
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-018-0815-7

Predicting Human Actions Taking into Account Object Affordances

Vibekananda Dutta1 · Teresa Zielinska1

Received: 18 November 2017 / Accepted: 14 March 2018
© The Author(s) 2018

Abstract
Anticipating human intentional actions is essential for many applications involving service robots and social robots.
Nowadays assisting robots must do reasoning beyond the present with predicting future actions. It is difficult due to its non-
Markovian property and the rich contextual information. This task requires the subtle details inherent in human movements
that may imply a future action. This paper presents a probabilistic method for action prediction in human-object interactions.
The key idea of our approach is the description of the so-called object affordance, the concept which allows us to deliver
a trajectory visualizing a possible future action. Extensive experiments were conducted to show the effectiveness of our
method in action prediction. For evaluation we applied a new RGB-D activity video dataset recorded by the Sez3D depth
sensors. The dataset contains several human activities composed out of different actions.

Keywords Intention recognition · Human-object relation · Object affordance · Action prediction · Feature extraction ·
Probability distribution

1 Introduction

In everyday life a human performs various actions. Being
able to detect and anticipate which action is going to
be performed in a complex environment is important for
assistive robots, social robots and healthcare assistants.
Such ability requires reasoning tools and methods.

With such capability [20], a robot is able to plan ahead
with reactive responses together with avoiding potential
accidents. When a partial observation is available, we
should be able to predict what is going to happen next (e.g.,
a person is about to open the door as shown in the Fig. 1).

Predictive models are also useful in detecting abnormal
actions in surveillance videos with alerting emergency
responders [38]. It is necessary that a reliable prediction is
done at the early stage of an action, e.g., when only 60% of
a whole action was observed.
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Recent research focuses on actions recognition prob-
lem [16, 24, 32]. Although few recent works addressed the
problem of ongoing activity recognition with partial infor-
mation avilable [31, 36], they do not answer how to perform
activity prediction. A reliable action prediction relies on
selecting and processing the crucial information, e.g., scene
context, object properties (affordance, object texture) and
relative human-object posture. The action prediction has
two features:

– anticipating human actions requires identifying the
subtle details inherent in human movements that would
lead to a future action,

– the action prediction problem must be carried out with
the focusing on temporal human interactions with the
environment (e.g., interaction with the objects or with
the other people).

In this work, we discuss the problem of action prediction
in natural scenarios using collection of examples of human
actions in the real world sampled by video records (WUT-
ZTMiR1 dataset, CAD-602 dataset). We investigate how the
user behaviors evolves dynamically in a short time. Our goal
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Fig. 1 Selected pictures illustrating the action prediction: a available observation, b the final action (post recording, this should be prognosed)

is to infer the action that a person is going to execute in the
nearest future.

This paper is an extension of [10]. Comparing to previous
material which was a short description, the method pre-
sented in this paper is an enhanced version with all relevant
details. Moreover an improved method for temporal seg-
mentation and feature extraction is introduced. The applied
probability functions are here justified and the so-called
limiting condition (Section 7) is summarized. Additionally,
besides of previously described online experiments, the test-
ing using offline data is discussed. We evaluated the action
prediction problem in both: real-time and offline settings
across the two datasets covering a wide range of actions.
The contribution of this paper is four-fold:

– an improved method for action prediction is proposed,
– the concept of object affordances and scene context for

human action prediction is formally described,
– a rapid training and testing method for action prediction

is summarized,
– the proposed method is tested together with its

efficiency evaluation.

The remaining part of the paper discusses this contribution
in details. In Section 2 we had reviewed the related
works. Section 3 describes the physical setup of the
experiment. Video pre-processing is discussed in Section 4.
The probability functions are summarized in Section 6. The
description of motion trajectories is presented in Section 6.
While Sections 7 and 8 present the implementation
method and experimental results. The paper is ended with
conclusions.

