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Abstract
In this paper a Pfaff matrix for doubly generalized N-trailer systems is derived when not only lateral, as in generalized
N-trailer systems, but also longitudinal constraints are respected. Based on the matrix, kinematic models are presented for
doubly generalized N-trailer systems parameterized with a vector composed of codes of active constraints at each axle. For
all constraints active, a closed-form formula for kinematics is derived while for other models – a recursive one is proposed. It
is shown how to construct analytically a null space for two types of possible Pfaff matrices and some examples are provided
to illustrate introduced formulas. The kinematic models can be used either to test algorithms of motion planning (control)
for a broad class of easy parameterizable models or to design or verify wheeled systems.
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1 Introduction

Many systems of robotics are nonholonomic [12]. To
this class belong free floating robots [20], under-actuated
manipulators [11], mobile platforms with trailers [1],
mobile manipulators [2, 17], grippers [3], underwater
vehicles [8]. The systems are described by kinematic
equations in the form

q̇qq =
m∑

i=0

gggi(qqq)ui, dimqqq = n > m = dimuuu, (1)

where qqq is a configuration, gggi(qqq) are vector fields
(generators) and uuu are controls. Equation 1 is appropriate
for control purposes as it determines trajectories in the
configuration space corresponding to applied controls. In
most cases, Eq. 1 should be derived to satisfy some
constraints imposed on a motion of a given system. For
free-floating robots, nonholonomic constraints result from
the angular momentum conservation law, while for mobile
robots from no-slippage constraints. In this paper Wheeled
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Mobile Robots with Trailers (WMRT) will be considered.
Although for WMRT no-slippage constraints are difficult
to satisfy in practice [21], still their idealized models
are useful as a reference to real models. No-slippage
constraints are crucial to localize a robot when an odometry
technique is used. This technique is currently replaced
by GPS or accelerometer–magnetometer-gyroscope data
fusion. Probably one of the oldest examples of exploiting
no-slippage constraints in practice is dated back to the
19th century when a hand-driven, mechanical device
(planimeter) has been designed, using M. Hermann’s idea
put forward in 1814, [4]. This device has been constructed
to measure areas on a plane and it is a beautiful mechanical
exemplification of the Green’s theorem. In contemporary
robotics, no longitudinal slippage constraints are vital in
a nonholonomic gear, designed by Sordalen and coworkers
for a nonholonomic manipulator [16].

Systems (1) are important from a theoretical and a
practical viewpoint. However, they are difficult to control
as the number of controls is significantly smaller than
the dimension of the configuration space. A classical
generalized N-trailer system is composed of a tractor
pulling N trailers on a plane [1, 15] where hitches joining
consecutive links do not coincide with trailers’ axles. For
any N , kinematic equations of the systems have been
derived and practical control strategies developed [10].
Models with a parametric dependence of their difficulty are
especially welcomed. In this sense N-trailer systems are
perfect to generate challenging problems as the number of
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controls, m, can be kept constant while dimension n of the
configuration vector increased by adding more and more
trailers, N . The goal of this paper is to broaden the class
of generalized N-trailer systems and analytically express
vector fields gggi in Eq. 1 when not only lateral (transversal)
constraints (rolling without side-slip) are active but also
longitudinal ones. Generally, N-trailer models are necessary
for many purposes: either to determine properties of the
models, [1, 9] and transfer them into suitable forms for
control purposes [7, 13, 15] or for planning and control
[6, 19]. Usually in N-trailer models each pair of wheels is
considered as a single wheel, but at some real constructions
wheels are considered separately or paired (as in ReX
mobile platform [18]).

The paper is organized as follow. In Section 2 constraints
imposed on doubly generalized N trailer systems are
recalled: lateral and longitudinal ones at axles accompanied
by holonomic ones on relationships between positions of
axles and hitches. Based on the constraints, a Pfaff matrix is
derived pointing out its structure. In Section 3 a procedure is
proposed to derive kinematic models of doubly generalized
N-trailer systems. Two possible types of Pfaff matrices are
distinguished and a dedicated procedure is proposed for
each of them. As a part of the procedure, it is shown how
to simplify calculations of the null space of a given matrix.
The simplification can be useful in other applications too.
In Section 5 some models are calculated according to the
introduced formulas. Section 6 concludes the paper.

