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Abstract
Recently, Multi-Robot Systems (MRS) have attained considerable recognition because of their efficiency and applicability in
different types of real-life applications. This paper provides a comprehensive research study on MRS coordination, starting with
the basic terminology, categorization, application domains, and finally, give a summary and insights on the proposed coordina-
tion approaches for each application domain. We have done an extensive study on recent contributions in this research area in
order to identify the strengths, limitations, and open research issues, and also highlighted the scope for future research. Further,
we have examined a series ofMRS state-of-the-art parameters that affectMRS coordination and, thus, the efficiency ofMRS, like
communication mechanism, planning strategy, control architecture, scalability, and decision-making. We have proposed a new
taxonomy to classify various coordination approaches of MRS based on the six broad dimensions. We have also analyzed that
how coordination can be achieved and improved in two fundamental problems, i.e., multi-robot motion planning, and task
planning, and in various application domains of MRS such as exploration, object transport, target tracking, etc.

Keywords Multi-robot system . Coordination . Cooperation . Multi-robot task planning . Multi-robot motion planning .
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1 Introduction

The continuous advancements in robotics technology offer the
widespread deployment of autonomous robotic systems in dif-
ferent applications. A key specific component of this area of
research is the level of autonomous behaviors of robots in
MRS, unlike obsolete robotics applications. In the field of robot-
ics, autonomy becomes an elementary requirement of the pro-
posed system. The growing use of robotics technology and in-
creasing levels of autonomy are encouraging the deployment of
multi-robot systems (MRS) in various applications. The MRS is
defined as the group of robots systematized in the form of a
multi-agent architecture so that they can work towards the same
or different goal. The existing Multi-Agent System (MAS)

approaches of cooperation coordination are not suitable enough
for dealing with uncertainty, acquiring information from the en-
vironment, and modeling incompleteness of robotics [1, 2], be-
cause of the concerns that arise while dealing with the actual
physical environment. The problems can becomemore challeng-
ing when a cooperative situation requires to adjust the different
constraints on resources, tasks, goals, and on the robots them-
selves. The experimental analysis of MRS becomes more chal-
lengingwith this demanding need that autonomous robots should
cope with acquiring information from the real environment.
Therefore, to identify a common framework for developing the
best solution for these different problems of MRS is a little bit
complex andmore challenging. Some recently developed frame-
works for MRS are shown in [3–5]. It has been observed that
MRS cannot be studied and evaluated by generalizing the case of
a single robot. Therefore, the approaches related to the Multi-
Robot system should be carefully characterized in terms of sys-
tem organization, team size and composition, communication,
and environmental assumptions [6, 7]. Hence, the autonomous
behavior of robots inMRS, alongwith real-world challenges, has
gained substantial interest in recent years.
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A parallel working group of mobile robots gives an abun-
dance of benefits as compared to the single robot system. To
accomplish a large variety of tasks with enough robustness,
robot teams are used instead of single highly specialized ro-
bots. Researchers [8–11] agree that MRS, when works in a
distributed manner to perform coordinated tasks, provides
more robustness and efficiency, which is not possible with a
single robot system. Although, just by increasing communi-
cation range, bandwidth, and sensor range of robots without
an efficient coordination mechanism can be damaging.
However, some tasks are very challenging or just not achiev-
able with a single robot system. Therefore, systematic ap-
proaches are required to control and organize the robots in
MRS. In some cases, by using a large number of robots, a
multi-robot system can accomplish tasks in lesser time and
more efficiently. The advantages of MRS are: better to scale,
able to execute larger tasks by increasing the size of the team,
have inbuilt redundancy, provide robustness (can work when
some robot or communication fails). Such systems also con-
tain some special abilities like parallel operation, cooperative
behavior, etc. When multi-robot systems start working, coor-
dination is essential during the whole process. In [12], coor-
dination is considered as a cycle consisting of four phases:
“Definitional phase, conflict resolution phase, action phase,
and adaptation phase”. Nowadays, scientists consider two
opposite definitions [13] on cooperative MRS, i.e., “active
and passive cooperative system” [14]. Coordination and co-
operation in MRS are joint operations or actions between the
group of robots [13]. In cooperation, not only robots pay at-
tention to their own work, but they also need to know if there
are more urgent tasks from other partners. Usually, problems
such as bandwidth overhead, resource completion, action con-
flict, etc., are absent in a single robot system because these
problems arise by joining multiple robots. Hence, MRS re-
quires an effective coordination mechanism to control the ro-
bots’ interactive activities. To ensure high efficiency in MRS,
a major component is the ability to perform various functions
optimally and maximize the system’s performance. Therefore,
MRS should have a proper coordination mechanism so that
robots carefully select their actions and works effectively in
terms of time and working space while achieving the system-
wide objective. We have presented multiple dimensions of
MRS that address the different facets of theMRS organization
that affect coordination, such as environment, composition,
team size, communication, etc. We have also analyzed the
proposed solutions in relation to characteristics of organiza-
tion of MRS especially aiming coordination.

1.1 Scope of Study

In this research paper, we have carried out in-depth analysis
specifically, focused on MRS coordination. This research
highlights the recent progress in the field of ‘MRS

coordination’ along with its classification and comparison
(in terms of communication, scalability, validity methods, en-
vironment, robustness, control mechanism, etc.). Both homo-
geneous and heterogeneous MRS are considered operating in
a competitive or cooperative environment. The robots can be
Unmanned Aerial Vehicles (UAVs), Autonomous
Underwater Vehicles (AUVs), Autonomous or Semi-
autonomous Ground Robots. We have not considered robot
manipulators; therefore, coordinated motion planning is stud-
ied only for the navigation of mobile robots. Coordination
approaches developed for both indoor and outdoor environ-
ments are considered. The MRS coordination is analyzed in
various application domains (such as Area Exploration, cov-
erage and mapping, Object Transport, tracking, etc.) of
MRS, including two fundamental problems that are
present in almost all applications of MRS, i.e., motion
planning and task planning. The comparison of coordi-
nation approaches is based on the parameters shown in
Table 1.

1.2 Organization of the Survey

The remaining structure of the paper is as follows. Section 2
briefly describes the existing survey works related to MRS
and MRS Coordination. Section 3 provides a classification
of MRS. Section 4 presents the taxonomy of proposed ap-
proaches related to MRS coordination, identifies and de-
scribes the parameters related to coordination. Section 5 de-
scribes and analyses the various coordination approaches for
Multi-robot task planning. The comparative analysis of coor-
dination parameters is also discussed in Section 5. Section 6
describes and analyses the various coordination approaches
for Multi-robot motion planning, along with insights on the
proposed approaches. The comparative analysis of coordina-
tion parameters is also shown in tabular form. Section 7 de-
scribes and analyses the various coordination approaches re-
lated to various application domains of MRS along with their
insights and comparative analysis of coordination parameters.
Section 8 presents important observations based on our study
and analysis of existing work in terms of open issues,
strengths, challenges, and future directions.

2 Related Work

In relation to MRS classification, several research and survey
papers have been presented. Authors in [15] proposed a tax-
onomy that categorizes MAS based on computational capac-
ity, communication, and a few other parameters. They have
also added some useful results to demonstrate the utility
of the proposed taxonomy and prove that a cooperative
effort can be more compelling as compared to a single
entity of the collection.
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Cao et al. [16] presented a review related to cooperative
mobile robotics until themid-1990s. Five research axes shown
in this paper are: “group architecture, resource conflict, origin
of cooperation, learning, and geometric problems”.
Constraints that arise because of technological limitations
and research gaps in present works are also discussed in this
paper. In [17], four multi-agent situations are discussed: “ho-
mogeneous non-communicating agents, heterogeneous non-
communicating agents, homogeneous communicating agents,
and heterogeneous communicating agents”. These scenarios
are discussed by means of “pursuit domain,” along with a
description of presented works in this field. However, their
work is more inclined towards machine learning techniques.
Seven key research topics related toMRS are identified in [11]
which are, communication, reconfigurable robots, localization
and mapping, biological inspirations, exploration, object
transport and manipulation, architectures, and motion coordi-
nation. Various special issue articles are discussed in this pa-
per, and some additional research issues are also suggested.
Authors in [18] study some current trends and techniques of
networked control systems, mainly focused on five control
problems: event-triggered control, sampled-data control,
networked control, security control, and quantization control.
Survey analysis in [16] and [15] presented the classification of
the research work on MRS. In [16], a few dimensions for
categorizing the MRS have been proposed. It also talks about
group architecture (on which cooperative behavior must rely),
resource conflict, origin of cooperation, and geometric prob-
lems. In [15], the classification of MRS focused on the com-
putation and communication facets of MRS has been
discussed. The detailed description of problems associated
with the synthesis and analysis of intelligent group behavior
inMRS is presented in [6, 19]. The interpretation of important
topics related to MRS coordination is also given in this paper
that characterizes the various important attributes of the prob-
lem. Authors in [20] have classified multi-robot coordination

into four approaches, i.e., reactive, deliberative, behavior-
based, and hybrid approach. In a recently published work by
Rizk et al. [21], special focus is given on heterogeneous MRS.
They first present an overview of “multi-agent system
(MAS)”. The components related to the workflow for auto-
mating MRS are shown in this paper. The presented compo-
nents are coalition formation, task decomposition, MAS
planning and control, task allocation, and perception.
The additional papers that presented a literature review
on MRS are [2, 22–35].

Although several survey papers have been published in the
past related to MRS, however only a few are related to MRS
coordination, in spite of the abundance of research work in
MRS coordination and cooperation. Work published in [28,
32, 33, 35] shows survey on MRS coordination and coopera-
tion in recent years. A comparison of our survey with other
surveys on MRS coordination is presented in Table 2.

Although some reviews onMRS also includes some details
about coordination and cooperation. In [28] multi-robot envi-
ronment is described as cooperative and competitive. It also
describes concepts of resource conflict, explicit and implicit
communication. This paper analyses the multi-robot coordi-
nation with the perspective of motion and task planning. This
work remained bounded to very few approaches for task and
motion planning. Farinelli et al. [33] presented a taxonomy to
classify approaches to coordination in MRS. An overview of
application domains of MRS is shown in this published paper
along with emerging trends in the related field. In [35] prob-
lem related to robot coordination in order to avoid collisions
has been discussed. They classify coordination methods as
coupled and decoupled. They describe approaches proposed
for solving the problem of robot coordination as well as
some representative works until early 2000. In [32],
three approaches proposed for multi-robot control:
“leader-follower scheme, virtual structure and behavioral
approach” are compared.

