Skip to main content
Log in

Path Following Control of Quadrotor UAV With Continuous Fractional-Order Super Twisting Sliding Mode

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Quadrotors are highly maneuverable drones, which are susceptible to the parameter uncertainties such as the mass, drag coefficients, and moment of inertia. Whose nonlinearities, aerodynamic disturbances, and higher coupling between the rotational and the translational dynamics stand for a problem that demands a robust controller. In the present paper, a fractional order (FO) improved super twisting proportional-integral-derivative sliding-mode control (STPIDSMC) is proposed for the quadrotor system. To improve the speed tracking performance, a FOPIDSM surface is designed. Moreover, the proposed FO control approach ensures fast convergence, high precision, good robustness against stochastic perturbations and uncertainties. Finally, the performance of the FOSTPIDSMC is investigated under different scenarios. The simulation results clearly show the high control performance, efficiency and high disturbance rejection capacity of the controller strategy proposed in this work in comparison with the nonlinear internal model control (NLIMC) and FO backstepping sliding mode control (FOBSMC) strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mu, B., Zhang, K.: Integral Sliding Mode Flight Controller Design for A Quadrotor and The Application in A Heterogeneous Multi-Agent System. IEEE Trans. Ind. Electron., vol. 0046, no c (2017)

  2. Shi, X.-N., Zhang, Y.-A.: D Zhou, ”Almost-global finite-time trajectory tracking control for quadrotors in the exponential coordinates. IEEE Trans. Aerosp. Electron. Syst. 53(1), 91–100 (2017)

    Article  Google Scholar 

  3. Liu, H., Zhao, W., Zuo, Z., Zhong, Y.: Robust control for quadrotors with multiple Time-Varying uncertainties and delays. IEEE Trans. Ind. Electron. 64(2), 1303–1312 (2017)

    Article  Google Scholar 

  4. Hua, C., Chen, J., Guan, X.: Fractional-order sliding mode control of uncertain QUAVs with time-varying state constraints. Nonlinear Dyn (2018)

  5. Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91(2016), 99–131 (2017)

    Article  Google Scholar 

  6. Li, S., al.: Adaptive RBFNNs / integral sliding mode control for a quadrotor aircraft. Neurocomputing (2016)

  7. Zuo, Z., Ru, P.: Augmented l1 adaptive tracking control of quadrotor unmanned aircrafts. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3090–3101 (2014)

    Article  Google Scholar 

  8. Hua, C., Chen, J., Guan, X.: Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. J. Franklin Inst. 355(14), 6323–6338 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zou, Y., Zhu, B: Adaptive Trajectory Tracking Controller for Quadrotor Systems Subject to Parametric Uncertainties. J Franklin Inst (2017)

  10. Ai, X., Yu, J.: Fixed-time trajectory tracking for a quadrotor with external disturbances: a flatness-based sliding mode control approach. Aerosp. Sci. Technol. 89(58), 76 (2019)

    Google Scholar 

  11. Liu, H., Xi, J., Zhong, Y.: Robust attitude stabilization for nonlinear quadrotor systems with uncertainties and delays. IEEE Trans. Ind. Electron. 64(7), 5585–5594 (2017)

    Article  Google Scholar 

  12. Mofid, O., Mobayen, S.: Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans (2017)

  13. Ansari, U., Bajodah, A.H., Hamayun, M.T.: Quadrotor Control via robust generalized dynamic inversion and adaptive Non-Singular terminal sliding mode. Asian J. Control 21(4), 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Wang, H., Ye, X., Tian, Y., Zheng, G., Christov, N.: Model-free-based terminal SMC of quadrotor attitude and position. IEEE Trans. Aerosp. Electron. Syst. 52(5), 2519–2528 (2016)

    Article  Google Scholar 

  15. Antonelli, G., Cataldi, E., Arrichiello, F., Giordano, P.R., Chiaverini, S., Franchi, A.: Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of Parameter Uncertainties and External Disturbances. IEEE Trans. Ind. Electron. pp. 1–7 (2017)

  16. Izaguirre-Espinosa, C., Muñoz-Vázquez, A. J., Sánchez-Orta, A., Parra-Vega, V., Castillo, P.: Attitude control of quadrotors based on fractional sliding modes: Theory and experiments. IET Control Theory Appl. 10(7), 825–832 (2016)