2 Constraints and a General PfaffMatrix

Let us consider a tractor pulling N-trailers on the (x, y)

plane, Fig. 1a. In order to respect notations used in many
papers on this subject [1, 10], (xi, yi) denotes the position
of the i-th axle while θi – its orientation with respect to
the x-axis of the global frame, Fig. 1d. Each pair of wheels
is modeled as a single wheel centered at the midpoint of
the axle. The index 0 is reserved for the tractor while
i = 1, . . . , N enumerates consecutive trailers. For N-trailer
systems, the i-th hitch is placed exactly at the i-th axle while
for the generalized N-trailer systems the i-th hitch is located
somewhere on the line joining the (i − 1)-st hitch with the
i-th axle. In order to initialize the recursive definition, it
is assumed that the 0-th hitch is placed at the axle of the
tractor. The top view of the system, cf. Fig. 1a, shadows
some details as the first and the second axes are not joined
to the first hitch. To avoid ambiguity, in Fig. 1b, a possible
construction of the hitch is presented.

As in papers [1, 7, 10, 15] the system is subordinated to
lateral (no side-way slippage) constraints resulting, for the
i-th axle (Fig. 1d), from the equation

dyi

dxi

= tan(θi) (2)

expressed in the standard form as

sin(θi)ẋi − cos(θi)ẏi = 0. (3)

Fig. 1 a N-trailer system (top
view), b side view of the first
hitch, c side view of the i-th
wheel, d top view of the i-th
wheel
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Notice that Eq. 2 is not defined for θi = 0 but it is used
only to derive more general Eq. 3 used later on. Positions of
axles, i = 1, . . . , N , are related to the position of the tractor
with holonomic constraints

xi = x0 −
i−1∑

j=1

Lj cos(θj ) − Bi cos(θi),

yi = y0 −
i−1∑

j=1

Lj sin(θj ) − Bi sin(θi), (4)

where Li is the distance between the (i − 1)-st and the i-th
hitch, while Bi is the distance between the (i − 1)-st hitch
and the axle of the i-th trailer, cf. Fig. 1a.

The literature generalized N-trailer models will be
enriched in this paper with longitudinal constraints. The
constraints result from a zero velocity condition of a wheel-
ground contact point, Fig. 1c. The velocity calculated from
a linear motion should be the same as obtained from the
angular motion. Consequently, longitudinal constraints take
a standard form

cos(θi)ẋi + sin(θi)ẏi − Riψ̇i = 0, (5)

where ψi is the angle of rotation of the i-th wheel and
Ri denotes its radius. Without loosing generality, it can
assumed that Ri = 1 after taking a new variable

ψ̃i = Riψi . (6)

To shorten notations, ψ̃i will be denoted as ψi later on.
Having defined constraints, Eqs. 3, 5, a configuration

vector should be described. Obviously, all θi, ψi , i =
0, . . . , N , (for the tractor and N-trailers), angles should
enter the vector and the position (x, y) of a single axis. In
this paper the reference position is assigned to the tractor
axis (x0, y0). At some papers [7], (xN , yN) is taken as
the reference position, especially when a control strategy

to steer N-trailer system exploits the differential flatness
concept (xN, yN are just plain outputs for the system).
Finally, the configuration vector

qqq = (x0, y0, θ0, ψ0, . . . , θN , ψN)T (7)

contains n = 2 + 2(N + 1) = 2N + 4 components. Now,
from constraints (3), (5) the (r × n) Pfaff matrix AAA(qqq) will
be derived

AAA(qqq)q̇qq = 000, (8)

where r is the number of constraints and 000 is (r × 1)

vector composed of zeroes only. When all constraints are
active at each axis (this assumption will be relaxed in
Section 4), r = 2(N + 1). The Pfaff matrix is obtained after
derivating holonomic constraint (4)