Table 1 Comparison parameters

Comparison parameters Objective

Composition To assess the capability of a coordination approach to handle heterogeneous MRS.

Control Architecture To find how a coordination approach controls all the robots, centralized or decentralized or hybrid.

Scalability Defines how many robots can coordinate efficiently before the performance (high computation and
communication cost) degrades.

Fault Tolerance To check the applicability of the coordination approach in case of robot or communication failure.

Reactivity Defines how the coordination approach handles changes in the environment.

Validation Defines how MRS is tested simulation or real-world experiment.

Communication Details To know communication cost, one-hop or multi-hop, frequency of messages sent, information flow.

Communication Type Defines how the robots exchange information, implicit or explicit.

Environment Robots are cooperating or competing for executing the task.

Static/Dynamic To find whether a coordination approach can work outside predefined scenarios or not.
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The closest work related to our survey is presented in [33],
which is published more than a decade ago, and considerable
work has been done on MRS coordination after that. The
proposed work does not analyze communication cost, robust-
ness, environment, scalability, and many other important pa-
rameters. Further, it does not include enough study on control
architecture and coordination specific to various application
domains of MRS. In our best knowledge, none of the work is
seen yet that has analyzed MRS coordination in various ap-
plication domains of MRS and compared the important pa-
rameters of coordination approaches such as communication
cost, scalability, robustness, decision making.

2.1 Motivation and Contribution

With the increasing use of MRS in a wide variety of applica-
tions. Especially during this pandemic, a large number of
MRS are being deployed in a variety of domains (warehouse
[36, 37], transport [38], etc.). Moreover, MRS is going to play
a key role in achieving Industry 4.0 standards. However, with-
out efficient coordination mechanisms, the full potential of
MRS cannot be realized. This inspired us to carry out this
research to classify and find the state-of-the-art parameters to
assess the effectiveness of proposed coordination approaches
for various application domains of MRS. To meet the current

and future needs in the deployment of MRS, we also analyze
current challenges and future directions and technologies for
MRS coordination. Consequently, this study of the coordina-
tion approaches can help the researchers to work on the cur-
rent and future needs of theMRS and help developers to select
an approach, which is most suitable for a given application.
The main contributions of our research study are given below.

& We provide a brief overview and classification of MRS,
based on five dimensions of MRS that address the differ-
ent facets of the MRS organization that affect
coordination.

& We have presented a novel classification of coordination
approaches proposed for MRS, which categorizes the re-
cent developments in this field.

& We have also identified and analyzed the essential param-
eters (communication type and cost, scalability, robust-
ness, control architecture, validation method, environ-
ment, composition, etc.) related to MRS coordination.

& Review and analysis of the MRS coordination approach
for various application domains of MRS and two funda-
mental problems of MRS, i.e., Motion Planning and Task
Planning. In each application domain, summary and in-
sights are also provided.

Table 2 Comparison with other surveys on MRS coordination

Related
survey

Topics covered Summary Common points with
other surveys

[21] Overview of MAS, Automation levels in MRS,
Coalition formation and Task allocation in
heterogeneous MRS, MAS Planning and control,
Challenges

A survey of cooperative heterogeneous MRS focused on
coalition formation, task decomposition, task
allocation, and perception.

Task Planning,
Challenges

[28] Coordination: Static versus Dynamic, Communication:
Explicit versus Implicit, Task and Motion planning

A study onMRS coordination related to multi-robot task
planning and motion planning.

Explicit and Implicit
communication, Task
and Motion planning

[33] Taxonomy for MRS, Task and Domains for MRS Presents a taxonomy to classify approaches to
coordination in MRS and an overview of MRS
application domains.

Multi-Robot System
Classification

[35] Classification of coordination methods based on
priorities, Coordination cost evaluation, Coupled and
Decoupled methods

Study of approaches proposed for solving the problem of
robot coordination as well as some representative
works.

Multi-Robot
Coordination
Classification

[27] Control Architecture, Communication, Problems and
issues of cooperative multi-agent robot systems

Survey of cooperative multi-agent robot systems in
terms of types of agents, communication and control
architecture along with directions and future
challenges for the multi-agent robot.

Open issues and
challenges in
coordinated MRS

Our
Work

MRS Classification, Multi-robot Coordination
Classification, Coordinated task and motion planning,
Coordination in Multi-robot Applications such as
Target observation, Exploration and Mapping, Object
Transport and Manipulation, Formation Control;
Open Research Issues, Challenges and Future
Directions

We analyze the scalability, communication parameters
such as its type topology and cost, robustness,
composition, environment, validity, etc., of
coordination approaches proposed for various
application domains of MRS. We also present a
classification of Multi-robot Coordination approaches
based on adaptivity, communication,
decision-making, and control architecture.

–
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& We identify open issues, research challenges, future re-
search directions, and potential technologies for future re-
search to promote the deployment of MRS.

3 Multi-Robot System Classification

Although our focus is to classify the coordination approaches
for MRS, however, before discussing about MRS coordina-
tion, we need to know about various aspects that are important
in MRS along with howMRS is classified, what its properties
are, and what are various aspects that affect the coordination
of MRS. We have defined five dimensions (as shown in
Fig. 1) related to MRS, with some similarities to other previ-
ous classifications. Many published research papers organize
and give a taxonomy of MRS. We have added some more
details in earlier classifications to incorporate recent works
in MRS. The details about the proposed classification are
shown below:

3.1 Coordinated and Non-Coordinated

Coordination can be defined as the mechanism used for
achieving cooperation. The mechanism can be simple to com-
plex according to the level of cooperation required. The coor-
dination approach can be centralized or decentralized based on
how decision-making is being realized in MRS to achieve
cooperation. We consider that coordination may still be pos-
sible even if robots are not aware of each other by using a
central system or shared memory variables, etc. Therefore,

even in bio-inspired MRS, in which robots are not aware of
each other can also achieve coordination. However, authors in
[33] classify all of such work [39–47], in which robots are not
aware of each other as non-coordinated. Although MRS does
not necessarily to be coordinated, coordination for the coop-
erativeMRS is not always an essential asset. In practice, many
tasks can be completed (with efficiency) without coordination,
while allowing the system to introduce more flexibility in the
system by providing better access to the existing resources,
such work is presented in [18] which addresses a formation
maintenance task. The benefit of a non-coordinatedMRS is its
simple design, which has less risk of defects. However, it also
results in more dissipation of resources because of the inter-
ventions arise as a result of robots performing conflicting
tasks. A coordinated MRS requires complicated design; how-
ever, it can prevent or reduce these shortcomings of non-
coordinated MRS. In [33], When a robot may not take into
consideration the activities carried out by other robots in the
systemwhile completing the task, then it is considered as non-
coordinated. It is not straightforward to determine whether the
robot is accounting actions of other robots while executing its
task or not.

3.2 Composition

On the basis of composition, MRS can be classified as hetero-
geneous and homogeneous. All the robots in a homogeneous
MRS consist of the same hardware and software. In heteroge-
neous MRS, the team members can have dissimilarity in soft-
ware control procedures or hardware or both. Heterogeneity of
MRS can be of varying degrees. Sometimes when only a

Fig. 1 Classification of MRS
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leader or a specific system is different in its capabilities in
terms of software or hardware or both, in this case, heteroge-
neity is very low. In some cases, MRS may be composed of
two, three, or more different types of robots. For example,
MRS deployed in a smart home scenario can have cleaning,
serving, cooking robots, and security drone. More the degree
of heterogeneity, more varsity application of MRS, but with
that comes more complexity and difficulty in coordination and
control mechanism. A large portion of research work assumes
homogeneous groups of robots. However, in the recent few
years, work on heterogeneous MRS has been increased sig-
nificantly. Some published works on heterogeneous MRS are
[48–52]. A recent survey on cooperative heterogeneous MRS
is presented in [21].

The advantage of heterogeneous MRS is, it can be easily
adapted to the different situations that arise in the real dynamic
environment due to its better scope to deal with new and unpre-
dictable tasks. The composition of MRS also affects its robust-
ness and the manner in which robustness can be attained. In a
homogeneous system, all robots can execute identical tasks with
the same efficiency. Therefore, the failure of any robot can be
adjusted by any other member; thus, robustness can be achieved.
However, applicability to different situations and environment is
weak due to the same hardware and software of robots. Clearly,
employing heterogeneous systems need more effort in terms of
developing efficient coordination approaches and software re-
quired for controlling the MRS.

3.3 Cooperative and Competitive Environment

The multi-robot environments exhibit collective behavior like
human society [53]. In collective behavior, robots react to usual
influence or stimulus in unstable, unpredictable, spontaneous,
and unstructured circumstances [54]. Collective behavior con-
sists of cooperative and competitive behavior. Cooperative be-
havior refers to interaction among robots to execute a task along
with increasing the system’s overall utility. Hence, all the robots
in the system interact and work for a common goal or reward.
The common goal of cooperative robots can also give rise to
multiple sub-goals. Various illustrative examples of multi-robot
cooperation are multi-robot motion planning [55–60], multi-
robot exploration [61–66], multi-robot target tracking [67–71]
and multi-robot transportation [72–75].

Competitive behavior, which is the opposite of cooperative
behavior, refers to the case in which multiple robots compete
among themselves in order to satisfy their own interest.
Alternately, robots that consist of conflicting utility functions
can also be considered as in competition with each other [53].
Examples of multi-robot competition are “Student
Autonomous Underwater Vehicle Challenge-Europe
(SAUC-E)” [76] and robot soccer leagues [77, 78].

Robots can be considered as self-centered from the socio-
logical viewpoint because every robot gravitates to make

decisions inspired by ‘self-preservation’. For illustration, sup-
pose few robots are progressing in a direction opposite to each
other, and all of them want to traverse a narrow passage;
however, only one of them can cross the passage at a time.
If all of them try to pass that passage simultaneously, the
congestion or collision may occur. In this situation, the coop-
erative behavior can reduce individual cognitive bias, and
group thinking also requires some coordination. This required
coordination can be accomplished by communication, i.e., a
principle behavior used in multi-robot environments.

3.4 Communicating and Non-Communicating

Robots can cooperate via communication mechanisms that
enable them to share information among them. However,
without communication, weakly-coordinated and non-
coordinated system can be established. By communication,
we mean by any way the robots can exchange or sense some
information about each other. Hence, in a non-communicating
system, there is no information available about another robot
to any other one. In [16], the communication framework is
classified within three categories based on the way of interac-
tion, namely: “interaction via explicit communications, inter-
action via sensing, and the interaction via environment”.
Based on the way robots’ sense or share information, two
types of communication are proposed, i.e., indirect and direct
communication [33].

