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Abstract
This paper presents a lightweight 3D vision system called Equal Baseline Camera Array (EBCA). EBCA can work in
different light conditions and it can be applied for measuring large range of distances. The system is a useful alternative to
other known distance measuring devices such as structured-light 3D scanners, time-of-flight cameras, Light Detection and
Ranging (LIDAR) devices and structure from motion techniques. EBCA can be mounted on a robotic arm without putting
significant load on its construction. EBCA consists of a central camera and a ring of side cameras. The system uses stereo
matching algorithms to acquire disparity maps and depth maps similarly as in case of using stereo cameras. This paper
introduces methods of adapting stereo matching algorithms designed for stereo cameras to EBCA. The paper also presents
the analysis of local, semi-global and global stereo matching algorithms in the context of the EBCA usage. Experiments
show that, on average, results obtained from EBCA contain 37.49% less errors than the results acquired from a single stereo
camera used in the same conditions.
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1 Introduction

A vision system is one of the most important part of an
autonomous robot designed for recognizing objects in its
vicinity and interacting with them. If a robot operates a
robotic arm for picking up objects, then it is necessary to
estimate distances to these objects and their locations. In
general, this requires equipping the robot with a 3D vision
system. There is a large variety of 3D imaging devices
designed for obtaining depth maps consisting of distances
from an imaging device to objects located within its field
of view [1]. These devices have different characteristics and
features.

Commonly used equipment for making depth maps
are structured light 3D scanners [2]. Scanners are active
devices which emit rays of light in order to perform the
measurement. Rays have a form of a precisely defined
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patterns such as horizontal stripes. Scanners analyze
distortions of emitted light on objects. The necessity to
illuminate objects has a significant negative consequences.
Foremost, the presence of intensive natural light interfere
with the measurement making it hard or even impossible to
obtain a scan. There is also a problem with 3D imaging of
large objects such as buildings because a 3D scanner would
require a powerful source of light. 3D scanners are also
relatively large devices because they contain a considerable
light source.

3D imaging is also performed using lasers. Lasers are
used in Time-of-flight cameras (TOF) and Light Detection
and Ranging equipment (LIDAR) [3, 4]. LIDAR consists
of a mobile part which detects in a single measurement
a distance from the device to a single point of an object.
Distances to many points are obtained by aiming the ranging
system at different directions. On the contrary to LIDAR,
TOF simultaneously obtains distances for multiple points
by using a single laser beam. Devices based on lasers
provide accurate values for large distances and they are
resistant to the influence of sunlight more than structured
light scanners. However, both of these kinds of devices
collect distances as a set of isolated points distant from
each other. Therefore, the resulting depth map is sparse in
comparison to maps obtained from cameras as resolution
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of laser based devices is much lower than resolution of
cameras [5]. Moreover, cameras are more flexible regarding
its size and range of distances as there are camera arrays
whose size is approximately the same as a size of a coin [6].

3D shapes of real objects and depth maps can be also
acquired with the use of the Structure from Motion (SfM)
technology [7]. Input data to an algorithm using SfM are
images taken from different points of view located around
the object. The algorithm obtains a 3D scan by matching
characteristic points visible in images. The disadvantage of
SfM is such that it requires relocating an imaging device
or using a set of such devices distant from each other.
Therefore, the Structure from Motion technology is not
suitable for an autonomous robot that needs to be equipped
with a vision system making 3D images from a single point
of view.

The solution to these problems is using sets of adjacent
cameras such as stereo cameras. 3D data can be retrieved
from a pair of images with the use of stereo matching
algorithms. Stereo cameras do not need to be relocated
to make a 3D image. They are in large extent resistant
to a negative influence of intensive natural light. Cameras
differ in both their size and vision range. A light and small
camera can be mounted on a robot, in particular its robotic
arms, without significantly increasing the weight. However,
stereo cameras have also a major weakness. The quality of
3D images obtained from stereo cameras is lower than the
quality of images acquired with the use of other kind of
devices for 3D imaging.

One of the methods of solving this problem is developing
better algorithms for processing stereo images in order to
retrieve 3D data. This paper focuses on the other approach
which is improving the results by taking advantage of a
greater number of adjacent cameras. In general, such a set
is called a camera array. Different kinds of arrangements
of cameras in an array were developed. One of the most
popular are cameras placed along a straight line [8]. This
paper is dedicated to a specific kind of a camera array
in which there is a central camera and a ring of side
cameras equally distant from the central one [9, 10]. This
camera array was previously called Equal Baseline Multiple
Camera Set (EBMCS) [11, 12]. In this paper it will be called
Equal Baseline Camera Array (EBCA), because this name is
more accurate. The most significant advantage of this array
is such that EBCA makes it possible to obtain greater quality
of 3D images than a stereo camera preserving valuable
features of stereo cameras such as compact size and weight.

The original contributions of this paper include: (1) The
development of 3D vision algorithms for Equal Baseline
Camera Array which is a lightweight 3D vision system
suitable for mounting on a robotic arm in an eye-in-
hand configuration. (2) Designing a method for applying
stereo matching algorithms to a EBCA. The method

makes it possible to improve results between 21.03% and
45.16% in comparison to results obtained from a stereo
camera. (3) The analysis of different types of stereo
matching algorithms in the context of the EBCA usage. (4)
Experiments presenting the quality of algorithms designed
for EBCA.

2 RelatedWork

The main area of application of 3D vision systems for
autonomous robots and automated machines is industrial
environments, in particular manufacturing. Pérez et al.
presented a detailed review on machine vision techniques
in this field [1]. The review of 3D data acquisition and
processing technologies for industrial applications was also
prepared by Bi and Wang [13]

2.1 Types of Robots

In general, automated manufacturing is based on prepro-
grammed robots which constantly perform the same actions.
These robots are not equipped with any kind of a vision
systems. Their purpose is to operate in repeatable cycles in
which robots interact with the same kind of objects placed
in the same locations.

Another type of robots are those which contain a vision
system. Such a robot can be either controlled by a human
operator or by an autonomous robot control system. In
manually controlled robots the operator directs actions of
the robot on the basis of the interpretation of robotic sensors
readings. There are Remotely Operated Vehicles (ROV).
The actions of the robot can be realized by its parts such as
robotic hands. The other kind of robots are autonomous ones
which process the data from sensors fully by themselves.
There robot recognize events captured by sensors, make
decisions, plans their response to recognized events and
performs actions without direct human control. The 3D
vision system proposed in this paper can be applied to both
of these kinds of robots.

Manually controlled robots equipped with a vision
system are mainly used in the environments where it is
hard, dangerous or even impossible for a human being to
perform necessary actions. The area of application includes
medical procedures [14], underwater operations [15], space
technologies [16], rescue operations [17] and various
industrial applications such as robots on oil platforms [18].

