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Abstract
This article concerns tracking of floating objects using fixed-wing UAVs with a monocular thermal camera. Target tracking
from an agile aerial vehicle is challenging because uncertainty in the UAV pose negatively affects the accuracy of the
measurements obtained through thermal images. Consequently, the accuracy of the tracking estimates is degraded if
navigation uncertainty is neglected. This is especially relevant for the estimated target covariance since inconsistency is a
likely consequence. A tracking system based on the Schmidt-Kalman filter is proposed to mitigate navigation uncertainty.
Images gathered with an uncertain UAV pose are weighted less than images captured with a reliable pose. The UAV pose
is estimated independently in a multiplicative extended Kalman filter where the estimated covariance matrix is a measure
of the uncertainty. The method is compared experimentally with two traditional alternatives based on the extended Kalman
filter. The results show that the proposed method performs better with respect to consistency and accuracy.

Keywords Unmanned aerial vehicle · Thermal vision · Target tracking · Navigation

1 Introduction

Target tracking is key in mapping and surveillance of the sea
surface, and in collision avoidance for autonomous vehicles.
It is also important for floating debris detection in seismic
operations at sea, and for search and rescue operations. A
common requirement is the need for a robust system that
can estimate the target states precisely and deliver consistent
covariance information.

Tracking systems use a single or several tracking sensors
to observe targets. These observations are fused with prior
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information about how objects are expected to behave.
The fusion typically involves filtering using variations of
the Kalman filter where a prior target model is combined
with a measurement model to estimate the posterior target
states. The measurement model depends on the sensor,
but a recurrent requirement is the need for accurate
pose information (sensor position and orientation). This is
particularly challenging when the sensor is mounted on an
agile platform, such as fixed-wing unmanned aerial vehicles
(UAVs) [12, 14].

This research investigates tracking of objects on the sea
surface using a fixed-wing UAV equipped with a monocular
thermal camera. The architecture presented in this work is
also applicable for visual spectrum cameras. The sensor
choice depends on the target characteristics. Much research
have been conducted on target tracking using optical sensors
where the pose of the sensor is stationary, assumed perfectly
known or can be estimated with high precision [1, 15, 23].
However, tracking of objects in an Earth-fixed coordinate
frame using an airborne thermal camera with navigation
uncertainty is a different challenge. The camera pose
depends on the position and attitude of the UAV. Therefore,
errors in the navigation system of the UAV negatively affect
the tracking accuracy and can cause a significant loss in
performance. This is especially troublesome in multi target
tracking because accurate covariance estimation is needed
for measurement association.
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Target tracking using UAVs equipped with optical
sensors has been studied previously [12, 13, 16, 17,
22, 30]. It is desirable to obtain high accuracy while
maintaining filter consistency. Reduced tracking accuracy
is not necessarily critical, but only if the covariance
estimates represent the true uncertainty. In practice, this
means that the tracking system should automatically adapt
to the uncertainty of the UAV navigation estimates. This
is closely related to the idea in simultaneous localization
and mapping (SLAM) [20, 26, 28]. However, SLAM is not
preferred in this research because the navigation states can
be estimated precisely with inertial sensors and a global
navigation satellite system (GNSS). Moreover, erroneous
measurement association is a challenge in visual SLAM and
can potentially cause divergence in the estimated UAV pose.
Consequently, observations requiring data association are
a threat to the airworthiness and are not preferred in the
navigation system.

Target tracking in the presence of navigation uncertainty
has been studied for autonomous ships [6, 31, 32]. However,
these articles have focused on a subset of the navigation
space and used a radar as the tracking sensor. Moreover,
experimental results are not presented. Fixed-wing UAVs
have much faster dynamics than water surface vessels
and can change attitude quickly. Moreover, studying the
effects of navigation uncertainty in all degrees of freedom
for a UAV is to the authors best knowledge not studied
previously.

This article proposes a tracking system based on the
Schmidt-Kalman filter [32]. A multiplicative extended
Kalman filter (MEKF) [19, 27] is used as UAV navigation
system. Objects are detected automatically in thermal
images using image-processing techniques [15]. The pixel
position of detected objects is used as measurements in
the tracking system where the uncertainty of the navigation
estimates is incorporated. Several flight experiments have
been carried out at sea to collect experimental data, and
the results illustrate the benefit of incorporating navigation
uncertainty in the tracking system. The Schmidt-Kalman
filter is a variation of the extended Kalman filter and used as
a proof of concept in this paper. Other filtering techniques
such as the unscented Kalman filter could also benefit from
the same inclusion of navigation uncertainty during tracking
from an agile platform.

The rest of this article is organized as follows.
Section 2 describes the navigation system and relevant
coordinate frames. Section 3 describes tracking in the
presence of navigation uncertainty and how the effect of
navigation uncertainty is mitigated. Section 4 presents target
motion and measurement models. Experimental results are
described in Section 5 before the work is concluded in
Section 6.

2 UAV Navigation using theMultiplicative
Extended Kalman Filter

A navigation system estimates the position, velocity and
attitude of a vehicle. Additional states such as acceleration,
angular velocity and inertial sensor bias [8] can also be
included. This section looks into UAV navigation since
navigation uncertainty is incorporated in the tracking system
in Section 3.

2.1 Preliminaries

The relevant coordinate frames are:

– The north-east-down (NED) coordinate frame [9],
assumed to be inertial locally and denoted {n}.

– The body-fixed frame of the UAV [5], which is fixed to
the UAV and denoted {b}.

– A camera-fixed coordinate system {c}. The rotation
matrix between {c} and {b} is known and constant.

– The image plane, which is a two-dimensional coordi-
nate frame. The horizontal component is denoted u and
the vertical component v. Pixels in the image plane
are transformed to {c} through a camera model (see
Section 4).

The vector pn
nb represents the position of {b} relative to

{n} decomposed in {n}, and is the NED positions of the
UAV. The target operates on the sea surface and the position
is described through NED coordinates pn

nt . The coordinate
systems are illustrated in Fig. 1.

