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Abstract

Nuclear decommissioning is a global challenge with high costs associated with it due to the hazardous environments created
by radioactive materials. Most nuclear decommissioning sites contain significant amounts of pipework, the majority of
which is uncharacterised with regards radioactive contamination. If there is any uncertainty as to the contamination status
of a pipe, it must be treated as contaminated waste, which can lead to very high disposal costs. To overcome this challenge,
an in-pipe autonomous robot for characterisation is being developed. One of the most significant mechatronic challenges
with the development of such a robot is the detection of elbows in the unknown pipe networks to allow the robotic system to
autonomously navigate around them. This paper presents a novel method of predicting the direction and radius of the corner
using whisker-like sensors. Experiments have shown that the proposed system has a mean error of 4.69° in the direction

estimation.

Keywords Pipe inspection - Autonomous navigation - Sensing - Feeler sensor - Decommissioning

1 Introduction

There are a large number of nuclear facilities across the UK,
some of which date back to the 1940s [1]. A commonality in
all nuclear facilities is that pipes are used to transfer radioac-
tive substances. All pipework, including scaffolding poles
in nuclear facilities, either legacy, operational or new-build,
will have to be decommissioned. Figure 1 shows a represen-
tative set of pipework in a nuclear facility. The decommis-
sioning process is long and expensive due to the hazardous
environment created by radioactive material. The current
method for characterisation is to send workers into the haz-
ardous zones to disassemble the pipework and manually
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scan it. This is not only a potential health risk but it
is also costly in both time and the secondary waste which is
generated. A low-cost robotic solution, able to both radio-
logically and geometrically characterise the pipework, could
identify uncontaminated sections which could then be dis-
posed of as free-release material, leading to significant cost
savings and reducing the time spent by the workers in haz-
ardous zones. The system will predominantly be detecting
alpha radiation, as beta and gamma could be detected from
outside the pipe and would not required an in-pipe robot.

1.1 Design Considerations

The pipe inspection robot has been designed based on the
following set of requirements:

— Operate within a 150 mm diameter pipe containing no
fluids.

— Operate in both horizontal and vertical pipes.

— Navigate pipe junctions including elbows and T-
junctions autonomously.

— Carry a payload of 0.5 kg.

The final system should also be untethered (battery
powered with wireless communications). As will be
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Fig.1 Photo of pipework from an exemplar facility

discussed in Section 2 there are no existing pipe inspection
robots which meet these requirements, so a new robot,
‘FURO’ has been developed. While the aim of the system is
to have it untethered, there are large challenges associated
with in-pipe communications. Viable solutions to this exist
as summarised in [2], however the wireless requirements
of the robot will be revisited in further work. This paper
presents the development of the sensor package required
for the detection of corner parameters for autonomous
navigation round pipe elbows.

The paper is organised as follows; Section 2 contains a
review of the current state-of-the-art in in-pipe robots and
sensing; Section 3 introduces the hardware used. First the
pipe inspection prototype FURO, the bespoke feeler sensor
and finally the test rig set up; Section 4 presents the method
and algorithm which determines the corner parameters;
Section 5 shows and discusses the results of the experiment;
final Section 6 contains the conclusions of the report and a
short discussion on the further work in the project.

2 Related Works

This Section contains an overview of current pipe inspection
vehicles, reviews different methods of cornering and
discusses in-pipe sensing robots.

2.1 Applications

Pipe inspection systems are widely used in the sewage,
water, oil and gas industries. Generally, such pipes require
scheduled inspections, as defects in the pipe can lead to
large losses [3]. Manually controlled pipe inspection robots
were successfully developed and deployed, however the
time and cost of deploying these robots meant more new
pipework was being laid quicker than it was being inspected
so a number of autonomous solutions were developed [4].
The pipe diameters inspection robots have been built
for vary, depending on the application; oil pipelines, 200—
500 mm [5]; sewage pipes, 200—300 mm [6]; and urban gas
pipelines 160-240 mm in diameter [7]. Due to the varying
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size requirements different methods of locomotion within
the pipe have been used.

Pipe inspection robots are commonly split into several
categories as presented in [3]; these include multiple
locomotion methods.

A widely used method utilises a ‘Pipe Inspect Gauge’
(PIG) type robot. This is a passive system and navigates
using the flow of the fluids within the pipe [5]. Pipework
being decommissioned in nuclear facilities does not contain
any fluid, so a PIG system would be unsuitable. Therefore
an active system is required.

The common active inspection vehicles fall under
different mechanical types:

—  Wheeled, propel themselves using powered wheels [8].

— Tracked / Crawler, use a caterpillar track or similar to
contact and drive along the walls [9].

—  Spiral / Screw, use a single rotational motor with angled
wheels on the stator to drive the robot along the pipe [10].