ẋi = ẋ0 +
i−1∑

j=1

Lj sin(θj )θ̇j + Bi sin(θi)θ̇i ,

ẏi = ẏ0 −
i−1∑

j=1

Lj cos(θj )θ̇j − Bi cos(θi)θ̇i , (9)

substituting results into Eqs. 3, 5 and, finally, selecting
coefficients pre-multiplying appropriate velocities q̇i . It
can be deduced that the Pfaff matrix depends only on θθθ

variables. Therefore, to shorten notations, we will denote
ci = cos(θi), si = sin(θi), and also cij = cos(θi − θj ),
sij = sin(θi − θj ). The last two notations will appear very
soon. First two rows of the Pfaff matrix, corresponding
to tractor constraints, take the form (to point out a block
structure extra brackets were used)
[

AAA1

AAA2

]
=

[ (
s0 −c0

c0 s0

) (
0 0
0 −1

)
02 . . .0002

]
, (10)

where 0002 is the (2×2) matrix composed of zeroes (in Eq. 10
the matrix is repeated N times). Next, the i-th pair of rows
i = 1, . . . , N has got also a nice block structure

[
AAA2i+1

AAA2i+2

]
=

[ (
si −ci

ci si

)
0002

(
Li−1c1i 0
Li−1s1i 0

)
. . .

(
L1c(i−1)i 0
L1s(i−1)i 0

)(
Bi 0
0 −1

)
0002 . . .0002

]
, (11)

where the matrix 0002 is repeated (N − i) times. Finally, the
Pfaff matrix AAA(qqq) has got r = 2N +2 rows and n = 2N +4
columns. Notice that in Eq. 11, block matrices including L

lengths are missing for i = 1.
The Pfaff matrix (10), (11) is of full rank, rank(AAA) =

r . By selecting n − 3 = r − 1 columns (4, . . . , n)

a lower triangular matrix is selected with non-zero diagonal
elements equal either to −1 or Bi . As the first two items
of AAA1 can not vanish simultaneously and all remaining
are zeros, then the full-rank condition is satisfied. Despite
of redundancy in presentation, the expanded form of AAA is

provided for the model of a tractor pulling three trailers with
lateral and longitudinal constraints active at each axle
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 −c0 0 0 0 0 0 0 0 0
c0 s0 0 −1 0 0 0 0 0 0
s1 −c1 0 0 B1 0 0 0 0 0
c1 s1 0 0 0 −1 0 0 0 0
s2 −c2 0 0 L1c12 0 B2 0 0 0
c2 s2 0 0 L1s12 0 0 −1 0 0
s3 −c3 0 0 L2c13 0 L1c23 0 B3 0
c3 s3 0 0 L2s13 0 L1s23 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

to visualize the block structure of the matrix.
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3 Kinematics

In order to get (n×m) kinematic matrix GGG(qqq), a basis of the
null space (kernel) of matrix AAA(qqq) should be constructed to
satisfy

AAA(qqq) · GGG(qqq) = AAA(qqq) · (AAA⊥(qqq))T = 000r×m, (13)

where dimension m of the null space is equal to

m = n − r . (14)

Columns of matrix GGG(qqq) are vector fields called generators.
Sometimes a physical interpretation to generators can be
assigned. However, as vector fields spanning the kernel
are not determined uniquely, the interpretation may be
impossible or deceptive. As m = 4 + 2N − (2N + 2), two
generators ggg1(qqq),ggg2(qqq) are searched for. The first one is
obvious

ggg1(qqq) = (0, 0, 1, 0, . . .)T (15)

as the third column of AAA(qqq) (corresponding to θ̇0) is a
zero column (any position (xi, yi) does not depend on θ0).
The second vector ggg2 will be constructed iteratively, taking
advantage of perpendicularity of the vector with rows of
matrix AAA(qqq). This condition is checked via vanishing inner
product, 〈·, ·, 〉, of appropriate vectors. The very first four
coordinates of the vector are easy to determine from gggT