    Article  MathSciNet  Google Scholar 

  17. Muñoz, F., González-Hernández, I., Salazar, S., Espinoza, E.S., Lozano, R.: Second order sliding mode controllers for altitude control of a quadrotor UAS: Real-time implementation in outdoor environments. Neurocomputing 233(2016), 61–71 (2017)

    Article  Google Scholar 

  18. Labbadi, M., Cherkaoui, M.: Novel robust super twisting integral sliding mode controller for a quadrotor under external disturbances. International Journal of Dynamics and Control (Dec. 2019)

  19. Aguilar-Ibáñez, C., Sira-Ramírez, H., Suárez-Castañón, M.S., Martínez-Navarro, E., Moreno-Armendariz, M.A.: The trajectory tracking problem for an unmanned four-rotor system: Flatness-based approach. Int. J. Control 85(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chamseddine, A., Zhang, Y., Rabbath, C.A., Join, C., Theilliol, D.: Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 48 (4), 2832–2848 (2012)

    Article  Google Scholar 

  21. Wang, N., Deng, Q., Xie, G., Pan, X.: Hybrid finite-time trajectory tracking control of a quadrotor. ISA Trans (2019)

  22. Wang, X., Shirinzadeh, B.: Nonlinear multiple integrator and application to aircraft navigation. IEEE Trans. Aerosp. Electron. Syst. 50(1), 607–622 (2014)

    Article  Google Scholar 

  23. Yang, H., Cheng, L., Xia, Y., Yuan, Y.: Active disturbance rejection attitude control for a dual Closed-Loop quadrotor under gust wind. IEEE Trans. Control Syst. Technol. 26(4), 1400–1405 (2018)

    Article  Google Scholar 

  24. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016). https://doi.org/10.1016/j.mechatronics.2016.06.005

    Article  Google Scholar 

  25. Wang, J., Shao, C., Chen, Y.Q. : Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018). https://doi.org/10.1016/j.mechatronics.2018.05.006

    Article  Google Scholar 

  26. Nojavanzadeh, D., Badamchizadeh, M.: Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 10(13), 1565–1572 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yaoyao, W., Surong, J., Bai, C., Hongtao, W.: Advances in Engineering Software A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators. Advances in Engineering Software 119(2017), 21–29 (2018)

    Google Scholar 

  28. Wang, Y., Yan, F., Chen, B., et al.: Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans 86, 163–180 (2018). https://doi.org/10.1016/j.isatra.2018.11.009

    Article  Google Scholar 

  29. Chen, S.Y., Chiang, H.H., Liu, T.S. , Chang, C.H.: Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control. IEEE/ASME Trans Mechatronics 24, 741–752 (2019). https://doi.org/10.1109/TMECH.2019.2892401

    Article  Google Scholar 

  30. Fayazi, A., Pariz, N., Karimpour, A., Hosseinnia, S.H.: Robust position-based impedance control of lightweight single-link flexible robots interacting with the unknown environment via a fractional-order sliding mode controller. Robotica 36, 1920–1942 (2018). https://doi.org/10.1017/S0263574718000802

    Article  Google Scholar 

  31. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An Integral predictive / nonlinear \(h_{\infty }\) control structure for a quadrotor. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ayad, R., Nouibat, W., Zareb, M., Bestaoui Sebanne, Y.: Full control of quadrotor aerial robot using Fractional-Order FOPID. Iran. J. Sci. Technol. Trans. Electr. Eng. 4, 2013 (2018)

    Google Scholar 

  33. Izaguirre-Espinosa, C., Muñoz-Vazquez, A. J., Sanchez-Orta, A., Parra-Vega, V., Fantoni, I.: Fractional-Order Control for robust Position/Yaw tracking of quadrotors with experiments. IEEE Trans. Control Syst. Technol., pp 1–6 (2018)

  34. Mehmet, O.: Battery power loss compensated fractional order. Asian J. Control 14(2), 413–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z., Ma, X., Li, Y.: Robust tracking control strategy for a quadrotor using RPD-SMC and RISE. Neurocomputing 331, 312–322 (2018)

    Article  Google Scholar 

  36. Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2274 (2016)