In this research paper, taxonomy established based on
modes of data transmission, i.e., implicit and explicit commu-
nication is being followed. Explicit communication uses ad-
ditional communication hardware, a dedicated device for sig-
nals that can be understood by other team members. The ro-
bots exchange information directly using unicast and broad-
cast intentional messages in explicit communication. Whereas
in implicit communication, robots obtain information about
other member robots through the environment. Stigmergy
(both active and passive) is used in implicit communication
among team members, can be obtained by utilizing specific
sensors in the robot. The implicit communication is further
branched into two categories by [28], which are active and
passive. Interaction via environment is called active, and in-
teraction through sensing called passive. They [28] defined
active implicit communication as “the mechanism in which
the robots communicate by accumulating the essential infor-
mation of other robots in the environment”. This form of ex-
changed information is linked with the area of biometrics,
which is inspired by collective behavior used by ants and bees
for collecting information related to other robots in the system.
In passive implicit communication, robots perceive informa-
tion related to change in the environment with the help of
sensors in order to communicate. For example, a robot can
estimate the position and altitude of other robots in the system
by representing and interpreting in accordance with the
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acquired data in order to cooperate with other robots.
Communication has great significance in MRS because vari-
ous properties of the system depend on it. Direct communica-
tion is a straightforward and prominent method for exchang-
ing information between MRS members. However, due to
failures of hardware and noises, the communication becomes
critical. Hence the techniques like stigmergy have been devel-
oped and utilized to deal with such communication failures
[79, 80]. Higher robustness in the communication system re-
quires more complex MRS design because every team mem-
ber interprets their surrounding environment. It also needs less
information exchange among the members of MRS.

Broadcast communication, a form of direct communica-
tion, which is extensively used in MRS, exhibits low scaling
properties. As the number of robots increases and distributed
vastly, relevant issues and techniques related to this problem
covered in computer networks can be exploited.

3.5 Reactive and Deliberative

A classification of MRS is presented in [81], regarding reac-
tive or deliberative architectures. We consider MRS is delib-
erative if robots can cope up with any change in the environ-
ment by some approach to restructure the overall team behav-
iors. However, in a reactive system, every single robot copes
with the changes in the environment by giving a robust solu-
tion to re-organize its own taskwith the purpose of completing
its initially given goal. The difference in reactivity and delib-
eration depends on how MRS recovers from an unpredicted
situation and what are the different approaches applied by
MRS. In the case of a deliberative MRS, a long-term plan to
complete a global goal is provided concerning the usage of all
the available resources. In a reactive MRS, plan is given di-
rectly to the robot, which is involved with the problem to deal
with it. In a deliberative system, environment may be repre-
sented globally, which is common for all robots. Although, if
some constraints are imposed on system behavior, then with-
out global representation of the environment, MRS can be
deliberative. Reactive MRS can speedily respond to environ-
mental changes, without affecting other members of MRS. A
required consideration forMRS to be deliberative is whether it
is coordinated or not. Any MRS which is not strongly coordi-
nated can be reactive or partially reactive, and if it is strongly
coordinated, it can be deliberative or reactive. Amongst
strongly coordinated, centralized MRS can be deliberative,
and decentralized MRS can be reactive (distributed) or par-
tially reactive (hierarchical). Hybrid MRS can act in both
ways as deliberative and reactive, depending on a particular
event or a situation of environment. In [82], reactive planning
of motion and mission for MRS is presented.

3.6 Team Size

Team size is an important parameter while deploying the
MRS. Team size or number of robots in MRS can greatly
affect the performance of MRS. Two or more robots can ac-
complish tasks that are not possible with a single robot.
Almost any task requiring simultaneous or near-
simultaneous actions (such as opening or closing multiple
doors at the same time) is not possible with a single robot.
Therefore, a number of robots can be used to obtain speed up
in terms of task performance, completion time, etc. For devel-
oping an efficient coordination approach, team size is an im-
portant parameter to be considered. It is becoming a more and
more relevant topic in the development of MRS. Many works
explicitly address this significant issue in large scale MRS
[83–86].

We analyze the scalability of the approaches proposed for
MRS coordination and measure it as Low, Medium, and
Good.Wherever possible, we also provide a quantitative mea-
sure of team size in terms of the number of robots in MRS.

4 Multi-Robot Coordination Classification

Coordination and cooperation in MRS are defined as: “joint
operation or action amongst a group of robots” [13]. It can be
said that coordination is the mechanism used for cooperation.
It is also possible that the goal of robots in MRS may be
different, but still, they need to coordinate. When there are
many robots in a system, a mechanism for coordination be-
tween robots is essential to control the cooperative actions.
Cooperation inMRS is defined as “Given some task specified
by a designer, a multi-robot system displays cooperative be-
havior if, due to some underlying mechanism (i.e., the mech-
anism of coordination), there is an increase in the total utility
of the system” [16]. In cooperation, not only robots pay atten-
tion to their own works but also need to know if there are more
urgent tasks from the partner. A published paper onMAS [87]
defined coordination as “cooperation in which the actions
performed by each robotic agent takes into account the actions
executed by the other robotic agents in such a way that the
whole process ends up being a coherent and high-performance
operation.” Hence, an effective coordination mechanism is
essential to control cooperative actions between robots with
the purpose of assisting each robot in selecting actions in such
a way that it maximizes the efficiency of system-level objec-
tives. These coordination approaches can be classified based
on various parameters, such as communication mode, deci-
sion making, adaptivity, and protocol. One possible classifi-
cation of coordination in MRS is shown in Fig. 2.
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4.1 Static and Dynamic Coordination

The performance of MRS highly depends on the efficiency of
the coordination and control technique of robots. One way to
divide coordination is as “static and dynamic”[28]. Static co-
ordination is based on some predefined rules or conventions.
As proposed in [88], if there are two robots in the MRS and
initially rules are set for one of them to keep left and another
one to keep right so that they do not collide to each other while
moving on the same track. These rules are decided before
starting of execution of the task. Thus, static coordination is
not suitable for highly dynamic environments, and it may
suffer from poor real-time control. For the MRS, where coor-
dination requirements are pre-determinable, static coordina-
tion can be suitable, and it can handle complex tasks also.

On the other hand, dynamic coordination is defined as the
coordination that occurs while the task is being executed, and
it depends on the present state of the system, physical location,
information, and analysis of other robots. Some examples of
dynamic coordination are [89–91]. Such systems make deci-
sions according to the present state of the system. However,
the behaviors can still be defined for particular states, and it
also requires some method of communication. Dynamic co-
ordination can be achieved using implicit communication or
explicit communication; thus, dynamic coordination can be of
two types, implicit coordination, and explicit coordina-
tion. Some works, which use both static (added prior
knowledge to reduce learning) and dynamic coordina-
tion, are discussed in [52, 92].

Insights: Many times, the environment or tasks can be too
complex. In that case, it can be very difficult to use only static

or dynamic coordination. Depending on the nature of the task,
task requirements (e.g., how frequent robots need to commu-
nicate), and the environment, using both static and dynamic
coordination can be beneficial.

4.2 Implicit and Explicit Coordination

To attain desired collective performance, implicit coordina-
tion approaches [93–99] use dynamics of interactions between
robots and environment (i.e., implicit communication), mostly
in the form of devised emergent behaviors [100]. Different
sensors or devices are used with robots to perceive environ-
mental changes. Explicit coordination approaches [90,
101–104], use intentional communication (i.e., explicit com-
munication) and cooperation methods, similar to those
employed in MAS. Explicit coordination approaches can deal
with comparatively more sophisticated robots. When using
explicit coordination among robots, the differences in the
methods used in MAS and MRS are few, but they are not
equivalent in fundamental ways. Using both implicit and ex-
plicit information intelligently, the performance of MRS can
be improved with respect to coordination. Many proposed
approaches have used both implicit and explicit coordination
[77, 79, 80, 105–107].

Insights: Approaches based on implicit coordination are
often efficient, but the general analysis is proposed in
[100]. Such approaches show great potential, especially
for large scale MRS of simple robots. Presently these
methods are actively studied in robotics and even in
other fields. Explicit coordination ensures accuracy in
exchanging information between robots; however, with

Fig. 2 Classification of Coordination in MRS
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the addition of more and more robots in the system, the
communication load increases. Hence, it decreases the
system’s performance; sometimes, in extreme cases, it
also leads to overall system failure. As compared to
this, implicit coordination provides stability, fault toler-
ance, and reliability to the MRS system along with
compromising the correctness of the information per-
ceived by robots. Therefore, to achieve an efficient, ro-
bust, and reliable MRS system, implicit and explicit
methods can be combined.

4.3 Weak and Strong Coordination

AnMRS can be realized with “no coordination, weak or loose
coordination, and strong or tight coordination”. It depends on
factors like required performance, task, team size, etc. to de-
cide what level of coordination needs to be achieved, i.e.,
using weak or strong coordination. Many researchers have
used weak coordination for various coordination applica-
tions such as foraging, box pushing, and area exploration.
These tasks can be realized efficiently with weak coordi-
nation [108–119]. Weak coordination, as defined in [81],
“a method of coordination that does not rely on a coordi-
nation protocol”. It can also be said that weak coordina-
tion means that the system does not need complex rules,
explicit protocols, and direct communication to achieve
coordinated behavior. It may need implicit communica-
tion and direct communication for some basic info ex-
change but not for enforcing rules. As proposed in [79]
leader uses explicit communication to send goal positions
to robots periodically. Here, explicit protocols are those
rules which outline the behavior of robots based on the
information exchanged among the robots. The weakly co-
ordinated MRS, as defined in [120], “uses a method of
coordination that does not rely on a protocol,” and there-
fore, such MRSs are more robust in terms of failures re-
lated to communication. However, as the task becomes
more and more complex, environment becomes more dy-
namic, more efficient solutions are needed for a weakly
coordinated MRS.

Strong coordination, as defined in [81] “a method of
coordination that is based on a coordination protocol”.
It can also be said that strong coordination means to
achieve coordinated behavior; the system needs complex
rules, explicit protocols, and communication. Here, ex-
plicit protocols are those rules which define the behav-
ior of robots based on exchanged information between
the robots. In such systems, one robot can influence the
behavior of others via signals. Signals are the means by
which robots communicate information based on coordi-
nation protocols. We can also say that strong coordina-
tion is built on previously defined or learned guidelines
regarding how two or more robots have to work

together. Some approaches which are strongly coordinat-
ed are presented in [80, 90, 121, 122].