The UAV states that are estimated in the navigation
system are:

– The UAV position in NED (pn
nb)

– The UAV velocity in NED (vn
nb)

– The UAV attitude (rotation between NED and body)
parameterized by the unit quaternion (qn

b)

Fig. 1 Illustration of coordinate frames
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– Accelerometer bias decomposed in body (bb
acc)

– Angular rate bias decomposed in body (bb
ars)

The attitude qn
b is parameterized by the unit quaternion

(Hamiltonian representation) and is a global and singularity-
free representation of attitude [27]. The relationship
between the quaternion and the corresponding rotation
matrix is

R(q) =
(
q2
w − q�

v qv

)
I + 2qvq�

v + 2qwS(qv) (1)

where qw is the real part of the quaternion, qv is the vector
part of the quaternion, I is the identity matrix and S(·)
is the skew-symmetric matrix representing a cross-product
[9]. The rotation matrix must be reconstructed from the
unit quaternion when target detections are integrated in the
tracking system in Section 4. The quaternion product, used
for composition of rotations and in the kinematic equations
in Section 2.4, is defined as [27]

q1 ⊗ q2 =
[

q1,wq2,w − q�
1,vq2,v

q1,wq2,v + q2,wq1,v + S(q1,v)q2,v

]
(2)

where q1 and q2 are unit quaternions. In the inertial nav-
igation problem (Section 2.5), the true attitude q can be
expressed as q = q̂ ⊗ δq where δq is the attitude error
and q̂ is the nominal estimated attitude. The attitude error
is parameterized using the four times Modified Rodrigues
parameters (MRP) δa [19]:

δa = 4δamrp = 4
δqv

1 + δqw

(3)

The modified Rodriguez parameters represents the
attitude error with the minimal number of parameters and
is used to avoid potential singularities in the covariance
matrix. Euler angles is also a feasible parameterization for
the attitude error since the singularity at a pitch of 90
degrees [5] is an unlikely issue for fixed-wing UAVs.

The UAV position is also a combination of a nominal
state estimate p̂ and an error state δp. The true position
is p = p̂ + δp where the reference frame is neglected
for simplicity. The relationship between the true states,
nominal states and error states is also a sum for the velocity,
accelerometer bias and angular rate bias.

2.2 Navigation Sensors

It is assumed that the UAV is equipped with the following
sensors for navigation:

– An inertial measurement unit (IMU), providing mea-
surements of the acceleration (specific force) and angu-
lar rate at high frequency.

– Two GNSS receivers with two antennas providing
independent position measurements. One antenna is

mounted in the front of the fuselage and one in the back
of the fuselage.

The augmented real-time kinematic (RTK) GNSS service
is used to obtain position measurements at centimeter level
for both receivers using corrections from a local base station
[10]. RTK functionality may not be required, but increases
the estimation accuracy, particularly when the baseline
between the antennas is small as on small UAVs. Using
two receivers is beneficial since heading can be estimated
based on GNSS position measurements [10]. Thus, it is not
necessary to measure heading with other sensors such as
a magnetic compass, which has significant weaknesses on-
board small vehicles [10]. Heading estimation using a single
GNSS receiver is challenging since non-zero angular and
linear velocities are needed for observability.

2.3 Sensor Models

IMUs measure specific force (fbimu), and angular rate (ω
b
imu).

The sensor models follow the definitions in [9]:

fbimu = Rb
n

(
qb

n

) (
v̇n
nb − gn

) + bb
acc + wb

acc

ωb
imu = ωb

nb + bb
ars + wb

ars

(4)

where bb
acc and bb

ars are biases on the accelerometers and
angular rate sensors, respectively. wb

acc and wb
ars are zero-

mean noise terms. The position measurements obtained with
GNSS are modeled as:

pn
gnss = pn

nb + R
(
qn

b

)
rb
bi + wn

gnss (5)

where wn
gnss is a zero-mean noise term and rb

bi is the lever
arm between the origin of {b} and the position of antenna i.

2.4 Kinematics

The navigation system is defined by the geometrical rela-
tionship between the states (kinematics). The kinematic
equations are based on the strapdown equations [27]:

ṗn
nb = vn

nb

v̇n
nb = Rn

b

(
qn

b

)
fbnb + gn

q̇n
b = 1

2
qn

b ⊗
[

0
ωb

nb

]
= 1

2
Ω(ωb

nb)q
n
b

(6)

where fbnb is the specific force acting on the UAV and gn =
[0, 0, g]� is the gravity vector in NED [10]. Moreover, the
angular velocity of {b} relative to {n} is ωb

nb. Ω(ωb
nb) is a

4x4 matrix used to replace the quaternion product in Eq. 6:

Ω(ωb
nb) =

[
0 −(ωb

nb)
�

ωb
nb −S(ωb

nb)

]
(7)
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2.5 Error-State Navigation System

The error-state formulation of the Kalman filter is used
as navigation system in this research. The fundamental
idea of the error-state formulation is to use the IMU to
estimate high-frequency nominal state estimates and use
low-frequency aiding measurements (GNSS) to estimate the
error states. The error-state Kalman filter is described in
detail in [27]. The nominal state vector is

x̂ =
[
p̂n

nb, v̂n
nb, q̂n

b, b̂b
acc, b̂b

ars

]�
(8)

and includes the position, velocity, and attitude of the
UAV. Moreover, the IMU biases are also estimated. The
error-state vector is

δx = [
δpn

nb, δvn
nb, δa, δbb

acc, δbb
ars

]�
(9)

where each element in the nominal state vector x̂ has
a corresponding error state. Note that δa is the attitude
error represented by the four times modified Rodrigues
parameters as described in Section 2.1. The true state x is
expressed as x = x̂ ⊗ δx where ⊗ is a generic composition
used to describe the relationship between the true, nominal
and error states. The nominal states are estimated through
Eqs. (6) and (4):

˙̂pn
nb = v̂n

nb

˙̂vn
nb = Rn

b(q̂
n
b)

(
fbimu − b̂b

acc

)
+ gn

˙̂qn
b = 1

2
Ω

(
ωb
imu − b̂b

ars

)
q̂n

b

˙̂bb
acc = −T−1

accb̂
b
acc

˙̂bb
ars = −T−1

ars b̂
b
ars

(10)

Tacc and Tars are diagonal time constant matrices used to
model the biases.