2 ⊥
AAA1, gggT

2 ⊥ AAA2, cf. Eq. 10

ggg2(qqq) = (Bc0, Bs0, 0, B, v1, w1, . . . , vN , wN)T , (16)

where B is any non-zero constant and vi, wi to be
determined. For i = 1, . . . , N , the following conditions
have to be satisfied〈
AAA2i+1,ggg

T
2

〉
= 0,

〈
AAA2i+2,ggg

T
2

〉
= 0, (17)

and the contribution of first four components of vectors in
Eq. 17, cf. Eqs. 10, 11, has to be compensated with the rest
block matrix multiplications. From Eq. 16, the conditions

[ −Bs0i

Bc0i

]
+

i−1∑

j=1

[
Li−j cji 0
Li−j sji 0

][
vj

wj

]
+

[
Bi 0
0 −1

][
vi

wi

]
=

[
0
0

]
,

(18)

determine vi, wi for i = 1, . . . , N

vi = B

Bi

⎛

⎝s0i −
i−1∑

j=1

Li−j sjivj

⎞

⎠ = f0i +
i−1∑

j=1

fjivj ,

wi = Bc0i +
i−1∑

j=1

Li−j cjivj = h0i +
i−1∑

j=1

hjivj . (19)

For i = 1 the sums are missing. Recall that B is a non-
zero constant. A particularly natural choice for the constant
is B = ∏N

i=1 Bi as there are no denominators in Eq. 19.

Formula (19) allows one to recursively determine vi, wi

components. Our next goal is to derive a closed-form
formula for vi, wi . To notice some regularities, three first vi

are enough

v1 = f01,

v2 = f02 + f01f12,

v3 = f03 + f01f13 + (f02 + f01f12)f23

= f03 + f01f13 + f02f23 + f01f12f23. (20)

Let Si is defined as a set of varied length, increasing
sequences of integers

σ =(σ1, σ2, . . . , σK(σ)) satisfying σ1 = 0 and σK(σ) = i.

(21)

Then

vi =
∑

σ∈Si

Fσ , where Fσ =
K(σ)−1∏

j=1

fσj ,σj+1 (22)

and fi,j = fij are defined in Eq. 19.
Now the number of terms in vi , equal to #Si , will be

counted. It follows from Eq. 20 that #S1 = 1. In vi , i =
2, . . . , N exactly 2i−1 new terms appear due to vi−1 and the
sequence #Si , i = 1, . . . , N forms a geometric progression
with ratio 2, thus #Si = ∑n

j=1 2j−1 = 2i−1. The same
result can be obtained in a different way. To calculate #Si ,
we use the bijection

(σ1, σ2, . . . , σK(σ))↔(σ2−σ1, σ3−σ2 . . . , σK(σ)−σK(σ)−1).
(23)

Then, #Si = 2i−1 as the number of ordered partitions for
a given integer i, [14]. The closed-form of wi is obtained by
substituting (22) into the second equation in Eq. 19.

Formula (22) will be illustrated for i = 3. In this case
S3 = {(0, 1, 2, 3), (0, 1, 3), (0, 2, 3), (0, 3)}. For exemplary
σ = (0, 1, 3), we have fσ = f01f13 and K(σ) = 3. Finally,
v3 = f03 + f01f13 + f02f23 + f01f12f23 is confirmed by
Eq. 20.

4 Doubly Generalized N-trailer Systems
with a Varied Number of Constraints

In this section more new doubly generalized models will be
derived. In Section 3 it was assumed that at each axle both
no-slippage constraints are active. Now, this assumption will
be relaxed and a class of models is considered which is
characterized by the condition that at each axis at least one
constraint is active. Items from this class are numerically
described by an (N + 1) element vector PPP composed
of ordered pairs (hi, li) denoting whether lateral and/or
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longitudinal constraints are active (value 1) or not (value
0). In this classification the literature models [1, 15] belong
to the class (1, 0)N+1, while the models considered in
Section 3 to (1, 1)N+1.