    Google Scholar 

  37. Ailon, Arogeti, S.: Closed-form nonlinear tracking controllers for quadrotors with model and input generator uncertainties. Automatica 54, 317–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cabecinhas, D., Naldi, R., Silvestre, C., Cunha, R., Marconi, L.: Robust Landing and Sliding Maneuver Hybrid Controller for a Quadrotor Vehicle. pp 1–13 (2015)

  39. Vahdanipour, M., Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86, 737–747 (2019)

    Article  Google Scholar 

  40. Rios, H., Falcon, R., Gonzalez, O.A., Dzul, A.: Continuous Sliding-Mode control strategies for quadrotor robust tracking: Real-Time application. IEEE Trans. Ind. Electron. 66(2), 1264–1272 (2019)

    Article  Google Scholar 

  41. Ai, X., Yu, J.: Flatness-based finite-time leader-follower formation control of multiple quadrotors with external disturbances. Aerosp. Sci. Technol. 92, 20–33 (2019)

    Article  Google Scholar 

  42. Eskandarpour, A., Sharf, I.: A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn (2019)

  43. Shi, X., Cheng, Y., Yin, C., Dadras, S., Huang, X.: Design Of Fractional-Order backstepping sliding mode control for quadrotor UAV. Asian J. Control 21(1), 156–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Izaguirre-espinosa, A., Muñoz-vázquez, A.J., Sánchez-orta, A., Parra-vega, V.: Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation. Control Eng. Pract. 53, 47–56 (2016)

    Article  Google Scholar 

  45. Liu, H., Zhao, W., Zuo, Z., Zhong, Y.: Robust control for quadrotors with multiple Time-Varying uncertainties and delays. IEEE Trans. Ind. Electron. 64(2), 1303–1312 (2017)

    Article  Google Scholar 

  46. Wang, C.C.H.K., You, J.C.X.: Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. (2018)

  47. Efe, M.Ö.: Neural network assisted computationally simple PIλdμ control of a quadrotor UAV. IEEE Trans. Ind. Informatics 7(2), 354–361 (2011)

    Article  Google Scholar 

  48. Xu, Z., Nian, X., Wang, H., Chen, Y.: Robust guaranteed cost tracking control of quadrotor UAV with uncertainties. ISA Trans. 69, 157–165 (2017)

    Article  Google Scholar 

  49. Cai, W., She, J., Wu, M., Ohyama, Y.: Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach. ISA Trans. (2019)

  50. Zhang, J., Ren, Z., Deng, C., Wen, B.: Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. (2019)

  51. Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85(2), 1281–1295 (2016)

    Article  MATH  Google Scholar 

  52. Razmi, H., Afshinfar, S.: Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerosp. Sci. Technol. 91, 12–27 (2019)

    Article  Google Scholar 

  53. Casta, H., Gordillo, J.L.: Spatial modeling and robust flight control based on adaptive sliding mode approach for a quadrotor MAV (2018)

  54. Shi, X., Cheng, Y., Yin, et al.: Design of fractional-order backstepping sliding mode control for quadrotor UAV. Asian J Control 21, 156–171 (2019). https://doi.org/10.1002/asjc.1946

    Article  MathSciNet  MATH  Google Scholar 

  55. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47, 49–66 (2017)

    Article  Google Scholar 

  56. Podlubny, I.: Fractional Differential Equations. New York: academic (1999)

  57. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  58. Mu, C., Zhang, Y.: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties. IEEE Trans Neural Networks Learn Syst, pp 1–15. https://doi.org/10.1109/tnnls.2019.2900510 (2019)

  59. Labbadi, M., Cherkaoui, M., El Houm, Y., Guisser, M.: A comparative analysis of control strategies for stabilizing a quadrotor. In: International Conference Europe Middle East, North Africa Information Systems and Technologies to Support Learning. https://doi.org/10.1007/978-3-030-03577-8 (2019)

  60. Labbadi, M., Cherkaoui, M., El houm, Y., Guisser, M.: Modeling and robust integral sliding mode control for a quadrotor unmanned aerial vehicle. In: 2018 6th Int. Renew. Sustain. Energy Conf., pp. 1–6 (2018)