Although the technology of autonomous robots is still
under development, this kind of robots are already used
in industrial applications. A large number of researches
focused on developing harvesting robots for agriculture.
Hayashi et al. developed a strawberry harvesting robot
which was later released as a commercial product by
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Shibuya Seiki CO., LTD. company [19]. Fruit harvesting
robots were also developed for automatically picking up
apples [20], cucumbers [21] and oranges [22]. Moreover a
research was also performed on assembling 3D objects by
robots with the use of 3D vision system. Such a robotic
system is often developed for small objects such as toy
blocks but the same kind of technology can be used for large
objects. Wan et al. proposed a robot that detects 3D objects
having different shapes, plan their grasps and assemble
them using artificial intelligence searching [23]. Sanchez-
Lopez developed an autonomous mobile robot manipulator
for picking up objects having different color [24]. There
are also unmanned surface vehicles operating on the surface
of the water and autonomous on-road vehicles [25, 26].
Moreover, Lin et al constructed an robotic arm for semi-
automatically locating and picking up fragments of walls
for the purpose of maintaining a vacuum vessel of the
superconductor tokamak [27].

2.2 Locations of a Vision System in a Robot

The location of the vision system can be different in relation
to the position of a robot end-effector in both manually
controlled robots and autonomous ones. In general, eye-to-
hand and eye-in hand setups are used. In the eye-to-hand
setup the vision system in mounted separately from a robot
manipulator such as a robotic arm. Sensors monitor the
workspace regardless of the manipulator’s current position
in this configuration. Therefore, the robot constantly have
a wide view on its operating field. The eye-in-hand setup
means that the vision system is fixed to the construction
of the manipulator close to the end-effector. In this setup
the field of view is more narrow than in the eye-to-hand
configuration. Moreover, mounting the vision system on the
manipulator puts a load on its construction. However, the
advantage of this setup is such that the robot can inspect
targets from a close distance to the end-effector. The EBCA
vision system described in this paper is mainly intended
for use with the eye-in-hand setup. However, it can be also
applied to the eye-to-hand setup.

The selection of the vision system setup depends on
applications in which an autonomous robot is used. The eye-
in-hand setup is frequently used in autonomous robots for
fruit harvesting [19, 20, 22, 28]. Lin et al. also used a vision
system located on the manipulator in the maintenance robot
for a vessel of tokamak [27]. Palli et al. used a robot with an
eye-in-hand vision system for underwater operations [29].
Jiang and Wang described a space station robot equipped
with two monocular cameras and two stereocameras fixed
to a robotic manipulator [16]. One of the stereo cameras
was mounted near the gripper and headed in its direction.
The second setup i.e. eye-to-hand was used by Wan et al.
in their autonomous robot for assembling 3D blocks [23].

Sanchez-Lopez also used this setup in the robot for picking
up colored objects [24].

2.3 Usage of Cameras in 3D Vision Systems

A 3D vision system of a robot may consist of a structured-
light scanner such as Kinect [30], LIDAR [4], TOF camera,
a set of cameras distant from each other (Structure from
Motion technology) [7], a stereo camera or a camera array.
This paper focuses on using cameras mounted close to
each other because this kind of a 3D vision system can be
light, tiny, compact, energy efficient, applicable to objects
of different sizes and usable in various light conditions.
Moreover, cameras make it possible to obtain a dense depth
map and they can be easily mounted on a robotic arm.

Images from stereo cameras and camera arrays are
processed by stereo matching algorithms in order to retrieve
information concerning locations of real objects in a 3D
space. These algorithms use the fact that the same objects
visible in images from cameras placed at different points
of view will be located at different coordinates at these
images. A stereo matching algorithm calculates a disparity
map and on its basis a depth map is acquired. Disparity
is the difference between locations of the same object in
different images. The set of disparities obtained for many
points of images forms the disparity map. Stereo matching
algorithms search for occurrences of the same objects in
different images. A disparity map can be unambiguously
converted to a depth map containing values of distances
between the camera set and objects visible in images. In
order to perform the transformation it is necessary to obtain
data about cameras such as distances between them and
focal length of lens. These data can be extracted in the
calibration process based on making series of images of a
precisely defined image pattern [31].

Algorithms for stereo cameras, camera arrays and camera
matrices use the same technology of stereopsis which is
based on matching views of objects visible in different
images. Stereo cameras are the most commonly used and
a large number of different stereo matching methods have
been developed. There are also advanced rankings of these
algorithms. One of the most popular ranking of stereo
matching algorithms is available on Middlebury Stereo
Vision Page (http://vision.middlebury.edu/stereo/) [32]. The
third version of the ranking includes 97 algorithms as at 18
Jun 2018. Middlebury Stereo Vision Page provides a testbed
for evaluating stereo vision algorithm. The testbed consists
of datasets with stereo pairs, disparity maps ground truth
and SDK for executing tests.

The KITTI Vision Benchmark Suite (http://www.cvlibs.
net/datasets/kitti/) provides another well known ranking
of stereo matching algorithms [33, 34]. The ranking is
oriented towards testing algorithms for the purpose of
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controlling autonomous cars. The KITTI evaluation is based
on different datasets than the Middlebury ranking. 134
algorithms were included in KITTI as of 18 Jun 2018.

Both of these rankings evaluate the semi-global block
matching (StereoSGBM) algorithm available in the
OpenCV library [31]. The algorithm is based on a
stereo matching algorithm introduced by Hirschmuller [35].
StereoSGBM is a popular and widely used algorithm
because the OpenCV library provides an optimized and
well-tested implementation. The algorithm can generate
results in real-time without the necessity for a high
computing power. The StereoSGBM algorithm was used in
the experiments presented in this paper.

Experiments were also conducted for algorithms pro-
vided by Middlebury Stereo Vision Page. The page shares
implementations of algorithms for obtaining disparity maps
by minimizing the cost function based on Markow Random
Fields (MRF) [32]. These algorithms iteratively improves
the quality of disparity maps. Graph Cuts using Expansion
Moves (GC Expansion) is one of algorithms provided by
Middlebury Stereo Vision Page [36]. Previous research per-
formed on EBCA by the author of this paper showed that the
best results are obtained when this algorithm is used with the
Exceptions Excluding Merging Method (EEMM) designed
for applying stereo matching algorithms to EBCA [11].
This paper presents more advanced methods of applying
stereo matching algorithms to EBCA. Section 5 of this paper
presents a further description of stereo matching algorithms
in the context of using them with EBCA.

A set of over two adjacent cameras forms a camera
array. Venkataraman et al. presented work related to the
usage of camera arrays [6]. They also developed an ultra-
thin camera array called PiCam that has approximately the
same size as a coin. Their solution consists of 16 sensors
in the 4x4 configuration. Each adjacent sensors was equally
distant from each other. Okutomi and Kanade presented a
paper on obtaining depth maps with the use of a linear
camera array [8]. Wilburn proposed an array consisting of
100 cameras [37]. They have experimented with different
arrangements of cameras in the set. This paper focuses on
an array proposed by Park and Inoue [9]. Their five camera
array was named by the author of this paper Equal Baseline
Camera Array (EBCA).