For this class, a Pfaff matrix AAAPPP (qqq) is composed of
selected, based on PPP , vector-rows taken from AAA(qqq) given
in (10), (11). The number of constraints r is equal to the total
number of 1-s in PPP . Configuration vector qqq is composed of
position coordinates x0, y0, all θi , i = 0, . . . , N (as θi is
involved in the longitudinal constraint, cf. Eq. 5, even when
the lateral constraint is not active) and those ψi where the
second element of sub-vector pair of PPP is equal to 1.

Example: for PPP = ((1, 0), (0, 1), (1, 1)), r = 4, n = 7,
m = n − r = 3 and qqq = (x0, y0, θ0, θ1, ψ1, θ2, ψ2)

T .
Being a sub-matrix of AAA, cf. Eqs. 10, 11, AAAPPP is also

a full rank matrix for any PPP in the class defined previously.
Kinematics matrix GGG(qqq) corresponding to AAAPPP can not be
determined so easy and a procedure to perform this task
is to be constructed. As the procedure is based on some
transformations of the the Pfaff matrix, the transformation
will be presented first. To simplify a construction of AAA⊥

PPP
(qqq),

a full-rank matrix AAAPPP (qqq) is transformed into ÃAAPPP (qqq), its null

space determined ÃAA
⊥
PPP (qqq) and, finally, the original null-space

basis retrieved AAA⊥
PPP

(qqq). Two transformations, pre- or post-
multiplication by a non-singular matrix MMM of appropriate
sizes, are considered

AAAPPP pre
= MMMpre · AAAPPP , AAAPPP post

= AAAPPP · MMMpost . (24)

Using Eq. 13, it can be verified that

AAA⊥
PPP = (AAAPPP pre

)⊥, AAA⊥
PPP = (AAAPPP post

)⊥(MMMpost )
T . (25)

Matrices MMM should be selected purposefully. Usually, they
are sparse ones and MMMpre allows to modify rows of AAA

while MMMpost its columns. In this paper particularly simple
transformations will be used: MMMpre to rotate two rows while
MMMpost to permute some columns or rotate two of them.

Now, two types of matrices AAAPPP will be distinguished.
Type 1: for PPP = ((0, 1), �, . . . , �), the first row of the

matrix AAAPPP is similar to the second row exemplified in Eq. 12
(possibly supplemented with some zeroes) and some other
rows present in Eq. 12 are missing. After permuting its
columns, matrix AAAPPP is transformed into the form

ÃAAPPP = [
ZZZ WWW

]
, (26)

where WWW is a square, non-singular (r × r) lower-triangular,
matrix with all non-zero and constant diagonal elements

valued either −1 or Bi . Indices of columns of AAAPPP

contributing to matrix WWW are collected in vector indindind

(#(indindind) = r) while all other (complementary) columns in
indindind (#(indindind) = n − #(indindind)). After writing down equations
corresponding to Eq. 26 and adding some, #indindind, identities
q̇qqindindind = III · q̇qqindindind

ZZZq̇qqindindind +WWWq̇qqindindind = 000 ⇒
[

III

−WWW−1ZZZ

]
q̇qqindindind = (ÃAA

⊥
PPP )T q̇qqindindind ,

(27)

ÃAA
⊥
PPP can be retrieved

ÃAA
⊥
PPP = det(WWW) · [

III −ZZZT (WWW−1)T
]

. (28)

In Eq. 28 pre-multiplying determinant-coefficient is used to
avoid denominators in expressions resulting from inverting
WWW . To get AAA⊥

PPP
some columns rearrangement, based on indindind ,

should be done.
Type 2: for PPP = ((1, �), �, . . . , �), re-arrangement of

columns, result in Â̂ÂAPPP in the form

Â̂ÂA =
[ (

s0 −c0
)

000 000
� � WWW

]
, (29)

and sub-blocks are matrices of appropriate sizes. All, but
one, facts formulated for Type 1 remain true for Type 2.
Only WWW is the ((r − 1) × (r − 1)) matrix and, consequently,
#indindind = r − 1. After post-multiplying Â̂ÂA by non-singular
matrix