The error states are estimated using two GNSS position
measurements. The Jacobian of Eq. 5 with respect to the
error states is

H =
[
I3 03×3 −R(q̂n

b)S(rb,1) 03×6

I3 03×3 −R(q̂n
b)S(rb,2) 03×6

]
(11)

where 0m×n is a matrix of zeros with m rows and n columns
and I3 is the identity matrix of dimension 3. The Jacobian is
used to update the error states before the error is propagated
back into the nominal estimates through the reset operation
described in [27].

3 Target Tracking using the Schmidt-Kalman
Filter

This section describes target tracking using the Schmidt-
Kalman filter (SKF). The goal is to mitigate the effects

of uncertainty in the sensor pose. The main issue when
neglecting navigation uncertainty is inconsistency in the
tracking filter. This is normally observed as the filter being
optimistic and estimating a covariance that is much lower
than the corresponding mean square estimation error. It
is possible to counteract this behavior by increasing the
covariance matrices for the noise, but this is an ad-hoc
technique that disguises the underlying problem. Moreover,
the filter parameters must be tuned towards a particular
scenario or set of data. Therefore, it is hard to generalize
this strategy to fit new and unknown data. The SKF is
a variation of the extended Kalman filter (EKF) where
navigation uncertainty is incorporated as states in the filter
and where correlations between the navigation system and
tracking estimates is maintained. Other tracking filters
such as the unscented Kalman filter or the particle filter
are viable alternatives to the EKF, particularly when the
measurement model is highly nonlinear. Nevertheless, the
motivation in this paper is to investigate how navigation
uncertainty can be included in a filtering approach and the
EKF is used as a proof of concept. The methodology can
be generalized to fit into other filter structures such as the
unscented Kalman filter.

3.1 Introduction to the Schmidt-Kalman Filter

The sensor pose is normally assumed perfectly known. This
is reasonable in some applications (e.g., when only the
relative position is of interest), but limits the performance
of the tracking system in applications where the sensor pose
is somewhat uncertain. This is particularly relevant when
targets are tracked in an Earth-fixed coordinate frame from
an agile fixed-wing UAV.

Simultaneous localization and mapping [7] handles
mapping in the presence of navigation uncertainty. A
common assumption is that landmarks are static. Thus, the
conventional SLAM architecture cannot cover a situation
with moving targets. SLAM can be extended to consider
moving landmarks as suggested in [29]. However, the
fundamental idea in SLAM is that target (landmark)
observations can influence the UAV pose. Consequently,
erroneous data association, inaccurate measurements and
the unknown target behavior degrade the accuracy of the
UAV pose when using SLAM but might be necessary in
certain situations such as in GNSS-denied applications.
However, this is not desired in this research because
measurements from optical sensors can be inaccurate.
Moreover, the sparse set of distinct features on the sea
surface makes SLAM architectures less viable for UAV
operations at sea.

A more attractive option is to use a framework where the
navigation system of the UAV operates independently, but
where the uncertainty of the navigation estimates is allowed
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to influence the tracking system. This can be achieved with
the SKF [8, 21, 25, 32], where information can flow from
the navigation system to the tracking system. The SKF is
a sub-optimal approach, but more robust when considering
model mismatch and erroneous data association.

3.2 Tracking SystemModel

Let xt
k denote the target state vector at time k. A common

way to estimate the target states is to use an EKF. The
conventional EKF does not account for uncertainty in
parameters affecting the motion and measurement models.
Instead, all uncertainty is modeled as additive white noise.
This is not a reliable way to model the uncertainty when
navigation errors are present.

Consider a situation where the camera pose is defined
as xo = x̂o ⊗ δxo where x̂o represents a nominal known
estimate and δxo is the error state (follows the notation
of the error-state Kalman filter). Moreover, assume that
the uncertainty of the error state is known through an
estimated covariance matrix Po. The motivation behind this
formulation is to augment the tracking system with δxo and
let Po influence the target estimates. Only the error states
that directly affect the tracking system are included. The
augmented state transition model is written as

[
xt
k

δxo
k

]
=

[
Ft 0
0 Fo

] [
xt
k−1

δxo
k−1

]
+

[
vt
k

vo
k

]
(12)

where Ft is the target model, and Fo is the navigation error
model (camera pose). vt

k and v
o
k are additive white noise for

the target and navigation error states, respectively. The state
transition models of the error state and target are uncoupled
because the target behavior should not affect the trajectory
of the UAV and vice versa. The covariance matrix of the
augmented system is

P =
[
Pt C
C� Po

]
(13)

where Pt is the target covariance and C is the cross-
covariance.

Assume that the augmented tracking system has a
measurement model that depends on both the target states
and navigation states of the UAV:

z = h(xt , x̂o, δxo) + w (14)

where z is the measurement vector and w is additive
zero-mean white Gaussian noise. The nominal navigation
estimate x̂o is known from the navigation system. When the
measurement model is nonlinear, the Jacobian of Eq. 14 is
used in the EKF. The idea in the SKF is to calculate the
Jacobian with respect to both the target states xt and the

error states δxo. Consequently, the linearized measurement
model is

zk = h
(
x̂t
k, x̂

o
k,

ˆδxo
k

)
+ [

Ht
k Ho

k

] [
xt
k − x̂t

k

δxo
k − ˆδxo

k

]

+wk + Δ (15)

where (x̂t
k, x̂

o
k,

ˆδxo
k) is the linearization point and Δ repre-

sents higher order terms that are neglected in the first-order
filter. Ht and Ho are measurement Jacobians differentiated
with respect to the target states and the navigation error
states, respectively.

