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Abstract
Autonomous vehicles require high-level semantic maps, which contain the activities of pedestrians and cars, to ensure
safe navigation. High-level semantics can be obtained from mobile probe sensor data. Analyzing pedestrian trajectories
obtained from mobile probe data is an effective approach to avoid collisions between autonomous vehicles and pedestrians.
Such analyses of pedestrian trajectories can generate new information such as pedestrian behaviors in violation of traffic
regulations. However, pedestrian trajectories obtained from mobile probe data significantly sparse and noisy, making it
challenging to analyze pedestrian activity. To address this issue, we propose multiple daily data and graph-based approaches
to treat sparse and noisy data for estimating the flow of pedestrians based on mobile probe data. To improve the sparseness of
the data, multiple daily data are fused. After that, a pedestrian graph is created to enhance the region’s coverage by connecting
the sparse data indicating the flow of pedestrians. This proposed approach successfully obtained pedestrian trajectory data
from the sparse and noisy data. Moreover, it was possible to identify the potential locations where pedestrians tend to cross
the street by analyzing the pedestrian flow. The results indicate that 83% of well-known regions where pedestrians tend to
cross the street corresponded with those extracted using the proposed approach. Furthermore, a high-level semantic map of
the regions where pedestrians tend to cross the street along a 1-km road is presented. The trajectory information obtained
using the proposed approach is expected to be essential for understanding different scenarios of the interactions between
individuals and autonomous vehicles.
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1 Introduction

Currently, several companies are attempting to develop
autonomous vehicles. However, several challenges need to
be resolved to develop a fully autonomous vehicle. One
major challenge faced by such autonomous systems is the
unpredictability of pedestrian movement in traffic zones.
Pedestrians often tend to ignore traffic signs and cross the
streets in the absence of crosswalks [1]. To help resolve this
problem, this study aims to extract high-level information
from the movement of pedestrians.

Autonomous vehicles require considerable information
and data to achieve sufficient situational awareness for navi-
gating through unpredictable urban environments involving
humans traveling in cars, bikes, and other vehicles as well as
pedestrians. To navigate in such environments, autonomous
cars employ semantic maps to understand their surround-
ing environments. These semantic maps contain information
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regarding the environment’s structure, such as roads, traf-
fic signs, and sidewalks. Moreover, these maps should also
include dynamic information of the scene, such as vehicle
and pedestrian movement. Thus, this dynamic information
can be used to understand the rules of the scene, such as
locations commonly traversed by pedestrians. Identifying
the areas where pedestrians tend to cross the street despite
the absence of a crosswalk, enables autonomous vehicles to
drive more carefully (or slowly) in such areas; this yields
additional reaction time to the vehicle if a pedestrian decides
to cross the street. This approach can help prevent acci-
dents, particularly if the pedestrian was previously occluded
from the autonomous vehicle’s sensors, by parked vehicles
or other visual obstructions. In this study, we employ an
autonomous vehicle to extract the dynamic information of a
scene. This information is further used to create a map that
represents the pedestrian crossing patterns within a scene.

However, to extract pedestrian crossing information,
several problems need to be addressed. First, due to the
short period for which pedestrians are visible by a probe
vehicle driving within the street’s speed limit, the pedestrian
information extracted from the scene is insufficient. Second,
due to this insufficient pedestrian information extracted
from the scene, the pedestrian data obtained by the vehicle
are sparse. Third, the extracted pedestrian scan points can
also contain miss-labeled information due to sensor noise.

This paper presents an approach for trajectory-based
information acquisition from one mobile probe vehicle’s
multiple daily data. We present a method to detect
pedestrians in an environment, track the pedestrians, and
generate a general flowing graph based on their movements.
Based on this graph, we extract regions wherein people
are more likely to cross the street. In the proposed
approach, an autonomous electric vehicle equipped with a
Ladybug camera and Velodyne HDL-32E LiDAR sensors
is employed to gather data. As the vehicle is driven at
the recommended speed during data acquisition, we were
able to cover a large area; however, the data obtained were
sparse. To resolve this sparseness in the pedestrian data, we
employed three different methods: First, we fused multiple
daily data. Second, we utilized clustering and a graph-
based approach to connect pedestrian regions. Third, a set of
heuristics were used to improve the graph connection. Then,
the improved graph is analyzed, and the regions wherein
pedestrians tend to cross the street are extracted. Finally,
based on the extracted crossing regions, a map of pedestrian
crossing regions is created. Figure 1 shows an illustration of
the proposed study.

This study is an extended version of [2], which introduces
the creation of pedestrian flow. We improved this previous
implementation of the pedestrian flow using multiple daily
data and a novel clustering approach. Moreover, this
paper outlines a method to extract information from this

Fig. 1 Illustration of knowledge acquisition using pedestrian flow

pedestrian flow using multiple daily data obtained using one
mobile probe. This extracted information is further used to
develop a map indicating the regions where pedestrians are
likely to cross the street.

The primary contributions of this study are as follows:

– Here, the trajectories are estimated from sparse mobile
probe data. The use of tracking, a graph-based
approach, and multiple daily data enables the recovery
of pedestrian trajectories.

– Pedestrian walking direction is obtained from the
pedestrian scan points, using a clustering approach to
extract trajectory information of the cluster.

– The proposed approach predicts pedestrian crossing
patterns based on semantics as well as pedestrian and
vehicle flow.

2 RelatedWorks

2.1 Mobile Probe Data

Several studies have employed mobile probe data to extract
trajectories, such as GPS data, signal-based data, stationary
sensor-based data, and mobile sensor-based data. GPS data
yields [3, 4] location information, sparse and irregularly
distributed in time. Moreover, using this data is challenging
because using GPS data can result in serious privacy breaches.