Insights: In the case of strong coordination, most of the
literature has used explicit or direct communication, but it is
also possible to use implicit or stigmergic communication to
realize a strongly coordinated system. It is not necessary that
strong coordination can achieve the increased efficiency of
MRS. Some tasks can be completed more efficiently by using
weak coordination. However, such MRS cannot have many
organizational abilities that are offered by the coordination
protocols used in strong coordination.

4.4 Centralized Coordination

The coordination can be achieved in a centralized or
decentralized way; centralized coordination can be fur-
ther divided as strongly centralized or weakly
centralized. Centralized coordination is realized by a
single coordinating robot, which is responsible for mak-
ing decisions regarding coordination, on behalf of all
other robots. This is also the way in which the decision
system is defined within the MRS. In centralized MRS,
it has a single robot or server (called leader) that is
responsible for the work of the other robots. In the
overall decision process of MRS, the leader is involved,
and the other robots act as per the commands of the
leader. Decentralized coordination does not need such
a robot. In general, centralized approaches are not suit-
able for the coordination of MRS with a big team due
to the high computation requirement of the leader, and
the communication cost among the robots.

Weakly coordinated [123, 124] and non-coordinated MRS
can be realized with or without communication. However,
communication is must (with the purpose of executing the
coordination protocol) for strongly coordinated systems.
Strongly centralized approaches [49, 99, 125, 126] uses a
fixed leader (leader can be a robot or some remote server)
for the entire mission. There are approaches in which multiple
robots are selected as leaders, and they can plan the actions of
other robots. However, in case of strongly centralized coordi-
nation techniques, the role of a leader is assigned to a single
robot at the starting of the task. The leader remains the same
for the entire mission.

In a weakly centralized coordination approach [78, 97,
127], more than one robot or system is permitted to be leader,
during the mission. A leader is not chosen prior. It can be
selected dynamically based on some criteria, depending on
the current situation of the task, environment, communication,
remaining battery power, etc. There can be several policies to
select a leader like some preset priorities, computation power,
etc. If there are multiple leaders, and all the leaders are even-
tually controlled by a single one, such approaches are also
categorized as centralized. If multiple leaders are working
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independently, means not controlled by one single leader, then
it is called hierarchical.

Insights: In many cases, MRS does not follow fully cen-
tralized or decentralized coordination. Strongly centralized
techniques are susceptible to failure (not robust) due to the
faulty operation of the leader and due to communication fail-
ure. In such approaches, communication failure can lead to
failure of the whole process of coordination. Besides, a strong-
ly centralized technique can fail in achieving any coordination
if the leader is broken. Weakly centralized techniques are
more robust than strongly centralized techniques because it
can select a new leader in case of leader failure.

4.5 Decentralized Coordination

Decentralized approaches can be further classified into two
types: distributed approaches (for e.g. [48, 90, 91, 103,
128–131]) in which all robots are equivalent with respect to
their responsibility to coordinate, and hierarchical approaches
which are locally centralized. Distributed coordination re-
quires a distributed MRS, in which the system is composed
of robots that are independent to take decisions with respect to
each other. This type of system does not have a single control
robot. The system has all equal robots with respect to control.
Every robot takes a decision in an autonomous fashion. The
distributed approaches of coordination provide better robust-
ness to the failure by allowing each robot to take decisions
autonomously, but more complexity comes to achieve the
coordination between robots. Many published papers have
used broadcasting for communication, which leads to poor
scalability of distributed approaches.

When the process of coordination is locally centralized, it is
called hierarchical. Here, we consider that in hierarchical ap-
proaches [51, 96, 121, 122, 132, 133], the MRS has local
leaders, but they are not eventually controlled by one single
leader. Such approaches are generally used in MRS with mul-
tiple tasks where a group of robots, works on some task, other
groups on other tasks or task is divided within few groups of
robots by negotiation, etc., not by central system or leader.
Such type of approaches are less robust than distributed, but
it can be realized only with local communication or global
communication with less complexity and cost.

Insights: Decentralized approaches are more robust to ro-
bot failures, malfunctions, or communication failure. In our re-
search paper, we found that the research communities have
shown their growing interest towards using decentralized ap-
proaches for MRS coordination. However, communication cost
is a challenge faced by many researchers when decentralized
coordination is used through explicit communication. However,
using implicit communication is also possible to realize a
decentralized system. Using implicit communication is more
scalable. Therefore, in practice, a combination of explicit and
implicit communication can be more useful and efficient.

4.6 Hybrid Coordination

When coordination is attained by using both centralized and
decentralized approaches, it can be called hybrid coordination.
In a coordination approaches, some degree of coordination
can be achieved in a centralized manner for e.g., periodically
sending goal position to all robots by a central station,
and some degree of coordination can also be achieved
in a decentralized manner like motion planning to reach
the goal (previously sent by a central station). Such
approaches are classified as hybrid coordination ap-
proaches [69, 79, 92, 134, 135].

5 Coordinated Task Planning

There are two fundamental problems of MRS, task planning
andmotion planning. In the large application domain ofMRS,
these two basic problems, i.e., task planning and motion plan-
ning, needs to be solved first. These problems may still exist
even if MRS is non-coordinated but to different degrees. We
consider these two problems as fundamental problems of
MRS to complete any given task. However, in the case of
cooperative MRS, task and motion planning are also needed
for further application-specific coordination. Once coordina-
tion is achieved at the level of task and motion planning,
further coordination to complete the given task is dependent
on it. So, when considering domains for MRS, task and mo-
tion planning are inherent (as shown in Fig. 3) in almost all
domains such as forging, exploration, target tracking, etc.
Various survey works suggested on task planning and alloca-
tion are presented in [24, 136–138].

To complete any task, one or more than one robot can be
needed. Some tasks can be accomplished with one robot, but
its quality can be enhanced with multi robots. Tasks can vary
in terms of complexity, timescale, discrete (e.g., transport an
object to some room), or continuous (e.g., tracking an object).
Task Planning can be separated as task decomposition (for
complex tasks), task assignment, and task allocation. Task
allocation in MRS can be defined as, the problem of deciding

Fig. 3 Application domains of MRS
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which robot is responsible for executing a task (or some part
of that task) with the aim of completing the task and also
achieve system objectives such as performance. It is intended
to achieve coordinated team behavior. Some MRS, such as
biologically inspired, local communications between robots of
a team with the environment, provide coordinated team be-
havior. This is called implicit coordination. However, in ex-
plicit coordination, tasks are explicitly allocated, and this
problem is known as “multi-robot task allocation (MRTA)”.
In [24] MRTA problem is categorized into three types: “First,
single-task versus multi-task robots. Second, single robot ver-
sus multi-robot tasks. Third, instantaneous versus time-
extended assignment”.

MRTA is a problem of dynamic decision making that
changes with time and environment. So, the static allocation
cannot be directly applied. Therefore, another approach is to
resolve the static allocation problem iteratively. Approaches
based on graphical models are presented in [103]. The authors
provide a solution based on “Distributed Constraint
Optimization Problems (DCOP)” model for task assignment,
relevant to warehouse logistics scenario. The task is to trans-
port objects from loading to unloading bays with minimum
interference. They use heuristic algorithms, precisely the “bi-
nary max-sum”, which is an iterative message-passing meth-
od. It relies on explicit communication, provides robustness,
and has high communication cost. In [139], a task allocation
approach is presented for moving target tracking in an envi-
ronment that is competitive. The problem is formulated as k-
WTA [140] and solved using a two-layered Neural Network.
Authors in [141] use a distributed behavior-based approach to
perform tasks by the selection of behavior set. Based on im-
patience and accepted parameters, robots can take over the
task from other one or can abandon their own task.

A work presented in [142] uses a market-based mechanism
for exploration tasks in which robots are required to visit
prefixed targets in the environment. They use combinatorial
auctions (in place of single-item auctions) to handle in-
schedule dependencies. In combinatorial auctions, more than
one task can be auctioned at the same time; robots can also bid
on bunches of tasks. They tested this approach with different
methods that intentionally take into consideration “in-sched-
ule dependencies” [142] by bidding a robot’s surplus. For
each bunch, a surplus is defined as overall profit minus overall
cost. Most auction and bidding based approaches have as-
sumed perfect communication, which is not realistic; a novel
approach presented in [143] deals with communication limit-
ed environments. An algorithm known as M+ [101] proposed
a decentralized approach separated into three layers: “A task
allocator (based on the Contract Net Protocol [144]), a fault
tolerance component, and a task execution component, which
is responsible for the coordination”. Task execution and allo-
cation components have low synchronization. Though, each
robot must be provided the same task description. Contract

Net Protocol [144] was preliminary idea of some fruitful
works like Traderbots [145], presents a distributed approach
which forms coalitions which are locally centralized, and
MURDOCK [146], is based on a “greedy algorithm” and uses
a “time-limited contract” to offer fault tolerance. Work in
[102] presented a “distributed market-based assignment algo-
rithm”, in which robots bid for tasks. This approach assumes
that the task can be assigned to a single robot (at one point of
time), and an individual robot can execute a single task only. It
has a high communication costO(N3), where N is the number
of robots in MRS. Another approach called “S + T” presented
in [147]. It uses a distributed market-based algorithm to re-
solve “multi-robot task allocation (MRTA)” problem. It is
developed for the applications in which robots need coopera-
tion to complete all the tasks. When a task is too complex or
due to any reason, it cannot be executed by a robot itself, it can
ask for help. Upon receiving this request, other robots can
provide needed services. Additionally, the algorithm provides
flexibility to give importance to task completion time or ener-
gy consumption.

A solution presented in [138], focuses on a finite state
formulation. It uses a weighted graph as an abstraction to the
environment. The clusters of samples arbitrarily appear in the
nodes of this graph. It is a centralized approach that uses a
central unit to communicate with all the robots. The algorithm
runs concurrently on each robot and the central unit. It also
exchanges information between each robot and the central
unit. Another “market-based” approach to MRS coordination
is presented in [51], which is called Constraint-based
Approach (CoBA). This proposed solution considers task
and communication constraints and allows tasks to be negoti-
ated in a complex environment between heterogeneous robots.
Here complex tasks can be negotiated at variable degrees of
abstraction and are “modeled with an AND/OR task tree with
temporal constraints” [51]. Authors in [148] proposed an ap-
proach based on “Response Threshold Model and Learning
Automata-based Probabilistic Algorithms”. In this approach,
each robot selects its tasks individually and autonomously so
that tasks are optimally distributed and completed. Some other
works are: [132] swarm intelligence (virtual pheromone-
based) for adaptive and decentralized task assignment in
search and surveillance tasks, [149] based on dynamic pro-
gramming for task planning for the functionally heteroge-
neous MRS, [150] based on Incremental and distributed plan
merging for Task planning and execution using requested
broadcast and local communication. Authors in [151] present-
ed algorithms to perform concurrent goal assignment and
planning trajectories. A decentralized version of the algorithm
is well scalable; however, it ensures high communication cost.