—  Inch-worm, mimics the inch-worm locomotion pattern
to move [11].

With a few notable additions and hybrids not mentioned
above.

Shao et al. [12] provides a comparison of in-pipe robots.
It discusses that tracked vehicles offer high mobility similar
to wheeled robots but they also have high traction which will
be advantages in an unknown environment with unknown
surfaces. Wall pressing is also a requirement for climbing
within vertical pipes [13]. The addition of wall pressing also
allows minor variation in the pipe diameter [12].

To autonomously navigate around bends appropriate con-
trol is required which varies depending on the locomotion
method of the robot. A summary of recent relevant robots is
shown in Table 1.

2.2 In-Pipe Cornering

The ability of each method to corner will be discussed in
more detail in this section. Classic spiral drive robots are
flawed in their fundamental design as their rotor is a rigid
body. A large amount of research has been done in this
area to overcome this. Methods such as using universal
joints and allowing wheel slip [10], varying attack angle
[21], and steerable drive units [20] have all been developed.
Despite these being shown to be successful their designs
are complex, making them difficult to miniaturise. The
pipework in question has an entrance size of 150 mm and a
minimum diameter of 50 mm meaning miniaturisation is an
important factor.

Inch-worm systems can provide very small packaged
sized robots, and are able to corner, if designed with a
flexible joint [11]. Inch-worm systems are generally much
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Table 1 In-pipe robots

Name Year Locomotion Type Control Junction Dection Used Sensors
Lu et al. [14] 2015 Walking - None -

Kakogawa et al. [15] 2015 NA - Pipe junction and corner direction Camera and LSA
Tomita et al. [11] 2015 Inch-worm Manual None -

Nagase and Fukunaga [16] 2016 Tracked Manual None -

Zhang and Wang [9] 2016 Tracked Manual None -

AlIRo-II [17] 2016 Wheeled/Snake Manual None -

Tamura et al. [18] 2016 Wheeled Manual Pipe Junctions Laser
Honeybee [19] 2017 Magnetic Manual None -

Lietal. [20] 2017 Spiral - None -

Lietal. [21] 2017 Sprial Manual None -

Savin et al. [22] 2017 Walking - None -

Wahed and Arshad [13] 2017 Wheeled Manual None -
MRINSPECT VI [8] 2017 Wheeled - Pipe junction and corner direction Camera, PSD
MRINSPECT VII [23] 2017 Wheeled Manual None -

IPR-D300 [24] 2017 Tracked Autonomous Inside of corner (0N
NIRVANA [25] 2018 Wheeled Manual None -

Kim et al. [26] 2018 Wheeled - Pipe junctions and corner direction 2D Lidar

slower and less energy efficient that an equivalent tracked
or wheeled robot [12].

Some wheeled and tracked systems use their design to
allow them to corner. Both NIRVANA [25] and MRIN-
SPECT VII [23] use multi axis gear mechanisms that allow
for the wheels to spin at different speeds, providing differen-
tial drive without the need of controlling individual motors.
This solution contains very complex gear mechanisms that
would be very difficult to miniaturise for a 50 mm pipe
making it unsuitable for this application.

A hybrid wheeled/snake type vehicle such as the AiRo-
IT [17] is able to pass around the corner without the need
for differential drive. Despite having the advantage of easier
cornering it is a less stable platform for a sensitive sensor
package as the body is not in a fixed position within the pipe
and can be difficult to select a direction at a junction.

A simplistic tracked robot from Nagase and Fukunaga
[16] requires only one motor for navigating junctions,
vertical sections and variable pipe diameters but it is unable
to actively chose direction so is unsuitable.

Walking robots such as Lu et al.’s [14] proposed design,
offer high mobility and are able to navigate complex
pipe layouts. These systems require complex control and
path planning [22]. They also provide slower movement
compared to wheeled and tracked robots.

Wheeled and tracked type robots with wall pressing
require differential drive to allow them to corner [12].
Determining the control action required to corner can be
complex and multiple approaches have been taken [9, 27—
29]. These all assume that the parameters of the corner are

known, for this application the pipework is unknown. To
allow the system to be autonomous there is a clear need for
sensing the parameters of the junctions of the pipework.

2.3 In-Pipe Sensing

In-pipe sensing is used for two different purposes; envi-
ronmental observations or robot navigation. This section
discusses the methods used to detect and characterise the
pipework geometry for navigation.

Tamura et al. [18] utilise a ‘Charge-Coupled Device’
(CCD) camera with ring type laser to detect junctions
and defects within the pipe, however they are not used
to determine the parameters of the junctions. Kakogawa
et al. [15] use a ‘Laser Spot Array’ (LSA) and camera.
They assume the radius of the pipe is known and state the
accuracy of the system is inadequate, but they are able to
identify junction types.