Signal-base data can be classified into short-range distance
[5, 6] and long-range distance [7, 8]. Short-range distance
extraction requires base stations such as WiFi routers or
IoT equipment to receive Bluetooth or radio-frequency
identification signals. The range of data acquisition depends
on the number of base stations. Long-range distance
employs GSM or CDR base stations to extract signals
from a broader range. However, data extracted through
these signal-based methods tend to be complex and differ
depending on the type of signal used; moreover, these
methods’ location accuracy is relatively low.

Stationary sensor-based data refers to the data acquired
through stationary monitor systems such as cameras or
Automatic Fare Collection (AFC) [9–11]. Although data
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extracted through such sensors exhibit relatively high
accuracy, data retrieval’s amplitude is small due to the
limited range of the stationary sensors.

The works of [12–15] employ mobile sensor-based data
using a vehicle equipped with cameras or light detection
and ranging (LiDAR) sensors to extract the trajectories of
traffic participants. Mobile sensor-based data features high
position accuracy as well as broad coverage area. Therefore,
this study employs mobile sensor-based data captured
through LiDAR and a camera sensor of an autonomous
electric vehicle (AEV). The combination of LiDAR and
camera used in this study extracts the precise 3D scan of the
environment, with semantic and color information.

2.2 Pedestrian Flow

Pedestrian flow is commonly used to understand pedestrian
behavior and can also extract information from pedestrian
movement. For instance: [16] used pedestrian trajectories to
reconstruct a network of streets, [17] used pedestrian flow
to estimate the congestion and danger in an area, [18] used
pedestrian and vehicle flow to model traffic light scheduling
strategies for vehicles as well as pedestrians, [19] used
pedestrian flow to create an autonomous navigation system
for a personal mobility vehicle, and [20] used pedestrian
flow to improve long term prediction of the pedestrian
path. Such studies have reported a variety of applications
demonstrating the wide applicability of pedestrian flow
information. However, none of the previous studies have
employed pedestrian flow information to detect pedestrian
crossing. To address this gap in the literature, this study
employed pedestrian flow to detect pedestrian crossing
patterns on the streets.

2.3 Pedestrian Crossing Detection

Pedestrian crossing information is highly relevant for
autonomous vehicles. To increase the semantic information
in a map [21] detected pedestrian crossing information using
Bayesian classification techniques. However, this work only
included 306 tracks, and the area used to detect pedestrians
crossing was a crosswalk with an area less than 200m2.
Moreover, this work only classified the tracks and failed to
predict possible pedestrian movements beyond the captured
movements. Alternatively, this study covered a street of
approximately 1km, with more than 2710 tracks. The
pedestrian crossing was detected by using a pedestrian flow
prediction algorithm that detected the crossing pattern of
pedestrians on crosswalks as well as non-crosswalk regions.

In a few recent studies, i.e., [22–25], information from
the environment was incorporated with the solutions to
estimate the intentions of pedestrians. [26] used various
contextual information, such as characteristics of the road,

presence of traffic signals, and zebra crossing lines, in
conjunction with the pedestrians’ state, to estimate if
they planned to cross the road. They reported that using
contextual information significantly improves the prediction
of pedestrian crossing decisions. [27] predicted pedestrian
crossing a street by elucidating pedestrians’ relations,
crosswalks, and ego vehicles, and combining two models:
a standard inner-city model, always active, and a model
activated only for crosswalks. We believe that our study is
complementary to these previous works because we aim
to build a map indicating the potential locations where
pedestrians tend to cross the street. This map can be used as
contextual information to support predictions of whether or
not pedestrians cross the street. In this study, the prediction
of the pedestrian crossing is performed by analyzing
the pedestrian flow in the entire scene. Moreover, along
with the dynamic information, we also employ semantic
information, multiple daily data, and a graph approach to
develop the pedestrian flow.

3 Information Extraction ThroughMobile
Vehicle Sensing

The trajectories of traffic participants are essential to
understand the context of an environment. This section
presents the difficulties associated with using trajectory
information to extract information as well as methods to
overcome these difficulties.

In the current study, an autonomous electrical vehicle
(AEV) is used to acquire data. The AEV is equipped with
many sensors, including a 360 degrees Velodyne HDL-32E
LiDAR and a Ladybug5 360 degrees surround-view camera.
The LiDAR sensor gives a 360 degrees point cloud of the
surrounding area of the AEV with a 200 meters range,
and the Ladybug generates five images that compose the
surroundings of the AEV. Both camera and LiDAR acquire
data at roughly 10 Hz. Although the LiDAR has a range
of 200 meters, as the host vehicle drives within road speed
limits during data acquisition, the pedestrian needs to be
around 50 meters from the car to detect and track the
pedestrian from the LiDAR point cloud. This is due to the
sparse points cloud at the distant range. For this reason,
we are provided with a short amount of time of pedestrian
visibility, resulting in sparse pedestrian data. The authors
propose to fuse multiple daily data to reduce this sparseness
by detecting pedestrians in different areas. Furthermore,
sparse data also contain mislabeled data. Thus, we employ
the semantic data generated through the combination of
LiDAR and camera data, which assigns a semantic label to
each LiDAR scan point. Although a bounding box detection
approach involving image data would be more efficient for
detecting pedestrians, we chose the fusion approach because
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Fig. 2 Flow graph-based model representation

it accurately estimates pedestrians’ position and yields
additional information regarding surrounding environments,
such as roads and sidewalks. To correct the semantic labels,
we create a static map and use it to erase falsely labeled data.