3 Equal Baseline Camera Array

Equal Baseline Camera Array (EBCA) consists of a central
camera and side cameras that are equally distant from the
central one. The requirement that side cameras are equally
distant is an essential EBCA feature that significantly
improves the usability of this set for the purpose of
obtaining disparity maps. Side cameras are located above,

below and at both sides of the central one in EBCA
consisting of five imaging devices. All cameras are aimed
in the same direction.

This kind of a camera set was introduced by Park and
Inoue [9]. Fehrman and McGough also performed research
on such a set [38, 39]. They had a camera matrix build from
16 cameras in 4x4 configuration, however they analyzed
the usage of the selected five cameras forming EBCA from
the matrix. The author of this paper further developed
stereo matching algorithms for EBCA and researched its
capabilities [10–12, 40]. The photo of an operational real
EBCA used in the experiments presented in this paper is
presented in Fig. 1. The array consists of MS LifeCam
Studio web cameras with the 1080p HD sensor fixed to an
aluminum frame.

Parameters of the array are presented in Table 1 [41]. The
aluminum rig used for holding cameras was not optimized
in terms of weight minimization as it is possible to use a
lighter rig which is not as robust as the used one. Mounting
elements originally provided with cameras were removed.
Cameras were fixed to rig using screws. An operating range
of the whole EBCA coincides with ranges of cameras. A
maximum distance is additionally limited by a resolution
of cameras because only large objects are visible in images
taken from long distances.

EBCA consisting of five cameras forms a set of four
stereo cameras that share a common, central camera. There
are, in total, ten pairs of cameras in this set. However, pairs
which do not consist of a central camera are excluded from
calculations in order to unify the viewpoint for all used
stereo pairs. Stereo matching algorithms process images
from stereo cameras by distinguishing between the image
from the reference camera and the image from a side

Fig. 1 Real EBCA used in the experiments
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Table 1 Parameters of EBCA
used in the experiments Parameters of EBCA used in experiments

Dimensions (w × d × h) [mm] 165 × 80 × 165

Distance between cameras 50mm

Weight 450g

Total price 400 USD

Parameters of each camera included in EBCA

Camera model MS LifeCam Studio

Sensor Resolution 1280 x 720

Field of view (diagonal) 75◦

Operating range from 0.1m

Frames per second up to 30

Weight (without parts

not used in EBCA) 30g

Price 75 USD

camera. The reference camera makes a image whose points
corresponds to points of a disparity map obtained by a
matching algorithm. This camera is a point of view of a
stereo set. A side camera is used to determine values of
disparities. In EBCA the reference camera is always the
central one so all stereo cameras have the same reference
camera. It is a crucial feature characterizing EBCA along
with the requirement of preserving the same distances
between a central camera and side ones.

EBCA can be perceived as a sequence of cameras similar
to a camera array with cameras placed along a straight
line. Okutomi and Kanade wrote an influential paper on
obtaining disparity maps with the use of a linear camera
array [8]. They have processed images from the array as a
set of pairs of images such that every pair consisted of an
image from the first camera of the array and some other
camera. The first camera was a reference camera for every
pair likewise a central camera is a reference camera in every
camera pair considered in EBCA.

Considered pairs from a camera array have different
baselines i.e. distances between cameras forming a stereo
camera. It is a significant problem in case of obtaining
disparity maps [8]. The greater is the baseline, the higher is
the disparity for objects located in the same distance from
a stereo camera. As a consequence, disparities in different
stereo cameras selected from the array are different for
the same objects visible in images from these cameras. It
cause that merging data from all cameras included in the
array is more difficult. Okutomi and Kanade resolved this
problem by processing values of inverse distances between
cameras and objects visible in images instead of disparities.
The inverse distance is the same for every stereo camera
whose reference camera is the first camera in the array.
However, using this method complicates calculations and
it requires matching parts of images that do not coincide
with an integer number of image points. As far as EBCA

is concerned distances between stereo cameras used in
EBCA are the same, therefore there is no need to use
inverse distances instead of disparities. This is a significant
advantage of the set.

In order to use EBCA it is necessary to connect it to a
computer. The greatest problem with connecting the array to
a computer is a large number of USB ports which needs to
be used. EBCA can be used with several kinds of equipment
including the following:

– desktop computer with at least 6 USB interfaces
– mobile computer with PCMCIA, ExpressCard/34 or

other expansion card
– any kind of computer using USB Hub
– a separate computer (such as Raspberry Pi) for every

camera

In our experiments we used mobile computers with
both a 4 port USB 2.0 ExpressCard/34 expansion card
produced by Gembird Electronics Ltd. and a 4 port USB
2.0 hub produced by A4TECH. We used Fujitsu Siemens
Esprimo Mobile U9200 and Lenovo ThinkPad SL510
laptops. Taking images does not require high computing
power. Therefore, old and low-cost computers can be used
for this purpose.

The easiest method of using the array is to use a desktop
computer. 6 USB ports are then required because mouse and
keyboard input devices can be connected via an USB hub
to a single USB port. In this case all five cameras can be
directly plugged into a computer. Using independent USB
port for each camera makes it possible to use all cameras
simultaneously. If many cameras are connected using a USB
hub to the same USB port then turning on one camera
requires switching off all other cameras using the hub. It
is sufficient when only images needs to be taken, however
such a solution makes it impossible to record videos. If a
desktop computer is not equipped with 6 USB ports it is
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easy to expand the machine using adapter cards, e.g. an
PCI-E USB add-on card.

Nevertheless using a desktop computer excludes the
possibility of usage in out-door environment. It is harder
to increase the number of USB ports in mobile computers.
However, there is a possibility to insert to some laptops an
expansion card with additional USB ports. All five cameras
can always be connected to a computer using an USB hub if
it is not required to record videos using the array.

Another possibility of using five cameras is connecting
each camera to a separate computer (e.g. such as Raspberry
Pi) responsible for acquiring images. Then, images using
Internet interfaces can be transferred to another computer
on which stereo matching algorithms are executed.

EBCA is intended for use as a 3D vision system for
an autonomous robot. In particular EBCA can be mounted
on a robotic arm in an eye-in-hand configuration. Figure 2
visualized sample methods of placing EBCA on an arm.
There are applications in which it is necessary to provide
3D vision in the close vicinity to a gripper. In such cases
the gripper is always visible by cameras included in EBCA.
EBCA with five cameras presented in Fig. 2a provides 3D
vision of objects near the gripper and above it. If cameras
have narrow fields of view then the configuration with four
cameras presented in Fig (b) is more sufficient. Placing a
central camera closely to the arm ensures that the area near
the gripper is covered by the 3D system. EBCA can also be
mounted in such a way that optical axes of cameras are not
parallel to the arm. However, it needs to be considered that
aiming EBCA towards some direction limits areas visible
by the array in the other direction. EBCA can also be used
as a 3D vision system of an autonomous robot which is not
equipped with a robotic arm.

