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Abstract
There are many potential applications of swarm robotic systems in real-world scenarios. In this paper, formation-containment
controller design for single-integrator and double-integrator swarm robotic systems with input saturation is investigated.
The swarm system contains two types of robots—leaders and followers. A novel control protocol and an implementation
algorithm are proposed that enable the leaders to achieve the desired formation via semidefinite programming (SDP)
techniques. The followers then converge into the convex hull formed by the leaders simultaneously. In contrast to
conventional consensus-based formation control methods, the relative formation reference signal is not required in the real-
time data transmission, which provides greater feasibility for implementation on hardware platforms. The effectiveness of
the proposed formation-containment control algorithm is demonstrated with both numerical simulations and experiments
using real robots that utilize the miniature mobile robot, Mona.

Keywords Swarm robotics · Formation-containment · Swarm controller design · Input saturation · Mobile robots

1 Introduction

In recent years, research studies on swarm robotics have
generated increasing attention from the robotics and con-
trol communities. Swarm robotics mainly focuses on coor-
dination control mechanisms within a group of homo-
geneous or heterogeneous robots by following collec-
tive and decentralized decision-making approaches that
are mainly inspired by nature [1]. There are many
swarm behaviors such as collective motion and flocking
[2–5], aggregation [6, 7], foraging [8, 9], exploration [10],
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and group transport [11], all of which have been success-
fully implemented using real mobile robots.

There are also many potential real-world applications for
swarm robotic systems, such as object transportation [12, 13],
autonomous shepherding [14], self-assembly [15], explo-
ration of unknown environments [16, 17], agriculture [18,
19], and target surveillance [20, 21], all of which require
carefully designed controllers, able to support limitations
imposed by the physical environments (e.g., see Fig. 1).

A significant research direction in swarm robotics is
formation control [22, 23], which explores how control
systems can be designed to enable robots to converge
to specific positions, allowing them to form the desired
shape [24]. During the past decade or so, many control
mechanisms have been proposed, and valuable results
have been obtained that relate to formation control in
swarm systems. As an example, [25] studied the consensus
tracking problem for second-order swarm systems with
switching interaction topologies, where a neighbor-based
local controller and a neighbor-based state-estimation
rule were proposed. In another study, [26] developed
nonlinear gradient control laws for nonlinear multi-
robot systems. This work investigated the relationship
between the cycle space of the formation graph and
the resulting equilibria of cyclic formations. In [27],
cooperative control of heterogeneous vehicle platoons using
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Fig. 1 A real-world scenario
where leaders mark an area of
interest using formation control.
Followers then directly interact
with plants, and follow the
formation-containment
algorithm

the adaptive formation control technique was investigated.
Automatic cruise control was achieved via vehicle-to-
vehicle communication. Robust formation control of multi-
agent systems with uncertain dynamics was analyzed in
[28], where the leader’s nonzero control input was also
considered in the controller design.

Most of the aforementioned literature only considered
a single leader or leaderless scenarios. However, there
are applications where two or more leaders, providing
external control or group reference states for swarm
systems, may exist and provide benefits. In the existence
of multiple leaders, the containment problem should be
analyzed where the followers can move into the convex
hull formed by the states of the leaders. A hybrid stop-
go control strategy was proposed in [29], which explored
the concept of containment control. In another study, [30]
considered distributed containment control for a double-
integrator in both stationary and dynamic leaders, with two
distributed containment control algorithms used in each
scenario. In [31, 32], directed interaction topologies in
containment problem were considered for high-order linear
time-invariant (LTI) systems.

In the aforementioned research studies, it was assumed
that there was no interaction between the leaders in the
swarm. However, it is possible for the leaders to transmit
information to other leaders to accomplish complex tasks,
like formation control in real-world scenarios, such as agri-
robotics. In these applications, it is desired that not only
the followers can converge to the convex hull spanned
by the leaders, but the leaders can also converge to
the desired formation, which is formed as formation-
containment problems. In [33, 34], formation-containment
problems for first-order swarm systems with undirected
interaction topologies and switching interaction topologies
were studied. Formation-containment problems for high-
order LTI swarm systems were also discussed in [35].

In [36], adaptive formation-containment algorithms were
proposed to coordinate multiple mobile robots. However, in
the aforementioned works, the formation reference signal
from the neighbors was required before designing the
control protocol, which means that some global information
is required. Hence, the formation-containment objectives
cannot be achieved by only using range & bearing sensors
in a real implementation, such as [37].

In this paper, we propose a novel distributed control
protocol to solve the formation-containment problem
in a collaborative swarm system. Both single-integrator
dynamics and double-integrator dynamics are considered in
the control protocol design. For each robot, the controller
only requires the relative state information from its
neighbors, which ensures the asymptotic stability of the
swarm when controlling large scale robotic systems. The
novelty of the control protocol for leaders is that it is robust
in several conditions such as white noise perturbation,
saturated input, etc, which has the potential to be used in
extreme environments. The contributions of this paper are:
(1) a novel formation-containment control framework which
only requires local relative state measurements is proposed,
(2) the convergence of the swarm system is guaranteed by
the rigorous mathematical proof, and the feasibility of the
proposed algorithm is analyzed, and (3) experiments using
real robots were conducted to verify the effectiveness of the
theoretical results.