Three main methods were used to predict traffic
participants’ flow: clustering of sparse trajectory data,
representation of multi-direction for each cluster, and a set
of heuristics for graph refinement. The process flow of
this study is presented in Fig. 2. To develop the flow of
pedestrians, multiple-daily large scale semantic maps were
used to extract pedestrian (XPed ), vehicle (XCar ), building
(XBuilding), sidewalk (XSidewalk) and road (XRoad ) scan
points [28]. Since XBuilding , XSidewalk , and XRoad have
similar information for every day’s data, instead of fusing
the multiple-day data, we choose to select the best day data
based on the score of miss-classification for each of the
labels, because fusing the data generates cumulative noise
from the miss-classification of the labels. Subsequently,
the pedestrian walking direction (θT rackedP ed ) and vehicles
driving direction (θT rackedCar ) are obtained by tracking
the pedestrian and vehicle movement in the sequential
LiDAR data. However, due to data sparseness, the tracking
algorithms often fail to accurately track the objects, leaving
many points without a heading direction. Furthermore, even
with multiple daily data combined, the pedestrian flow is
still sparse, and quite a few areas are left without any
detected pedestrian. We employ a graph-based approach
to overcome the sparseness. The combination of several
days pedestrians points XPed are clustered generating the
nodes (NFlow), and a set of heuristics is employed to
interconnect the clusters to generate the edges (EFlow)
of the flow graph. For the clustering, we chose an
incremental Gaussian mixture model (GMM) clustering
approach to perceive the pedestrian walking direction within
the cluster’s geometry (explained in detail in Section 4.3).
This clustering method has the advantage that we can
estimate the heading direction of the pedestrian through
the Eigenvectors of the cluster (θEV ), supplementing the
heading directions estimated from the tracker θT rackedP ed .
Moreover, the clusters are linked according to the multi-
direction representation of pedestrian walking direction
created for each cluster combining θT rackedP ed and θEV

(explained in detail in Section 4.5). While creating the flow
graph of the scene, one trade-off is between the coverage
and the graph’s accuracy. While choosing strict heuristics
for the clusters’ interconnection step would increase the
accuracy, it would drastically limit its coverage. In this
work, the authors choose to favor the coverage, which leads
to many false positives edges within the flow graph initially.
To compensate for this, false-positive edges are detected
and erased using an obstacle cross (that uses the cleaner
XBuilding), road cross, and redundant connection removal
algorithm. Finally, pedestrian road crossing information is
obtained by analyzing the edges (EFlow) of the pedestrian
flow with the cleaner XRoad and XSidewalk selected among
the multiple-daily data.

4Methodology

4.1 Cleaning of Semantics Data

Semantic information was extracted for each scan point
by fusing the camera and LiDAR data [28]. Westfechtel
et al. reported an average Intersection over Union (IoU)
score of 65% for all labels and an IoU score of 84%
for pedestrians. To further increase the robustness of
results, filtering techniques are introduced in this section.
We observed several miss-classifications in the resulting
semantic map; however, on further examining the semantic
map, we found that the occurrence of miss-classification
tended to become more sparse (i.e., only a few points of
a vehicle were miss-classified as buildings). Therefore, we
chose statistical outlier removal (SOR) [29] to filter out
these miss-classifications from the buildings, roads, and
sidewalks. After, a grid map is created for each class. The
building grid map is used for graph refinement (Section 4.6),
and sidewalk and road grid maps are used to identify
pedestrian crossings (Section 4.7).

Subsequently, for pedestrians and vehicles, the miss-
labeled points were often attributed to a small-time gap
between the LiDAR data and camera data acquisition, which
leads to a miss-projection between the two modalities.
This miss-projection results in the mislabeling of several
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points in one location; thus, SOR was not suitable for
removing these outliers. Our approach exploits that the
miss-projections are projected onto other objects of the
surrounding. While the number of mistakenly projected
semantics is not low enough for the SOR approach,
looking at the object, the correctly projected semantics (i.e.,
building, vegetation, among others) outweigh the incorrect
projections. Therefore, a static map (Xmap) is created by
removing all the points related to dynamic objects such as
pedestrians, vehicles, and bikes. Then, the minimal distance
of each pedestrian scan point to the point of the static map
Xmap is calculated, as follows:

d = min
i∈N

‖XPed − Xi
map‖ (1)

{
XPed ∈ Xconf , if d ≥ dthreshold

XPed /∈ Xconf , otherwise
(2)

where d is the minimum Euclidean distance between a
pedestrian point and all the points in Xmap, dthreshold is
a distance threshold of 0.25 m, and Xconf is the resulting
points obtained after map filtering. Even after eliminating
the points that are closer to the static map objects, a few
points remain at several places on the map. To resolve this,
an Euclidean cluster is used for each single scan of the
LiDAR with a minimum cluster value of 50 points. Figure 3
shows the pedestrian points after the proposed filtering in
blue. The points that were removed during this process are
shown in red.