Fig. 2 Sample methods of mounting EBCA on an robotic arm

4 Algorithms for EBCA

Park and Inoue proposed using a set of five cameras that
has a form of EBCA, however they also introduced a
stereo matching algorithm designed for this set [9]. Their
algorithms assigned cameras into two groups. The first
group contained cameras located along the horizontal line
while the second one contained cameras located along the
vertical line. The central camera was included in both of
these groups. The algorithm proposed by Park and Inoue is
further described in Section 6.1 as is used in the research
presented in this paper.

The author of this paper has also developed methods for
obtaining disparity maps with the use of EBCA. Exceptions
Excluding Merging Method (EEMM) and the Multiple
Similar Areas algorithm (MSA) [10, 11] are the most
significant ones.

Exceptions Excluding Merging Method obtains a dispar-
ity map on the basis of disparities acquired independently
from each other by using four stereo cameras considered
in EBCA. Every stereo camera consisting of a central cam-
era and a side camera is used to generate a disparity map
with the use of some stereo matching algorithm. Results
from four stereo cameras taken into account in calculations
resemble four measurements of the same quantity. EEMM
is a method of processing these four results in order to
obtain a disparity map which has a higher quality than con-
stituent disparity maps. The method is based on excluding
values of disparities that significantly differ from values
acquired from other stereo cameras. Details of EEMM and
its performance are described in [11].

Multiple Similar Areas is another algorithm for EBCA
introduced by the author of this paper [10]. MSA does not
merge disparities acquired from different stereo cameras
like EEMM. The algorithm obtains disparities directly
from all images obtained from the camera set. The MSA
algorithm focuses on identifying monochromatic areas in
images. For each point of a central image, the algorithm
searches for sequences of points having a similar color. The
search is performed simultaneously in all side images in the
areas corresponding to the location of the considered points
of the central image. This concept leads to poor results in
case of having only a pair of cameras but is justified when
there are side cameras placed in four different directions
from the point of view of the central camera. The algorithm
is precisely described in [10].

Considering that EEMM merged results of stereo
matching algorithm and MSA is an algorithm dedicated for
EBCA, a different kind of algorithms for EBCA is proposed
in this paper. These algorithms are based on modifying the
cost function that compares similarities between different
areas in images. Such a function is used in existing stereo
matching algorithms. The function is modified in order to
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take advantage of five camera set instead of using a pair.
Stereo matching algorithms have different characteristics
such as execution time and error rates of results. Regardless
of their possibilities, the results of existing algorithm for
stereo vision can be improved by appropriately modifying
their cost function and applying them to EBCA as described
in Sections 5 and 6.

5 Structure of StereoMatching Algorithms

Algorithms that obtain disparity maps by taking advantage
of EBCA can be based on matching algorithms designed
for stereo cameras. Using these algorithms with EBCA
requires modifying them. This subsection describes types of
algorithms and their structure in the context of the EBCA
usage.

Figure 3 shows types of stereo matching algorithms and
their main phases. In general, algorithms are classified as
local, global, semi-global and other ones. Input images
to all stereo matching algorithms can be subjected to
preprocessing such as blurring and the output data can be
postprocessed. Let us assume that the left image is the
reference one. Points of the disparity map obtained as the
result of a stereo matching algorithm corresponds to points
of this image. The other image in a stereo pair, called the
side image, is used to determine values of disparities of
points visible in the reference image. Figure 3 presents for
each phase the area of the side image that influences the

value of the disparity in the single point of the reference
image.

Algorithms of a local type have the simplest structure.
The disparity of a point p in the reference image is
determined regardless of the entire contents of the reference
image and the side image. Points of the reference image
affecting the disparity of the point p are those that are
located in the vicinity of p. The vicinity is called an
aggregating widow [12, 40]. Aggregating windows may
have different shapes and sized.

Points in the aggregating window are matched with
corresponding points in the side image. The search for
corresponding points is performed in a limited area of
the side image. The size of the area is determined by
input parameters of the stereo matching algorithm, in
particular the minimum (Dmin)and maximum (Dmax) value
of disparity accepted by the algorithm.

In Fig. 3 a point is marked with a grey color in the
left image in the matching phase of a local algorithm type.
The disparity of this point is determined by a grey colored
rectangular area placed in the right image. The area consists
of points included in all aggregating windows located along
a line of a size Dmax − Dmin. A stereo matching algorithm
searches within this area for the point corresponding to a
point in the left image.

Corresponding points are identified with the use of
a matching cost function. A matching function takes as
arguments points within the aggregating window in the
reference image and points included in the aggregating

Fig. 3 The structure of stereo matching algorithms
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window in the side image. The function returns the level
of differences between these areas. Commonly used cost
function are Sum of Absolute Differences (SAD), Sum
of Squared Differences (SSD) and a matching function
proposed by Birchfield and Tomasi [10, 42]. Other matching
cost measures are described in [32] and [10]. A matching
cost function is modified when EBCA is used instead of
a stereo camera. Modification possibilities are described in
Section 6. A general formula of a matching cost function for
stereo cameras is presented in Eq. 1.

c (d,p) = m
(
W0(p), Wq(p − d)

)
(1)

where c is the result of the matching function for the point
p and the disparity d , vector d = (d, 0) refers to disparity
in x axis, m is a matching function, W0 is the set of adjacent
points included in the aggregating window in the reference
image and Wq is the set of points in the aggregating window
from the side image.

The stereo matching algorithm of a local type calculates
matching cost within the range of disparities between
Dmin and Dmax . The disparity producing the lowest value
is selected as a resulting disparity for which the match
occurred. This operation is presented in Eq. 2.

cresult (d,p) = argmin
d∈[dmin,dmax ]

c (d,p) (2)

There are also stereo matching algorithms of a global
type [43] as shown in Fig. 3. This kind of an algorithm is
in fact an extended version of a local type of an algorithm.
An algorithm of a global type consists of a phase which is a
stereo matching performed similarly as in local algorithms.
The difference in this step between these two types of
algorithms is such that global algorithms do not select
disparity by finding the minimum matching cost. In global
algorithms, data acquired from local matching is further
processed in the phase called global optimization. In this
step, the algorithm computes a global minimum with the use
of optimization methods. The global optimization causes
that each point of a disparity map depends on the entire input
stereo pair and, in particular, the entire content of the side
image. Therefore, in Fig. 3 the whole right image is marked
grey in case of global algorithms.

A variety of optimization methods used for obtain-
ing disparity maps exists including Iterated Conditional
Modes (ICM) [44], Graph Cuts [36], Max-product Loopy
Belief Propagation (LBP) [45] and Sequential Tree-
reweighted Message Passing (TRWS) [46, 47]. These
methods minimize an energy function based on Markov
Random Fields (MRF) [44].