A scalable approach is presented in [159], for general MRS
planning problems. This approach is based on “Decentralized
Partially Observable Markov Decision Processes (Dec-
POMDP)” [160] and facilitates asynchronous decision
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making using macro actions. Another approach, named as
nearest-neighbor based Clustering And Routing (nCAR) pre-
sented in [155] shows good scalability (in terms of the number
of tasks). Work in [161] presented task allocation algorithms
for unreliable communication, which are based on auction
algorithms. An algorithm is presented in [162] to minimize
communication while planning for coordination. It discovers
an optimal communication schedule using particle filter and
describes the plan of robots as a probability distribution.
Authors in [5] propose a framework to allocate the tasks au-
tomatically and plan their execution. It uses linear temporal
logic (LTL) to define a high-level mission and task specifica-
tions. Some other works use LTL are [163, 164]. In [165]
motion planning incremental algorithm is presented based
on satisfiability modulo theories [166], robots are assigned
priorities and divided into groups. The scalability of the algo-
rithm is tested using an experiment, and it can perform motion
planning of twenty-five, fifty quadrotors in compact and
obstacle-free environment, respectively. This algorithm is
centralized and uses explicit communication. A summary of
works related to Task Planning is shown in Table 3.

Summary and Insights A number of algorithms have been
used such as, “market based” [51, 147], “graph-based” [103],
“Neural Networks” [139], Swarm intelligence [132],
Dynamic Programming [149], Contract Net Protocol [101],
biologically inspired [75], Mixed Integer Programming
[167], Soft Computing based [168], Deep Learning [154,
169] etc. The applicability of these approaches depends on
the application domain of MRS. Particularly, market-based
approaches [51, 102, 147] are extensively used for task allo-
cation in MRS, for many applications such as multi-robot
patrolling [170], soccer [77], exploration and mapping [61,
121]. Some approaches show better performance for some
particular application domain and others for other domains.
Therefore, in order to decide that a solution is the best ap-
proach to allocate tasks depends on the application domain
for which MRS is deployed. However, general parameters to
select a good approach can be communication cost, scalabil-
ity, decentralized or centralized, completeness, and computa-
tion cost. Most of the recent work uses decentralized coordi-
nation, explicit communication. However, communication
cost is generally high due to broadcast, especially in
bidding-based approaches broadcast is inherent, and most of
the coordination approaches are dependent on global connec-
tivity (each team member is always connected).

6 Coordinated Motion Planning

Motion planning is one of the fundamental problems of MRS.
In every application domain of MRS, two basic problems
(task planning and motion planning), needs to be solved first.

When robots are working in the same environment then it
becomes essential to coordinate with each other to generate
efficient (short, deadlock free, easy to plan trajectory, collision
free, etc.,) path for each robot. Therefore, it is necessary to
consider the movement of other robots while developing a
motion planning approach. Multi-robot motion planning
(MRMP) takes into account static and dynamic obstacles in
the environment, and any conceivable interference among ro-
bots, it includes the path and trajectory planning. Here in this
paper, we only consider mobile robots, not manipulators.
When robots perform their assigned tasks (independent task)
in a given environment, they are dynamic obstacles to each
other. The motion planning solution consists of creating a
continuous motion from one point to another in a given envi-
ronment. It should also avoid any collision with obstacles
present in the environment [171].

Three types of approaches, potential field [172], roadmap,
and cell decomposition, are studied in [28]. These approaches
discover some recognized states and paths within the environ-
ment and then represent the continuous “motion planning
problem” to a “discrete graph search” problem. Path planning
approaches are also classified as decoupled and coupled.
Decoupled approaches divide the problem into parts, and it
can be centralized or decentralized. Such approaches can plan
the path of each robot discretely and then coordinate to avoid
the collision. Each robot’s plan is independent, and such ap-
proaches may be fast for real-time applications; however, the
completeness is not guaranteed. On the other hand, coupled
approaches are capable of finding optimal or near-optimal
solutions [173–175]; however, these approaches endures ex-
ponentially growing time complexity in the worst case. The
complexity starts increasing with the number of robots partic-
ipating in the conflict grows. Thus, coupled approaches be-
come unrealistic for the coordination of MRS with a huge
number of robots.

Authors in [176] presented heuristic methods for path plan-
ning and task allocation for three robots working in a shared
area. It uses “A* algorithm” and “genetic algorithm” for the
path planning and task allocation, respectively. Work present-
ed in [177] is based on Firefly Algorithm (FA) for robot nav-
igation in a dynamic environment. The Fundamental concept
of the proposed work is that with variation in brightness of
firefly, there is an attraction of one firefly towards the other.
Work described in [178] presented an approach, which is
founded on an improved “gravitational search algorithm” for
trajectory optimization of multi robots in a dynamic environ-
ment. It uses a multi-objective function, and path planning is
completed in a centralized manner. The next position of the
robots is computed by an iterative algorithm, which must also
satisfy all restrictions forced on the multi-objective function.
The path planning problem considered here is formulated by a
centralized approach until all robots reach their goal position
the algorithm iterates.
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A modified version of “classical prioritized planning”
[179] is presented in [49], which is called revised prioritized
planning. It proposes a decentralized version of revised and
classical prioritized planning that can be used inMRS without
the central unit. This proposed approach is guaranteed to ter-
minate and computes coordinated trajectories by executing a
negotiation-based protocol among individual robots. The
completeness of approach is also inherited from the corre-
sponding centralized approach. Prioritized planning is a
decoupled method and is commonly used for “motion plan-
ning of multiple robots”. In this planning, all robots are given
a distinctive priority, and algorithm progresses, beginning
with topmost priority to the lowermost priority robot. At every
step, one robot finalizes its trajectory in a way that it does not
conflict with higher priority robots.

An event-based decentralized technique is presented in
[129] to attain coordination between robots. Robots need to
keep the desired formation while following a specified geo-
metric path. It reduces the communication cost by transmitting
the required data at discrete event times. The event times are
calculated based on some triggering condition devised in a
manner that the convergence and stability properties of the
consensus controller are preserved. As compared to other dis-
tributed approaches (using broadcast, flooding), the proposed
solution performs well in terms of scalability and communi-
cation cost. It shows by comparing with traditional periodic-
communication; the event-based methods provide a substan-
tial reduction in the data transmitted between robots. They
decompose the problem into two parts, one-part deals with
motion control of the individual robot, termed as path follow-
ing. The other part (contains consensus law) called coopera-
tive controller works for attaining coordination between ro-
bots. Authors in [180] proposed a self-triggered consensus
approach for linear multi-agent systems. Self-triggered mech-
anism gives advantages of reduced communication cost.

A distributed approach for multi-robot route planning is pro-
posed in [130], which is based on an “augmented Lagrangian
Decomposition”method. The key idea is to increase the penalty
factor whenever constraints are violated while computing a fea-
sible solution. The algorithm is framed as an “integer program-
ming problem”. Using “augmented Lagrangian decomposition”
and coordination methods, the “integer programming problem”
can be split up into subproblems for each robot. This approach
uses multi-hop (all to all communication) and has high commu-
nication cost and low scalability.

In [181], an approach based on “model predictive control
(MPC)” is presented for following the coordinated path of
multi robots. An additional penalty is integrated into MPC
scheme to achieve time convergence for trajectory tracking.
This approach considers whole system formation as one rigid
body (i.e., virtual structure). According to the required motion
of each robot and dynamics of virtual structure, control laws
are optimized for virtual leader robot and real follower robots.

An approach based on Distributed Model Predictive
Control (DMPC) is proposed in [182]. It can re-plan
the trajectories if any undesired event occurs. A
geometry-based approach [183] is presented for multi-
robot motion coordination. It is resolution complete and
offers good scalability in practical scenarios.

Many classical techniques, such as artificial immune sys-
tem, neural networks, and heuristic optimization algorithms,
have been proposed for MRS path planning. In the case of
meta-heuristic and classical techniques, two basic problems
are, trapping in local optimum and high time complexity in
the bigger problem. Therefore, in many applications, these
approaches are inefficient. Probabilistic algorithms, PRM,
and RRT, are developed to improve these problems. In
[184], a discrete RRT algorithm is presented; it is applicable
when the graph is discrete. They use an implicit representation
of a composite roadmap as in [175]. Many evolutionary algo-
rithms like PSO [185], bee colony optimization, Genetic
Algorithm [186], and differential evolution algorithm are also
used in “multi-robot path planning” problems.

Deadlock with other moving objects and teammates is also
needed to be handled for efficient motion planning. If the
robots have the option to change their path, then by
replanning, the problem can be solved. However, if the robots
have fixed trajectories to follow, then the way to avoid dead-
lock is by avoiding the robots being at the same location at the
same time. That can be done by introducing initial time delays
[187], stop and resume [188]. Authors in [189] have proposed
a distributed algorithm for deadlock, and collision avoidance.
Labeled transition system (LTS) is used to model the motion
of the robots. At its core, it is based on stopping and resuming
the robots at the right time and place. In [190], the classical
“shunting neural network” has been adapted for path plan-
ning. This approach can dynamically (at run time) generate
optimal collision-free paths even in changing environments.
Other promising works for collision-free motion planning are
presented in [191, 192].

Recently Deep Learning (DL) based approaches [193–195]
have emerged. In [195], the authors present an Imitation
Learning based approach, which does not guarantee complete-
ness. It falls in the category of hybrid coordination because it
is dependent on both global planner (centralized) and local
planner (needs information of nearby robots). The summary
of works related to Motion Planning is shown in Table 4.