  61. Labbadi, M., Cherkaoui, M.: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 1, 105306 (2019)

    Article  Google Scholar 

  62. Labbadi, M., Cherkaoui, M.: Robust integral terminal sliding mode control for quadrotor UAV with external disturbances. International Journal of Aerospace Engineering 2019, 1–10 (2019)

    Article  Google Scholar 

  63. Yin, C., Chen, Y., Zhong, S.M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Freire, F.P., Martins, N.A., Splendor, F.: A simple optimization method for tuning the gains of PID controllers for the autopilot of Cessna 182 aircraft using model-in-the-loop platform. J. Control Autom. Electr. Syst. 29, 441–450 (2018). https://doi.org/10.1007/s40313-018-0391-x

    Article  Google Scholar 

  65. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: Fractional-order Modeling and control toolbox for MATLAB. In: Proc. 18th Int. Conf. Mixed Des. Integr. Circuits Syst., pp. 684–689 (2011)

  66. Derafa, L., Benallegue, A., Fridman, L.: Super twisting control algorithm for the attitude tracking of a four rotors UAV. J. Franklin Inst. 349, 685–699 (2012). https://doi.org/10.1016/j.jfranklin.2011.10.011

    Article  MathSciNet  MATH  Google Scholar 

  67. Alejandro, D., Moreno, J.A., Fridman, L.: Reaching time estimation for super-twisting based on Lyapunov function. In: IEEE Conf Decis Control pp 0–6, (2009)

  68. Labbadi, M., Cherkaoui, M.: Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans. 99, 290–304 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Labbadi.

Ethics declarations

Conflict of interests

We have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Super-Twisting Algorithm (STA) with a perturbation is defined by the following equation as [66, 67].

Proof

To proof the stability of the system, the standard Super-Twisting Algorithm (STA) with a perturbation is defined as [66, 67]:

$$ \begin{array}{@{}rcl@{}} \dot{\Upsilon}_{1} &= &-b_{1} \vert {\Upsilon}_{1} \vert^{\frac{1}{2}}sign({\Upsilon}_{1})+{\Upsilon}_{2}\\ \dot{\Upsilon}_{2} &= &-b_{2} sign({\Upsilon}_{1})+d({\Upsilon},t) \end{array} $$
(52)

The term \({\Upsilon }_{1} \in \mathbb {R}\) and \({\Upsilon }_{2}\in \mathbb {R}\) denote the state variables, \(b_{1}\in \mathbb {R^{+}}\), \(b_{2}\in \mathbb {R^{+}}\) and d(t, ϒ) is a perturbation term bounded as (d(t,ϒ) < D). Define the Lyapunov function presented in [66, 67] as

$$ V({\Upsilon})= \zeta^{T} P_{ST} \zeta $$
(53)

with \(\zeta =[\vert {\Upsilon }_{1} \vert ^{\frac {1}{2}}sign({\Upsilon }_{1}),{\Upsilon }_{2}]\) and P = PT is a non-negative matrix, which is a solution of an algebraic Lyapunov equation defined in Eq. 54.

$$ A_{ST}^{T} P_{ST}+A_{ST} P_{ST}= -Q_{ST} $$
(54)

with \(Q_{ST}=Q_{ST}^{T}>0\) and AST is Hurwitz, define in Eq. 55

$$ \begin{bmatrix} -\frac{1}{2}b_{1} & \ \ \ \ \ \frac{1}{2}\\ -b_{2} & \ \ \ \ \ 0 \end{bmatrix} $$
(55)

Moroever, the derivative of \(\dot {V}\) respect to time presented in [66, 67] satisfies the

$$ \dot{V}\leq -\gamma(Q_{ST})V^{\frac{1}{2}}({\Upsilon}) $$
(56)

where

$$ \gamma(Q_{ST}) \triangleq \frac{{\Pi}_{min}(Q_{ST}){\Pi}_{min}^{\frac{1}{2}}(P_{ST})}{{\Pi}_{max}(P)} $$
(57)

is a scalar depending on the selection of the matrix QST. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labbadi, M., Boukal, Y. & Cherkaoui, M. Path Following Control of Quadrotor UAV With Continuous Fractional-Order Super Twisting Sliding Mode. J Intell Robot Syst 100, 1429–1451 (2020). https://doi.org/10.1007/s10846-020-01256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01256-3

Keywords

Navigation