The remainder of the paper proceeds as follows. Sec-
tions 2 and 3 present the proposed formation-containment
framework, from which the swarm system under the pro-
posed coordinated algorithm is shown to satisfy asymptot-
ically stable properties via a rigorous mathematical proof.
Section 4 presents simulation results and the experimental
validation of the proposed strategy using laboratory-based
small-scale mobile robots. Section 5 concludes the paper
and discusses future research directions.
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2 Preliminaries and ProblemDescription

2.1 Graph Theory

Consider N robots in R
2. Let x(t) be the position of robot

i ∈ {1, . . . , N} at time t , and x = [
x�

1 , . . . , x�
N

]�
be the

global state of all the robots. The interaction among the
robots is described by a fixed graph G = (V , E ) which
consists of a vertex set V = {v1, . . . , vN } and an edge set
E ⊆ {(vi, vj ) : vi; vj ∈ V }. The edge of G is denoted
by eij = (vi, vj ) and the weighted adjacency matrix with
non-negative adjacency matrix elements wij is denoted by
W = [wij ] ∈ R

N×N . The adjacency elements associated
with the edge of G are positive, that is eij ∈ E if and only
if wji > 0. Besides, wii = 0 for all i ∈ {1, . . . , N}. The
set of neighbors of nodes vi is represented by N = {vj ∈
V : (vj , vi) ∈ E }. The degree matrix of G is defined
as D =diag{degin(vi), i = 1, . . . , N}, where degin(vi) =∑N

j=1 wij is the in-degree of node vi . The Laplacian matrix
of G is defined as L = D − W . A directed path from
node vi1 to vil is a sequence of ordered edges with the form
of (vik , vik+1), where l ∈ {1, . . . , N} and vik ∈ V (k =
1, 2, . . . , l − 1). A directed graph is said to have spanning
tree if there exists at least one node having a directed path
to all the other nodes [38].

2.2 Problem Description

Robots in the swarm system can be divided into leaders
and followers, with each having different properties: i)
the neighbors of a leader are only leaders, and ii) the
neighbors of a follower can be leaders or other followers.
The leaders are expected to form the desired formation
and the followers are expected to converge into the
convex hull formed by the leaders by a proper design.
Due to the behavioral differences, the swarm system can
be viewed as a heterogeneous swarm as described by
Dorigo et al. [19]. The communication network among
all the robots is described using Graph Theory. We
use GE to represent the interaction topology among the
leaders.

Assume that there are M(M < N) followers and N − M

leaders in the robot swarm. Let F = {1, 2, ..., M} and
E = {M + 1, M + 2, ..., N} be the follower subscript
set and leader subscript set respectively. Hence we have
the follower’s state xi(t) (∀i ∈ F) and the leader’s state
xj (t) (∀j ∈ E).

Definition 1 [35] A swarm system is said to achieve
containment if for any given bounded initial states and any

k ∈ F , there exists non-negative αk,j (j ∈ E) satisfying
∑N

j=M+1 αk,j = 1 such that

lim
t→∞(xk(t) −

N∑

j=M+1

αk,j xj (t)) = 0. (1)

Let the formation reference vector h ∈ R
2(N−M) denote the

coordinate of the desired formation of leaders and h⊥ ∈
R

2(N−M) denote the coordinates of agents when the desired
formation is rotated by 90◦. The swarm system is said to
achieve formation-containment if for any given bounded
initial states, on condition that the agents of the leaders
globally converge to the desired formation, there exists non-
negative αk,j (j ∈ E) satisfying

∑N
j=M+1 αk,j = 1 such

that Eq. 1 holds.

3 Formation-Containment Protocol Design

3.1 Formation-Containment Protocol Design
for Single-Integrator Systems

3.1.1 Control Strategy

In this section, we aim to design the formation-containment
control protocol for single-integrator systems. Consider N

robots in the swarm system with single-integrator dynamics
described by

ẋi (t) = ui(t), (2)

where xi = [xi1, xi2]� ∈ R
2 is the coordinate for robot

i ∈ {1, 2, ..., N}, and ui ∈ R
2 is the control input. In

order to achieve formation-containment, inspired by [39],
the control protocol for the leaders and followers is chosen
as

ui =
∑

j∈Ni

Aij (xj − xi) i ∈ E, (3)

ui =
∑

j∈Ni

wij (xj − xi) i ∈ F, (4)

where Ni represents the neighbors of agent i, wij is a non-
negative gain and Aij ∈ R

2×2 are the constant control gain
matrices with the form of

Aij =
[

aij −bij

bij aij

]
, aij , bij ∈ R. (5)
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In the formation control design process, we establish
a formation matrix A which contains the formation
information and the communication topology of the leaders.
A is given by Eq. 6 as shown in the top of the next page,

A =

⎡

⎢⎢
⎢⎢
⎢
⎣

−∑N−M
j=2 A1j A12 . . . A1(N−M)

A21 −∑N−M
j=1,j 
=2 A2j . . . A2(N−M)

.

.

.
.
.
.

. . .
.
.
.

A(N−M)1 A(N−M)2 . . . − ∑N−M−1
j=1 A(N−M)j

⎤

⎥⎥
⎥⎥
⎥
⎦

∈ R
2(N−M)×2(N−M), (6)

where Aij is defined as zero matrices if j /∈ Ni . We note
that A has block Laplacian structure, hence the following
vectors

1 = [1, 0, 1, 0, ..., 1, 0]� ∈ R
2(N−M)

1⊥ = [0, 1, 0, 1, ..., 0, 1]� ∈ R
2(N−M)

satisfy A1 = 0 and A1⊥ = 0.
Denote L as the Laplacian matrix corresponding to the

interaction topology (G ) of the swarm system (2). L has the
form

L =
[

L1 L2

0 L3

]
,

where L1 ∈ R
M×M , L2 ∈ R

M×(N−M) and L3 ∈
R

(N−M)×(N−M), the following Lemma holds.

