the Fig. 15 chows, the coefficient λ

converges to 0 from the second iteration which allows a
faster computation. This adaptive coefficient λ converges
the same way each time (i.e. for all the sub-trajectories).

7 Conclusion

Optimal control of nonlinear systems presents several challen-
ges, owing mostly to the complexity of the models and the
rules of command that we intend to develop. The optimal
navigation problem studied in this work shows the potential
of the DC approach, and how it may be profitable
for the management of different nonlinear dynamic
systems requiring a great amount of computations. Several
methods based on genetic algorithms have been utilized to
address nonlinear optimization problems. However, these
approaches have a significant drawback so that they may fail
to solve nonlinear problems when the problem’s constraints
become too difficult to satisfy, or when the objective space
is non-convex, causing the genetic algorithm to converge to
the optimal Pareto front with difficulty. Furthermore, these
algorithms could find any bound-optimal Pareto front of

the problem, which is not always the best. In light of what
we’ve seen so far, our approach based on the decomposition-
coordination technique, looks to be a very efficient way
to solve this type of problem, since the resolution at the
lower level entails sub-problems involving a limited number
of variables, which is much easier than processing an
overall non-linear problem. Moreover, because the sub-
problems are separable, they may be handled in parallel
simultaneously, making the DC approach easily extensible
to analog neural networks. To guarantee safe navigation,
the GCU monitors the environment and provides the
required directives, allowing the UAV to calculate safe sub-
trajectories until it arrives at its target. The strength of this
approach lies on the overall planning of trajectory, giving
the UAV enough freedom to avoid eventual collisions. Our
future work will focus on implementing the DC method on a
neural network, which will be supported by an experimental
study of navigation in a real environment.
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l’Enseignement Technique Mohammedia/Morocco at University of
Hassan II Casablanca. He is currently preparing a thesis titled coop-
erative distributed control for multi-agent systems, event of a fleet
of Drones or Robots moving in an open and cluttered environment.
His current research interests include multi-agent systems and neural
network NECMOP implementation.

Zineb Hidila received a Ms degree in engineering and optimization
of transport and logistics systems in faculty of sciences - Hassan
II University-Casablanca Morocco in 2015. Currently pursuing a
Ph.D. program concerning airspace optimization and geometrical
computation. the current research interests are metaheuristics, neural
networks implementations, and geographical information systems.

Mohamed Barki received an Engineering degree in computer science
from the Ecole Nationale de l’Industrie Minérale (ENIM) Rabat
Morocco, in 1999. he is currently preparing a thesis in the field of
artificial intelligence.

El Hossein Illoussamen received his Ph.D. from the University
Mohamed V of Rabat, in 1996. He is currently a full Professor in the
department of mathematics and informatics at ENSET Mohammedia,
University Hassan II of Casablanca. His research interests include
various domains of functional analysis, particularly in automatic
continuity problems of operators. Since 2012, he is the head of the
functional analysis and optimization team within the laboratory of
signals, distributed systems, and artificial intelligence.

Page 15 of 16    50J Intell Robot Syst (2021) 103: 50

https://doi.org/10.1016/j.sysarc.2014.01.004
https://doi.org/10.1016/j.cja.2020.06.006
https://doi.org/10.3390/app9214552
https://doi.org/10.1007/s10846-018-0924-3
https://doi.org/10.1016/j.cogsys.2020.05.003
https://doi.org/10.1016/j.cogsys.2020.05.003
https://doi.org/10.3390/rs12203386
https://doi.org/10.3390/rs12203386
https://doi.org/10.1109/TNNLS.2015.2388511
https://doi.org/10.1109/TNNLS.2015.2388511
https://doi.org/10.1007/s12555-019-0853-3
https://doi.org/10.1007/s12555-019-0853-3
https://doi.org/10.1109/TIE.2016.2552151
https://doi.org/10.12988/ams.2016.510653


MohammedMestari received the M.A. degree from the cole Normale
Supérieure de l’Enseignement Technique (ENSET), Mohammedia,
Morocco, in 1991, and the Ph.D. degrees in applied mathematics and
artificial intelligence from the Faculty of Science Ben M’Sick, Hassan
II University, Casablanca, Morocco, in 1997 and 2000, respectively.
He is currently a Professor of artificial intelligence at ENSET, and
the Head of the Artificial Intelligence Research Team with the
Laboratory of Signals, Distributed Systems, and Artificial Intelligence.
He is Co-founder of the International Neural Network Society
Morocco Chapter (INNS Morocco Chapter), Co-founder of the IEEE
Computational Intelligence Morocco Chapter, and Member of the
IEEE Transactions on Neural Network and Learning Systems (IEEE
TNNLS). His current research interests include neural networks for
image classification, data-driven approach, neural networks hardware
implementation, high-speed and/or low-power techniques and systems
for neural networks, and theoretical issues directly related to hardware
implementation of techniques based on the principle of decomposition
coordination for optimal control and trajectory planning for Unmanned
Aerial Vehicles (UAVs) and mobile robots.

Affiliations

Imane Nizar1 · Adil Jaafar1 · Zineb Hidila1 · Mohamed Barki1 · El Hossein Illoussamen1 · Mohammed Mestari1

Adil Jaafar
jaafar.adil@gmail.com

Zineb Hidila
zineb.hidila@gmail.com

Mohamed Barki
mohamedbarki7@gmail.com

El Hossein Illoussamen
illous@hotmail.com

Mohammed Mestari
mestari@enset-media.ac.ma
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