4.2 Trajectory Estimation from Pedestrian Point
Cloud

As we are using a mobile probe to acquire the data
in this work, single pedestrians are only tracked over
a short amount of time. Therefore, the trajectories are
scarce, and pedestrian detections that could not be tracked
would not be considered. Therefore, we chose a different
approach. We estimate the pedestrian flow by clustering
the individual pedestrian points and interconnecting these
clusters based on the walking direction of the pedestrians
and the geometric features of each cluster. To estimate the
pedestrians’ walking direction, we employ the IMM-UKF-
PDA Tracker proposed by [30] to track pedestrians in the
sequential LiDAR scans of the single daily data. We extract
the walking directions (θPedT racked and θCarT racked ) of the
tracked objects and append this information to the respective
cluster of pedestrians, XPed for pedestrians and XCar for
vehicles respectively. However, as some of the XPed could
not be tracked, we further estimate the pedestrian’s walking
direction by analyzing each pedestrian cluster’s geometric
properties using the principal component analysis (PCA).

4.3 Clustering of Sparse Trajectory Data

For our pedestrian flow estimation approach, we need to clus-
ter the pedestrian points XPed first. The clustering should
ideally cluster pedestrian points that are walking in the same
direction and are locally close. One of such desired cluster

Fig. 3 Pedestrian scan point
cleaner example: a The
pedestrian points obtained after
the proposed filtering in blue.
The points that were removed
during this process are indicated
in red. The process is done for
each single LiDAR scan, while
the semantic map contains
points of the whole run. b
Actual image of the scan points

(a)

(b)
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Fig. 4 Cluster of pedestrian showing the Eigenvector of the walking
direction (EVWD) and Eigenvector perpendicular to the walking
direction (EVPWD)

can be seen in Fig 4. It can be seen that the cluster is large
within the walking direction but is limited in the direction
perpendicular to it. In order to exploit this, we chose an incre-
mental GMM clustering approach. The GMM clustering
uses 2-dimensional Gaussian curves to represent each
cluster. The Gaussian curves’ variances can be interpreted
as the cluster’s extension in the walking direction and
the perpendicular direction. However, for the conventional
GMM clustering method, the amount of desired clusters has
to be given as input, which is not applicable in our case. We,
therefore, implemented an incremental GMM clustering
approach. We run the GMM clustering for one cluster at
first. We analyze the variance of the GMM perpendicular
of the walking direction EVPWD . If this variance is above
a certain threshold, we assume that different walking
directions are present within the estimated cluster. We,
therefore, increase the amount of desired clusters by one
and rerun the clustering process. This process increases
the number of desired clusters until each of the estimated
clusters has a variance for the direction perpendicular to
the walking direction EVPWD below our set threshold. We
chose a threshold of 1 m in our implementation. Figure 5
shows four iterations of the GMM clustering in one cluster.

Due to our clustering approach’s iterative nature, the
clustering cannot cluster the whole pedestrian points XPed

at once. Therefore a DBScan clustering algorithm is used
as a pre-clustering step to cluster all points with proximity.
To improve the system, a minimum cluster size of 50 points
was chosen to erase noisy points.

Figure 6 presents the trade-off between our approach
and mean shift clustering. The corresponding angle of

(a) (b)

Fig. 6 Data clustered using: a mean shift; and b proposed approach.
The different point colors correspond to different point clusters, and
the ellipses represent the Eigen vectors of the cluster

EVWD of the cluster (θEV ) is used to improve the
estimation of the pedestrian flow direction. The mean
shift approach shows a less accurate correlation between
the direction of pedestrians movement and EVWD . For
example, Fig. 6a presents a red cluster of pedestrian scan
points, which moved from the south to the north; however,
EVWD indicates that these points moved from southeast to
northeast. This discrepancy was attributed to the incorrect
clustering. On the contrary, the GMM approach features
better similarity between EVWD and the direction of
pedestrian movement, as shown in Fig. 6b.

4.4 Fusion of Multiple Daily Data

As previously mentioned, one challenge of this study
is data sparseness. To overcome this, we employ two
main strategies; fusing multiple daily data and predicting
connections between pedestrian clusters, generating a
flow graph. As the graph-constructing algorithm infers

Fig. 5 Figure shows the GMM
cluster iterations of one cluster.
The first image represents the
first iteration of the GMM on
the cluster, the third image
represents the second iteration
of the cluster, the third image
represents the 15th iteration of
the GMM in the cluster, and the
last image represents the last
iteration of the GMM in the
cluster
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Fig. 7 Coverage of pedestrians
(in red) on the map: a 1 day
data; b 11 days data

(a)

(b)

connections based on existing clusters, the inference
increases with the number of pedestrian clusters analyzed.
We, therefore, chose to fuse multiple daily data before
the graph estimation. In particular, we fuse the data
before the clustering step, the trajectories (θPedT racked and
θCarT racked ) for the points are estimated for each trial
separately. To fuse the data, we align each daily data
using the normal distributions transform (NDT) matching
algorithm [31]. Once the point clouds are aligned, we simple
accumulate the pedestrian XPed . Figure 7 depicts (a) data
of one trial and (b) data after fusing 11 trials; where the
pedestrian scan points (red dots) increased when using the
multiple daily data.

4.5 Estimation of Pedestrian Flow for Each Cluster

In the construction of the flow graph, the pedestrian
flow of each cluster is one main component to interfere
connections between the clusters. For each cluster, the set of
pedestrian tracked direction (θPedT racked ) within the cluster
is associated to the cluster. Moreover the pedestrian flow can
also be estimated through the geometry of the cluster (θEV ).