Lemma 1 [40] Assume the interaction topology among
leaders (GE) has a spanning tree and, for each follower,
there exists at least one directed path from a leader, we have:

(I) all eigenvalues of L1 have positive real parts,
(II) each entry of −L1L2 is non-negative, and each row of

−L1L2 has a sum of one.

Here, we present the following theorem to guarantee
the convergence of a single-integrator system under the
proposed formation-containment coordination.

Theorem 1 Consider leaders and followers with single-
integrator dynamics (2) and control protocol (3) and
(4). Assume the interaction topology among leaders (GE)

contains a spanning tree and, for each follower, there exists
at least one directed path from a leader, then, for any wij >

0, the swarm system (2) achieves formation-containment if
Aij are selected such that

(I) 1, 1⊥, h and h⊥ are linearly independent and A1 =
Ah = A1⊥ = Ah⊥ = 0,

(II) Reλ(A) < 0, where λ(A) denotes the non-zero
eigenvalues of A.

Proof Let L̄1 = L1
⊗

I2 and L̄2 = L2
⊗

I2, where
⊗

denotes the Kronecker product and I2 denotes the identity

matrix with two dimensions. By using control protocol (3)
and (4), the system can be written as:
(

ẋF

ẋE

)
=

[ −L̄1 −L̄2

0 A

] (
xF

xE

)
, (7)

where xF and xE are the states of followers and leaders,
respectively.

On the one hand, for leaders, from (7), we have

ẋE = AxE, (8)

the solution of (8) can be shown as

xE(t) = eAtxE(0), (9)

where xE(0) is the initial position of leaders.
Denote J as the Jordan form of A, the following case is

given on condition that A has all Jordan blocks of order one.
The general case follows similarly. Hence, we can obtain
from (9) that

xE(t) = QeJtQ−1xE(0)

=
2(N−M)∑

i=1

pie
λi t q�

i xE(0)

=
2(N−M)∑

i=1

(
q�
i xE(0)

)
eλi tpi, (10)

where pi ∈ R
2(N−M)×1 and q�

i ∈ R
1×2(N−M) are

the right and left eigenvectors of A respectively, and
λi(i = 1, 2, · · · , 2(N − M)) is the eigenvalues of A. From
condition (I), we see that 1, 1⊥, h and h⊥ are four right
eigenvectors respond to the four zero eigenvalues (denoted
by λ1, λ2, λ3 and λ4, respectively). Furthermore, all the
entries of the Jordan part of the four zero eigenvalues are
zero. If we denote left eigenvectors of 1, 1⊥, h and h⊥ are
q�

1 , q�
2 q�

3 and q�
4 , (10) can be written as

xE(t) =
2(N−M)∑

i=5

(
q�
i xE(0)

)
eλi tpi + 1q�

1 xE(0)

+1⊥q�
2 xE(0) + hq3

�xE(0) + h⊥q4
�xE(0). (11)

From condition (II), we know

lim
t→∞ eλi t = 0 for any i ≥ 5,

so we let t → ∞ in (11), then we have

xE(t) → 1q�
1 xE(0) + 1⊥q�

2 xE(0)

+hq3
�xE(0) + h⊥q4

�xE(0), (12)

if we denote c1 = q�
1 xE(0), c2 = q�

2 xE(0), c3 = q�
3 xE(0)

and c4 = q�
4 xE(0), they are four constants, so we can get

xE(t) → 1c1 + 1⊥c2 + hc3 + h⊥c4, (13)

that is to say, the leaders can converge to nothing but all
translations, rotations, and non-negative scale factors of h,

12 Page 4 of 16 J Intell Robot Syst (2021) 102 : 12



which also indicates that leaders can converge to the desired
formation shape.

On the other hand, for followers, from (7), we have

ẋF = −L̄1xF − L̄2xE . (14)

Since leaders globally converge to the desired formation,
denoted by hF , let t → ∞ in (14), we obtain

ẋF = −L̄1xF − L̄2hF , (15)

then, we solve (15) and have

xF = e−tL̄1(xF (0) −
∫ t

0
esL̄1L̄2hF ds)

= e−tL̄1(xF (0) + L̄1
−1L̄2h) − L̄1

−1L̄2hF , (16)

where xF (0) is the initial position of the followers.
From Lemma 1 (I), all eigenvalues L1 have positive real

parts, that is to say, L1 has no zero eigenvalue. Hence, L1 is
invertible and L̄1 is also invertible. We have

xF = −L̄1
−1L̄2hF , when t → ∞. (17)

By Lemma 1 (ii), we can conclude that xF satisfies
Definition 1, and then the swarm system (2) achieves
formation-containment. This completes the proof.

Remark 1 It can be seen that for each robot, the formation-
containment protocol is fully distributed because the
controller only requires the relative state information from
its neighbors, which ensures the asymptotic stability of
the swarm when controlling large-scale networked robots.
One of the conditions of the proposed control strategy
is the connectivity of the communication network. In the
case when some robots are experiencing communication
failures, if a proper network topology can be switched to
connect all the robots, the robustness and stability of the
whole swarm system can still be guaranteed as proved in
Theorem 1. In the extreme situation where a robot loses
communication with all the other robots, the remaining
robots in the swarm will not be affected using the proposed
coordination algorithm.

Remark 2 From Theorem 1, we also indicate that for
any wij > 0, the swarm system (2) achieves formation-
containment if and only if leaders globally converge to the
desired formation.

Let P = [h, h⊥, 1, 1⊥] and USV � = P be the singular
value decomposition (SVD) of P , where

U = [Q, Q] ∈ R
2(N−M)×2(N−M) (18)

with Q ∈ R
2(N−M)×4 defined as the first 4 columns of U

and Q ∈ R
2(N−M)×2(N−M)−4 defined as the last 2(N −

M) − 4 columns of U .

