Skip to main content
Log in

Viability-Based Guaranteed Safe Robot Navigation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Guaranteeing safe, i.e. collision-free, motion for robotic systems is usually tackled in the Inevitable Collision State (ICS) framework. This paper explores the use of the more general Viability theory as an alternative when safe motion involves multiple motion constraints and not just collision avoidance. Central to Viability is the so-called viability kernel, i.e. the set of states of the robotic system for which there is at least one trajectory that satisfies the motion constraints forever. The paper presents an algorithm that computes off-line an approximation of the viability kernel that is both conservative and able to handle time-varying constraints such as moving obstacles. Then it demonstrates, for different robotic scenarios involving multiple motion constraints (collision avoidance, visibility, velocity), how to use the viability kernel computed off-line within an on-line reactive navigation scheme that can drive the robotic system without ever violating the motion constraints at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Bayen, A., Saint-Pierre, P.: Viability Theory: New Directions. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Bekris, K., Kavraki, L.: Greedy but safe replanning under kinodynamic constraints. In: IEEE International Conference on Robotics and Automation (ICRA). Roma (IT) (2007). https://doi.org/10.1109/ROBOT.2007.363069

  3. Blaich, M., Weber, S., Reuter, J., Hahn, A.: Motion safety for vessels: an approach based on inevitable collision states. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg (DE) (2015). https://doi.org/10.1109/IROS.2015.7353504

  4. Bohórquez, N., Sherikov, A., Dimitrov, D., Wieber, P.B.: Safe navigation strategies for a biped robot walking in a crowd. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). Cancun (MX) (2016). https://doi.org/10.1109/HUMANOIDS.2016.7803304

  5. Bouguerra, M., Fraichard, T., Fezari, M.: Safe motion using viability kernel. In: IEEE International Conference on Robotics and Automation (ICRA). Seattle (US) (2015). http://hal.inria.fr/hal-01143861

  6. Bouraine, S., Fraichard, T., Salhi, H.: Provably safe navigation for mobile robots with limited field-of-views in dynamic environments. Auton. Robot. 32(3) (2012). https://doi.org/10.1007/s10514-011-9258-8

  7. Brias, A., Mathias, J.D., Deffuant, G.: Accelerating viability kernel computation with cuda architecture: application to bycatch fishery management. Comput. Manag. Sci. 13(3), 371–391 (2016). https://doi.org/10.1007/s10287-015-0246-x

    Article  MathSciNet  Google Scholar 

  8. Chan, N., Kuffner, J., Zucker, M.: Improved motion planning speed and safety using regions of inevitable collision. In: CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (2008)

  9. Chitsaz, H., LaValle, S.M.: Time-optimal paths for a Dubins airplane. In: Proceedings IEEE Conference Decision and Control. New Orleans, LA (US) (2007)

  10. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM (JACM) 40(5) (1993). https://doi.org/10.1145/174147.174150

  11. Fraichard, T.: Trajectory planning in a dynamic workspace: a state-time space approach. Adv. Robot. 13(1) (1998). https://doi.org/10.1163/156855399X00928. http://hal.inria.fr/inria-00259321

  12. Fraichard, T., Asama, H.: Inevitable collision states. a step towards safer robots? Adv. Robot. 18(10) (2004). https://doi.org/10.1163/1568553042674662

  13. Fraichard, T., Howard, T.: Iterative motion planning and safety issue. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles. Springer (2012)

  14. Frazzoli, E., Dahleh, M., Feron, E.: Real-time motion planning for agile autonomous vehicles. J. Guid. Control. Dyn. 25(1) (2002). https://doi.org/10.2514/2.4856

  15. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. (IJRR) 21(3) (2002). https://doi.org/10.1177/027836402320556421

  16. Kalisiak, M., van de Panne, M.: Approximate safety enforcement using computed viability envelopes. In: IEEE International Conference on Robotics and Automation (ICRA). New Orleans (US). https://doi.org/10.1109/ROBOT.2004.1302392 (2004)