We fuse these information using a Gaussian Mixture Model
(GMM):

P(θ) = 1

κ
·

n∑
i=0

1

σ
√
2π

e−(θ−θPedT racked )2
/
2σ 2

+ 1

σ
√
2π

e−(θ−θEV )2
/
2σ 2

(3)

Where n is the number of associated θPedT racked in
the cluster, and P(θ) corresponds to the probability of
a pedestrian moving in the direction of the cluster. The
normalization κ was chosen so that it is the maximum value
of the sum of Gaussians:

max
θ

1

κ
·

n∑
i=0

1

σ
√
2π

e−(θPedT racked−μ)2
/
2σ 2 = 1 (4)

To decide whether the cluster has a direct flow in a
specific direction, we employ a direction threshold PT hresh.
Only angles for which P(θ̂) > PT hresh are considered as
flow directions for the cluster. It has to be noted that this
representation allows each cluster to have a pedestrian flow
in multiple directions, as can also be seen in Figs. 8 and 9.

Fig. 8 Overview of GMM for edge estimation
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Fig. 9 Example of edge
estimation

4.6 Graph Refinement

In this work, the authors choose to favor the coverage, which
leads to many false positives edges within the flow graph
(EFlow) initially. To compensate for this, false-positive
edges are detected and erased using an obstacle cross, road
cross, and redundant connection removal algorithm. We
chose those methods aiming to remove the false-positive
edges without reducing the pedestrian flow information. In
Fig. 10 some examples of false positive edges can be seen.

On analyzing the graph, it is evident that some of the
edges pass through buildings in the map (green edges), and
some edges cross the street diagonally to the other side of
the street, which is an irregular path for pedestrians (red

edges). Hence, these edges were removed to create a more
accurate graph of pedestrian flow. After removing the first
two cases, it was observed that one node was connected
to several other nodes in the same direction. To obtain a
clean representation of pedestrian flow, each node in the
graph should be connected to the closest node along each
direction. Therefore, we removed redundant edges (yellow
edges) from the graph. The procedure to detect each false
positive edge is explained in the following sections.

4.6.1 Obstacle Cross Outlier

When estimating pedestrians’ flow, buildings are considered
obstacles which do not allow pedestrians to pass. Therefore,

Fig. 10 Overview of graph
refinement indicating the edges
before and after graph
refinement, where each
refinement process is illustrated.
The green edges correspond to
building cross outliers, red
edges correspond to road cross
outliers, and yellow edges
correspond to redundant
connection outliers
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Fig. 11 An edge outlier of
building crossing. The black
dots correspond to buildings,
blue dots correspond to
pedestrians, green lines are the
edge outliers and black lines are
the appropriate links

we consider any edge predicting a pedestrian flow through
a building as a false positive that should be removed. To
determine if an edge crosses such an obstacle, we employ
the building map GridBuilding (see subsec. 4.1). Each edge
is tracked along its length and evaluated whether it crosses
an obstacle grid map generated from XBuilding . If the
algorithm detects a conflict between the grid map and the
edge, the edge is labeled green and removed. Figure 11
highlights such green edges crossing buildings.

4.6.2 Road Cross Outlier

In this work, we presume that pedestrians cross the street
in a straightforward way, which would be to cross the street
perpendicular. Under this assumption, we label each graph
edge that crosses the street with an angle not perpendicular,
with a 30° margin (θCrossT hreshold ), as a false positive edge.

We choose the margin of 30° because the angle is estimated
by employing the trajectories of pedestrians and vehicles
(including the mobile probe) each with 15° of noise.

{
EFlow ∈ ECarCross , if |�(EFlow, θCarT raked ) − 90°| < θCrossT hreshold

EFlow ∈ ECrossOutlier , otherwise

(5)

where � gives the angle of intersection between the graph
edge EFlow and θCarT raked , ECarCross corresponds to the
edges that crossed a vehicle’s trajectory, and ECrossOutlier

corresponds to the edges that cross the street in an irregular
trajectory and are eliminated. The Fig. 12 presents a few
cases where the where the edges cross the path of the
vehicle. On the upper left and the lower right sides, the
edges exceed the threshold.

Fig. 12 An edge outlier for crossing the street. The blue edges represent the vehicle’s trajectories, red dots are the edge outlier, and black edges
are appropriate links
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Fig. 13 Example of edge density
reduction. a Before; b After

(a)

(b)

4.6.3 Redundant Connections Outlier

This heuristic aims to limit the connections of nodes along
the same direction, in order to clean the graph. As shown in
Fig. 10, a few nodes in the graph contain several connections
along the same direction. To eliminate such redundant
connections, each node connection is checked; if the node
has more than one connection along the same direction,
only the shortest connection is retained, and the remaining
connections are eliminated from the graph. Equation 6
describes the process used to determine redundant outliers:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
i,j
SameDirection = f (Ei

F low, θDirectionT hreshold )

ERedundamtOutlier =
n∑

i=0

m∑
j=0

(mindist (E
i,j
SameDirection)

−E
i,j
SameDirection)

(6)

where Ei
F low are the edges of the node i, θDirectionT hreshold

is the direction threshold of 25°, E
i,j
SameDirection are the

j set of edges along the same direction in the node i, f

corresponds to the function that checks if the edges are
heading along the same direction, mindist is the function
that returns the edge with the minimum Euclidean distance,
n is the total number of nodes, m is the number of directions
with multiple edges for each node i, and ERedundamtOutlier

are redundant edges that are to be removed. Figure 13
presents an example of such redundant connections.

4.7 Pedestrian Crossing Detection

It is possible to automatically extract pedestrian crossing
patterns on a road, by analysing a pedestrian flow graph.
Based on the set of edges ECarCross , there are two types of
edges: edges where pedestrians crossed the path of a car on
road (ERoadCross), and edges where pedestrians crossed the
path of a car on the sidewalk (ESidewalkCross), which some

represent entry driveways. Semantic information of the road
is used to distinguish the ERoadCross edges from ECarCross

edges. Equation 7 demonstrates the selection ofERoadCross :

{
ECarCross ∈ ERoadCross, if ECarCross ⊂ GridRoad

ECarCross ∈ ESidewalkCross, otherwise

(7)

whereGridRoad is the grid map of the road points extracted
from the semantic map. Figure 14 presents an example of
ERoadCross in purple and ESidewalkCross in orange.