Lemma 2 Using Q in (18), define

A = QAQ ∈ R
(2(N−M)−4)×(2(N−M)−4). (19)

Matrices A and A have the same set of nonzero eigenvalues.

From Lemma 2, we can obtain that the projection
operation in (19) removes the zero eigenvalues of A. By
setting aij = aji and bij = −bji in (5) matrix A can
be design symmetric. Hence, its eigenvalues are real and
can be ordered, then A can be computed by solving the
optimization problem

A = argmax
aij , bij

λ1(−A), (20)

subject to AP = 0 ,

where λ1(·) denotes the smallest eigenvalue of a matrix.
From the Remark 2, in order to let the swarm system

(2) achieve formation-containment, it is essential to design
a proper A matrix that satisfies the conditions in Theorem
1. Motivated by [41], we can use the following algorithm to
solve this issue.

Algorithm 1 Formation-containment gain design.

1: Let P = [h, h⊥, 1, 1⊥]
2: Compute SVD of USV � = P

3: Define Q as the last 2n − 4 columns of U

4: Solve (20) using a semidefinite programming (SDP)
solver

5: if j ∈ Ni (i ∈ F) then
6: Set wij = 1
7: else
8: wij = 0
9: end if

Remark 3 Even though the obstacle avoidance is not con-
sidered in the proposed formation-containment coordination
protocol design, the standard low-level obstacle avoidance
algorithms can be easily integrated with the proposed frame-
work during the real-world operation. Based on different
scenarios and tasks, the low-level controller which is imple-
mented in the robot can be changed, however, the proposed
formation-containment coordination algorithm will remain
the same.

3.1.2 Robustness to Input Saturation

In real robotic systems, the velocity of each robot cannot
exceed a certain value due to hardware constraints. Thus,
any large control input will be saturated by a maximum
allowed speed. This, however, does not affect the robots
to accomplish the formation-containment task under the
proposed control algorithm.
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In order to prove that the control protocols Eqs. 3 and
4 are robust to saturated inputs, the following Lemma is
present here.

Lemma 3 [42] Consider the family of switched system
ẋ = fi(x), with i = 1, 2 · · · , N . Let V : R

n → R be
a positive definite, continuously differentiable, and radially
unbounded function. If ∂V

∂x
fi(x) < 0, ∀x 
= 0, ∀i then the

switched system is globally uniformly asymptotically stable.

Lemma 3 can be extended to the following corollary,

Corollary 1 For a positive semi-definite V with the zero
set of Z := {x ∈ R

N : V (x) = 0}. In this case, If
∂V
∂x

fi(x) < 0, ∀x /∈ Z, ∀i, then all trajectories globally
uniformly asymptotically converge to Z.

Now, we present the theorem to show that the control
protocols Eqs. 3 and 4 are robust to saturated input.

Theorem 2 Consider the single-integrator system (2),
assume that umax > 0 is a real positive scalar. If the control
input ui of each robot is saturated such that |ui | ≤ umax ,
then under the control laws Eqs. 3 and 4, the formation-
containment can still be achieved globally.

Proof In order to model the saturated control input, we
introduce the diagonal matrix S ∈ R

2N×2N with diagonal
entries

(S)ii =
⎧
⎨

⎩

1 if |ui | ≤ umax

umax

|ui | if |ui | > umax .
(21)

It can be seen that, the diagonal entries of S are considered
as functions that saturate any large control input to the
maximum value umax . The single-integrator systems under
saturated input can be expressed in the vector form via
(

ẋF

ẋE

)
= S

[ −L̄1 −L̄2

0 A

] (
xF

xE

)
. (22)

From [42], Eq. 22 should be understood as a family of
switched dynamical systems, and the solution is well-
defined in the Filippov sense. To verify the stability of the
system, two cases are discussed in the following part. Let

S =
[

SF 0
0 SE

]
, (23)

where SF ∈ R
2M×2M and SE ∈ R

2(N−M)×2(N−M). Both
SF and SE are diagonal matrices.

Part I (Leaders): The dynamics of the leaders can be
described as

ẋE = SEAxE . (24)

The Lyapunov function can be constructed by

VE = −1

2
x�
E AxE ≥ 0, (25)

VE is a positive semi-definite scalar-valued function
since A is negative semi-definite. Time derivative of VE

along the trajectory of Eq. 24 is

V̇E = −x�
E AẋE

= −x�
E ASEAxE

= −(S
1
2
EAxE)�(S

1
2
EAxE) = −‖S

1
2
EAxE‖2 ≤ 0, (26)

where S
1
2
E is the diagonal matrix with entries given

by the square root of diagonal elements of SE . Note
that all diagonal elements of SE are strictly positive,

hence S
1
2
E is well-defined. The last step of Eq. 26 is

according to the fact that A can be designed to be
symmetric in Algorithm 1. Considering that VE is a
positive semi-definite, continuously differentiable and
radially unbounded function. Then, based on Lemma 3,
Corollary 1 and LaSalle’s invariance principle, we can
conclude that all trajectories of Eq. 24 converge to the
zero set of VE (i.e., the kernel of A). That is to say,
the formation of the leaders can be achieved under input
constraints. The proof of the leaders’ part is completed.
Part II (followers): Since the leaders can converge to the
desired formation hF , if t is large enough, the dynamics
of followers can be described as

ẋF = −SF L̄1xF − SF L̄2hF . (27)

The Lyapunov function can be constructed by

VF = 1

2
x∗
F�L̄1x

∗
F ≥ 0, (28)

where x∗
F = xF + L̄1

−1L̄2hF . VF is a positive definite
scalar-valued function since L̄1 is positive definite from
Lemma 1 (i). Time derivative of VF along the trajectory
of Eq. 27 is