The IPR-D300 [24], has a more scalable solution which
does not involve detecting the corner parameters. Their
robot is a tracked, wall pressing robot with three drive units.
On each drive unit there is an ‘Ultrasonic’ (US) sensor
placed pointing at the wall. Their control for the corner
involves halving the speed of the motor which detects a
distance over a certain threshold, i.e. slows down the track
on the inside of the corner. This solution would aid in the
turning process but has a poor resolution of direction.

Kim et al.’s [26] robot uses a 2D LIDAR to scan the
elbows and T-junctions, it is able to determine corner
direction with a mean error of 0.64°; this test was done on
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two different corner angles. Despite the result being
accurate the sensor its self has a package size of 75 x 60 x
60 mm which is too large for the 50 mm pipe.

The most advanced in-pipe autonomous robots for an
unknown pipe are the MRINSPECT series [8], they utilise
‘Position Sensitve Devices’ (PSDs), lasers and a CCD
camera to provide corner directional information. Early
versions used a CCD camera to detect the patterns of shad-
ows for identifying landmarks within the pipe [30]. Using
the PSDs they are able to detect corner direction and distin-
guish between a T-junction and mitre [31]. The camera and
laser system is also able to determine features ahead in the
pipe, including corner direction [32].

Both the PSDs and camera work in fixed radius pipe
networks, although a method determining radius has been
proposed [8]. This system has a mean error of 2.84° for pre-
dicting the angle of the corner direction. This and Kim et al.
[26] will be used as benchmark for the sensor suit being
developed.

Despite MRINSPECT’s [8] method being computation-
ally light, the requirement of a camera and imaging process-
ing would add an additional unwanted load to the system.
They also utilised 6 - 8 ‘Infrared’ (IR) sensors for the PSD
system this would adding further load in sampling and pow-
ering the sensors themselves. Their IR sensors also have a
minimum range of 20 mm meaning they would be unsuit-
able for the 50 mm diameter pipe as for large segments
of the junctions, they would be out of range. This method
is proven to be successful and suitable for their applica-
tion, however this paper will review an alternative method
for detection which will be better suited for the intended
application of 50 mm pipework.

2.4 Contribution

There are very few sensor packages that are able to detect
the required corner parameters, none of which are suitable
for the proposed application. The main required parameters
to be detected are the corners major radius and the direction
the corner turns. This paper presents a bespoke sensor that
can be used to detect both the corner direction and radius to
allow autonomous navigation in an unknown pipe network.
The main focus being corner direction as we will assume

(DUlr D)

[FURO ~T
\
C D)

Fig.2 Global and local axes
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the pipe elbows fit to a standard short elbow [33] and thus
the radius is fixed as the diameter of the pipe. Testing with a
varying radius and full autonomous cornering will be visited
in further work.

The contribution of this paper is the development of a
competitive sensor for the detection of the parameters of an
elbow for the autonomous navigation system.

2.5 Nomenclature

Due to the various required parameters the following defines
the main variables used for the rest of the paper.

The axes shown in Fig. 2 are the local and global
coordinate frames for the robot and corner. The local
coordinate frame, x, y and z are referenced to the centre
of the inspection robot itself. In this case the x axis points
in the direction the robot is travelling and the z axis points
in the direction of the first ‘Drive Unit’ (DU) on the robot,
usually coloured red. The global coordinate frame is defined
as X s Y and 2, referenced to the elbow. Z points in the
direction the corner curves in, and X points into the back of
the corner.

Figure 3 shows a pipe elbow with the variables defined.
R is the major radius of the elbow also called the corner
radius; r is the elbow minor radius or pipe radius; ¢ is the
corner angle; the difference between the local robot axis, z,
and the corner axes, 7 is the corner direction, denoted as 6.
A corner direction of # = 0 would mean the z and Z axes
are aligned. As R is assumed to be known, 6 is the crucial
parameter required to be detected for estimating accurate
velocities for the DUs.

Other variables include, § which is the offset of the DUs
in relation to each other (this is fixed on the prototype as
4120° and is referenced from z); «; is the angle of feelers;

Fig.3 Corner parameter definitions
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1; is the height of the feeler mounting point from the center
of the robot and [ is the length of the feeler.

3 Hardware Overview

This section servers as an introduction to the prototype
inspection robot FURO, which is the use case for the detec-
tion system; the bespoke sensor developed for detection
elbows; and the custom designed test rig for reliable testing
of the sensor package.

3.1 FURO Prototype

The prototype has been designed to meet the requirements
presented in Section 1.1. Once the designs have been tested
and verified, the prototype will be miniaturised to meet the
full range of pipe sizes 50150 mm.