2 RelatedWorks

Action Recognition Human action recognition becomes an
extremely important research topic. Earlier research addressed
mostly recognizing simple human actions, such as running,
walking and standing in constrained settings [32]. However,
recent research has gradually moved towards understanding

complex actions in real-time records and in still images
collected in various conditions [21, 22, 44]. These data
typically involves occlusions, noisy background, changing
viewpoints, etc and requires significant efforts on action
recognition. Most of the action recognition approaches
based on the still images, treat the problem as a pure image
classification problem using i.e., mutual context model [43].
The mutual context model consider the bounding boxes
of objects and human body parts, which is difficult to
obtain especially with a large number of images. Another
works consider the human “skeleton” features collected
using the Kinect sensor together with object position.
Recent contributions rely on the scene modeling [17]
and human pose description [34]. The work presented
in [6] presents transition of a “skeleton” pose through a
Riemannian manifold. Riemannian manifolds have been
confirmed useful for dealing with features and models that
do not lie in Euclidean spaces. Those manifolds are used to
analyse the human action similarity graphs that are mapped
to a new space. A similar approach was adopted by Slama
et al. [35], who classified activities using a Linear Support
Vector Machines (LSVM) taking into account trajectory
of human position using a learned Grassmann manifolds,
which are special cases of Riemannian manifolds. The
work described in [28] utilizes a multivariable Gaussian
distribution to model the intermediate poses. The temporal
deviations of activities were considered. Papadopoulos et
al. [26] proposed a real-time “skeleton” tracking-based
method for human action recognition which uses as an
input a sequence of depth maps captured by a single
Kinect sensor. The approach applies a motion energy-based
concept, the spherical angles between the selected joints
are evaluated with their respective angular velocities, for
handling the execution differences among the individuals
for the same actions.

Action Prediction Recent research has attempted to expand
the concept of human action recognition to future actions.
Some recent contributions on predicting actions are aiming
at recognizing of the unfinished actions. The method
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described in [15] uses the so-called max-margins for
discriminating the action classes. Lan et al. [20] proposed a
hierarchical representation of future possible actions. Li and
Fu [23] explored the prediction problem for long duration
actions. However, their work concentrated on identifying
motion fragments by finding associated velocity peaks, it is
not applicable to the unconstrained set of movements. The
work presented in the article [39] describes how to consider
object affordances for predicting in a static scenario what
action will happen. An activity forecasting, which aims at
reasoning of a human preferred motion path for a given goal
has been explored in [14].

Other works capture human actions by representing
the possible motion trajectories taking into account the
detected point of interest [30, 40], the so-called key-frames
were used for this purpose in [29]. Most of the previous
contributions on action recognition methods were designed
for recognizing complete actions, assuming that the action in
each test will be fully executed. This makes these methods
not appropriate for predicting actions in partial trials.

We concentrate on a probabilistic approach to model
an action prediction (Fig. 2) taking into account object
affordances (the affordance will be explained later in the
text). We represent the types of human actions using
a dynamic representation of human-object relation. Our
method incorporates an action as a sequence of human
postures and relates it to the information about object
affordances, which is a new approach comparing to [20, 29,
40]. The proposed method allows also to predict long-term
activities and allows to visualize how a human is going to
perform an action, using trajectories prediction. Appropriate
training method together with affordance function reduces
the computational time comparing to the other methods [14,
18]. The experiments indicated that the proposed method is
promising and be advantageous comparing to the state-of-
the-art results.

Action Prediction Methods A general overview for action
prediction is summarized in Fig. 2. As it can be seen that
methods consist of 3 phases, namely: (a) preprocessing, (b)
feature extraction, and (c) model formulation. Preprocessing
is the term for low-level operations using videos. Generally,
the aim of preprocessing is to divide the input video into
multi-temporal segments, each segment represents an action
or a sub-activity. The feature extraction means the finding of
most compact and informative set of parameters (features)
which should be selected in such a way that they provide
sufficient information and assure the processing efficiency.
The next step is to model formulation which means building
a model representing an action and to recognize an activity.

The feature extraction methods are in general categorized
into three categories: (a) low-level features, (b) mid-level
features, and (c) high-level features.

Low-level methods (HoG) [5] focuses on a static
appearance and shape within an image frame that can be
described by the distribution of intensity gradients or edge
directions. To this group belong also the methods in which
the motion trajectories are obtained by tracking densely
sampled points using dense optical flow fields [41].