ÃAAPPP = Â̂ÂAPPP ·
[

Rot2 000
000 IIIn−2

]
, where Rot2 =

(
s0 c0

−c0 s0

)

(30)

ÃAAPPP attains the form

ÃAAPPP =
[ (

1 0
)

000 000
� � WWW

]
. (31)

Then, the first column of ÃAAPPP is replaced with column
number n− r −1, and index 1 is added to indindind . Thus, Type 2
is transformed into Type 1 case. To get the final AAA⊥

PPP
, Eq. 25

is applied and, afterwards, re-arrangement of columns done.
An alternative approach to determine AAA⊥

PPP
(qqq) is possible

for a subclass of Type 2 models.
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Type 2a: for PPP = ((1, 1), �, . . . , �), the first two first
rows of AAAPPP[

s0 −c0 0 0 0 . . . 0
c0 s0 0 −1 0 . . . 0

]
(32)

are modified by pre-multiplying AAAPPP by the matrix Rot2
defined in Eq. (30), to get the form
[

1 0 0 −c0 0 . . . 0
0 1 0 −s0 0 . . . 0

]
. (33)

Then, steps developed for Type 1 models are applied.

5 Examples of Doubly Generalized N-trailer
Kinematic Models

Analytic formulas derived in previous sections will be
illustrated for selected doubly generalized N-trailer sys-
tems. In all examples the first generator has got the form
ggg1 = (0, 0, 1, 0, . . . , 0)T . The generator, responsible for
reorienting the tractor θ̇0 = u1, will be neglected later on.

The first example provides a kinematic model of PPP =
(1, 1)1+3 system with lateral and longitudinal constraints
active for the tractor and all trailers. In this case N = 3, r =

8, n = 10, m = 2 and qqq = (x0, y0, θ0, ψ0, . . . , θ3, ψ3)
T .

Denoting B = B1B2B3

ggg2 = [Bc0, Bs0, 0, B, B2B3s01, B1B2B3c01,

−B3(L1s01c12 − B1s02), B2B3(B1c02 + L1s01s12),

−L1s01(B2c13 − L2c12c23) − B1L2s02c23 + B1B2s03,

B3(B1B2c03+B1L2s02s23+ L1s01(B2s13 − L2c12s23))]T .
(34)

In the second example 2-trailer system with PPP =
((1, 0), (0, 1), (1, 1)) is considered. The crucial data follow:
r = 4, n = 7, m = 3, qqq = (x0, y0, θ0, θ1, ψ1, θ2, ψ2)

T .
Type 2 method is applied to get

[
ggg2

ggg3

]
=

[
B2c0 B2s0 0 0 B2c01 s02 B2c02

0 0 0 B2 0 −L1c12 B2L1s12

]T

.

(35)

In the third example 2-trailer system with PPP =
((0, 1), (1, 1), (1, 0)) is considered. For this model r = 4,
n = 7, m = 3 and qqq = (x0, y0, θ0, θ1, ψ1, θ2, ψ2)

T . Type 1
method is used to generate kinematics

[
ggg2

ggg3

]
=

[
B1B2 0 0 B1B2c0 −B2s1 B1B2c1 L1s1c12 − B1s2

0 B1B2 0 B1B2s0 B2c1 B1B2s1 −L1c1c12 + B1c2

]T

. (36)

In the fourth example a model is presented with longitudinal
constraints only as PPP = (0, 1)1+3. For this model r = 4,
n = 10, m = 6 and qqq as in Example 1. Type 1 method
generates the kinematics

⎡

⎢⎢⎢⎢⎣

ggg2

ggg3

ggg4

ggg5

ggg6

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1 0
1 0 0 c0 0 c1 0 c2 0 c3

0 1 0 s0 0 s1 0 s2 0 s3

0 0 0 0 1 0 0 L1s12 0 L1s13

0 0 0 0 0 0 1 0 0 L2s23

⎤

⎥⎥⎥⎥⎦

T

. (37)

It can be noticed that elements of the matrix in Eq. 37
have got much simpler form than in Eq. 34 and general
expressions for models PPP = (0, 1)1+N are easy to guess.