Figure 3 presents also the structure of a semi-global
matching algorithm designed by Heiko Hirschmüller [35].
It will be denoted as StereoHH. The original version

of the algorithm considered 16 paths that affect the
value of the disparity in a single point. These paths
are marked with grey color in the side image in the
last phase of the algorithm presented in Fig. 3. Heiko
Hirschmüller’s algorithm was implemented in the OpenCV
library [31]. The implementation called the semi-global
block matching algorithm (StereoSGBM) differs in the
number of considered paths. Additionally, StereoSGBM
include block matching instead of individual pixels.

Phases of both StereoHH and StereoSGBM are similar
to the phases of global algorithms based on MRF. These
algorithms consist of a local stereo matching phase and a
semi-global phase which covers cost aggregation, dispari-
ties selection, consistency check, disparity refinement and
other procedures. Hirschmüller indicated that matching cost
calculated in the local phase should be based on either
Mutual Information or the Birchfield-Tomasi metric [35,
42]. Other semi-global matching algorithms also consist of
a local phase and an optimization phase.

Andreas Geiger introduced the Efficient Large-Scale
Stereo Matching (ELAS) algorithm that is the last type of
algorithm presented in Fig. 3 [48]. Its structure significantly
differs from the structure of other algorithms. At first,
ELAS identifies characteristic points called support points
using global data and analyzing all images. However the
algorithm is not classified as a global one, because it does
not perform a global optimization. ELAS matches support
points which corresponds to each other in two different
images. Then, the ELAS algorithm performs triangulation
of these points. The triangulation results in splitting two
images into a set of pairs of triangles. Each pair consists
of one fragment from the left image and one from the right
image. After this step, the ELAS algorithm performs a phase
of local stereo matching of points in corresponding triangle
fragments of images. The results of local matching are then
further processed in the algorithm.

In general, all stereo matching algorithms have a phase
in which matching costs are estimated in the process of
local matching. The acquired data is used in algorithms to
determine disparities selected to a disparity map obtained as
a result of these algorithms. This paper introduces a method
for modifying the local phase in order to make it possible
for a stereo matching algorithm to take advantage of EBCA.
Every algorithm for obtaining disparity maps that have such
a phase can be applied to images from EBCA with the use
of methods presented in this paper.

6 Adaptation of Matching Algorithms
to EBCA

This paper introduces methods of improving disparity maps
by modifying the local phase of stereo matching algorithms.
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The modification is based on taking advantage of five
cameras included in EBCA instead of two cameras from a
single stereo camera. Processing five images from EBCA
makes it possible to retrieve more data and set the matching
cost more precisely than using two images from a stereo
camera. The concept of using EBCA instead of a stereo
camera is presented in Fig. 4.

Matching cost based on EBCA is determined on the basis
of four stereo cameras included in EBCA. These cameras
will be marked with C1, C2, C3 and C4. Subsequent indexes
respectively refer to right, top, left and bottom side cameras.
There are four stereo matching costs (marked with c1, c2, c3

and c4) retrieved from each stereo camera from EBCA and
there is a compound, resulting matching cost (marked with
ce) which is acquired from these four constituent costs.

Equation 1 from the previous section applies to the case
when a cost c1 is calculated with the use of a single stereo
camera in which the side camera is mounted to the right of
the central one. Objects in the side camera are then shifted
to the left with regard of their locations in a central image. In
EBCA, side cameras are placed in different directions from
the central camera. When costs c2, c3 and c4 are calculated,
Eq. 1 needs to be altered and instead of using a disparity
d = (d, 0) which refers only to horizontal dimension the
vector di need to be used such that d1 = (d, 0), d2 = (0, d),
d3 = (−d, 0) and d4 = (0, −d). These values correspond
to different directions in which objects are shifted in side
images.

Different functions can be used to calculate the resulting
matching cost ce from stereo matching costs c1, c2, c3 and
c4. In the research presented in this paper, three types of
functions were considered that were based on

1. Park and Okutomi stereo matching algorithm
2. Selecting a single value from the sorted list of costs
3. Obtaining a composite value derived from the sorted list

of costs

6.1 Matching Based on the Park and Okutomi
Algorithm

Park and Inoue are the authors of the first research paper
describing EBCA (Section 3) together with an algorithm
designed for this camera set. The algorithm divides four
stereo cameras included in EBCA into two pairs. The first
pair consists of cameras located along the vertical line (C1

and C3). The second pair are cameras in the horizontal line
(C2 and C4). The algorithm searched for a match separately
for each pair of stereo cameras. It is motivated by the
problem with visibility of objects which are not located in
the foreground of a viewed scene.

Let us suppose that there are objects Oa and Ob located
beside each other and Oa is partly hidden behind Ob from
the point of view of a central camera in EBCA. In this case,
Oa is more visible from either left or right camera than from
the central one. Additionally, Oa is more hidden behind the
object Ob from the point of view of the other side camera.
Therefore, there is an area visible in the central image which
is also visible in only one of side images. Park and Inoue
assumed that the algorithm can find matching areas in such
cases by analyzing images from side cameras placed on the
opposite sides of the central camera. The same rule applies
to cameras located both in horizontal axis and vertical one.

In each pair of stereo cameras, the algorithm selects
the camera for which the matching cost is lower. Then,
the algorithm sums matching costs obtained for two pairs.
Park and Inoue executed this kind of matching for different
sizes of aggregating windows. As the result the resolution
pyramid was obtained which was used to generate a final
disparity map. The method of merging stereo matching costs
used by Park and Inoue is presented in Eq. 3. This method
will be denoted by PaI.

ce (d,p) = min (c1(d,p), c3(d,p)) +
min (c2(d,p), c4(d,p))

(3)

Fig. 4 Applying matching cost
functions used for stereo
cameras to five cameras
included in EBCA
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where c1, c2, c3, c4 are matching costs for the right, top,
left and bottom camera.

Park and Inoue used the SSD matching measure.
However, their method of merging stereo matching costs can
be applied to other matching cost functions and different
stereo matching algorithms. This paper introduces such an
application. The author of this paper modified local phases
of algorithms provided in the OpenCV library and in the
Middlebury Stereo Vision Project in order to process images
from EBCA using the cost merging method proposed by
Park and Inoue. The modification is based on using the
formula presented in Eq. 3 as an extension of the formula
presented in Eq. 1. The results are presented in Section 9
entitled Experiments.

6.2 Matching Based on a SortingMatching Costs

There are also other possibilities of obtaining resulting
matching cost ce on the basis of constituent stereo matching
costs c1, c2, c3 and c4 acquired for the same disparity d .
Stereo matching costs differ between each other because of
differences in identifying corresponding areas in four stereo
images obtained from EBCA. The values of the matching
costs can be sorted. It results in having a sorted list s1, s2, s3

and s4, where s1 ≤ s2 ≤ s3 ≤ s4. Sorted values identify the
camera with the lowest matching cost and the camera with
the greatest one.