3.3 Update Equations for the Schmidt-Kalman Filter

The SKF state transition equations are based on the aug-
mented system in Eqs. 12-13, and the Kalman filter equa-
tions. The a priori update is

xt
k|k−1 = Ftxt

k−1|k−1

δxo
k|k−1 = Foδxo

k−1|k−1

Pt
k|k−1 = FtPt

k−1|k−1(F
t )� + Qt

Ck|k−1 = FtCk−1|k−1
(
Fo

)�

(16)

where Qt is the covariance matrix of the process noise in
the target model. The covariance of the navigation error
state, Po, is extracted from the navigation system at each
time step. The Kalman gain is divided into two components,
one that affects the target states and one that affects the
navigation error:

Kk =
[
Kt

k

Ko
k

]
= Pk|k−1

[ (
Ht

k

)�
(
Ho

k

)�

]
S−1

k (17)

where the innovation covariance is defined as

Sk = [
Ht

k Ho
k

]
Pk|k−1

[ (
Ht

k

)�
(
Ho

k

)�

]
+ Rk

= [
Ht

k Ho
k

] [
Pt

k|k−1 Ck|k−1

C�
k|k−1 Po

k|k−1

][ (
Ht

k

)�
(
Ho

k

)�

]
+ Rk (18)

= Ht
kP

t
k|k−1

(
Ht

k

)� + Ht
kCk|k−1

(
Ho

k

)�

+Ho
kC

�
k|k−1

(
Ht

k

)� + Ho
kP

o
k|k−1

(
Ho

k

)� + Rk

and Rk is the covariance of the measurement noise. The
SKF formulation appears by choosing a suboptimal gain
where Ko

k is forced to be zero so that the error state, δxo
k|k ,

is constant over the measurement update. The target gain is

Kt
k =

(
Pt

k|k−1

(
Ht

k

)� + Ck|k−1
(
Ho

k

)�)
S−1

k (19)

and the a posteriori state estimates are given as

xt
k|k = xt

k|k−1 + Kt
k

(
zk − Ht

kx
t
k|k−1

)

δxo
k|k = δxo

k|k−1

(20)

Page 5 of 16    80J Intell Robot Syst (2021) 102: 80



The a posteriori estimates of the covariance and the cross-
covariance differ from the regular EKF equations because
a suboptimal gain is chosen. Therefore, it is not possible to
use the simplified formula for the a posteriori estimate. The
Joseph form [3], which is valid for any gain, is used instead:

Pk|k =
(
I −

[
Kt

k

0

] [
Ht

k Ho
k

]) [
Pt

k|k−1 Ck|k−1

C�
k|k−1 Po

k|k−1

]

(
I −

[
Kt

k

0

] [
Ht

k Ho
k

])�
+

[
Kt

kRk

(
Kt

k

)� 0
0 0

] (21)

Moreover, the following a posteriori estimates for the
target covariance and the cross-covariance are acquired

Pt
k|k = (

I − Kt
kH

t
k

)
Pt

k|k−1

(
I − Kt

kH
t
k

)�

−Ck|k−1
(
Ho

k

)� (
Kt

k

)� + Kt
kH

t
kCk|k−1

(
Ho

k

)� (
Kt

k

)�

−Kt
kH

o
kC

�
k|k−1 + Kt

kH
o
kC

�
k|k−1

(
Ht

k

)� (
Kt

k

)�

+Kt
kH

o
kP

o
k|k−1

(
Ho

k

)� (
Kt

k

)� + Kt
kRk

(
Kt

k

)�

Ck|k = Ck|k−1 − Kt
k

(
Ht

kCk|k−1 + Ho
kP

o
k|k−1

)
(22)

This concludes the main structure of the SKF. The key
step is to use the suboptimal gain. The tracking system must
maintain the target estimates and corresponding covariance
in addition to the cross covariance. The navigation system
maintains the covariance of the error state and the nominal
state estimates. It is not influenced by the tracking system.

3.4 Navigation Error Models

When a monocular camera is used to track objects, only the
position and the attitude of the camera influence the tracking
system. Consequently, the error state δxo in the augmented
system includes the position and attitude of the UAV:

δxo =
[

δpo

δao

]
(23)

δpo is the error state in position. δao is the error state
in attitude and represented by the four times modified
Rodriguez parameters (see Section 2). Fo, in Eq. 16,
is chosen as the identity matrix since the navigation
error is estimated outside of the tracking system. This
is a fundamental difference from SLAM where the error
states are estimated within the same filter as the tracking
estimates. The next part discusses how the equations in
Section 3.3 are affected by the properties of the error states.

3.4.1 Zero-Mean and Uncorrelated Navigation State Errors

Assume that the navigation system is consistent without a
bias. This gives uncertainty in the UAV pose that is zero

mean and uncorrelated. Consequently, the measurement
noise induced in the tracking filter is white. Moreover,
the cross-correlation between the target estimates and the
navigation error, in Eq. 13, is zero (C = 0). Therefore,
the SKF equations can be simplified and the only effect
on the tracking system is a so-called covariance inflation
(also called consider covariance), where the innovation
covariance is reduced to

Sk = Rk + Ht
kP

t
k|k−1

(
Ht

k

)� + Ho
kP

o
k|k−1

(
Ho

k

)� (24)

and the a posteriori target covariance estimate is

Pt
k|k = (

I − Kt
kH

t
k

)
Pt

k|k−1

(
I − Kt

kH
t
k

)�

+Kt
kH

o
kP

o
k|k−1

(
Ho

k

)� (
Kt

k

)� + Kt
kRk

(
Kt

k

)� (25)

The second term represents the covariance inflation. This
is a viable strategy to mitigate the effect of navigation
uncertainty, but one that neglects the cross-covariance.
This strategy is called detuned EKF in the experimental
validation in Section 5.

3.4.2 Constant Navigation State Bias

A second and more likely situation in experimental data is
navigation errors that introduce a constant bias in the target
observations. This can be caused by an unknown mount-
ing misalignment between the IMU and the camera. It can
also be caused by a constant bias that is estimated poorly in
the navigation system. Moreover, experimental data are not
necessarily obeying known models so it is likely that esti-
mation errors are correlated in time [12]. Consequently, a
nonzero cross-covariance between the target estimates and
the navigation errors appears. This mindset gives the equa-
tions in Section 3.3 where Fo is the identity matrix. This
formulation is called SKF in the experimental validation in
Section 5.