V̇F = x∗
F� L̄1ẋF

= (xF + L̄1
−1L̄2hF )�L̄1(−SF L̄1xF − SF L̄2hF )

= −x�
F L̄1SF L̄1xF − h�

F L̄�
2 SF L̄2hF

= −
(

S
1
2
F L̄1xF

)� (
S

1
2
F L̄1xF

)
−

(
S

1
2
F L̄2hF

)� (
S

1
2
F L̄2hF

)

= −
∥
∥∥∥S

1
2
F L̄1xF

∥
∥∥∥

2

−
∥
∥∥∥S

1
2
F L̄2hF

∥
∥∥∥

2

≤ 0, (29)

where S
1
2
F is the diagonal matrix with entries given by the

square root of diagonal elements of SF . Note that, all the

diagonal elements of SF are strictly positive. Hence, S
1
2
F

is well-defined. The last step of Eq. 29 is according to
the fact that L̄1 is symmetric for undirected interaction
among followers. Similar to the above analysis, all
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trajectories of Eq. 27 converge to the zero set of VF

applying Lemma 3, Corollary 1 and LaSalle’s invariance
principle. Hence, we can imply that

xF = −L̄1
−1L̄2hF , when t → ∞. (30)

By Lemma 1 (ii), we can conclude that, xF satisfies
Definition 1. Thus, the followers can converge to the
hull convex formed by leaders. Combining Parts I and
II, it can be concluded that the swarm system (2)
achieves formation-containment under input saturation.
This completes the proof.

3.2 Formation-Containment Protocol Design
for Double-Integrator Systems

In this section, we extend the formation-containment
protocol design with double-integrator systems in 2-
dimensions

ẋi (t) = vi(t)

v̇i(t) = ui(t), (31)

where ui(t) is the acceleration input to be designed. We can
find that double-integrator systems (31) can be expressed in
the following form
(

ẋi

v̇i

)
=

[
0 I2

0 0

] (
xi

vi

)
+

(
0
I2

)
ui . (32)

Let si = (
x�
i , v�

i

)�
, For the leaders and followers, our

proposed formation-containment control protocol is

ui =
∑

j∈Ni

Âij (sj − si) i ∈ E, (33)

ui =
∑

j∈Ni

wij

[
(xj − xi) + (vj − vi)

]
i ∈ F, (34)

where Âij = [k0Aij , k1Aij ], k0 ∈ R and k1 ∈ R are scalar
control gains. wij are non-negative gain. The definition of
Aij are shown in Eq. 5.

Now, we present the following theorem to guarantee
the convergence of double-integrator systems under the
proposed formation-containment coordination.

Theorem 3 Consider leaders and followers with double-
integrator dynamics (31) and control protocol Eqs. 33 and
34. Assume the interaction topology among leaders (GE)

contains a spanning tree and, for each follower, there exists
at least one directed path from a leader, then, for any wij >

0, the swarm system (31) achieves formation-containment
if A is that chosen by Algorithm 1, for all the non-zero
eigenvalues of A (λ(A)), k0 ,k1 are selected such that

Re(k1λ(A) + Γ ) < 0, (35)

where Γ 2 = k2
1λ2(A) + 4k0λ(A).

Proof We put the control protocol Eqs. 33 and 34 into
Eq. 32.

On the one hand, for leaders, we have

ṠE =
[

0 I2(N−M)

k0A k1A

]
SE, (36)

where, SE = [s�
M+1, . . . , s

�
N ]�. Let

Â =
[

0 I2(N−M)

k0A k1A

]
∈ R

4(N−M)×4(N−M).

Then, the proof can be divided into two steps. In step 1,
we will find the eigenvectors of Â corresponding to zero. In
step 2, we will show that all non-zero eigenvalues of Â have
negative real part.

Firstly, since

Rank(Â) = rank(A) + rank(I2(N−M)) = 4(N − M) − 4,

we have the matrix Â have 4 zero eigenvalues. If we let

1̂ = [1�, 0]�, 1̂⊥ = [1⊥�
, 0]�,

ĥ = [h�, 0]�, ĥ⊥ = [h⊥�
, 0]�,

we can easily verify that Â1̂ = Â1̂⊥ = Âĥ = Âĥ⊥ = 0.
Hence we find the four eigenvectors corresponding to zero.

Secondly, since A is selected by Algorithm 1, we have
Re(λ(A)) < 0, where Re(λ(A)) denotes the non-negative
eigenvalues of A. Then, the characteristic equation of Â is
given by

det(λ2I2(N−M) − k1λA − k0A)

=
∏

μ∈eig(A)

|λ2 − k1μλ − k0μ|

= 0. (37)

From Eqs. 35 and 37, for all non-zero eigenvalues of Â, we
have

Re(λ(Â)) = Re(k1λ(A) + Γ )

2
< 0, (38)

where Γ 2 = k2
1λ2(A) + 4k0λ(A).