Summary and Insights Here in “multi-robot motion plan-
ning” from a coordination point of view, most of the ap-
proaches use explicit communication with decentralized coor-
dination. Some of them are hierarchical and weakly central-
ized, however very few are strongly centralized. The central-
ized approach requires a large amount of information and high
computational resources to provide optimal solutions. For
most of the proposed approaches, due to being decentralized
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and explicit in nature, the communication cost is still a chal-
lenge. In [129], event-based information transmission is used
instead of periodic transmission, which gives a significant
improvement in communication cost and scalability. In
[122], hierarchical coordination with one-hop neighbor to
neighbor communication is used, which improves reliability,
scalability, and reduces communication cost. In reactive ap-
proaches, robots try to avoid a collision as they appear while
following the shortest path to their present destination.
However, it cannot be promised that the robot will reach its goal,
and subsequent motion will be free from deadlock because the
proposed solution to resolve collisions is local. So generally, a
motion planner is required, which coordinates with all robots to
take into account the starting position and final destination posi-
tion of each robot while planning mutually conflict-free trajecto-
ries for each of them. These planning methods are mostly based
on decoupled planning or uses coupled “heuristic search” in the
combined state of all the robots.

7 Coordination in Various MRS Applications

Recently, many applications have emerged as MRS is gaining
popularity. Here we define some important and prominent
application domains (as shown in Fig. 3) of MRS and discuss
other related (similar in terms of coordination needed) appli-
cations within these domains.

7.1 Exploration and Mapping

Exploration and mapping of an area are significant topics in
the study ofMRS because of its widespread applications in the
real world. It shows many advantages to properly utilize con-
currency provided bymultiple robots, for that it is necessary to
have efficient coordination between robots. For such tasks,
robots need to be distributed in such a manner that the part
of the task accomplished by one robot should not overlap with
others. Many other tasks such as foraging, searching, cover-
age, rescue and search operations, mine cleaning, snow re-
moval, mowing [198], map building, waste cleaning, plane-
tary exploration [199], reconnaissance [200] are related to
exploration and mapping. Foraging task requires that the ro-
bots collect the objects spread over an area. Coverage and
related tasks require all points of a given area to be processed.
They require coordination so that the movement of robots
should not be toward the same frontier cell to efficiently ex-
plore the area. In other related tasks,MRS needs to explore the
area and perform some additional actions such as, pick up an
object that generally needs additional coordination. Some im-
portant parameters for the coordination approach are its com-
munication cost, scalability, robustness, and efficiency.
Efficiency involves that the exploration task should be com-
pleted with minimum cost, such as communication

bandwidth, amount of data exchanged, exploration time, over-
all traveling distance, etc. Zhang et al. [201] proposed multi-
robot exploration approach based on RRT. Coordination be-
tween the robots is achieved using market-based task alloca-
tion approach, and the problem is formulated as a constrained
optimization problem.

Authors in [202] present a framework for coverage of the
partially known environment. They use a similar strategy as
presented in [203], receding horizon reactivemotion planning.
Robots are divided into clusters based on proximity, to in-
crease scalability and planning efficiency. Negotiation-based
approaches are widely used for multi-robot exploration. Work
proposed in [121], [204] shows that traveling distance and
time required for exploration has been reduced by negotiation
based approaches. The key idea is to select the best one by
using a bidding mechanism from several (those who submit-
ted their plans) robots. Authors in [121] solve the problem
produced by a limited communication range in the application
domain of multi-robot exploration using a distributed bidding
algorithm. It is a hybrid coordination approach because it uses
both local (in sub-network) information sharing and broadcast
for bidding. Thus, its scalability depends on the size of the
sub-network. In [80], presented a multi-robot exploration ap-
proach based on “social potential field (SPF) model” and
“market-based (MD)” technique. It is a distributed approach
and uses both implicit and explicit coordination. Explicit com-
munication is based on multi-hop communication. In [98],
simple random movement is used with pheromone-based im-
plicit guidance to explore the unknown area. In [205], algo-
rithms for exploration and mapping are presented based on
Monte-Carlo tree search [206]. Monte Carlo tree search is also
used by others [207, 208] for exploration and active percep-
tion. They formulate exploration problem as finite-horizon
optimization and use distributed sequential greedy assign-
ment, which enables robots to plan parallelly.

A coordination approach for MRS is presented in [98] to
realize the exploration of an unknown environment. This ap-
proach uses random movements via wall avoidance along with
a bias in the direction of forward movement to reduce explora-
tion time. This algorithm uses stigmergic markers for robot to
robot communication and can be used on simple robots.
Authors in [52] presented a coordination approach to perform
real-time exploration in disaster areas. They autonomously clas-
sify robots into two types: search and relay. Each class of robot
has its behavior algorithms. Area exploration is performed by
search robots using a predefined approach. Monitoring station
and search robots exchange information using relay robots. The
approach uses distributed coordination and wireless ad-hoc net-
work for communication, which has high communication cost
— strictly saying that communication cost and scalability de-
pends on the number of relay nodes.

Search and rescue operations can be made greatly efficient
by a suitable coordination strategy. However, first, the robots
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should be able to perform exploration and mapping; addition-
ally the robots must be capable of identifying the objects,
which need rescue. Therefore, the coordination approaches
designed for exploration and mapping can be easily modified
for search and rescue by adding the capability to identify the
rescue objects (while exploring the environment) and share
this information with other robots or server. In [209], authors
adopt a localization and mapping approach for search and
rescue. While mapping, each robot identifies the target of
interest, and the target location is determined using SLAM.
They use a master robot to control exploration and mapping. It
uses the least square method to detect the target, and for com-
munication, it uses an ad-hoc wireless network. Authors in
[210] use UAV and UGV for search and rescue. UAV can
detect the object of interest; however, the UGV must identify
it. They divide the problem into two parts, coordinated search,
and then jointly identify the object that needs rescuing. It uses
a central coordinator for all the coordination between UAVs
and UGVs. A recent survey paper [211] provides more infor-
mation on cooperative multi-robot search and rescue.

Another work in [93] has proposed some coordination and
control policies for a team of UAVs in environmental surveil-
lance by using coevolving neural network controllers and
assigning fitness with different evaluation functions. It relies
only on implicit communication. Authors in [212] use the
neural dynamics (ND) approach for complete area coverage.
They use the dynamics of each neuron, and each neuron is
characterized by a “shunting equation” inspired from the bio-
logical neural system [213]. An approach in [125] utilizes
“occupancy grid maps” to model the environment. It makes
the use of “decision-theoretic approach” to coordinate the ro-
bots for exploring an unknown environment. Work in [214]
presented a multi-robot exploration and coverage algorithm
for non-Euclidian environments with obstacles.

Various other approaches used for area exploration are,
“Voronoi Graph-based decomposition” [63, 91]; biologically
inspired [215, 216]; graph theory [217] and consensus algo-
rithm [218]. In [219], an approach is used based on Petri Net
[220] for area exploration, [221] uses partitioning of topolog-
ical weighted connected graph for terrain coverage such as
floor cleaning, [216] based on honey bee swarm-inspired for
forging task, [222] based on finite state automata for two het-
erogeneous robots looking for an object in a possibly cluttered
area. Recently some [223–225] Machine Learning (ML)
based exploration techniques have also been proposed.
These approaches are fundamentally different from other dis-
used approaches in terms of control, perception, and theory.
Authors in [226] present a novel exploration approach
for constrained communication environments. They have
used an auto-adaptive communication strategy to dy-
namically select the connectivity level between the ro-
bots. A summary of work, related to Exploration and
Mapping, is shown in Table 5.

Summary and Insights Most of the recent coordination ap-
proaches on the area exploration domain are based on distrib-
uted coordination. However for search and rescue operations a
central coordinator is used in most of the approaches. Both
implicit and explicit communication is exploited, although a
majority of work is based on explicit communication.
However, when distributed coordination is achieved using
explicit communication, it incurs high communication cost.
Thus several attempts made to reduce the communication cost
by periodic broadcast [227], auto-adaptive communication
[226], local communication [91, 228], combining with implic-
it communication [80], and clustering [125]. In most of the
proposed work, a communication link is always supposed to
be present between all robots, either direct or multi-hop.
However, it is not true in various real circumstances. For ex-
ample, because of the limited communication range of robots,
while moving robots can go out of the communication range
of other robots, which can lead to a network partition. The
communication channel interference can be the reason for
communication link failure.

7.2 Object Transport and Manipulation

While in pushing tasks, objects are supposed to move in the
same horizontal plane. Object transportation task ismore com-
plex because it involves carrying and lifting objects. Other
MRS applications such as truck loading, object handling, stor-
age, lifting objects need a similar kind of coordination mech-
anism. Many proposed approaches have been tested with a
simple object pushing task, which needs the robots to coordi-
nate with the purpose to reach the desired configuration.

A work in [147] describes some elementary behaviors that
need to be displayed by each robot. It defines the technique of
combining those behaviors that are required to accomplish the
given task. As an illustration, two robots are used to push a
box along a path defined by its “variable direction angle”.
Robots can be updated regarding any change in this angle
during execution. However, in this work, robots are unaware
of each other’s actions. In [231], an approach is proposed for
object pushing towards a fixed location using two robots. It
also shows that a distributed approach based on explicit coor-
dination of two robots achieved more efficiency than two
implicitly communicating robots or a single robot. Work in
[232] presented a technique for selecting an action for box-
pushing in dynamic environments using multiple robots with-
out using explicit communication.

Autonomous robots have successfully used Reinforcement
Learning (RL) for behavior learning. However, applying these
approaches in MRS is not so easy, because many robots de-
mand to cooperate with other robots. Deep Learning (DL)
based approaches [233, 234] are also becoming prominent in
this application domain of MRS. A work in [235] solves co-
operative carrying problem by using reinforcement learning
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for predicting the average head direction of other robots. In
[236], a bar pushing work is presented, which is based on
“Rubinstein’s alternate offers protocol” [237]. Authors in
[238] proposed an approach for coordination between multi-
ple robots without explicit communication using intention
inference and exhibited object pushing task. The robots
deduce other robot’s intents from observation of the situ-
ation and behavior of other robots to remove conflicts and
cooperate in completing tasks. Authors in [239] devel-
oped two solutions for the container loading problem.
They define the operations and conditions essential for
identifying and solving conflicts among robots. This ap-
proach uses the idea of ‘Abstract Time-Windows’ to rep-
resent the movement of the robots. The first one is a
heuristic approach, which has low computational com-
plexity and offers near-optimal performance. The second
solution is appropriate for solving problems where re-
quests for task execution arrive before time. It delivered
optimal performance and proposed using “Mixed Integer
Linear Programming (MILP)”. A recent survey on collab-
orative robotic manipulation for robot manipulators, mo-
bile robots, and mobile manipulators is presented in [240].
Many approaches proposed for multi-robot object trans-
port and manipulation do not require explicit communica-
tion, such as [241, 242].