3.4.3 Other Navigation State Error Models

Error states that behave like slowly varying biases can
be covered by the previous case, but higher-order models
cannot. If it is assumed that the navigation system is
initialized properly and has been running for a few minutes
before the tracking objective starts, it is likely that sensor
biases and other disturbances (in the navigation filter) have
converged. Therefore, it is not considered to be beneficial
to model the navigation error with higher-order models
in this research. Higher-order models are more relevant
in dead reckoning situations caused by GNSS dropout for
example. In such a situation, SLAM architectures must be
considered.
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4 Camera-Based Tracking of Floating Objects

The general idea of tracking in the presence of navigation
uncertainty was derived in Section 3. This section defines
specific models for tracking of floating objects using
monocular optical sensors.

4.1 Target State-TransitionModel

Floating objects typically have slow variations in speed
and course except for wave-induced motions that are not
considered. The target dynamics can be covered by a state
vector, xt = [pn

nt , v
n
nt ]�, where the north and east positions

(pn
nt ) and velocities (vn

nt ), are included. It is common to
choose the following uncoupled (near) constant-velocity
target state transition model:

xt
k = Ftxt

k−1 + Γ vk

F =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Γ =

⎡
⎢⎢⎣

1
2T

2 0
0 1

2T
2

T 0
0 T

⎤
⎥⎥⎦

(26)

where the subscript k refers to time step k, T is the sampling
interval, and the covariance of the process noise is

Q = E[Γ vkvkΓ
�]

= Γ σ 2
v Γ �

= σ 2
v

⎡
⎢⎢⎣

1
4T

4 0 1
2T

3 0
0 1

4T
4 0 1

2T
3

1
2T

3 0 T 2 0
0 1

2T
3 0 T 2

⎤
⎥⎥⎦

(27)

where σ 2
v I is the covariance of v, assumed to be equal in

north and east. The constant velocity model is defined in
discrete time and assumes that the motions in the north
and east coordinates are uncoupled. The down coordinate is
neglected in the target vector since targets remain on the sea
surface at approximately the same altitude. More complex
target state transition models are presented in [24]. Without
prior knowledge about the target behavior, a simple model
with a small amount of parameters is often the most reliable
choice [14].

4.2 Measurement Model

Monocular cameras only provide bearing information.
However, the altitude of the targets is known for objects on
the sea surface. Target observations are acquired through
object detection in thermal images [15, 17]. The target
detection algorithm returns the centroid of the target in

the image plane. The target pixel position is related to the
camera frame through the pinhole camera model [11]:
[

z1
z2

]
=

[
ut

vt

]
+ wcam (28)

where z1 and z2 are measurements, (ut , vt ) are the pixel
coordinates of the detected target center and wcam is
Gaussian zero-mean measurement noise. The pixel position
of the target can be related to the target position in the
camera-fixed frame through the pinhole camera model:
[

ut

vt

]
= f

zc
t

[
xc
t

yc
t

]
(29)

where f is the focal length of the camera lens and (xc
t , y

c
t ,

zc
t ) = pc

ct are the target coordinates in the camera-fixed
coordinate frame. The camera-fixed position of a target
is related to the camera pose and target position in NED
through the following equation:

pc
ct = Rc

n

(
pn

nt − pn
nb − pn

bc

) = Rc
n

(
pn

nt − pn
nb

)
(30)

where Rc
n is the rotation matrix between {c} and {n} and

depends on the camera orientation. pn
bc is the lever arm

between the origin of {b} and the origin of {c}. These frames
are assumed to coincide so pn

bc = 0. Equation 30 can also
be expressed with the navigation error states:

pc
ct = Rc

bR
b

b̂
Rb̂

n

(
pn

nt − p̂n
nb − δpn

nb

)
(31)

where Rc
b is a known and constant rotation matrix between

the camera-fixed frame and the body-fixed frame. Rb

b̂
is

a rotation matrix given by the error state of the attitude,

and Rb̂
n is the (nominal) estimated rotation matrix between

the body frame and NED in the navigation system. p̂n
nb is

the nominal NED positions of the UAV estimated by the
navigation system, and δpn

nb is the error state in the UAV
position.Rb

b̂
represents the difference between the estimated

body frame and the true body frame.
To simplify the Jacobian calculation in the SKF, it is

beneficial to rewrite (31) as:

pc
ct = Rc

bR
b

b̂
Rb̂

n

(
pn

nt − p̂n
nb − δpn

nb

)

= Rc
b (I + S(δa))�︸ ︷︷ ︸

Rb

b̂

(
Rn

b̂

)� (
pn

nt − p̂n
nb − δpn

nb

)

= Rc
b

(
Rn

b̂

)� (
pn

nt − p̂n
nb − δpn

nb

)

− Rc
bS(δa)

(
Rn

b̂

)� (
pn

nt − p̂n
nb − δpn

nb

)

= Rc
b

(
Rn

b̂

)�
(pn

nt − p̂n
nb − δpn

nb)

+ Rc
bS

((
Rn

b̂

)� (
pn

nt − p̂n
nb − δpn

nb

))
δa

(32)
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where the final two expressions are equal. The last expres-
sion is beneficial when differentiating the measurement
model with respect to δa, and the first expression is ben-
eficial when differentiating with respect to δpn

nb. Note that
Eq. 32 needs to be inserted in Eq. 29 before the Jaco-
bian is calculated. Finding the Jacobian theoretically is
challenging, but is achievable with a computer program.
Nevertheless, for real-time calculation, it is typically more
efficient to find the Jacobian numerically.

In the SKF, the Jacobian is calculated with respect to the
target position (pn

nt ), the target velocity (vn
nt ) and the UAV

error states (δpn
nb, δa). Hence, the Jacobian has two rows

and ten columns where column three and four only have
zeros because the measurement model does not depend on
target velocity.

5 Field Experiments

The methods presented in Sections 2, 3 and 4 are evaluated
using experimental data from several field tests. This section
describes the UAV platform used to collect data, how the
methods are evaluated, and several case studies presenting
experimental results.

5.1 Experimental UAV Platform

A fixed-wing UAV with electrical propulsion (displayed in
Fig. 2) was equipped with the following list of sensors for
collecting relevant data:

– FLIR Tau2 thermal camera with a resolution of
640x512 pixels, focal length of 19mm and frame rate
of 7.5Hz. It is a longwave infrared camera sensitive to
wavelengths from 7.5μm to 13.5μm.