In general, low matching cost indicate that two parts of
images are similar to each other and they contain a view of
the same part of the real object. Therefore, it may seem that
selecting the lowest matching cost s1 is the best method for
obtaining the resulting matching cost. However, it does not
need to be the best solution. Let us suppose that some part
of a real object is visible from the reference camera and n

side cameras. In such a case the matching cost should be low
in each stereo pair consisting of a side camera with visible
part of an object similarly as in case of the stereo camera for
which it is the lowest. Therefore, selecting second or third
value from a sorted list (i.e. s2 or s3) can correctly identify
areas of images showing the same object, if n ≥ 2 or n ≥ 3,
respectively.

Furthermore, matching functions do not always return
the lowest value for parts of images that correspond to the
same real object. There may be many reasons for obtaining
low value of costs in cases when high ones would be more
appropriate. One of them is such that a side image may
contain a specific area that inappropriately matches with
many areas of the reference image. Supposing that this
problem occurs in stereo camera x, the cost value of cx will
be excessively low. If camera x is the only affected one, then
cx will be the lowest value in the sorted list of matching
costs, i.e s1 will be equal to cx . Subsequent values s1, s2, s3

are more resistant to such problems.

The resulting matching cost can be equal to one of values
included in the sorted list s1, s2, s3, s4 as presented in Eq. 4.

ce(d,p) = sn(d,p), n ∈ [1, 4] (4)

where n is the index of a value in the sorted list of costs.
For example, if ce = s2, then the algorithm is dedicated
for matching areas which are visible in at least two side
cameras. Section 9 presents the results obtained for the
different values of n.

The main application of the merging method described
in this subsection is EBCA with five cameras. However,
the method can be also applied to EBCA consisting of a
different number of cameras. In such case, a sorted list of
matching costs is also prepared, but its size depends on the
number of considered stereo cameras. The resulting cost ce

is equal to one of costs selected from the list for every kind
of EBCA.

The merging method based on selecting a single value
from a sorted list of costs will be denoted in this paper by a
label which has a form Mn/N, where M stands for a merging
method, n is an index of a value sn selected from a sorted
list and N is equal to the number of cameras. For example,
a method based on selecting the second value when five
cameras are used will be denoted by M2/5.

6.3 Matching Based on a Composite Value

The previous subsection described the method for obtaining
the resulting matching cost by selecting a single value from
a sorted list of costs. This section describes a modification
of this method in which the resulting matching cost is equal
to a composite value obtained on the basis of sum of at
least two stereo matching costs from a sorted list. Adding a
certain cost to the sum can either lead to the improvement or
the deterioration of the results depending on its usability for
obtaining disparity maps. A general formula for calculating
resulting cost with the use of this method is presented in
Eq. 5.

ce(d,p) =
∑

sn(d,p)∈S

sn(d,p) (5)

where S is the set containing sorted values considered in
calculations. In particular, ce can be equal to a sum of s1

and s2 which are the lowest values in a sorted list of costs as
presented in Eq. 6.

ce(d,p) = s1(d,p) + s2(d,p) (6)
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Equation 7 presents analogous calculations for ce value
equal to a sum of a second and third value from the sorted
list.

ce(d,p) = s2(d,p) + s3(d,p) (7)

These methods of obtaining ce were tested in the
experiments described in this paper. The results are
described in Section 9.

Merging methods based on a composite value will be
denoted by labels Mn1, n2, ..., nk/N , where n1, n2, ..., nk

are indexes of matching costs included in a sorted list and
N is the number of cameras. For example, if five cameras
are used then the function presented in Eq. 6 will be marked
by M1,2/5 and the function from Eq. 7 will be denoted by
M2,3/5.

7 Data Sets

Test data used in the experiments presented in this paper
was based on the same images as those which were used
in previous research on EBCA [11]. The test data consists
of six sets where each set contains five images of a plant
taken with the use of EBCA and ground truth representing
real values of disparities. The images and the camera set
were calibrated using the OpenCV library [31]. A detailed
description of these sets is presented in [11]. The total
number of points considered in the experiments was equal
to 212800.

Figure 5 present a complete data set containing images
of a strawberry while Fig. 6 presents central images from
remaining five sets.

Images in data sets consist of a matching area for which
ground truth is prepared and a margin which is the area
located around the matching area. Although the margin
extends the size of input images, it does not cause the
increase in the number of test points. However, margins
cause that algorithms achieve better results for the matching
area, because they can analyze a larger vicinity of points
included in tests. In previous experiments, different margin
sizes were used for different data sets. In the experiments
presented in this paper, margins were unified and they were
equal to 100 points for all data sets.

8 Quality Metrics

Disparity maps obtained in experiments were evaluated
with the use of three quality metrics. The first one is the
percentage of bad matching pixels (BMP). BMP is one of
the most important metrics used for estimating the quality
of disparity maps [32]. Its formula is presented in Eq. 8.

BMP = 1

N

∑

x

(|DM(x) − DT (x)| > Z) (8)

where DM(x) is the disparity of the point x in the
evaluated disparity map, DT (x) is the correct disparity
obtained from ground truth, N is the total number of points
and Z is the threshold.

BMP depends on the number of points for which the
difference in values of disparities between the disparity
map and ground truth is not lower than a certain threshold
Z. Such points are considered to be matched incorrectly.
Results presented in this paper are calculated for Z = 2.

The BMP metric considers points included in ground
truth for which it was possible to determine real disparities,
because object composed from these points are visible
in both images from a stereo camera. Disparity maps
contain also points from the background for which
determining disparities is impossible [11, 33]. Stereo
matching algorithms can either provide such data or produce
incorrect values of disparities for areas in the background.
The metric called percentage of bad matching pixels in
background (BMB) was used in order to estimate the
influence of merging methods presented in this paper on
points in background. Its formula is presented in Eq. 9.

BMB = 1

NB

∑

x

(DM(x) �= 0 ∧ DT (x) = 0) (9)

where NB is the number of points in the background and
other symbols are the same as in Eq. 8.

BMB presents the percentage of points which were
inappropriately classified as not background by a stereo
matching algorithm. The equation applies to disparity maps
in which values of points with undetermined disparities are
set to 0.

The third metric considered in the evaluation is the
coverage (COV) which is related to points classified as

Fig. 5 Images of the strawberry data set (a) central b right c top d left e bottom
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Fig. 6 Central images of five data sets used in the experiments

background [11]. Coverage corresponds to the number
of points with disparities included in disparity map as
presented in Eq. 10. The COV metric is used to verify
whether merging methods cause that stereo matching
algorithms provide disparities for more or less points with
regard to versions of these algorithms which do not use
merging methods.

COV = NL

N
(10)

where NL is the number of points with assigned
disparities in a disparity map and N is the total number of
points.