The mid-level category considers mainly the semantic
meaning of a scene and usually is build using low-level
features. In actionlet [23] method belonging to this cat-
egory, the first step is to temporally divide the activity
into actions (reaching, drinking). These segments are called
actionlet which represents the atomic actions. Poselet [2]
feature extraction method describes a particular part of a
human pose under specific viewpoint. Poslets are not nec-
essarily semantic. Onset [31] feature extraction approach
captures activity information from the sequence of actions
which are components of an activity. The onset concept
summarizes pre-activity observation in addition to ongoing
observation.

High-level feature concept [12] uses input videos for
extracting together with spatial and temporal features.

The created models can be of three types: (a) dis-
criminative model, (b) generative model, (c) deep network
respectively. Discriminative model generally use condi-
tional probability distribution. A Support Vector Machine
(SVM) is the most propular approach used for data classi-
fication [42]. Conditional random field (CRF) models are
used for describing the predictions [18].

The generative model concentrate also on modeling
conditional probability distribution but they require more
detailed descriptions parameterized by time. The most
common tool used for action recognition and action
prediction is Hidden Markov Model (HMM) [3, 27].

Example of deep network models are the models using
“memory” [25] created in the form of recurrent neural
network. Such models are able to capture the useful
information using previous observation and holding the
long-range context. In [38] a regression network was used
to anticipate human actions. Such networks was trained to
predict the visual representation in the future.

3 Physical Setup

The setup for the data recording consists of two fixed
viewpoint cameras placed on tripods with adjustable height
1.5 - 1.7m. Applied by us Senz3D [4] RGB-D cameras
consist of an RGB and of a depth sensor. We used
down-sampled images (640 × 480 pixels) since real-
time decoding and display of multiple streams of a high-
resolution video is a bottleneck problem. The recording rate
was 60 frames per second. The camera system has the ability
to register the 3D locations such as a human pose and object
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Fig. 2 General framework for
human action prediction

position etc. During the experiments, the orientation of the
cameras is fixed. Two cameras are delivering one planar
picture in which (after proper preprocessing) the x, y, z

coordinates of the points of interest are provided.
We used several objects on which the manipulations were

performed. The cameras range for human observation is 1
- 3m, as it is shown in the Fig. 3b. The experiments were

recorded both - in a day and - in an evening time, thus the
lighting conditions had varied from daylight to an artificial
one, with involving both plain and textured background.

Customized programming tools were developed for
data extraction from the raw images. The software was
developed using the C++ language and robot operating
system (ROS). We applied a single coordinate system
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Fig. 3 Camera settings for video recording: a top view, b side view

with the origin placed in the mid point between the two
cameras (see Fig. 3a). The transformation of the positions
registered by each of the cameras was done respectively
[13].

3.1 Basic Assumptions

A human activity is a something that a person is doing or is
going to do, activity is a state of doing. We assume that an
activity consists of a sequence of elementary actions. The
aim of our work is to predict the actions that can help next
in anticipating the human performance in the fragments of
the whole activity what finally, after more research, can end
with a whole activity prediction.

The first stage of our work consists of data collection, next
the data are preprocessed and used for establishing the prob-
abilistic models describing the possible motion trajectories.
Finally, those models are used for actions prediction. On the
end, we had done the set of tests evaluating the correctness
of predictions.

3.2 Recording

We first recorded activities performed by 4 different
persons: 3 males and 1 female respectively. Let us denote by
A an activity. For each activity we had done M recording.
Let’s FA

m denotes m-th record of an A-th activity (in our
case M = max(m) ≥ 50). Each record FA

m consists of
f frames, where f can vary from case to case. The m-th
record of A-th activity consisting of f frames is denoted by
FA

m (f ). In our work, we considered temporal segmentations
by partitioning the activity into group of actions.

It means that FA
m (f ) is divided into smaller parts by the

human expert (see Fig. 4). Each part represents an action
(actions are the parts of activity). Therefore, the a-th part of
FA

m (f ) is denoted by FA
m (f )a , where max(a) ≥ 1.