– A ThermalGrabber used to extract the digital image
from the Tau2 thermal camera.

– Pixhawk autopilot running Arduplane software.
– SenTiBoard to synchronize the camera and navigation

data [2].
– Odroid-XU4 as on-board computer for storing data.
– Analog Devices ADIS 16490 IMU measuring specific

force and angular rate at 250Hz
– Dual-antenna RTK-GNSS based on uBlox NEO-M8T

receivers measuring position at 5Hz.

Three independent field tests were carried out where the
goal was to gather data for tracking of the vessel displayed
in Fig. 3. Parts of the data from these tests are used in three
independent case studies presented in Sections 5.3 to 5.5.
The field experiments were carried out on the same day at
Raudstein in Norway. The weather was windy and sunny
during all flights. The flight paths were predefined without
customizing the path based on the weather conditions or

Fig. 2 The NTNU Cruiser-Mini fixed-wing UAV with cruise speed of
approximately 20m/s

the target behavior. Therefore, the data reflect a surveillance
operation at sea without prior information about targets
being present.

5.2 Experimental Evaluation

The purpose of the case studies is to evaluate the methods
presented in this work. Sensor data from IMU and GNSS
were used to estimate the pose of the UAV as described in
Section 2. Navigation results are not presented in this article
but have been compared and validated with navigation data
from the autopilot. Target detection [15, 17] was used to
detect the target in thermal images using image processing.
Target detections were included as measurements in the
tracking system (Section 4) together with the camera pose.
The entire pipeline is illustrated in Fig. 4. The green boxes

Fig. 3 The boat used as target in the experiments
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Fig. 4 Illustration of subsystems and signal flow. Green boxes are
covered in this research

illustrate the parts of the system that are covered in this
article. Object detection is covered in [17]. Figure 5 shows
a typical normalized thermal image of the target. The dark
background shows the sea surface, and the bright spot is
the target vessel. Figure 6 shows another raw normalized
thermal image with both the sea surface and the shore.

The thermal images used in the forthcoming case stud-
ies only included one target in each image. Consequently,
measurement association is not of importance for the case
studies, and the filtering part of target tracking is key.
The methodology can be extended to include multiple tar-
gets by using the Nearest Neighbor Standard Filter [4] for
data association due to the strong signal-to-noise ratio in
the images. Moreover, false positives are rare [17]. For
increased robustness, the SKF combined with the Proba-
bilistic Data Association Filter [4] is a viable strategy.

The methods have been analyzed in post processing,
but real-time processing is also feasible on the on-board
computer. The object detection algorithm has been executed
in real-time previously [17]. Moreover, the execution time

Fig. 5 Normalized raw thermal image with target (bright spot) and sea
surface (background)

Fig. 6 Normalized raw thermal image with the sea surface (lower half)
and the shore (upper half)

of the SKF is comparable with the extended Kalman filter
(EKF). The only increase in processing time (compared to
the EKF) is the calculation of the cross covariance, and
the inclusion of the cross-covariance in the gain and target
covariance update. In addition, the Jacobian is extended
with additional elements, but is not producing a significant
increase in execution time.

The SKF is compared with two alternative tracking filters
in the forthcoming case studies. The first alternative is
an EKF where navigation uncertainty is neglected. The
Jacobian of Eq. 32 is only calculated with respect to the
target states and not the navigation states. The second
alternative is an EKF where navigation uncertainty is used
to inflate the covariance of the target. This solution is based
on Eqs. 24 and 25 where the Jacobian is calculated both
with respect to the target and navigation states as specified
in Eq. 15. It is denoted detuned EKF where detuned refers
to the covariance inflation in Eq. 24. The main difference
between the SKF and detuned EKF is the cross-covariance,
which is maintained in the SKF. All filters have been
initialized by using direct georeferencing [12] to find the
north and east positions of the first available detection.
The true states of the target were measured with a single-
frequency GNSS receiver using standard GNSS service and
used as reference. RTK corrections were not available for
the target reference so the horizontal positioning accuracy is
expected to be 2m.

5.3 Case Study 1 - Tracking of High-Speed Vessel

The objective in the first case study is to detect and track
a high-speed target. This case study is based on data from
a field test where more than 8000 thermal images were
captured in total together with navigation data from the
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same period. The target was visible and have been detected
successfully in 264 images within a chosen tracking period
of three minutes. A subset of 1350 images were captured in
the tracking period. The target was outside the field of view
of the camera in the periods without detections. The UAV
moved past the target and had to turn to observe the target
again as shown in Fig. 7. Consequently, major parts of the
estimates are solely based on prediction.

The covariance of the measurement noise in Eq. 28
was chosen as (30 pixels)2 along both image frame axes.
These values were chosen quite large to also fit the data
in case studies 2 and 3. The measurement noise covariance
could have been reduced significantly here, but a generic
tuning was desired to prove that the system works in
several scenarios, and for a fair comparison between the
SKF and the alternatives. Therefore, it was not specially
optimized for any of the case studies. All filters used
the state transition model from Section 4.1 with σv from
Eq. 27 equal to (0.05m/s2)2. The initial covariance in the
north and east positions was chosen as (10m)2 and the
corresponding velocities with covariance (10m/s)2. The
initial covariance in velocity is not very far from the values

proposed in [18]
(

v2max
3

)
for initialization based on a single

position measurement. The true paths of the UAV and the
target are displayed in Fig. 7. The UAV operated at an
altitude of 350m.

An interesting factor in the SKF and detuned EKF is the
estimated covariance in the navigation states of the UAV.
The mean estimated standard deviations for the north, east
and down positions are 8 cm, 8 cm and 7 cm, respectively.
The mean estimated standard deviations for the roll, pitch
and yaw angles are 1.35°, 1.30° and 2.65°, respectively. The
uncertainty in the position is obviously less influential than
the attitude [12]. The estimated standard deviation is small

Fig. 7 UAV and target paths in case study 1

in position because position measurements were provided
with RTK capability on the UAV.