Therefore, we can conclude that all of the non-
eigenvalues of Â have negative real part. Hence, similar
to the discussion in the leader case of Theorem 1, when
t → ∞, we obtain

SE(t) → 1̂ĉ1 + 1̂⊥ĉ2 + ĥĉ3 + ĥ⊥ĉ4, (39)

which implies

xE(t) → 1ĉ1 + 1⊥ĉ2 + hĉ3 + h⊥ĉ4, (40)

where ĉ1, ĉ2, ĉ3 and ĉ4 are constants. That is to say,
the leaders can converge to nothing but all translations,
rotations, and non-negative scale factors of h, which also
indicates that leaders can converge to the desired formation
shape.
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On the other hand, for followers, we have

ṠF =
[

0 I2M

−L̄1 −L̄1

]
SF +

[
0 0

−L̄2 −L̄2

]
SE, (41)

where SF = [s�
1 , . . . , s�

M ]�. Let t → ∞, similar to
discussion in the follower case of Theorem 1, we conclude

SF →
[ −L̄1

−1L̄2 −L̄1
−1L̄2

0 0

]
ĥF , (42)

where ĥF = [h�
F , 0] and hF is the formation shaped by

leaders. Then we can imply

xF = −L̄1
−1L̄2hF , when t → ∞. (43)

From Lemma 1 (ii), we can conclude that xF satisfy
Definition 1, and then the swarm system (31) achieve
formation-containment. This completes the proof.

Since the condition (35) is not easy to be verified, we
have the following corollary

Corollary 2 In Theorem 3, if we can select the matrix A

which satisfies λ(A) ∈ R, where λ(A) denote all non-zero
eigenvalues of A. The chosen of k0 and k1 can be substituted
by k0 > 0 and k1 > 0.

Proof Since λ(A) ∈ R, we have Γ 2 ∈ R.
On the one hand, in Eq. 37, if k2

1λ2(A) + 4k0λ(A) ≤ 0,
we can obtain

Re(λ(Â)) = k1λ(A)

2
< 0.

On the other hand, in Eq. 37, if k2
1λ2(A) + 4k0λ(A) > 0,

we can imply that Γ ∈ R. Let γ =
√

k2
1λ2(A) + 4k0λ(A),

we have

Re(λ(Â)) = k1λ(A) + Γ

2

<
k1λ(A) + γ

2

= 4k0λ(A)

γ − k1λ(A)
.

Using this, combined with the selection of A, k0 and k1, we
conclude that Re(λ(Â)) < 0. The remaining proof is similar
with Theorem 3, we omit here.

Remark 4 It can be seen that the formation matrix A in
the control protocol plays a key role in both single and
double integrator systems. Different from [21, 31, 43],
where both the relative formation reference signal and
the relative state information are required in the real-time
data transmission, the proposed control law only uses the
relative state information. Hence, less data is used in the
transmission results in reducing the communication cost in
each robot.

Remark 5 The values of k0 and k1 reflect the convergence
speed of velocity and acceleration, hence, if we select a
larger set of k0 and k1, the formation-containment task
will be completed faster. However, considering the energy
costs and constraints of real-robot hardware, we cannot
select arbitrary large values of k0 and k1. Therefore,
there is a trade-off between control performance and input
constraints.

4 Results & Discussion

This section presents the observed results from simulation
studies, followed by the results obtained from experiments
using real-robots.

4.1 Mission Description

Formation-containment control of a swarm robotic system
has the potential to be applied in various applications
such as automated farming and precision agriculture [19,
44]. As an example, Fig. 1 shows an agri-robotic scenario
using two different types of robots in a swarm, which are
deployed for a weed management task. The leader robots
(which are quadrotors with their embedded sensory system,
e.g. multispectral imaging camera) are deployed to form
a formation around the boundary of the target area i.e.
an area of interest. The follower robots (which are the
ground robots directly interacting with plants) converge
to the target area spanned by the leaders using inter-
robot communication to complete the task, which may,
for example, be the targeted application of insecticide.
By developing and coordinating multiple sensing mobile
platforms, the observed data can facilitate the practices of
sustainable agricultural intensification.

4.2 Simulation Results

In this section, we design a numerical simulation in
the Matlab/Simulink environment to demonstrate the
effectiveness of the theorem results obtained in the previous
section.

We consider the double-integrator swarm system with
four leaders and ten followers. Their dynamics are described
by Eq. 31. The interaction topology among them is shown in
Fig. 2. To test the robustness of the system, we add the white
noise with amplitude equals to 0.03 to the measured position
of each robot. The input saturation is also considered
in the simulation, where we set ‖umax‖ = 3 for all
the robots.

Initially, the desired formation of the four leader agents
is chosen as a square. For simplicity, we set the final
configuration of four agents as (0, 0), (1, 0), (1, 1) and
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Fig. 2 Interaction topology of
the proposed swarm system. The
four UAVs denote the leaders
and the ten Mona robots denote
the followers. The interactions
among leaders and among
followers are denoted by the red
lines and yellow lines,
respectively. The interactions
between leaders and followers
are denoted by blue arrows

(0, 1) to fix a square shape. Hence, h can then be defined as
the following form h = [0, 0, 1, 0, 1, 1, 0, 1]�.

Then, the matrix A is generated as follows, utilising
Algorithm 1

A =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

−2 0 1 1 0 0 1 −1
0 −2 −1 1 0 0 1 1
1 −1 −2 0 1 1 0 0
1 1 0 −2 −1 1 0 0
0 0 1 −1 −2 0 1 1
0 0 1 1 0 −2 −1 1
1 1 0 0 1 −1 −2 0

−1 1 0 0 1 1 0 −2

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

.

Finally, for followers, we set the interaction that has 0−1
weight in the final step of Algorithm 1. It is straightforward
to verify that all nonzero eigenvalues of A are real. Hence,
by Corollary 2, we set the control gain for k0 = k1 =
1
10 . The swarm system (31) will achieve the formation-
containment by the control protocol Eqs. 33 and 34.