The prototype developed is shown in Fig. 4 with the key
features labelled. FURO utilises three DUs each capable of
producing 4 Nm of torque to drive the system along the
pipe with the additional payload requirement of 0.5 kg. It
nominally operates with a 150 mm diameter pipe however a
lead screw mechanism along the centre of the robot provides
the ability to expand to varying sizes of pipework (126 -
175 mm). This mechanism is also used for active wall
pressing and can be used to find the pipe’s minor radius,
r. As discussed in Section 2.1, wall pressing allows FURO
to be able to overcome vertical sections of pipework. On
FURO the feeler mount height, /; = 0.053 mm and has
DU offsets of 6 = 120°. FURO is controlled using ROS
[34], with the controller being hosted on a PC. For the final
deployable system the controller will be on-board however

Tracked With

Fixed Belt
Lengths

Worm Gear Motor Mechanical
Producing 4 Nm

Of Torque

Feeler
Sensor

Active Wall Pressing Three Drive Units Made Using
With Lead Screw Equally Radially  T,ow-cost 3D
Mechanisum Distributed Printed Parts

Fig.4 Labelled photo of FURO prototype with early feeler sensors

it has currently been kept separate for ease of prototyping.
The current working system architecture is shown in Fig. 21.

3.2 Feeler Sensor

To enable autonomous navigation and characterisation of
pipework bends, a set of mechanical feelers are mounted on
the front of the robot. They utilises a rotary ‘Potentiometer’
(POT) to measure the angle, «, of the feeler as it travels
along the pipe ahead of the robot. Figure 5 shows a
simplified diagram of the design.

In addition to the feeler, an on board encoder mounted
on the passive wheel of the DU is used to give the distance
travelled within the pipe. The contact point of the feeler is a
passive roller ball to remove any effect of the lateral forces
damaging the feelers. A spring is used to pull the feeler onto
the wall such that it has a constant contact and tracks the
contours of the walls.

Three feelers are mounted ahead of the DUs of the
robot, displaced at 120° (Fig. 4) to detect all possibilities
of junctions. Due to the low tolerances of components,
there is error between the output of the three feelers for the
same angle of the POTs. To overcome this issue, the feelers
have been individually characterised and a look up table of
voltage output from the potential divider and input angle is
used for each feeler to give a more accurate angle output.

The length of the feelers (/ r) was calculated by modelling
the detection angle range for differing lengths as shown in
Fig. 6.

The largest change in o for a short elbow, shown in
Fig. 6, was estimated to be 66.14 mm. The manufactured
length is rounded to the nearest mm giving a feeler length of
Iy = 66 mm. The effects of manufacturing tolerances have
been review later in the paper.

3.3 Experimental Set up

The experiment presented in this paper is designed to
give feeler data for an accurate prediction of the corner
parameters. The test pipe consists of a 150 mm diameter
section of straight pipe with a coupler to an elbow with
R = 150 mm.

Pipewall Iy P
Drive Unit
C Roller Ball
24 Feeler
POT a Spring

Fig.5 Simplified diagram of feeler
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Fig.6 Plot of angle vs feeler
length
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The test rig is designed to fit within the test pipe and is
locked in place with a retaining pin. This holds the rig with
the feelers in line with the entrance to the pipe. A linear
translation motor drives a plate with the feelers attached to
it into the corner pipe in 0.01 mm increments controlling the
variable x. The step distance of the test rig is smaller than
the actual application, however this is used to characterise
the feelers and the method will still be applicable to the
deployable robot. The translating plate is mounted inside
a large bearing which is able to rotate the whole assembly
within the pipe. The rotation controls the direction of the
corner in relation to the robot, 6. A motor drives this rotation
with an accuracy of 0.54°. A simplified diagram of the
experiment is shown in Fig. 7.

Experimental Procedure The rotation motor holds the
rotating section at the specified angle (9). For each position
0 the feeler sensors are stepped into the corner using the
linear translation stepper motor. On each step, the feeler
angles («;) are sampled and logged. This process is called a
pass and is repeated a minimum of fives times.

Once it is complete, 6 is then incremented and the passes
are repeated. & was varied in increments of 10° between
+180° to give full 360° coverage of the feelers within the

pipe.

Start Of
Entrance

Fixed Outer Body R . '
L . otating

Retaining Pin Section =

I

\ -

Rotation
Motor

\
| =

71
7
Linear Translation Motor

A
Y

L
\Sliding Plate

Fig.7 Simplified diagram of test rig
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The raw data was then run through the corner prediction
algorithm in Section 4. The prediction was compared
with the actual corner direction and radius to evaluate the
performance. The velocities could then be calculated for the
three DUs, which is the final output of the system to allow
for autonomous navigation around a corner.

4 Corner Parameter Prediction

This section presents the proposed method for predicting
the corner direction, 8, which is the primary contribution
of this paper. It also presents an extension to the method to
determine the corner radius, R, for the case that the robot is
not travelling in a standard short elbow.