  17. Kalisiak, M., van de Panne, M.: Faster motion planning using learned local viability models. In: IEEE International Conference on Robotics and Automation (ICRA). Roma (IT). https://doi.org/10.1109/ROBOT.2007.363873 (2007)

  18. Korda, M., Henrion, D., Jones, C.: Convex computation of the maximum controlled invariant set for polynomial control systems. SIAM J. Control. Optim. 52(5) (2014). https://doi.org/10.1137/130914565

  19. Liniger, A., Lygeros, J.: Real-time control for autonomous racing based on viability theory. arXiv:1701.08735 (2017)

  20. Lygeros, J.: On reachability and minimum cost optimal control. Automatica 40(6) (2004). https://doi.org/10.1016/j.automatica.2004.01.012

  21. Macek, K., Vasquez, D., Fraichard, T., Siegwart, R.: Towards safe vehicle navigation in dynamic urban scenarios. Automatika 50(3–4) (2009). http://hal.inria.fr/inria-00447452

  22. Maidens, J., Kaynama, S., Mitchell, I., Oishi, M., Dumont, G.: Lagrangian methods for approximating the viability kernel in high-dimensional systems. Automatica 49(7) (2013). https://doi.org/10.1016/j.automatica.2013.03.020

  23. Martinez-Gomez, L., Fraichard, T.: An efficient and generic 2d inevitable collision state-checker. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Nice (FR) (2008). https://doi.org/10.1109/IROS.2008.4650640. http://hal.inria.fr/inria-00293508

  24. McNaughton, M., Urmson, C., Dolan, J., Lee, J.W.: Motion planning for autonomous driving with a conformal spatiotemporal lattice. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)

  25. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7) (2005). https://doi.org/10.1109/TAC.2005.851439

  26. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics: Science and Systems (RSS). http://repository.cmu.edu/compsci/2694/ (2013)

  27. Monnet, D., Ninin, J., Jaulin, L.: Computing an inner and an outer approximation of the viability kernel. Reliab. Comput. 22 (2016). https://hal.archives-ouvertes.fr/hal-01366752

  28. Owen, M., Beard, R., McLain, T.: Implementing dubins airplane paths on fixed-wing uavs. In: Handbook of Unmanned Aerial Vehicles. Springer, Berlin (2014)

  29. Pancanti, S., Pallottino, L., Salvadorini, D., Bicchi, A.: Motion planning through symbols and lattices. In: IEEE International Conference on Robotics and Automation (ICRA). New Orleans (US) (2004)

  30. Pivtoraiko, M., Knepper, R., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Rob. 26(3) (2009). https://doi.org/10.1002/rob.20285

  31. Rufli, M., Siegwart, R.: On the design of deformable input-/state- lattice graphs. In: IEEE International Conference on Robotics and Automation (ICRA) (2010)

  32. Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math. Optim. 29(2) (1994). https://doi.org/10.1007/BF01204182

  33. Savino, G., Giovannini, F., Fitzharris, M., Pierini, M.: Inevitable collision states for motorcycle-to-car collision scenarios. IEEE Trans. Intell. Transp. Syst. 17(9) (2016). https://doi.org/10.1109/TITS.2016.2520084

  34. Schouwenaars, T., How, J., Feron, E.: Receding horizon path planning with implicit safety guarantees. In: American Control Conference. Boston (US) (2004)

  35. Seder, M., Petrovic, I.: Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In: IEEE International Conference on Robotics and Automation (ICRA) (2007)

  36. She, Z., Xue, B.: Computing an invariance kernel with target by computing lyapunov-like functions. IET Control Theory Appl. 7(15) (2013). https://doi.org/10.1049/iet-cta.2013.0275

  37. Shiller, Z., Gal, O., Raz, A.: Adaptive time horizon for on-line avoidance in dynamic environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco (US). https://doi.org/10.1109/IROS.2011.6094643 (2011)

  38. Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Bouguerra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguerra, M.A., Fraichard, T. & Fezari, M. Viability-Based Guaranteed Safe Robot Navigation. J Intell Robot Syst 95, 459–471 (2019). https://doi.org/10.1007/s10846-018-0955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0955-9

Keywords

Navigation