9 Experiments

Fig. 8 presents results of different cost merging methods
used in EBCA with the number of cameras varying from
two to five. The figure presents values of the BMP metric. In
case of using five cameras the following merging methods
are included in the figure: M1/5, M2/5, M3/5, M1,2/5,
M2,3/5 and PaI (using notations described in Section 6.
Merging methods M4/5 and M3,4/5 were also tested,
however they are not presented in Fig. 8, because their
results were worse than the results of presented methods.
Similarly, some cost margining methods tested for EBCA
with other number of cameras are also not included in Fig. 8.
The results presented for EBCA containing four cameras
include merging methods M1/4, M2/4 and M1,2/4. In case
of EBCA with three cameras the results of methods M1/3
and M1,2/3 are shown. EBCA with two cameras is in fact
a stereo camera therefore no cost mergining method can
be used. The results for two cameras are denoted by M1/2.
Therefore, this case shows results of using a stereo camera.

Experiments were performed using the implementation
of GC Expansion and TRWS algorithms provided by
Middlebury Stereo Vision Page described in Sections 2.3
and 5 [32, 36, 46, 47]. These algorithms were selected
on the basis of previous research concerning EBCA [11].
In previous research, the best results were obtained for
these algorithms. Experiments were also executed using the

StereoSGBM algorithm available in the OpenCV library
[31]. StereoSGBM was included in tests because it is a
commonly used algorithm provided in the OpenCV library
which is one of the most significant programming libraries
used in the field of computer vision [31].

Figure 7 visualizes sample results obtained in the
experiments. Subfigures (a)-(d) presents disparity maps
obtained for the cherry data set using the StereoSGBM
algorithm. Subfigure (e) is an input image corresponding to
these maps. Subfigures (f)-(i) presents results of processing
redcurrant data set with the use of the TRWS algorithm and
the input image corresponding to these maps. In case of both
presented data sets subsequent disparity maps show results
for merging methods M1/2, M1/3, M1,2/4 and M1,2/5.

Images show that disparity maps obtained with the
use of better merging methods are more consistent and
contain less errors. In is particularly visible when image
Fig. 7d is compared to image Fig. 7a. Contours of leaves
areas are more shredded in image Fig. 7a than in image
Fig. 7d. Moreover, there are more black parts showing that
disparities were not obtained in areas of image Fig. 7a
representing leaves than in the same areas in image Fig. 7d.
The improvement is also visible in case of images Fig. 7f
and i obtained with the use of a different stereo matching
algorithms than images Fig. 7a and d. Image Fig. 7f
contained bright points which do not represent correct
values. The number of these kind of points is reduced in
image Fig. 7i.

Figure 8 presents values of the BMP metric obtained for
the tested algorithms and average values. The best results
were obtained when the TRWS algorithm was used with
the M1,2/5 merging method for EBCA consisting of five
cameras. The BMP metric was then equal to 12.9%. On
average, the M2/5 method produced disparity maps with the
lowest BMP equal to 14.09%. It was only 0.03% worse than
average results generated for M1,2/5. Considering EBCA
with four cameras the best configuration is TRWS with
M2/4. The outcome is BMP equal to 17.58%. The M1/3
metric applied to the GC Expansion algorithm leads to the
best BMP equal to 18,68% when three cameras are used. As
far as results for a pair of cameras are concerned, the best
disparity maps were acquired using StereoSGBM with BMP
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Fig. 7 Sample disparity maps: (a)-(d) the StereoSGBM algorithm and
cherry tree data set, (f)-(i) the TRWS algorithm and redcurrant data
set. The following merging methods are presented: (a), (e) M1/2; (b),

(f) M1/3; (c), (g) M1,2/4; (d), (h) M1,2/5. Subfigures (e) and (j) show
corresponding areas in input images

equal to 20.46%. Taking into account that the best result for
EBCA with five cameras was equal to 12.9%, the increase
of cameras caused that the number of bad matching points
was reduced by 36.95% of its best value for two cameras.

The level of improvement caused by using EBCA is
different depending on the stereo matching algorithm. The
benefit of using EBCA is the lowest for StereoSGBM.
In this case the best result for a configuration with 5
cameras was achieved with the use of the PaI method.
BMP improved 21.75% in comparison to its value obtained
for two cameras. The GC Expansion using the M2/5
merging method improved 45.56%. The improvement equal
to 45.15% was obtained for TRWS using M1,2/5 which is
the best merging method for this algorithms. On average,
the improvement was equal to 37.49% for the best results.
Improvements for the most important configurations are
presented in Table 2. Values presented in the table are
calculated for each stereo matching algorithm with regard
to the results obtained for a stereo camera. Table 2 also
presents average results for considered merging methods.

In general, the increase in the number of cameras
leads to improvement of results. However, in case of
some algorithms, using a greater number of cameras can

deteriorate the results if an inappropriate merging method is
used. For example, in case of the StereoSGBM algorithm,
the results for M1/4 and M1/5 methods are worse than the
results for M1/3.

There is no merging method which is the most suitable
one regardless of the used matching algorithm and the
number of cameras in EBCA. Experiments showed that the
best merging methods are: M1,2/5 for TRWS, M2/5 for
GC Expansion and PaI for StereoSGBM. On average, M2/5
is the best method, although its results differ only slightly
from the results of M1,2/5. Experiments also identified
methods that are not suited for any of these algorithms,
in particular, methods M1/5 and M1/4. As described in
Section 6.2, the first value selected from the sorted list of
matching costs is susceptible to errors and it is advisable to
take an advantage of other matching costs. In case of using
EBCA with 4 cameras, the best method are: M2/4 for GC
Expansion, M1,2/4 for TRWS and M1,2/4 for StereoSGBM.
If 3 cameras are used, the M1/3 method proved to be the
best one.

Disparity maps obtained in the experiments were also
evaluated on the basis of the COV metric. Foremost, results
of this metric depends on the type of the stereo matching

Fig. 8 Values of the BMP
metric acquired for disparity
maps obtained with the use of
different cost merging methods
and stereo matching algorithms
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Table 2 Improvements caused by the usage of EBCA and merging methods with regard to results obtained for a stereo camera

M1/3 M1/4 M1/5 M2/5 M1,2/5 PaI

GC Expansion 20.53 % 21.97 % 30.05 % 45.56 % 44.28 % 26.94 %

TRWS 19.43 % 22.63 % 32.28 % 42.97 % 45.15 % 23.95 %

StereoSGBM 10.03 % 6.99 % 5.34 % 21.45 % 19.95 % 21.75 %

Average 16.66 % 17.2 % 22.56 % 36.66 % 36.46 % 24.21 %

algorithm that was used. Values of COV do not significantly
differ from each other for considered merging methods. In
case of GC expansion and TRWS algorithms, average values
of the COV metric were always above 93.7%. Thus, these
algorithms generate disparity maps that have a low rate of
unfilled areas for every merging method. For StereoSGBM,
the results of COV were in the range between 87,46%
and 90,38%. Therefore, merging methods presented in this
paper do not change characteristics of stereo matching
algorithms in terms of disparity map coverage.