The segmentation is made having in mind that the final
goal is to predict an action. The segmentation must be made
in such way that the groups of frames in each segment
are representing atomic movements of the human and/or
of an object subjected to an action. It must be noted that
a mistake in segmentation affects following-up prediction
procedure and all the predictions can perform poorly. We
carefully followed the segmentation approach described in
[15].

4 Video Preprocessing

4.1 Temporal Segmentation

The part representing ai-th action is again divided into
segments. It not requires the expertise and the division
method is fair enough. Such segmentation is needed for
creating the probability functions. As an action can start
when the human hand is in different distance towards the
object of interest and can be made with different speed for
gathering the relevant data is needed to selected and analyse
some fixed amount of video segments covering the period
till end of an action.

Let us consider a complete ak action segment containing
fk frames. We divide into K uniform segments (in this
work K is fixed to 10). In general, each segment contains
fk

K
frames. For different video lengths, fk will vary. In

certain cases, it requires an appropriate unification. For
example, if an action video ak is containing 233 frames, it
is not possible to segment them uniformly into K segments.
In such cases, we do additional pre-processing. Let us
take an example, if [fk − int (

fk

K
) · K] = 0, the frames

are uniformly segmented into K segments, otherwise, we
select the first image frame f (1)k from the action ak and
multiply it [(fk − int (

fk

K
) · K)] times (see Fig. 5). With

such modification is possible to make the further automatic
processing.
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Fig. 4 Graphical illustration of
an activity segmentation into
actions. A human expert
produced the groups of action
(ai - i-th action)

4.2 Features Extraction

We can recognize human action by looking at his/her
current pose and interaction with the object/objects over
a time, this is captured by a set of the so-called features.
Features are quantities which are relevant for establishing
the probabilistic models of actions. Finding a good feature
extraction is very target oriented. Used by us features are
rather simple.

In this work, we extracted three important features: (a)
hand and torso position H , (b) object position O, (c) spatio-
temporal features which are in our case – the distance d and
angle θ as it is shown in Fig. 3a.

Hand Position The feature H describing the hand wrist
joint (for both hands) position and torso position is obtained
using the library Skeltrack API3 which automatically
delivers the positions in the camera fame (next the simple
transformation converts it to the global reference frame).
The information about the hand is very important. In
particular, we want to capture information such as “hand
is near to the object” or “hand is near the mouth”. To do
this, we evaluated the distance of the hand to the object and
to the camera respectively. In general, the Skeltrack library
provides the tool for the stick diagram visualization of the
human body is described by the length of the links and the
joints (Fig. 6). More specifically, in this work, the tracking
algorithm detects the position of the following set of points
in the 3D space, denoted by J = {Torso (T), Left Wrist (LW),
Right Wrist (RW)}. The features are the (x, y, z) coordinates
of each above point. Therefore the features matrix H is
defined by,

H =
⎡
⎢⎣

xT , xRW , xLW

yT , yRW , yLW

zT , zRW , zLW

⎤
⎥⎦ , (1)

where x, y are the positions of the points as they are seen
in video frame. These positions, expressed first in terms of
pixel coordinates, are converted to the metric coordinates in
the global reference frame. The z coordinate comes from the

3https://people.igalia.com/jrocha/skeltrack/doc/latest/

cameras distance sensors and is expressed in the same units
as the first two coordinates (see Fig. 3).

Object Features O represents an vector containing the x, y,
z coordinate of the object center. For full description we use
object identificator and position information (identificator
can be represented by QR code of an object). In our work,
we did both: the object detection, and tracking respectively
(Fig. 7).

We consider two types of objects: (a) larger objects
(i.e. door, table, box, whiteboard, etc.), (b) smaller objects
(e.g. marker, bottle, cup, etc.). Larger objects are labelled
by QR codes which can be properly recognized from
different points of view using label-based object detection
method [8].

For the smaller objects we use the “Lucas-Kanade”
descriptor (KLD) field test4 which in simplicity means the
search of an object which picture is stored in the data base.
Moreover we evaluate the distance passed by the objects
when they are manipulated by the human being.