It can be seen in Fig. 5 that the feelers are mounted in
front of the DUs. Due to this the feelers enter the corner
ahead of the drive units. During that time, the mounting
point of the feeler (on the DU) is in the straight pipe and the
feeler arms are passing through the corner. The velocities for
the DUs need to be calculated before they enter the corner.
This gives a region in the elbow in which the prediction
needs to be made. This region is called the corner entrance.
The entrance is shown in grey in Fig. 8. For the current
feeler length the entrance distance is 62 mm.

As the feelers pass into the corner, through the entrance,
all three are sampled. The combination of the three samples
is S. These samples are taken multiple times (S1, S2, ...,
S,) as the feelers progress into the corner, see Fig. 8. The
number of samples taken vary dependent on the sample rate,
the greater the number of samples the greater the confidence
in the result. The algorithm requires a minimum of two
samples to be taken in the corner. The final sample S, is the
sample at the end of the entrance (62 mm into the corner),
and the first Sy is the start of the entrance. The algorithm is
triggered by a change in the feelers middle point greater than
a predetermined threshold. This threshold is determined
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Fig. 8 Pipe entrance (grey) for FURO in short elbow with samples §
labelled

by the noise characteristics of the feeler sensors, for the
presented set up the trigger value is 1 mm. Previous to this
all the data will be stored such that the S| can be found. S, is
determined by finding the distance travelled since S; using
the on-board encoder on the FURO prototype.

4.1 Corner Direction

The direction, 6, trying to be estimated is the angle between
the robot and the corner’s z-axes. This direction is crucial to
determine the individual velocities for the motors.

The process of predicting the direction has been split
into three stages, Stage I: Sampling and Kinematics,
Stage II: Sample Combination, Stage III: Calibration and
Final Prediction. Note all common variables are defined in
Section 2.5. The full process is summarised in flow chart,
Fig. 20 in the Appendix.

4.1.1 Stage I: Sampling and Kinematics

In the first stage data is collected from all of the feelers.
The data is taken over multiple samples (S1, Sz, ..., Sy) as
the feelers travel through the corner entrance, Fig. 8. Note
the sample distance in Fig. 8 is not in scale to the actual
experiment. The method of dealing with a single sample will
be explained in more detail in the following. The method is
the same for all the samples taken in the corner.

The three feeler sensors are sampled and the raw voltages
from each sensor is converted to an angle, ag, g and ap,
these are the feeler angles at a single sample point. These
three angles can be entered into the kinematic model to
give the end coordinates of the three feelers, Pr, Pg and
Pp, these are the contact points of each feeler with the

elbow wall. Each end point has it’s own set of coordinates
in the robots local coordinate frame, Pg = (xR, YR, ZR),
Pg = (xg, yG.zg) and P = (xp, yB. ZB).

A simplified diagram of the kinematic model is shown
in Fig. 9. [; is defined by the mounting height of the feelers
and the radius of the pipe, for the FURO prototype in a pipe
with r = 0.075 m, /; = 0.053 m.

Using the diagram the kinematic model can be deter-
mined as follows

x; =lysing;, (1a)
yi = (I} + 1y cosa;)siné;, (1b)
zi = (I + 1y cosa;) cos §;; (Io)

where i = R, G or B depending on if the feeler angle as
been entered from the Red, Green or Blue feeler.

Once the end point of the three feelers have been found
they can be added to give their middle point, Pf,. The
central point can be found by finding the mean of the end
points as shown in the following equations

- YR+Yc+yB

y=—"73 (22)
Z=ZR+Z3G*FZB’ (2b)
Ptm = (y,2). (20)

Figure 10 shows the local (y, z) plane of the robot with
the feeler end locations, feeler centre point and robot centre
labelled.

The next step is to find the change between the feeler
central point, Py, and the robot centre, P.. This will give

Fig.9 Kinematic model of feelers
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Fig. 10 Feeler end points layout in (y, z) plane

the overall change in y and z for that sample. The changes
dy and d, are given by

dy = mey - Pcy» (3a)
d, = Ppp. — Pe.. (3b)

This process is repeated for each new sample of the
feelers to give a change in y and z for each sample. As the
feelers travel further into the corner entrance, it is expected
that dy and dz will increase as Py, moves further away
from P. and more towards the direction of the corner. This is
because the deeper they go the more the pipe itself changes
thus giving a greater angle change to the feelers. Figure 8
shows the change in the pipe as the samples progress into the
corner entrance. It should also be noted that as each sample
sees a single slice of the corner, the shape tends from a circle
in the first sample, S; to an ellipsoid like shape in S, (shown
in Fig. 13).

4.1.2 Stage ll: Sample Combination

The second stage of the corner direction prediction is the
combination of the previous samples (shown in Fig. 11) to
give a single angle output.