Some other works are: [99] based on virtual leaders
for handling single object by multiple robots, [243]
based on software agents with machine learning for ob-
ject transportation task, [244] based on Reinforcement
learning for cooperative carrying problem, [94] uses
heartbeat signals (for leader selection and synchroniza-
tion) for actions such as lifting or steering, [74] based
on “Artificial Immune System” for object transport,
[245] based on “biological immune system” theory and
general immune network algorithm. Summary of work
related to Object Transport and Manipulation is shown
in Table 6.

Summary and Insights In this application domain, a large
portion of work (based on explicit coordination) has used
some form of broadcast communication, thus suffers from
low scalability. Although many applications in this domain
may not require a very large number of robots for a single
object, however in some cases, it may. Both deliberative and
reactive systems are used. Work presented in [246] is a delib-
erative system due to strongly centralized coordination others
are reactive or partially reactive. Most of the work uses dy-
namic coordination; some use both “static and dynamic coor-
dination”. Control approaches presented in the related work
mostly rely on distributed coordination [48, 75, 101, 103] and
some uses centralized coordination [99], [246]. Work in [135]
uses hybrid coordination because it has some communication
with the central station for planning route, shipment operation,

and local communication between concerning robots.
Decentralized coordination is extensively used due to its in-
vulnerability to the failure of individual robots [50, 75, 94],
and the majority of them are behavior-based.

7.3 Target Observation

Applications in this domain need a team of robots to detect
and track one or more objects. In the case of multiple targets,
each of the targets must be observed by at least one robot. The
problem of “multi-target observation” is known as:
“Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT)” [69]. This domain can also have a sen-
sor network for helping robots such as in [253] robot-sensor
network is used to track and intercept targets. Even only sen-
sor networks [68, 70, 254] have also been used for such tasks.
Other related applications in this domain are Target Tracking
(Single, Multiple), Target Searching, Target Acquisition,
Target Interception, etc. Target observation has a relation with
surveillance [255], security, recognition, and search problems.
Multi-target observation can be considered similar to the for-
aging task, with a greater requirement of continuous tracking
of dynamic targets. In this domain, coordination is required to
decide which robot should track or observe which target, how
many robots should observe a single object, and trajectory
planning to track that object. A social deliberative approach
is used in [69] for observing multiple targets. The robotic
agents in the system are homogenous and behavioral-based;
however, the proposed technique is also applicable to hetero-
geneous MRS. The “Broadcast of Local Eligibility (BLE)”
architecture is proposed in this paper, which provides coordi-
nation among robots. Every behavior of each robot is associ-
ated with a method that locally calculates the eligibility of a
robot to complete the assigned task. The calculated values are
shared between the “peer behaviors” of agents. The robot has
the highest behavior value, inhibits the corresponding behav-
ior on other robots in the MRS, and thus advocates the task.
This approach is weakly centralized because the leader chang-
es every time; however, the decision regarding the selection of
leader is distributed. A review paper [256] classifies the ap-
proaches developed for observing moving targets. They de-
scribe five factors to categorize this problem.

In [67], the cooperation approach depends on “Voronoi
Graph,” which is used to compute feasible trajectories
based on different targets. After that, every vehicle is
assigned to some target in order to intercept the group
of pre-allocated targets. A “distributed cooperative target
intercept strategy” to solve the problem of cooperative
target intercept using multiple unicycles is proposed in
[96]. Each pursuer is dynamically allocated to the target
autonomously with the help of local coordination. This
approach uses “minimal weighted distance,” which is sim-
ilar to the maximum intercept chance. The group of
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pursuit cycles is used for dividing the targets in a distrib-
uted manner with the help of local coordination without
any negotiation, unlike in [67]. In [71], an approach is
proposed for target acquisition, which is based on
“Mu l t i p l e Ob j e c t i v e B e h a v i o r Coo r d i n a t i o n
(MOBC)”[257].

In [258], two solut ions are proposed to solve
target allocation in a team of the robot. In the first approach,
Hungarian algorithm is used by each robot for centralized
team allocation. In the second solution, this allocation prob-
lem is expressed as the “relaxed integer problem,” which is
further solved with the help of decentralized optimization. The
robots learn incrementally, the impact of each robot on team
utility, and accordingly make globally coordinated decisions.
A mechanism is also proposed in this paper where robots can
switch between negotiating and using the “learnt utility model
(LUM),” which decreases the communication demands for
coordination and also maintains tracking performance similar
to the explicitly coordinated MRS. The results show that total
communication is reduced by 19%. Authors in [259] present-
ed a decentralized information gathering algorithm and show
its applicability for target tracking. If robots are in communi-
cation range, they perform collective estimation; otherwise,
each robot has its own estimation of the target. This work
releases some assumptions about their previous work [260].
In [261], coordination approach (based on explicit communi-
cation) for mobile target tracking is presented, where robots
are restricted tomovewithin their mutually exclusive bounded
regions. Authors in [262] proposed a decentralized target
tracking approach. They use a self-triggered communication
approach to reduce communication cost. Some work [90,
139], have also used PSO (nature-inspired algorithms) and
Neural Network for target searching and target tracking,
respectively.

Summary and Insights The summary of related work is
shown in Table 7. Most of the work presented uses one or
more robots to track a single target. A few research papers
have presented, tracking more targets with less number of
robots, as in [258]. The algorithm is tested with twenty in-
stances of three robots tracking four targets. Both implicit
and explicit coordination can be used for such domain of
applications. Most of the early work is decentralized and re-
active. Some decentralized [69, 263] work have very high
communication cost therefore scalability of such approaches
is also poor. However, distributed coordination approaches
using local or one-hop communication are better to scale.
Recently (in [264, 139]) some scalable and distributed ap-
proaches have been proposed with low communication cost.
The efficiency of such coordination approaches can be further
improved by incorporating some triggering mechanism or
heuristic to decide when the information should be exchanged
between two are more robots.

7.4 Formation Control

In the recent few years, the problem of “multi-robot formation
control” has been widely studied. Formation control can be
described as: robots are required to maintain some specific
pattern, relative position, converge towards given structure,
etc. Other areas, such as coalition formation, containment con-
trol [272], can be considered related to this domain. One way
to classify the proposed approaches for formation control in
MRS can be behavior based approach [273], leader-follower
approach [67, 115, 274–276], and virtual structure approach
[277, 278]. Applications in this domain need coordination to
control the velocity, trajectory following, and relative distance
of the robots.

Neural network and consensus-based algorithms are exten-
sively used to achieve formation control in recent years. In
[279] distributed neural network is used, where each robot
of swarm contains few neurons and wirelessly communicates
with nearby robots. This distributed artificial neural network is
trained at runtime, and the swarm can show a variety of be-
haviors. In [280], the authors proposed a solution for multiple
mobile robots (nonholonomic) based on a distributed
consensus-based approach with unknown dynamics. It uses
an adaptive neural network and translates the formation con-
trol problem as a state consensus problem. In [281], an ap-
proach is presented for multi-robot formation control using
state-space model; this can also be used for trajectory tracking.
In [133], an extended “consensus-based” estimation algorithm
and “consensus-based” formation control algorithm are pre-
sented. It needs only local neighbor to neighbor communica-
tion. It requires multiple leaders, thus comes in the category of
hierarchical coordination. It is not fully robust; however, ro-
bustness can be improved with the help of large number of
group leaders in the formation for a single point of failure.
Authors in [282], proposed solution for containment control
problem for a semi-markovian multi-agent systems. They use
static and dynamic containment control approaches to solve
this problem. Another solution for nonlinear multi-agent sys-
tems using fuzzy-logic is presented in [283].

In [127], the problem is formulated into two parts:
Intra and intergroup formation. In the “intragroup for-
mation”, the formation of each robot in every group has
been determined, and in the “intergroup formation”, the
coordination of groups in the team is determined. A key
idea, “adaptive interactive force,” is proposed to handle
intergroup interactions. It is weakly centralized coordi-
nation because it uses multiple leaders, one global, and
several local leaders. Work in [79] can maintain given
proximity and able to converge to a given destination
by using Lyapunov-like barrier function. It uses hybrid
coordination architecture, i.e., the goal is periodically
sent by the leader, and the decision taken to reach the
goal is decentralized. [276] presented a consensus-based
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approach for formation control with a specified refer-
ence trajectory, [275] uses a bio-inspired neurodynamics
based approach for formation control. Authors in [55]
solve the problem of “task-oriented motion planning”
for formation control using representation space model.
Work in [284], proposed algorithms to automatically
create controller and synchronization mechanism for
MRS, based on swarm behavior (taken as input). The
summary of works related to Formation control is
shown in Table 8.

Summary and Insights This domain is well studied for both
heterogeneous and homogenous robots. Some research
work [97] uses only implicit coordination and achieves
high scalability compared to explicit coordination.
However, using both (broadcast and local sensing) [79]
creates a balanced approach in terms of accuracy, com-
munication cost, and scalability. Fully distributed coor-
dination is not suitable for this domain of problems.
Advantages of approaches in [129, 285] are that they
are robust and fully reactive; however, have high com-
munication cost. Work in [129] presents an excellent
approach to minimize communication cost by using an
event-based transmission.

7.5 Other Applications

Applications of MRS are widely broad. All of that cannot
be grouped in the above domains. In this section, we
present some other coordination approaches used for other
prominent applications of MRS. Such as, [95] based on
State transition automata for construction task, [92] for
fixed-obstacle avoidance, goal-seeking, and mobile-robot
avoidance, [290, 291] for Multi-robot SLAM, [292] based
on “game-theoretic learning algorithms” using “fictitious
play” and extended Kalman filter for cooperation among
patrolling and material handling robots in a warehouses,
[77, 105] soccer, [202] collective construction, [259] co-
operatively carrying mass by multiple UAV, [293] pre-
sents approach for coordination with limited communica-
tion ranges and communication failures i.e., rendezvous
algorithm via proximity graph, [294] cooperatively per-
forms a few of servicing tasks in a hospital environment,
[89] can send information related to task in minimum time
with a local communication scheme, [295] based on
“mixed-integer linear programming” for Autonomous
Intersection Management, [107] Localization and naviga-
tion of salve robots, [78] based on idea of setplay, i.e., to
organize a robotic soccer team behavior for any
“RoboCup cooperative league” and similar domains.
Authors in [296] present a decentralized approach for co-
ordination where robots use explicit communication dur-
ing planning. It is used for tasks that require active

perception using multiple robots. This algorithm is a var-
iation of the ‘Monte Carlo tree search (MCTS)’. In [297],
a multi-robot coordination algorithm using Voronoi
partitioning is presented for underwater environment sam-
pling. Table 9 presents a summary of such work.