As far as the BMB metric is concerned the influence
of merging methods on results of this metric is greater
than in case of COV however it is not crucial in both of
these metrics. The results of BMB are in between 91.74%
and 97.42% for all merging methods with the use of GC
Expansion and TRWS algorithms. Such a high value is the
consequence of the fact that these algorithms have a high
level of COV, thus they provide disparities in areas that
should be classified as background. In case of StereoSGBM,
the lowest value of BMB equal to 36.94% was obtained for
M3/5 and the highest value equal to 50.41% was acquired
for M1/4. BMB was equal to 43.86% when a single stereo
camera (the M1/2 method) was used. Merging methods
M1/3, M1/4 and M1/5 produced a result with a higher value
of BMB than M1/2. Therefore, results of BMB indicate,
similarly as results of BMP, that selecting the first value
from a sorted list of costs is not a suitable method. The
best methods selected on the basis of BMP, i.e. M2/5
and M1,2/5, resulted in values of BMB equal 45.99% and
48.5%, respectively. These values are worse than results
for M1/2, however the difference with regard to M1/2 is
not high. Nevertheless, experiments show that using these
merging methods do not lead to better results of the BMB
metrics.

Using a greater number of cameras included in EBCA
also results in an increase in the processing time. It is
particularly important in real-time applications. Algorithms
for obtaining disparity maps from stereo images intended
to use in real-time are ranked with the use of the
KITTI benchmark [33]. The benchmark was prepared for
evaluating algorithms applicable for autonomous vehicles.
Therefore, the speed of obtaining disparity maps is a crucial
parameter in this evaluation. Algorithms used with EBCA
are derived from algorithms designed for stereo cameras.

The increase in the processing time depends on the number
of cameras included in the array, images resolution and
the type of used algorithm. In our previous research the
processing time using images from EBCA with five cameras
was at least four times longer than time required for images
from a stereo camera [11]. The algorithm proposed in this
paper adapts stereo matching algorithms to EBCA in such
a way that only parts of algorithms need to be rerun. The
increase in the processing time depends on the type of
algorithm.

In case of the StereoSGBM algorithm the disparity map
is obtained within 600 ms for a single pair images with
the resolution of 1000x800 using Intel Pentium G4560
3.5GHz processor. The calPixelCostBT function which is
the part of the algorithm needs to be executed four times
more often because of using EBCA with five cameras. The
function takes 78ms when there are two input images. Thus,
the version of the StereoSGBM algorithm for five camera
EBCA produces results within 840 ms. The increase in the
processing time is below 40 %. Therefore, if there is a stereo
matching algorithm suitable for real-time applications, than
its version taking advantage of EBCA can also remain
within acceptable time limits. Moreover, methods presented
in this paper increase the processing time over 10 times
less than previously developed EEMM method requiring
running the entire stereo matching algorithm four times
when the array with five cameras was used [11].

10 Summary

Using merging methods presented in this paper improves
results between 21.75% and 45.56% for stereo matching
algorithms GC Expansion, TRWS and StereoSGBM. There
is no merging method that is the most suitable for every
stereo matching algorithm. The best results are obtained
when a method is selected with regard to the algorithm
which is used. Experiments also showed that results of some
algorithms obtained with the use of EBCA can be better
than other algorithms regardless of their performance with
a stereo camera. For example, StereoSGBM returned better
results for a stereo camera than TRWS, however results of
TRWS were better when these two algorithms were applied
to EBCA.
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The research presented in this paper is particularly
important because of its potential applications of EBCA
in autonomous robots which needs to collect visual 3D
information about their surrounding. EBCA can be used in
autonomous cars, drones, underwater robots and any other
applications concerning operations in out-door environment
such as autonomous robots designed for facilitating workers
in construction sites. EBCA can be mounted on a robotic
similarly easily as a stereo camera. However EBCA
provides higher quality of 3D data with the use of methods
presented in this paper.

Our plans for further research concerning EBCA are
focused on three areas of development: increasing the
number of test data sets, verifying the performance of
EBCA in different light conditions and releasing the source
code of algorithms for EBCA. We are going to prepare
more test data using EBCA presented in this paper and
possibly another EBCA consisting of cameras with a greater
resolution than the used ones. Moreover, we are planning to
evaluate results of using EBCA with different kinds of light
sources such as spot or diffused light. These experiments
will also cover verifying the influence of intensity of light on
the quality of results. The third area of future work is releasing
the source code of the application used in our experiments.
The program will be released under open source license in
order to support developing algorithms for EBCA and using
the array in different domains of applications.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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20. Baeten, J., Donné, K., Boedrij, S., Beckers, W., Claesen, E.:
Autonomous fruit picking machine: A robotic apple harvester.
In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics,
volume 42 of Springer Tracts in Advanced Robotics, pp. 531–
539. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-
75404-6 51

21. van Henten, E.J., Hemming, J., van Tuijl, B.A.J., Kornet, J.G.,
Meuleman, J., Bontsema, J., van Os, E.A.: An autonomous robot
for harvesting cucumbers in greenhouses. Auton. Robot. 13(3),
241–258 (2002)

22. Muscato, G., Prestifilippo, M., Abbate, N., Rizzuto, I.: A
prototype of an orange picking robot: past history, the new robot
and experimental results. Indust. Robot: Int. J. 32(2), 128–138
(2005)

23. Wan, W., Lu, F., Wu, Z., Harada, K.: Teaching robots to do
object assembly using multi-modal 3d vision. Neurocomputing
259(Supplement C), 85–93 (2017). Multimodal Media Data
Understanding and Analytics

24. Sanchez-Lopez, J.R., Marin-Hernandez, A., Palacios-Hernandez,
E.R., Rios-Figueroa, H.V., Marin-urias, L.F.: A real-time 3d

27J Intell Robot Syst (2020) 99:13–28

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-75404-6_51
https://doi.org/10.1007/978-3-540-75404-6_51


pose based visual servoing implementation for an autonomous
mobile robot manipulator, vol. 7. 3rd Iberoamerican Conference
on Electronics Engineering and Computer Science CIIECC (2013)

25. Shin, B.-S., Mou, X., Mou, W., Wang, H.: Vision-based navigation
of an unmanned surface vehicle with object detection and tracking
abilities. Mach. Vis. Appl. 29(1), 95–112 (2018)

26. Jia, B., Chen, J., Zhang, K.: Recursive drivable road detection with
shadows based on two-camera systems. Mach. Vis. Appl. 28(5),
509–523 (2017)

27. Lin, L., Song, Y., Yang, Y., Feng, H., Cheng, Y., Pan, H.: Computer
vision system r&d for east articulated maintenance arm robot.
Fusion Eng. Des. 100, 254–259 (2015)

28. Plebe, A., Grasso, G.: Localization of spherical fruits for robotic
harvesting. Mach. Vis. Appl. 13(2), 70–79 (2001)

29. Palli, G., Moriello, L., Scarcia, U., Melchiorri, C.: An underwater
robotic gripper with embedded force/torque wrist sensor. IFAC-
PapersOnLine 50(1), 11209–11214 (2017). 20th IFAC World
Congress
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