Their change, d, and d; is summed giving a total dis-
placement in y and z over all the samples for the direction.
For the real system, combining them in this method would
allow for the rejection of small errors in the changes, as the
overall change would be in the corner direction. The sum of
the changes are denoted by Dy and D, and given by

Dy = Z d,Vsl + dysz -t dysn ’ (4a)
D. =Y dy +do, .. +dzy,. (4b)
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Fig. 11 Sample changes in (y, z) plane
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Once the total changes in y and z has been found, they
can be used to find the angle, ;. Figure 12 shows the
summed samples and identifies 0,,. As a result, the angle
0 m is given by

0 m = arctan2(D, D), ®)

where arctan? is the four-quadrant inverse tangent.

Simulations were run to test the method and it was
found that there was a clear correlation between the
estimated, 6 r,,, and the actual, 6, direction. This correlation
is independent to each estimate and can thus be corrected
for in the final stage.

4.1.3 Stage lll: Calibration and Final Prediction

The final stage is the calibration of the angle, 6 ¢,, to produce
an accurate estimation of the angle, 6. Figure 13 shows the
final sample S, for a simulated corner. The feeler layouts,
feeler central point and robot centre are shown. The need
for calibration of the angle, 0,,, can also be seen with the
difference between 6, and 6.

A-

(Dy, D)
Q

Yy

< Pc

Fig. 12 Summing sample changes in (y, z) plane
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Fig. 13 Diagram of leg layout and robot and feeler centre points

As discussed previously, the value of 6, and the corner
direction, 6, are independent i.e. any one value of 6y
corresponds to a single value of . Due to this it can be
calibrated for.

To calibrate for the difference between the measure-
ments, curve fitting was used to best approximate the
function. This was done using a sine function and it was
reviewed for the case with R = 150 mm, Fig. 14. The
following approximation of 6 was found

0 =0, + 13sin(3.01840,,). ©6)

It can be seen from Eq. 6 that the variable effecting the
phase of the sin function is very close to three. This is related
to the the three drive units in the pipe. The response from
the feelers will repeat every 120° and the factor will be
treated as 3 from this point. The discrepancy is due to the
assumption made with this method; the feelers stay in the
same x-plane when travelling through the corner.

Target Correlation
—Empirical Eproximation

-
o
o

-100 ¢

Real Angle 0 (Degrees)
o

-150 -100 -50 0 50 100 150
Angle Hfm (Degrees)

Fig. 14 Empirical approximation for calibrating 6 7.,

As a result, the calibrated angle for the corner direction
is given by

0 =0 + 135i0(36 1) )

This method offers a light-weight prediction with a
maximum systematic error (€s,,qy) of less than 2°.

4.2 Corner Radius

A method of extending the corner direction to also
determine the major radius, R, is also proposed. The process
of predicting R utilises the ‘Intersecting Chords Theorem’
(ICT). This theory, with some manipulation, allows the
radius of a circle to be determined from a chord across it.
Following [35], the radius R of a circle with a chord of width
W and height H is defined by

H W?
= E + @ ®)

As the feelers take multiple samples through the corner
entrance, Fig. 8, the change in the x-axis is also recorded,
d;. To apply this to the ICT, d, is used as half the cord width
W. To give a heigh from the cord, the final sample taken in
the corner entrance can be used, S, = (dysn , dzsn) to give a
magnitude, dy, to that point from the robot centre, Pc, i.e.

dy, = /d%s’l + dzzs,,' 9)

As the change has already been calculated for the corner
direction this requires no more sensing of the feelers. For

Fig. 15 Using intersecting chords theorem to determine corner radius
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this application, dy; is used as H. Substituting the values
and rearranging (9) gives the following equation to calculate
the radius, R:

2 2
R = M (10
2D,,
Figure 15 shows the method of applying the feeler data to
the ICT.
The radius prediction was simulated to prove the
method’s feasibility and was found to provide a satisfactory
result.

4.3 Drive Unit Velocities

Once all the information has been measured and calculated,
the drive unit velocities can be determined. To start, the
radii of the feeler paths, Rg, Rg and Rp are calculated. The
first step is finding the path length required for each of the
drive units. It is initially assumed that the bends are all 90°
elbows, ¢ = 90°. Figure 16 shows the geometric layout of
the three DU’s path lengths, parhg» Lparhg and path .