Spatio Temporal Features The spatio-temporal features,
namely the distance d and angle θ (Fig. 3a) describe the
relation between human hands and the objects feature.

We evaluate the distance d from some moment of time
till the end of an action (in our case we consider the frame
which marks 40% of frames from the end of the action
segment). For each action, we collect such data repeating
the recordingM times. For each record we store the distance
between the hand wrist position in the mentioned above
moment of time and the object of interest (object to be
manipulated). The collected data are used for evaluating the
mean value μd , μθ and variance σ 2

d , σ 2
θ which are applied

later as the probability function parameters. Those functions
are used for concluding about the destination of performed
motion.

For each objects which can be manipulated (each
action) in the human vicinity the video recordings are
made as it was described above and the values of μd ,
μθ , σ 2

d , σ 2
θ are gathered for each of those objects. Next

43D tracking with descriptor fields https://cvlab.epfl.ch/page-107683-
en.html
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Fig. 5 Example of a temporal
segmentataion of an action

for each object the probability function representing the
chance of being manipulated is produced. The function
consists of two terms – the term which is the so called
distance preference (DP) and the term which is the angular
preference (AP). The distance preference probability
P(DPi) (for action ai) represented by the normal Gaussian
distribution and the angular preference probability P(APi)

is described by modified Wrapped Normal distribution. The
justification of such functions selection will be discussed in
Section 5.

For simplicity we can say that during the human hand
motion as the most possible object to be manipulated (this
is associated with the action) will be indicated such object
to which the current distance (and the angle) is closest to
μd (μθ ). More precisely, applied probability functions will
be delivering the probability of reaching each of the objects
of interest providing for each of them probability created
on the basis of current value of d, θ and the set of μd ,
μθ , σ 2

d , σ 2
θ . This is an action selection. Such action ak is

selected among all possible actions ai (i = 1, 2, ...., N),
therefore:

P(ak) = max
i=1,...,N

P (ai) = max
i=1,...,N

(P (DPi) · P(APi)) (2)

5 Probability Functions

The probability of an action is naturally related to the
object of interest and the “ easiness” of reaching/mani-
pulating it. Therefore we call it the object affordance. The
object affordance in our case results from the angular and
distance preferences which are expressed as a product of
two probability functions justified by experiments.

Distance Preference The distance preference is described
by normal Gaussian distribution parameterized by mean μd

and variance σd
2.

P(DP) = 1√
2πσd

2
exp

− 1
2

(
d−μd

σd
2

)

. (3)

The standard statistical test was applied to check whether
the data are consistent with the selected distribution. A
common test in such case is a Shapiro Wilk normality test,
it has good performance for the smaller amount of samples
as it was in our case.

The normal distribution plot given in Fig. 8 proofs that
the distance features are following a normal distribution.
Figure 8 also visualizes the probability distribution when

Fig. 6 Pictorial representation
of human pose. The left image
illustartes the RGB image
(ground truth) with “skeleton”
detected and the right image
shows the extracted sketch
diagram representing the human
body
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Fig. 7 Object detection results.
The left figure shows the
marker-based object detection
for larger object and recognized
object label which was defined
for the object by the human
expert. The picture on the right
illustrates that the object of
interest (a cup) was successfully
detected

reaching an object (it is an alternative to P(DP) expressed
by an Eq. 3).

Angular Preference Angular positions of the human
towards an object is very relevant in certain actions. For
example, reaching action covers a wider range of angles
than the drinking action. It is a “circular” statistics [33],
where the data are expressed in an angular scale, typ-
ically around the circle. Here we applied the Wrapped
Normal (WN) distribution introduced in the article [19].
The WN distribution is one that it is expressing the prob-
ability density function of a linear random variable to the
circumference of a (unit) circle. It can be added that the von-
Mises and the WN distribution are very similar. They both
are the circular analogs of the normal distribution. How-
ever, the Wrapped Normal Distribution is more convenient
for reasoning and is well explored in various activity recog-

nition approaches [1, 7, 11]. Therefore, in our work, the
probability function of angular preference is expressed as,

P(AP ) = 1

2π

⎛
⎝1 + 2

J∑
j=1

(
exp− σθ

2

2

)j2

cos(j (θ − μθ))

⎞
⎠ .