The estimation errors in target position are shown in
Fig. 8, and the main results of this case study are summa-
rized in Table 1. The accuracy of the estimated position is
comparable for the EKF and the SKF, but the SKF is more
accurate overall. The mean estimation error is closer to zero
and the average absolute estimation error is also smaller.

The estimated speed and course are displayed in Fig. 9.
The SKF is more accurate initially, and this explains why the
estimated positions of the EKF and detuned EKF drift more
in the beginning (the first segment without measurements in
Fig. 8).

The largest difference is seen in Fig. 10, which shows
the normalized innovation squared (NIS) and normalized
estimation error squared (NEES) in position [3]. NEES
describes the estimation error squared normalized by the
estimated covariance. In the same manner, the NIS describes
the measurement innovation squared normalized by the
innovation covariance. The NEES is above the upper
confidence bound for the EKF in several time periods. This
means that the EKF is too optimistic with a covariance
estimate that is too small compared to the true estimation
error. The SKF on the other hand has the opposite behavior.
In fact, the SKF is too pessimistic, which means that the
estimated covariance is larger than the corresponding esti-
mation error. Therefore, the measurement noise covariance
could have been reduced for the SKF in this case study.
The detuned EKF falls somewhere in between but has a
covariance that is too small in extended periods.

It is obviously possible to reduce the NEES in general by
increasing the measurement noise covariance. However, the

Fig. 8 Estimation error in target position
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Table 1 Average performance metrics in case study 1

Parameter EKF Detuned
EKF

SKF

ME position
[north, east]

−[4.1m, 1.2m] −[3.9m, 1.2m] −[2.9m, 1.3m]

MAE estimated
position

9.4m 9.5m 8.7m

Mean NEES 7.90 5.09 0.40

Mean NIS 0.42 0.22 0.37

M(A)E = mean (absolute) error. NEES = normalized estimation error
squared. NIS = normalized innovation squared

measurement noise standard deviation must be increased to
60 pixels (from 30) to keep the NEES within the confidence
bounds for the EKF. This is much larger than the expected
measurement noise from the object detection algorithm, and
a solution that must be tailored to every new set of data.
Consequently, it is not robust in the same sense as the SKF
even though such a solution does not necessarily affect the
accuracy negatively. The results presented in this case study
are further discussed in Section 5.6.

5.4 Case Study 2 - Tracking of Slowly-Moving Vessel

The objective in the second case study is to track a slowly
moving boat. This case study is based on data from another
independent field test. The target was visible and have been
detected successfully in 600 images (corresponds to 80
seconds of continuous detections) spread over a tracking
period of 750 seconds (5625 images). The detections are
spread into 11 segments as shown in Fig. 12. The target was
outside the field of view of the camera in the periods without
detections. All filters were tuned in the same manner as in
the previous case study. The true paths of the UAV and the

Fig. 9 Estimat ed speed and course

Fig. 10 Normalized estimation error squared and normalized innova-
tion squared

vessel are displayed in Fig. 11. The UAV operated at an
altitude of 300m in a figure-eight pattern. The attitude of
the UAV varied more in this field test.

The mean estimated standard deviations for the UAV
north, east and down positions are 43 cm, 43 cm and 68 cm,
respectively. The mean estimated standard deviations for the
roll, pitch and yaw angles are 1.22°, 1.24° and 2.63°, respec-
tively. The standard deviation in position is larger than in the
previous case study because the IMU was weighted more
in the navigation filter. This is further explained by the flight
pattern in Fig. 11, which was dominated by turns.

The estimation errors in target position are shown in
Fig. 12. The main results of this case study are summarized
in Table 2. The SKF is the most accurate filter. The EKF and
detuned EKF drift in periods without measurements while
the SKF predicts the position more accurately.

Fig. 11 The paths of the UAV and target in case study 2
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Fig. 12 Estimation error in target position

The estimated speed and course are displayed in Fig. 13.
The EKF and detuned EKF manage to estimate the total
speed accurately, but the estimated course is wrong and
never converges in the same sense as for the SKF. This
explains why the position estimates drift more for the EKF
and detuned EKF, and similar behavior was also observed in
the previous case study. Since all filters have the same state
transition model and the same set of measurements, one can
conclude that the SKF is more accurate in this case study.

The NIS and NEES (in position) are displayed in Fig. 14.
The NIS is similar for both the SKF and EKF, but smaller
for the detuned EKF. A few measurements are outside of
the confidence bounds, but that is not necessarily an issue
for consistency. The largest NIS values appear when it is a
significant period between two consecutive measurements,
which is the expected behavior.

The NEES is not similar. The EKF and detuned EKF
have NEES values that are much larger than the upper con-
fidence bound for major parts of the tracking period. This
means that they are too optimistic, and that the estimated
covariance in position is much smaller than the corresponding

Table 2 Average performance metrics in case study 2

Parameter EKF Detuned
EKF

SKF

ME position
[north, east]

[10.5m, 1.8m] [10.0m, 1.6m] [4.4m, 0.1m]

MAE estimated
position

15.0m 14.2m 8.8m

Mean NEES 17.8 11.5 1.07

Mean NIS 1.84 1.08 1.84

M(A)E = mean (absolute) error. NEES = normalized estimation error
squared. NIS = normalized innovation squared

Fig. 13 Estimated speed and course

estimation error. The SKF on the other hand is within the
confidence bounds except for a short initial period. This
supports the findings in the previous case study and shows
that the SKF can estimate the covariance more precisely
when the other solutions struggle.

5.5 Case Study 3 - Tracking Of Drifting Vessel

The third and final case study concerns tracking of a drifting
vessel. This is based on data from a third independent field
test. The target was visible and successfully detected in
2400 images (corresponds to 320 seconds with continuous
detection) over tracking period of 1500 seconds (11250
images). The detections are spread into several segments as
shown in Fig. 16. The target was outside the field of view

Fig. 14 Normalized estimation error squared and normalized innova-
tion squared
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of the camera in the periods without detections. All filters
were tuned in the same way as previously. The true paths of
the UAV and the target are displayed in Fig. 15. The UAV
operated at an altitude of 200m to 300m in a figure-eight
pattern.