Using Fig. 16 the equations for the path radii, Rg, Rg
and Rp can be found as follows

Ri = V(R — rcos(@ + 8))% + (rsin(d + 8;))2, (11)

where i = R, G or B. Once the radii of the path is know,
the path length, /44, , can be calculated,

Lpath; = Ri¢. 12)

Fig. 16 Calculating radii

@ Springer

From the path lengths the individual velocities can be
determined, using the average required velocity, V, as a
benchmark. V, = 10 mms~! and the centre has radius R =
150 mm, giving a path length, /4, = 0.236 m. This means
the required turning time to is ¢ = lpqp,/ Ve = 23.56 s.
This can be used to determine the other velocities for their
varying path lengths. Knowing the path lengths vary due
to their radii, the prior steps of determining path length
and time can be negated as they are constant across all
three DUs. This allows the radii to be used to give a ratio
with the centre radius which can be treated as a multiplier
for velocity to give the DU speeds. This also removes the
requirement to know ¢ if exit conditions are known. The
velocities for the drive units, V; can be found using

Vi = Vy—. (13)

These velocities can then be set for the DUs to allow the
robot to autonomously navigate around the corner.

5 Results and Discussion

This section reviews the results taken from the feeler rig
then follows with a discussion. The experimental method
used to gain the data is explained in Section 3.3.

5.1 Results

First a single pass of data is reviewed, then the full set of
results are presented.

Single Pass The selected set of data for detailed investiga-
tion is taken from the & = —70° set, as the results for this
angle are the closest to the mean error and can be viewed as
representative of the full data set.

Figure 17 shows the simulated progression of the end
points of the three feelers at 6 = —70°. Let P;; be the end
point of the Red, Green or Blue Feeler at the start of the
Corner Entrance and P; S be the end point of the Red, Green
or Blue Feeler at the end of the Corner Entrance.

It can be seen that the for the Blue Feeler, the end point
(Pp) moves closer to the center of the robot (P,) increasing
the feeler angle by a large magnitude. For the Red Feeler
(Pg), the movement is away from P, decreasing the feeler
angle but with a small magnitude. The Green Feeler end
point (Pg) also moves away from Pc decreasing the feeler
angle, but with a larger magnitude than the Red Feeler. It
should be noted that as the selected & = —70° contains 10
passes into the corner.

Figure 18 shows the raw data from one of the passes (pass
5). It can be seen that it is very noisy, however there is a
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S1, Start of Sy, End Table 2 Predicted angles of the multiple passes for 6 = —70°
S of Corner ' ‘ .
Hntiames Entrance Predicted Angle Predicted Radius
Pass Degrees m
1 —66.05 0.1524
2 —65.16 0.1522
3 —62.97 0.1521
4 —65.12 0.1523
5 —65.09 0.1522
6 —63.49 0.1522
7 —66.61 0.1523
8 —63.52 0.1521
9 —67.88 0.1523
10 —64.74 0.1522
Average —65.06 0.1522

Fig. 17 Leg layout of feelers at start (S;) and end of corner (S;)
entrance for 6 = —70°

trend in direction for each feeler angle as the distance into
the corner increases. The Blue Feeler has a large positive
change in angle («g), the Red Feeler has a slight decrease in
the angle («g) and the Green feeler has a decrease in angle
(ag), which is larger than the Red Feeler. The general trends
from this data match the expected changes shown in Fig. 17.

Passing the full set data at &6 = —70° through the
presented algorithm from Section 4.1, the final prediction
of corner direction and radius can be found, as shown in
Table 2. The bold row is the prediction from the feeler
angles presented in Fig. 18.

The average estimation across the multiple passes is
—65.06° with a range of 4.91°; this gives an mean prediction
error of 4.94°. The radius target is 0.1524 m, the average
prediction is 0.1522 m. The predicted corner direction for

Fig. 18 A single pass (pass 5) of 85
raw feeler angle data at
0 = —70°

o]
o

Green Feeler Angle

> Red Feeler Angle
| | ° Blue Feeler Angle

Pass 5 is propagated through to the velocities using the
equations presented in Section 4.3; for this an average speed
of V, = 10 mms~!, a fixed radius of R = 0.15 m and
a ¢ = 90° elbow. The comparison of the simulated and
estimated velocities are shown in Table 3.

Expressing the difference between the actual and predicted
path lengths gives, dlpun, =0.0064 m, dlpen; =—0.0064 m
and dl 4t ; = 0.0006 m. This shows the maximum distance
a single DU needs to compensate for is 6.4 mm.

Full Data Set For each value of 6 in increments of 10°
between —180° to 180°, there are a set of multiple passes
of feeler data. To display this data, the mean prediction for
each 0 has been plotted in Fig. 19 with error bars for the
minimum and maximum prediction for each set.

It can be seen that the predicted values follow the target
data; the mean absolute error in the direction prediction

75

~
o

Feeler Angle, o (Degrees)

-0.05

-0.03 -0.02 -0.01 0 0.01
Distance (m)

-0.04
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Table3 Comparison of simulated and estimated velocities at 0 = —70
Velocities
Simulated Calculated
mms ™! mms !

Vg 9.53 9.1

Ve 7.79 8.22

Ve 14.95 14.99

is € = 4.69°. This metric is used to allow it to be

compared with MRINSPECT VI [8] which is being used as
the benchmark for this system. To see the impact the error
has on the output of the system, the DU velocities will be
calculated.