5 Evaluation

5.1 Data and Environment

5.1.1 Mobile Probe Data

An AEV was used to gather data for two environments
of Sendai, Japan. The AEV is equipped with a multitude
of sensors, including a Velodyne HDL-32E Lidar and a
Ladybug5 surround-view camera. Throughout experiment
A, the AEV gathered LiDAR and camera data. For
the experiment A, the AEV drove along a course of
approximately 1 km for a total of 11 times while extracting
the LiDAR scan points and camera images for this research
on a Campus area. The pedestrian data was captured during
fall, winter, and spring, for two days, one day, and eight
days, respectively. Four of those days were Monday, six
days were Tuesday, and one day was Friday. For experiment
B, The AEV drove along a course of approximately 1.5 km
a total of 3 times in the City area. The pedestrian data was
captured during the fall season for three days. One of those
days was Sunday, another day was Tuesday, and the last day
was Thursday. Figure 15 depicts the AEV in this study.
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Fig. 14 2 days data flow of
pedestrian showing the
ECarCross edges separated in
purple edges (ERoadCross ) and
orange edges (ESidewalkCross )

5.1.2 Experiment Environment

The map was built using simultaneous localization, and
mapping [32] of the LiDAR data obtained from the mobile
vehicle sensor. After fusing the LiDAR and camera data,
each point of the map contained color and semantic
information. Figure 16 was obtained by extracting the
sidewalk points.

5.2 Evaluation of Graph Refinement

5.2.1 Area of Evaluation

All the regions from experiment A and B were used to
evaluate the accuracy of the graph refinement heuristics.
Small areas of the environment, corresponding to 200 m
and 100 m of the vehicle course from experiment A and B,
respectively, were used to illustrate the refinement’s final
process. Figure 17 presents the map used for this evaluation,
as well as the small squares on the map delimiting the

Fig. 15 Autonomous electric vehicle used in data acquisition
experiments

regions selected for illustration. To create the ground truth
for this evaluation, each edge of the graph is manually
counted and checked for each heuristic of graph refinement
explained in Section 4.6.

5.2.2 Accuracy of Heuristics

To determine the accuracy of heuristics used in this study,
the following equation is used for each heuristic:

AccEdges = EDetectedHeuristic ∩ EHeuristicGroudT ruth

EHeuristicGroudT ruth

(8)

where AccEdges corresponds to the accuracy of edges
that are detected in the heuristic, EDetectedHeuristic is the
number of edges that where detected for the heuristic, and
EHeuristicGroudT ruth is the total number of edges manually
counted for the heuristic.

5.3 Evaluation of Cover Ratio

In this section, we evaluate the cover ratio of the sidewalk.
We assume that all of the sidewalks in the surrounding area
are used by pedestrians. As it is hard to create ground truth
data, we chose the sidewalk to evaluate pedestrian coverage.
Our reasoning for choosing the sidewalk as a parameter
for pedestrian coverage is that if we could see the entire
movement of pedestrians along the evaluated region at any
given moment in time, most likely it would show that the
place that pedestrians use the most—in other words, the
sidewalk—is being completely covered. While pedestrians
do not necessarily use the entire sidewalk area, we believe it
is a good enough approximation as most of it is commonly
used. By comparing the sidewalk area extracted from the
semantic map with the pedestrian points and the flow graph,
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Fig. 16 Sidewalk scan points
extracted from the semantic
map, grid map in black with
gray dots representing the static
map: a Experiment area A; b
Experiment area B

(a)

(b)

we can analyze whether our research methods have any
impact on the cover ratio of the sidewalk.

5.3.1 Evaluation Method

In order to calculate the cover ratio of the sidewalk, we
employ grid maps with a cell size of 1m, resulting in grid
maps of roughly a width of 1000 cells and a length of
400 cells. For experiment A, there are 11 days data. For
this evaluation, each day will consist of a combination of
the days’ data. For example, two days data combination
consists in the combination of days 1 and 2, 2 and 3, 3
and 4, and so on until the 10th and 11th combination. For
each combination of days, a mean and standard deviation

are computed. We calculate the cover ratio as the number
of occupied grid cells of the intersection between the
pedestrian and the sidewalk divided by the number of
occupied cells of the sidewalk map:

Ratpedestrian = |Gpedestrian,occ ∩ Gsidewalk,occ|
|Gsidewalk,occ| (9)

where Ratpedestrian corresponds to the cover ratio,
|Gsidewalk,occ| corresponds to the amount of sidewalk grid
cells and |Gpedestrian,occ ∩ Gsidewalk,occ| corresponds to
the number of cells of the sidewalk where pedestrians were
detected. Figure 16 presents the sidewalk grid map.

Fig. 17 Graph refinement
evaluation experiment area and
results illustration area on
squares. Pedestrian points are
marked in different colors per
cluster and the buildings points
in black: a Experiment A; b
Experiment B

(a)

(b)
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5.4 Pedestrian Cross Evaluation

5.4.1 Area of Evaluation

For the evaluation of pedestrian crossing, the entire map
of the environment is used, as shown in Fig. 17. To obtain
the ground truth of the evaluation, pedestrian movement in
the entire map was observed. Thereafter, the areas where
pedestrians tend to cross the street and the areas where
crosswalks can be seen were manually drawn on the grid
map, as shown in Fig. 18.