8 Open Research Issues, Challenges
and Future Directions

Till now, we presented a systematic study and analysis of the
existing approaches to MRS coordination. Now, we discuss
insight on the presented works, open issues, challenges, and
future directions for developing MRS.

& Communication Model: In the case of explicit coordina-
tion, it is important to decide the proper communication
model. Most of the work, especially based on distributed
coordination approach, incurs high communication cost.
Although, using a distributed approach provides better
scalability and robustness but on the cost of increased
communication. Some work like [129] reduces communi-
cation cost; however, such works are very limited.
Therefore, it can be an efficient way to use hybrid coordi-
nation in terms of communication cost, robustness, real-
time requirements, etc., for a particular form of coopera-
tion as and when which one is more efficient.

& Scalability: To operate in the application domains where a
large number of robots are required, such as smart cities,
MRS needs to be scalable. However, work done on large
scale of robots is not sufficient; many of the MRS coordi-
nation approaches do not scale well. Although everyMRS
application does not require a large number of robots,
however, a large number of robots can be efficient for
cooperative localization and long-term autonomy.
Hierarchical approaches [51, 122] can be a good option
for scalable solutions. Simultaneously taking care of both
scalability and heterogeneity is needed in areas like smart
cities, which is more challenging. So special attention is
needed to develop largely scalable coordination
approaches.

& Explicit and Implicit Communication: Communication
has two extremes, first is only using explicit communica-
tion, in which the robots communicate directly among
themselves. Second is only using implicit communication,
in which each robot perceives the actions of other robots
or changes (due to other robot’s activity) in the environ-
ment. Most of the presented work has used either one of
the two. The efficiency of the MRS is affected by com-
munication cost and design of elementary behavior for
explicit and implicit coordination, respectively.
However, a hybrid system using both explicit and implicit
communication can enhance the eff iciency of
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coordination in many applications. It will also enhance the
scalability of the system (for both centralized explicit and
decentralized explicit) because implicit communication
will reduce overall communication complexity. How
much to exploit implicit coordination (i.e., how much to
rely on autonomous behavior for individual robot), and
explicit coordination is a critical decision.

& Human Interaction: In manyMRS, it is important to allow
humans to interact with MRS easily. Human can work
alongside robots or only provide instructions to the system
whenever needed. Presently, many tasks are very compli-
cated for robots, which requires coordination among
humans and robots. Sometimes human wants to control
the system in certain safety situations such as overriding
the automatic decisions of a self-driving car in case of
emergency. However, introducing humans in the loop re-
duces the responsiveness of the system because of uncer-
tainty in human performance and increased communica-
tion overhead. Human intervention can make the system
more error-prone and slow. Therefore, the key to select the
appropriate system architecture that can successfully com-
plete the tasks is to figure out whether the human-in-the-
loop can be considered as an asset or liability for a given
scenario. Interactions can be through a graphical interface,
or text or speech or visual, or a combination of two or
more. However, the issue is to decide how humans and
robots should communicate so that interaction is easy,
smooth, and accurate (reduces faults). This interaction
should also have minimum delay on responsiveness and
minimal increment in the computation complexity of
MRS. Recently a human-aware (considers unpredicted
human behavior) task allocation approach is proposed in
[300].

& Internet of Robotic Things: The idea of “Internet of
Robotic Things (IoRT)” [301] is based on using cloud
services and global connectivity via the internet. Robotic
systems can be greatly benefited by the information gath-
ered from IoT devices. In IoRT heterogeneous devices
(including robots) can be integrated into a distributed
manner, and devices can communicate with the local net-
work, cloud, and edge devices. The challenges in the im-
plementation of IoRT are: handling high degree of hetero-
geneity, security, sensor fusion, interoperability, self-ad-
aptivity, etc. Further details about IoRT and its challenges
can be found in [302, 303]. In [304], the authors attempted
to solve the problem of maintaining global connectivity
between robots using neural networks.

& Heterogeneity: Presented approaches for MRS coordina-
tion are mostly homogenous. Although considerable
work has been done on heterogeneous MRS in re-
cent years, still, the diversity of robots is very lim-
ited (some are only heterogeneous in terms of soft-
ware). For achieving autonomy at the level of the

smart house, smart hotels, smart cities, etc. we re-
quire very diverse robots for good efficiency, auton-
omy, and ubiquitous computing. Heterogeneity is al-
so needed to be handled at the level of communica-
tion architecture, information exchange protocols.
So, there is a need to develop approaches for highly
diverse heterogeneous MRS.

& Resource Limitations for Machine learning: Machine
learning capabilities for individual robots, and for overall
system needs to be developed and applied. So that future
systems would be able to incorporate machine learning
models in various applications of MRS, even for MRS
with limited computational and communication capabili-
ties. Presently, heavy ML algorithms are used on the
cloud. However, it leads to high latency, increased com-
munication cost, and cannot be used for real-time applica-
tions. Therefore, present ML algorithms need to be cus-
tomized in order to be used with resource-constrained ro-
bots. In some cases, edge devices can also be used for
running ML algorithms. Other solutions are to use coop-
erative learning [305] and distributed machine learning
[306].

& Autonomous and Transfer Learning: Autonomous learn-
ing is less explored for MRS as compared to MAS. In
some applications such as foraging, box pushing, soccer,
etc., autonomous learning has been applied to a certain
extent. However, learning becomes more challenging for
domains where the action of one robot depends on the
current activity of other robots. One solution is to develop
autonomousmachine learning algorithms (AutoML) [307,
308], that do not need human intervention to select train-
ing data for tuning algorithmic parameters, etc. AutoML
algorithms developed for mobile devices can also be used
in MRS. Transfer learning [309] can improve the perfor-
mance of MRS because there are many MRS applications
that have similar scenarios. It is like using the experience
of robots or MRS as an input for future decisions of other
robots or MRS. This type of learning is especially useful
for robots that learn by reinforcement learning. However,
there are many challenges to be addressed before using it
in real-world MRS.

& Energy Efficiency: This is also an important parameter to
be considered while deploying MRS. Therefore, energy
consumption needs more attention, which is highly
neglected in the presented works. Special attention in
terms of energy consumption is needed for small robots
used in the internet of things applications. One way to
minimize energy consumption can be by developing prop-
er coordination approaches. The properties required for a
coordination approach to be energy efficient are: minimiz-
ing overall distance traveled by robots, efficient commu-
nication type (having less cost and complexity), reduce
computation requirements. To enhance the life span of
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MRS, energy consumption by each member of MRS
should be approximately equal (unless members are het-
erogeneous like the central server is on ac power) in a
given time period. It can be achieved by developing load
balancing coordination approaches such as different lead-
er for each time period, multiple changing leaders, consid-
ering energy status in task allocation.

& Performance Evaluation and Benchmarking: To compare
the performance ofMRS evaluation standards are required
to be developed to effectively compare them because this
field is still in the developing phase. This is one of the
major issues to be addressed defining suitable evaluation
methodologies, in order to assess the adequacy and effec-
tiveness of various forms of cooperation in MRS. One
such attempt is made in [310].

& Communication Network: Extensive research on comput-
er network algorithms, protocols, along with their perfor-
mancemodeling and analysis, is required in order to improve
explicit communication and coordination. To deal with the
network limitations (such as network unreachable, slow, and
intermittent) delay tolerant, software-defined, networks can
be designed. Moreover, protocols and algorithms should be
interoperable so that robots can communicate with other,
heterogeneous robots and IoT devices.

& Robustness: There can be situations like network
partitioning; robots may move out of communication range,
on-robot sensors failure, leader failure, etc. Therefore, to en-
sure robustness, there has to be some failsafe or preventive
mechanism in place. For example, if a leader fails, then a
mechanism to select a new leader should trigger or have
multiple leaders with some priority, predict and restrict the
movement of robots if it is going out of communication
range. Robustness in terms of communication needs to be
addressed like communication range, communication failure,
network partition recovery, and low bandwidth becausemost
of the work has assumed a reliable communication medium.

& For robots, with limited hardware resources. Efficient al-
gorithms for task allocation, motion planning, decision
making, etc., are required, which can work with less com-
putation, communication, and power requirements.

& Coordination approaches that are strongly centralized tend to
be deliberative, less flexible, have high computing load on a
single system, and have a single failure point. Distributed
approaches are generally more flexible, robust, high commu-
nication demanding, and less computational demanding. To
balance resource consumption and QoS hybrid approach is a
good option. However, it is also a challenge to decide how
much centralization and decentralization is required.

& Exploiting cloud resources such as computational power
can be useful for increasing the performance of MRS.
Although connecting with the cloud can have some addi-
tional parameters to be taken care of. Such as how fre-
quently robots should communicate with the cloud, which

services to be deployed on edge, how much processing to
be performed locally, how to improve response time for
time-sensitive tasks, etc.

& Collision, congestion, and deadlock are other issues to be
dealt with while developing a coordination approach.
Deadlock is easily possible in implicit coordination be-
cause others cannot foresee global goals.

9 Conclusion

In our research paper, we first presented an overview of MRS
and its classification with respect to various dimensions, such
as communication, coordination, composition, etc. Then, we
analyzed various coordination approaches proposed forMulti-
Robot System and categorized them according to various di-
mensions such as static or dynamic, implicit or explicit, and
centralized or decentralized. We presented a comprehensive,
diverse aspect of MRS coordination which will help new-
comers to grasp the basic concepts of MRS and how coordi-
nation can be achieved in MRS. Further, we studied various
existing application domains of MRS in multiple disciplines.
Finally, we analyzed MRS coordination work focusing on
various application domains of MRS, including Task
Allocation, Motion Planning, Area exploration, Object trans-
port, etc.We discussed the outcome of our analysis in terms of
prominently used techniques, their drawbacks, and strengths,
along with the challenges faced in each domain and in the
overall coordination of MRS. We also analyzed the efficiency
of MRS coordination approaches in terms of parameters such
as communication cost, scalability, robustness, etc. and pre-
sented them in tabulated form to easily understand the insight
and decide the effectiveness of a specific approach in a given
MRS application domain. Our study concludes that coordina-
tion is an important and challenging factor in designing effi-
cientMRS.We have also presented some open research issues
and future directions such as autonomous learning, develop-
ment of approaches for resource-constrained robots in IoT
scenarios, exploiting cloud resources, balanced use of implicit
and explicit communication, etc. to develop efficient coordi-
nation approaches. We expect this article will serve as an
insightful and comprehensive resource on MRS coordination
for researchers and practitioners in the area.
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