It is interesting to compare models with lateral con-
straints only, PPP = (1, 0)1+N with longitudinal constraints
only, PPP = (0, 1)1+N , from a Lie algebraic perspective. Both
share the same number of constraints r = 1+N while differ
in dimension of their configuration spaces. For the former
n = 3 + N while for the latter n = 3 + 2 N . Consequently,
cf. Eq. 14, m = 2 or m = 2 + N , respectively. (For mod-
els coded as PPP = (1, 1)1+N : n = 4 + 2 N , r = 2 (N + 1)

and m = 2.) For driftless nonholonomic systems (1), diffi-
culty of motion planning tasks can be qualitatively evaluated

by the maximal degree of a vector field required to satisfy
the Lie Algebra Rank Condition (LARC) [5], i.e. to guaran-
tee the small time locally controllability (STLC). Assuming
that each vector field derived recursively form generators gggi

by applying a Lie bracket [·, ·] is independent from its pre-
decessors, a maximal dimension of the configuration space
n of systems (1) can be determined that is steerable with
vector fields up to a given degree s (degree of a vector field
is defined as the number of generators used to generate it).
From Table 1, it can be deduced that a longitudinal con-

Table 1 The maximal dimension of n for systems (1) steerable with
vector fields up to degree s. The number of generators, m, is also varied

m s

2 3 4 5 6

2 3 5 8 14 23

3 6 14 32 80 196

4 10 30 90 294 964

5 15 55 205 829 3409
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Table 2 Data for the three
simplest models P = (1,0) P = (0,1) P = (1,1)

qqq (x, y, θ0)
T (x, y, θ0, ψ0)

T (x, y, θ0, ψ0)
T

n 3 4 4

r 1 1 2

m 2 3 2

ggg1 (0, 0, 1)T (0, 0, 1, 0)T (0, 0, 1, 0)T

ggg2 (cθ0 , sθ0 , 0)T (R cθ0 , R sθ0 , 0, 1)T (R cθ0 , R sθ0 , 0, 1)T

ggg3 – (sθ0 , −cθ0 , 0, 0)T –

LARC ggg1, ggg2, [ggg1,ggg2] ggg1, ggg2,ggg3, [ggg1,ggg3] ggg1, ggg2, [ggg1,ggg2], [ggg1, [ggg1,ggg2]]

straint at each axle not accompanied by lateral, theoretically,
simplifies a motion planning task as m increases in this case.
In practice, all necessary vector fields should be computed
as some of them may vanish or be dependent on previously
generated.

The last three examples concern with the simplest
possible models. Data for the models are collected in
Table 2. Computing a very few first Lie brackets (cf. last
row of Table 2), it can be checked that the systems are
nonholonomic and satisfy the LARC, so they are STLC.
The model (1, 1) is more complicated than two previous
ones as it requires the third degree vector field [ggg1, [ggg1,ggg2]]
to satisfy LARC while the (0, 1) model is particularly
interesting. The vector field ggg3 is perpendicular to ggg2

considered not only as the four dimensional vector but
also restricted to the (x, y) coordinates. It suggests that
u3 control is responsible for side-slippage. This fact can
be used either to model an omnidirectional wheel steered
freely with u2 and u3 controls or to model side-slippage
when u2 is free to choose while u3 is determined by
external circumstances (and updated appropriately based
on an identification procedure to model wheel-ground
interactions).

6 Conclusions

In this paper a procedure was presented to calculate
kinematic models for a class of doubly generalized N-
trailer systems. Classical generalized N-trailer systems have
been extended by adding also longitudinal constraints.
A classification of models was proposed based on a vector
parameterizing active constraints at each axle. A closed-
form formula was derived for a special item from this class
and a recursive for the others. Using the models, motion
planning strategies and control algorithms can be tested
especially that the number of controls and dimension of the
configuration space are easy to design.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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