5.4.2 Performance Evaluation

To evaluate pedestrian crossing detection performance, a
ground truth map of the observed pedestrian crossing
regions was built manually. For experiment A, this
ground truth map corresponded to 13 locations containing
crosswalks and 9 locations where pedestrians were observed
to cross the street without using crosswalks. The regions
without crosswalks were observed with and without the use
of the probe vehicle, and they primarily consist of locations
in proximity to entrances of buildings. For experiment
B, this ground truth map corresponded to 10 locations
containing crosswalks. For this evaluation, the percentage
of the manually observed crossing regions detected by our
algorithm is computed as follows:

Regrecall = |Regdetected ∩ Regspotted |
|Regspotted | (10)

where Regrecall corresponds to the percentage of the
regions detected using the proposed algorithm, |Regspotted |
denotes the total number of regions manually spotted by the

authors and |Regdetected ∩Regspotted | the number of regions
of the ground truth data that our algorithm succeeded to
identify.

6 Results

6.1 Graph Refinement

For experiment A, the result of the flow graph estimation
containing all 2794 edges was computed for the whole
experiment area; 87% of the refinement showed false
positive edges. Based on the false-positive edges, 242 edges
(10%) corresponded to the building crossing outlier, 971
edges (40%) corresponded to the street crossing outlier, and
1231 edges (50%) corresponded to redundant outliers. For
experiment B, the flow graph estimation result containing
all 3008 edges was computed for the whole experiment area;
96% of the refinement showed false positive edges. Based
on the false-positive edges, 648 edges (23%) corresponded
to building crossing outlier, 739 edges (25%) corresponded
to the street crossing outlier, and 1521 edges (52%)
corresponded to redundant outliers. Figure 19 shows the
result of the graph refinement process in the regions of
experiment A and B.

6.2 Cover Ratio

For experiment A, Fig. 20 shows the cover ratio of the
sidewalk using the pedestrian points before creating the flow
graph, and the cover ratio after estimating the pedestrian
flow employing the different amount of daily data. It can be
seen that estimating the pedestrian flow increases the cover
ratio by an average of about 14 percentage points compared

Fig. 18 Grid map of regions
where pedestrians were spotted
crossing the street. Where the
green areas represent the regions
observed by the authors, and the
blue areas represent crosswalk
regions: a Experiment A; b
Experiment B

(a)

(b)
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Fig. 19 Region of the map
indicating the edges remaining
after removal of outliers during
the graph refinement step. The
black edges correspond to
pedestrian flow directions, blue
dots correspond to traffic
environment, and black dots are
buildings: a Experiment A; b
Experiment B

(a)

(b)

to only using pedestrian points. The use of multiple data and
pedestrian flow approaches has increased pedestrians’ cover
rate by around 61% points, resulting in a final cover rate
of 69% of the sidewalk. Furthermore, we can significantly
increase the cover ratio through the combination of multiple
daily data. Figure 21 shows the grid map of the coverage of
pedestrians’ flow on the sidewalk.

For experiment B, the cover ratio of pedestrians consisted
of 12%, whereas the pedestrian flow corresponded to 24%.
It can be seen that estimating the pedestrian flow increases

the cover ratio by an average of about 12 percentage points
compared to only using pedestrian points. Figure 22 shows
the grid map of the coverage of the flow of pedestrians on
the sidewalk for experiment B.

6.3 Detection of Pedestrian Crossing Pattern

For the experiment A, based on the 21 regions spotted
by the authors (Regspotted ), 17 regions were successfully
detected by the proposed algorithm, resulting in a Regrecall
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Fig. 20 Ratio of sidewalk coverage by the number of days data from
0 to 1, where the red line correspond to the pedestrian scan points, and
blue line correspond to the graph flow of pedestrians

of 81%. Among the four regions that were not detected,
three were crosswalk regions. For experiment B, based
on the 11 regions spotted by the authors (Regspotted ),
six regions were successfully detected by the proposed
algorithm, resulting in a Regrecall of 55%. The five regions

that were not detected were crosswalk regions. Figure 23
shows the directed graph representing the pedestrian flow.

Furthermore, about 25% of the crossing patterns detected
by our algorithm did not correspond to regions manually
observed by the authors. These crossing patterns are
marked in red in the Fig. 23. Moreover, Fig. 24 shows
places detected by the algorithm in an RGB map of the
environment. Where the green areas represent the regions
observed by the authors, the blue areas represent crosswalk
regions, and the red areas represent new regions detected by
the algorithm

7 Discussion

The results encompassed two experiments, each with
different features. Experiment A represents a campus area
of dual-lane traffic of two hands of low traffic movement,
where the data was captured on a lapse of 11 days.
Experiment B represents a city area of one hand traffic on
three lanes of high traffic movement, where the data was
captured on a lapse of 3 days.

The proposed algorithm was able to estimate the
pedestrian flow from 69% and 24% of the sidewalk area

Fig. 21 Grid map of experiment
A: a Sidewalk; b Pedestrian scan
points on sidewalk; c Pedestrian
Flow graph on the sidewalk

(a)

(b)

(c)
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Fig. 22 Grid map of experiment
B: a Sidewalk; b Pedestrian scan
points on sidewalk; c Pedestrian
Flow graph on the sidewalk

(a)

(b)

(c)

for the experiment A and B, respectively, using multiple
daily sparse data of pedestrians, through the GMM-based
clustering and graph-based approaches. In the case of
experiment A, the use of multiple daily data increased the
density of pedestrians from 8% to 48%. Moreover, the
density of graph-based pedestrian flow increased from 16%
to 69% of sidewalk coverage. Although pedestrians’ flow
reached 69%, as shown in Fig. 21, the pedestrian flow
obtained covers most of the sidewalk. The low percentage
could be explained as pedestrians usually stick to the center
part of the sidewalks rather than the border areas. Therefore
often, the whole width of the sidewalk is not estimated by
our algorithm.