The mean estimated standard deviations for the estimated
UAV north, east and down positions are 87 cm, 87 cm
and 1.42m, respectively. The mean estimated standard
deviations for the UAV roll, pitch and yaw angles are 1.73°,
1.78° and 2.48°, respectively.

The estimation errors in target position are shown in
Fig. 16. The main results of this case study are summarized
in Table 3. The performance, with respect to tracking
accuracy, is comparable for all filters. The EKF and detuned
EKF have mean estimation error closer to zero, but the
SKF has the smallest average absolute estimation error. The
average absolute estimation error is smaller in this case
study overall. That can both be because of the reduced
altitude of the UAV and the vessel speed, which was smaller
during this field test. The large initial estimation error
is due to the large initial covariance in velocity and the
poor accuracy in the first few measurements. Moreover,
only a small set of measurements was available initially,
so the filters were not converging until new measurements
arrived. A small set of initial measurements is particularly
challenging when estimating the velocities which causes
drift in position rapidly. Note that the vessel only moved
approximately 200m during the tracking period.

Figure 17 shows the estimated speed and course. The
estimated speed is a fraction smaller for the SKF and closer
to the reference. All filters struggle to estimate the correct
course. The SKF converges somewhat halfway into the
tracking period and is more accurate than the EKF and
detuned EKF. Note that the speed of the target was so small
that the course reference from the GNSS receiver on the
target could be inaccurate at times and not properly defined.

Fig. 15 The paths of the UAV and target in case study 3

Fig. 16 Estimation error in target position

The course reference could have been smoothed, but the raw
data were chosen because it has been used in the previous
case studies. Nevertheless, these results show that the SKF
estimates the speed and course more accurately, but that
it does not affect the accuracy of the estimated position
significantly because of the total number of measurements
available in this case study.

Figure 18 shows NIS and NEES (in position) for all
filters. The NEES is almost never within the confidence
bounds for the EKF and detuned EKF, which means that
the estimated covariance is too small. This is a weakness
observed in the previous case studies. The SKF on the
other hand, has NEES within the confidence bounds for
most of the time. This case study also shows a significant
difference in NIS. The NIS is too large for the EKF for
several measurements, and must be explained by a small,
estimated innovation covariance. Thus, the covariance of
the measurement noise should have been increased for the
EKF. The SKF also has a few measurements outside of
the confidence bound. The NIS and NEES are interesting
for the detuned EKF. The small NIS values indicate that

Table 3 Average performance metrics in case study 3

Parameter EKF Detuned
EKF

SKF

ME position esti-
mates [north, east]

[−3.3m, 3.6m] [−3.4m, 3.5m] [−4.8m, 3.1m]

MAE estimated
position

8.8m 8.1m 8.0m

Mean NEES 40.4 19.1 2.99

Mean NIS 1.75 0.80 1.09

M(A)E = mean (absolute) error. NEES = normalized estimation error
squared. NIS = normalized innovation squared
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Fig. 17 Estimated speed and course

the innovation covariance is too large. However, the NEES
values indicate that the covariance is too small compared
to the estimation error. The same effect is not observed for
the SKF. Consequently, the cross-covariance between the
navigation and tracking estimates, which is maintained in
the SKF, has a positive effect for consistency and shows the
advantage of the SKF. Similar behavior is observed in case
studies 1 and 2, but in a less significant manner.

5.6 Discussion

A comprehensive amount of data has been used to evaluate
the SKF in case studies 1-3. A few conclusions can be drawn
from the results:

Fig. 18 Normalized estimation error squared and normalized innova-
tion squared

– The SKF is more accurate and is especially better when
it comes to estimating the speed and course.

– The position estimates with the EKF and detuned EKF
are accurate, but are weak for long periods solely based
on prediction.

– The most significant difference is observed for the
NEES where the EKF and detuned EKF are overcon-
fident. The estimated covariance is much smaller than
the corresponding estimation error, which is an issue for
data association in multi-target tracking. It is possible
to increase covariance of the noise in the motion and
measurement models, but it is hard to generalize such
a solution to fit new data. Moreover, this solution does
not fit well with the NIS values. The SKF works for a
fixed set of parameters, and is more robust and reliable
with respect to NEES.

– Even though the SKF is superior in some means,
the necessary covariance of the measurement noise
is still larger than the expected uncertainty in the
object detection algorithm [15]. Consequently, the
errors affecting the tracking system are not mitigated
perfectly. This can be caused by other error sources than
navigation errors and effects not mitigated by the SKF.
That can for instance be time-varying biases with a
small time constant or unknown timing errors in sensor
data.

– The same tuning was used in all case studies and
different results were achieved. The tuning fitted the
data in the final case study better and it highlights the
challenge when tracking unknown targets. The behavior
is unknown beforehand, so it is impossible to find
parameters that are ideal in many different scenarios
unless multiple model approaches are considered.
Nevertheless, it is possible to identify values that
are acceptable in several scenarios as shown in this
research.

– The covariance of the navigation estimates significantly
affects the performance. This is particularly observable
in the NEES where the major difference is caused by the
navigation uncertainty and how the cross covariance is
handled. Moreover, the attitude is the critical factor and
a mean estimated standard deviation of about 1° to 2° in
roll, pitch and yaw seems to have the desired effect. The
influence of the position uncertainty is negligible unless
the standard deviation is large (5 meters or greater).

6 Conclusions

This research article has investigated tracking of floating
objects using fixed-wing UAVs with a monocular thermal
camera. Uncertainty in the UAV position and attitude has
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been incorporated in the tracking system with the Schmidt-
Kalman filter. This design has been used to mitigate issues
related to consistency that often occur in this type of
UAV mission. A large amount of experimental data has
been gathered and analyzed to compare several methods.
The results demonstrate that the SKF performs better with
respect to consistency and estimation accuracy. Moreover,
the position of floating objects is estimated with a mean
error below 10m with the SKF when the UAV operated
at altitudes of 200m to 350m. Similar performance is
also demonstrated in extended periods without target
measurements and shows the reliability of the system.
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