The radius prediction was found to have a mean absolute
error of €g = 0.91 mm over all the samples.

The mean error in direction is propagated through to the
DU velocities. Using the method presented in Section 4.3
€p, the path lengths of the DU can be calculated and the error
between the actual and predicted values can be found. For
€p = 4.69° with corner parameters R = 0.15 m, ¢ = 90°,
gives the mean error in path length of ¢ = 3.9 mm.

Calculating velocity with an average of V, = 10 mms™',

the mean absolute velocity error is € = 0.2605 mms~!.

path

5.2 Discussion

The changes in the raw feeler data from Fig. 18, follows the
expected change for the feeler angles. This shows the basic
principle of the method is valid and the change in direction
can be detected. The full set of data shown in Fig. 19 shows
that the trend of the predictions follows the target angles
but there are errors present in the predictions. The largest
distance a single DU has to overcome from the mean error is
€ = 3.9 mm. This value is minimal and can be rejected

path

due to the robustness of the prototype with a slight slippage
of the tracks on the pipe. Comparing this to the simulated
results the expected error is €g,,4, = 1.78° which is lower
than the measured data.

The results show the method is viable for estimating
corner direction but could be improved. The error in
the measurements is due to the low cost POTs used for
measuring the angle. These provide noisy data and require
lengthy individual characterisation as the tolerances in the
components cause their resistance to vary across the three
feelers. Even with the characterisation there is still a large
amount of noise in the data from the sensors.

As the three feelers are at a fixed offset to each other of
120°, if the sensors were ideal and have clean responses,
the output of feelers and thus error in the prediction would
repeat every 120°. It can be seen in Fig. 19 that the areas
where there are large errors, such as 6 = 80°, the error
is not repeated at £120° from it, —40°. This shows the
errors are not due to prediction method but due to poor
readings from the sensors themselves. Improvements could
be made by replacing the low-cost sensors with higher end
encoders. This would allow the position of the encoder
to be entered straight into the kinematic model meaning
the detection method itself is still valid but improving the
detection mechanism.

Despite the detection method being developed with the
FURO prototype as the use case, it is applicable for any wall
pressing in-pipe inspection vehicle the requires parameters
for the corner to be determined.

5.3 Effect of Manufacturing Tolerances on Prediction

The effects of manufacturing tolerances on the length of
the feeler was reviewed to see the effect this would have
on the final output of the system. The target length for
manufacturing was taken as 66.14 mm with the feeler’s ideal
length of 66.14 mm. Reviewing the worse case errors in

Fig. 19 Mean predicted angles T
vs target angle
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manufacturing the maximum and minimum possible feeler
lengths were found to be Iy, = 66.52 mm and Iy, =
65.68 mm. Propagating these values through the system and
reviewing the worst case application of two feelers at length
I f,.. and one feeler at length /. led to an absolute mean
error in the output of 4.19°. This includes the maximum
simulated error in the method of €g,,,x = 1.775°. Due to
this variation and the probability of all this case occurring
being small, the effect of the manufacturing tolerances in
predicting corner direction will be negligible.

5.4 Comparison Other Detection Systems

The MRINSPECT VI robot [8] and Kim et al.’s system [26]
are being used as the benchmark for this prediction, they
have a mean error (€g9) of 2.84° and 0.64° respectively in
their prediction. Comparing this to the results presented in
Section 5, the mean error of the real system is €5 = 4.69°
which shows that both the sensor suits have a more accurate
corner detection. However the aim of this task was to make
a comparable prediction method which is scalable for use
within a 50 mm pipe, and which is computationally cheap
and has a low system load. In comparison to the CCD
camera and bank of IR sensor required by MRINSPECT
and the 2D lidar required by Kim et al., this aim has been
achieved.

5.5 Scalability

The detection method is simulated and tested at the 150 mm
size. This section applies the same simulations to the 50 mm
pipe to show the method is scalable. The 50 mm pipe has
an optimal feeler length of 23.06 mm for maximum change
in it’s angle (&) in a short elbow with scaled dimensions
for the prototype. Applying the algorithms presented in
Section 4, the mean error in direction and velocity were
found. The miniaturised system has a €¢ = 1.81° and
€y = 1.10%. This shows the method is applicable to both
the 150 mm and 50 mm diameter pipes and the detection
method is scalable.

6 Conclusions

This paper presents a novel method of predicting the para-
meters of an in-pipe elbow within an unknown pipe net-
work. It achieves this using three bespoke feeler sensors and
algorithm to detect corner direction with a mean error 4.69°.
Further work on this method includes the addition of closed
loop control once the robot is in the corner to correct for any
error in the set velocities thus allowing better rejection of
any error in the prediction. One final extension is the testing
of the radius prediction on different radius bends.
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