The outlier techniques described in this work success-
fully detected and eliminated 87% of edges from the graph
for experiment A and 96% of edges from the graph for
experiment B, which indicates the importance of graph
refinement. The set of heuristics created herein aimed to
achieve a more concise and accurate pedestrian flow by
eliminating the connections that are unlikely to be executed
by pedestrians. Based on experiment area A and experi-
ment area B used for this evaluation, it was evident that all
the removed edges corresponded to the respective heuris-
tics. By comparing the graph refinement from experiment
A to B, one can see a decrease in the percentage of road
cross edges on experiment B due to a lower detection of

Fig. 23 Directed graph
indicating pedestrian flow. The
edges in blue correspond to the
crossing patterns detected in
regions spotted by the authors,
and the edges in blue correspond
to crossing patters in regions not
spotted by the authors: a
Experiment A; b Experiment B

(a)

(b)
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(a)

(b)

Fig. 24 RGB reconstruction of the environment of regions where
pedestrians crossed the street detected by the algorithm. Where the
green areas represent the regions observed by the authors, the blue

areas represent crosswalk regions, and the red areas represent new
regions detected by the algorithm: a Experiment A; b Experiment B

pedestrians crossing and pedestrians at the other side of the
street. Similarly, one can also notice an increase in building
cross percentage on experiment B due to a higher number of
buildings surrounding the crosswalk.

Regarding the detection of the pedestrian crossing, for
the experiment A, four regions were not detected by the
proposed approach. This indicates the absence of people
walking along these regions. Among these four regions,
three were crosswalks, which may not have been suitable
for pedestrians. Crosswalk spacing criteria would be better
determined according to the pedestrian flow and their
preferences to cross the street. In general, the more distant
a crosswalk is, or the longer the detour to reach it, the
more likely a pedestrian is to jaywalk. By analyzing the
crossing patterns determined by the pedestrian flow, it is
possible to decide upon reallocating a crosswalk or adding
a crosswalk in a specific location. Moreover, in the 21
ground truth regions, our algorithm detected 8 additional
regions that could be more suitable for the location of a
crosswalk than the three crosswalks that went undetected
by our algorithm. For experiment B, five crosswalk regions
went undetected, corresponding to those crosswalks where
pedestrian movement can only be detected when the probe
vehicle stops at a traffic sign. Also, from experiment B,
the algorithm detected one new region, illustrated in red in
Fig. 23. It corresponded to a parking lot area marked as the
road in the semantic map. Since experiment B corresponds
to a high traffic flux city area, one can expect not to find
new crossing regions on a three-lane road.

State of the art methods for estimating pedestrian
intention employ pedestrian as well as environment
information. The location where pedestrians tend to cross a

street can be used as new information from the environment
to improve the precision and accuracy of determining
whether or not a pedestrian crosses the street. Therefore,
identifying locations where pedestrians are likely to cross a
street can improve autonomous cars’ safety. For example,
the locations where pedestrians are likely to cross can
be used to improve the estimation of pedestrian crossing
intention systems and generate a safe path planning for
autonomous vehicles minimizing the risk of accidents.
Moreover, these locations can also be used to infer the
optimal location of crosswalks in a region according to the
pedestrian tendency to cross the street.

8 Conclusion

This paper presents a method to extract information
from dynamic traffic participants using sparse data and
a semantic map obtained via an electric vehicle. A
graph structure was used to represent pedestrian flow,
wherein each node represented a region of pedestrian
observation, and each edge represented the flow between
two clusters. Moreover, the link between two clusters
was determined through a probabilistic approach, where
the heading direction extracted from pedestrian data was
used to generate a GMM of the pedestrian’s direction of
movement in each region. After analyzing this graph, the
edges crossing the road were extracted by comparing the
edges with semantic information of the road.

The results show that the proposed system is capable
of extracting information regarding pedestrian crossing
patterns. The pedestrians estimated crossing patterns were
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able to detect 81% of the regions where pedestrians
have been seen crossing the street. This indicates that
the algorithm can successfully identify the tendency of
pedestrians crossing the street in an environment. This
tendency of pedestrian crossing can further be used to
improve the detection of pedestrian crossing intention,
which would improve autonomous vehicles’ safety.

For future works, first, the authors plan on developing a
crosswalk extraction method to use crosswalk information
on graph refinement. There are several types of cross-
walks; in broad intersections, some of those crosswalks
allow pedestrians to cross the street diagonally. One of the
assumptions in this algorithm was that pedestrians only
cross the street perpendicularly to the road. Therefore our
algorithm would only show perpendicular crossing patterns,
even if such patterns are allowed by a crosswalk. By devel-
oping a crosswalk extraction method for graph refinement,
we could obtain a better analysis, which would lead to a
broader display of pedestrian patterns. Second, the authors
plan to extract GPS data for data acquisition to develop
a more precise multiple daily data fusion method. At the
moment, using only LiDAR information to generate a map
using SLAM renders the map susceptible to noise during
the SLAM process. This builds it up to a large cumulative
error over time, which would affect the data fusion.
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