Figure 3 shows the trajectory snapshots of leaders and
followers with the interaction topology in Fig. 2 at different
time instants t ∈ {0, 20, 50, 100} s. The positions of
followers are denoted by circles, and the positions of leaders
are denoted by square, triangle, diamond, and asterisk,
respectively. Moreover, the convex hull formed by leaders

is marked by the red solid line. Figure 3a shows the initial
state of leaders and followers. From (a) to (b) in Fig. 3, it can
be seen that the positions of the followers converged to the
convex hull which was formed by the leaders. Figure 3b–
d show the leaders converged to the desired formation and,
simultaneously, the followers still stayed in the convex hull
formed by the leaders. Finally, the swarm system achieved
formation-containment at t = 100 s. The states and control
inputs of the robots are shown in Fig. 4, where the solid
lines denote leaders, and the dash lines denote followers. It
can be seen that the velocity and acceleration of each robot
converge to zero; and all the robots complete the formation-
containment task within t = 80 s. Furthermore, the results
of simulation reveal that our control protocol is robust in
several situations like white noise perturbation and input
constraints.

Next, we analyze how different cases in followers and
leaders affected the result of the formation-containment.
Two metrics which are i) time to achieve formation-
containment (denoted by T ) and ii) the average distance
between followers to the barycentre in followers (denoted
by d) were investigated. We assumed there are four
leaders in the swarm system with the interaction shown in
Fig. 2, and the interaction topology between followers is
a ring. The variables are the number of followers and the

Fig. 3 Trajectory snapshots of leaders (denoted by square, triangle, diamond, and asterisk, respectively) and followers (denoted by ten nodes) in
the swarm system at different time instants, t ∈ {0, 20, 50, 100} s
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Fig. 4 a and b show the time
variation of position in x-axis
(pxi

) and y-axis (pyi
) of ith

robot, respectively. c and d show
the time variation of velocity in
x-axis (vxi

) and y-axis (vyi
) of

ith robot, respectively. e and f
show the time variation of
acceleration (control input) in
x-axis (axi

) and y-axis (ayi
) with

saturated input equals to 3 of ith
robot, respectively. The solid
lines denote leaders, and the
dash lines denote followers

interaction between leaders and followers. For each case, we
repeated the experiments 50 times and the initial position of
the robots were randomly selected for each run.

A. Number of followers (N): Assuming all leaders can
transmit information to two followers and every
follower can receive information from at least one
leader. The only difference is the number of followers.
We can indicate from Fig. 5a that the value of T

increased as an increase in N . Also, as shown in
Fig. 5b, the value of d was also raised as an increase in
N , however, with a different trend.

B. Leaders can transmit information to how many
followers (Nl): Assuming there are four followers
and every follower can receive information from at
least one leader. The only difference is that leaders
can transmit information to how many followers.
We can see from Fig. 6a that the value of T was
decreased as an increase in Nl . However, the change
in the value of d had no strong relationship with the
various Nl .

C. How many followers can receive information from
leaders (Nf ): Assuming there are four followers and
all leaders can transmit information to one follower.
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Fig. 5 a Time of formation-containment achievement, T , and b
average distance between followers and barycentre, d , for number of
followers, N ∈ {3, 4, 5, 6, 7, 8, 9, 10} robots

The only difference is that the number of followers can
receive information from the leaders. We can observe
from Fig. 6b that the value of T decreased as Nf

increased. However, the value of d increased as Nf

increased.

Therefore, we can see that the time for formation-
containment can be affected by both the numbers of fol-
lowers and the interactions between leaders and followers.
The convergence speed slows down when the number of
robots increases or the interaction becomes sparse. Hence,
the required time for formation-containment will be pro-
longed. However, the average distance between follow-
ers and barycentre is affected mostly by the interaction,
which increases as the interaction become sparse. In fact,
the trend of the red line in Fig. 6a is mainly due to
the interaction since the interaction will become sparse
in ring topology as the number of robots increases. If
we change to another topology, the performance will be
different.

Fig. 6 Time of formation-containment achievement, T , and average
distance between followers and barycentre, d, for a the leaders link to
Nl ∈ {1, 2, 3} followers and b followers number (Nf ∈ {1, 2, 3, 4})
which directly linked to the leaders. The average values of T and
d from 50 simulations are indicated by the blue and red colour
lines, respectively. The shaded area indicates all the obtained results
(between minimum and maximum)

4.3 Real-Robot Experiments

4.3.1 Experimental Setup

To investigate the performance of the proposed formation
scenario, we used a collection of real robots, namely
Mona robots which are an open-source swarm robotic
platform [45]. Figure 7a shows a Mona robot and its
various modules. The robot is based on Arduino AVR
architecture with ATMEGA-328 micro-controller. It is
actuated with two wheels (with 3.2 mm diameter), which are
differentially driven using two gear-head micro DC motors.
The main controller uses PWM (pulse-width modulation)
to control the rotational speed of the left and right motors
independently. We developed an arena with an overhead
camera as shown in Fig. 7b. In the experimental setup,
we used a low-cost Microsoft LifeCam Studio Webcam
as the swarm localization platform. The position of each
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Fig. 7 a Mona Robot, an open-source swarm robotic platform. A)
infrared proximity sensors, B) main AVR processor, C) SPI port for RF
transceiver. D) gear-head DC micro-motor, E) local IR communication
transmitters and encoders, F) communication modules processor, G)
32 mm wheels. b Arena configuration including a PC which tracks the
position of robots using digital camera and sends motion commands to
the robots using RF communication

robot was continuously tracked by an open-source tracking
software developed in [46] with a sampling time of
0.1 s. A time delay of 0.05 s and a tracking error of
±0.005 m can be observed during the experiments due to
the processing speed of the host computer and the quality
of the camera. Hence, the robustness of the swarm system
subjected to certain communication delays, actuator noises
and inaccuracies of the camera tracking system that can be
verified via the experiments.

The control algorithm generates the next position for
each robot and transmits this information to them using an
RF (radio frequency) module, which is connected to the
robots using a serial port. The generated position command
contains two bytes for the rotational speeds of the left and
right motors. The main controller (micro-controller) of the
robots receives this command and translates it to two PWM
signals associated with the left and right motors. Details on
motion control and kinematics of the robot were presented
in [45]. All the mobile robots used in the experiments have
the same physical and hardware configuration. The dynamic
model in terms of the global coordinates can be described
as follows

ṗxi = vi cos θi,

ṗyi = vi sin θi,

θ̇i = ωi, (44)

where (pxi, pyi) denotes the position of the ith robot and
θi is the orientation. vi and ωi represent the linear and
angular velocities of the ith robot respectively. In order
to deal with the nonlinear dynamics appeared in the robot
model, the feedback linearization technique [47] was used
to transfer the dynamics of the robots Eq. 44 to single-
integrator systems, such that the algorithm proposed in the
previous section can be directly applied on the feedback
linearized dynamics.

4.3.2 Results with Real Mobile Robots

In the real-robot experiment, six Mona robots (4 leaders and
2 followers) were utilised. The goal in these experiments
was to make the robots move and then observe the trajectory
they followed to achieve the final position. Analysis of
this trajectory allowed the functionality of the proposed
formation-containment to be verified.

We utilised six robots, where the four leaders are linked
by the red dashed lines as shown in Fig. 8, which illustrates
trajectory of the four leaders and two followers. In Fig. 8a,
the robots are positioned at randomly selected initial states.
From Fig. 8b to c, it was observed that the robots started to
move toward the desired position. The leaders accomplished
their formation control in a square, and the followers
moved toward the convex hull spanned by the leaders.
In Fig. 8d, the formation-containment task is seen to be
complete. We can see from Fig. 8 that the leaders formed a
square arrangement, that was set as the desired formation,
gradually. At the same time, the followers entered the
convex hull formed by the leaders, demonstrating that
formation-containment was accomplished. Hence, it is clear
from these figures that the robots were able to achieve the
formation-containment by the control protocol proposed in
this study.

In this set of experiment, because time-delays and
tracking errors existed in the camera tracking systems, the
trace of the robots was not as smooth as might be expected
(especially the yellow trace). One of the reasons was that the
robots were driven by two motors, there also existed some
tracking error between the desired speed and real speed.
Furthermore, since the moment they receive the command
via RF (radio frequency) module may be delayed because of
the wireless connection, and there also exists disturbances
(such as friction and the internal interrupts of the robots),
further deviation of the tracking was observed. On the
another hand, due to the fact that the robots could not be
treated as particles (points) in the real-world environment,
we activated the collision avoidance function of the robots
using artificial potential field methods. The robots changed
their route when they discovered their distance between
other robots was smaller than the threshold. Despite all of
this, the robustness of the control system was shown to
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Fig. 8 Selected snapshots of the experiments and the trace with six robots at a t = 0 s, b t = 10 s, c t = 20 s and d t = 40 s. The leaders are
linked with red dashed lines

overcome these difficulties. Hence, the task was completed,
and the effectiveness of the proposed controller validated.

According to the results, the control protocol was
successfully applied to real robots allowing them to
achieve formation-containment. The proposed technique
has significant potential to perform more complex behaviors
to assist humans in dealing with challenging tasks in the
real-world scenarios.

4.4 Comparisons

In contrast to the formation tracking problems solved in [25]
where there exists only one leader in the swarm system, in
this work, we deal with the case when there exist multiple
leaders, which bring more challenges to the control system
design. Similar containment control problems are discussed
in [31, 43], however, for each robot, it requires not only
the relative state information from its neighbors, but also
the relative formation reference signal which cannot be

measured by the distance sensors directly, such that the
control scheme is not fully distributed and scalable. On
the contrary, the proposed control protocol only requires
the relative position measurements, which provides more
feasibility in real-world implementation.

In order to show the superior coordination performance
under the proposed algorithm, a comparison between the
proposed formation-containment protocol and the adaptive
controller recently developed in [36] is made. For both
controllers, we adopted the same dynamics and conditions
as shown in Section 4.3. The initial state of each robot was
selected randomly. We repeated experiments 50 times for
each controller, where we used ‖p − p∗‖ (p is the position
vector of every robot, and p∗ is the final state vector of
every robot) to define the tracking error. The performance
analysis is illustrated in Fig. 9, where in (a), the yellow area
represents the observed results from 50 times experiments
of our controller and the solid yellow line is the mean
value. In Fig. 9b, the blue area represents results from 50

Fig. 9 Controller performances
of a the proposed protocol in
this work and b the protocol
proposed in [36]. The shaded
area represents the observed
results from 50 times
experiments and lines represent
the mean value
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times experiments of the controller proposed in [36] and the
solid blue line is the mean value. It can be seen that the
convergence time of the proposed protocol in this work is
shorter than [36]. Such advantages reveal that our protocol is
more efficient in completing formation-containment tasks.

5 Conclusions

In conclusion, a novel formation-containment control
protocol design was proposed that makes the leaders
converge to the desired formation, and the followers move
to the convex hull spanned by the leaders. Simulations
were performed to verify the control design algorithm and
analyzed some of the factors which affected the formation-
containment performance. Finally, we applied our theorem
to a real-world scenario by performing an experiment using
multiple mobile robots. It can be seen that the proposed
coordination framework can be used in precision agriculture
applications where the leaders act as markers, indicating
an area of interest and the followers are robots that
interact with the plants. In the future, nonlinear dynamics
of the robot and time-delay of the sensors will be taken
into consideration when designing the distributed protocol.
Furthermore, robust control techniques [48] will also be
exploited to guarantee reliable performance.
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