(4)

At the very beginning, we considered von-Mises distribu-
tion to capture the angular data [9]. However, due to its poor
performance for larger values of σ , our choice moved to
such distribution that possesses the normality feature for the
larger values of σ . In such case, the modified version of the
WN distribution, which is expressed in terms of Jacobi theta
function is an appropriate choice.

The corresponding angular probability distribution func-
tion integrates to the unit in [0, 2π]. The justification of

Fig. 8 From left to right: 2D Gaussian distribution (both side view
and top view) for reaching an object, x and y represents the coordinate
of the points (as described in the text) marking the hand position (the

figure is taken from [10]). On the right the figure shows the histogram
plot of the data justifying the normal distribution
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the angular preference probability function was made using
goodness-of-fit tests based on Watson’s U2 [37] statistic.
A goodness-of-fit test enables to determine whether or not
more complex models need to be considered. The advan-
tage of Watson’s U2 statistic is that it is location invariant
and thus does not depend on how the starting direction
is assigned to the circle. A circular plot (Fig. 9) of the
chosen statistical test for different values of the parameter
σ shows that the data successfully follow the considered
normal distribution (i.e. U2 < U2

critical).

6Motion Trajectories

Prediction An object can be approached by various types
of motion trajectories depending on the action that is going
to be performed [10]. Once a location is estimated basis on
probability function given in Eq. 2, we generate a nominal
future trajectory form the current location (i.e., depends on
the situation, can be hand, object and a considered joint) to
the predicted target location.

A nominal future trajectory of the human hand is
produced using the parameterized cubic equation of Bezier
curve (see Fig. 10). The advantage of this equation is that it
will not generate a fragment that lies outside the outline of
the so-called the control points (commonly called the “hull”
for the curve). In fact, we can control how the relevant points

Fig. 10 Graphical representation of cubic Bezier curve

contribute to the value generated by the function, so we can
influence how the points are important to the curve. The
Bezier curve is a polynomial of p, with p Bezier interval
being in the range < 0, 1 > :

t = (1− p)3t0 + 3(1− p)2pt1 + 3(1− p)p2t2 + p3t3, (5)

where ti = {xi, yi, zi} and i = 0, 1, 2, 3. Such a cubic Bezier
curve is parameterized by a set of four points: the start and

Fig. 9 Circular plot of proposed
angular distribution for recahing
an object. The figure is best
viewed in color
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Fig. 11 Example images of pouring, placing, reaching actions from WUT-ZTMiR dataset

end point of the trajectory (t0 and t3), and two control points
(t1 and t2) which define the shape of the curve. In our case,
t0 is the current position of the hand. The point t3 is the
end point of the action indicated by the probability function.
The control points t1 and t2 are produced using the training
data. Point t1 and t2 are the points taken from the previously
recorded trajectory which has its beginning closet to the t0.

Heat Map Around Trajectory We defined a potential func-
tion that allowed us to visualize the possible motion area.
The heat-map visualization was implemented using expo-
nential Gaussian kernel function. The map visualizes the
active region around the trajectories and the target location,
when the corresponding affordance is active. We imple-
mented the heat-map visualization model in a software
module using exponential Gaussian kernel function f (hm).

f (hm) = exp
−

( ||dT −μdT
||

2σ2

)

, (6)

dT represents the point in question (e.g., the current position
of a human hand) and μdT

is the point of the anticipated
trajectory or the target location. Parameter σ denotes the
radius of Gaussian kernel (the value is adjustable in this

work). With the above estimate by Gaussian kernel, we
can visually represent the expected regions with marking
the greater heat by “warmer” colors. Accordingly, the “red
color” denotes the maximum likelihood region.

7 Implementation

During implementation, the collected sets of d and θ were
grouped with respect to the objects of interest. When
the person starts the motion and in the environment are
several objects of interest (objects which can be used when
performing the activity) it is not clear to which object the
person will focus. To make the reasoning process simpler
we introduced a limiting condition f (R) for selecting which
set of objects (that means also which sets of actions) should
be considered. The condition is as follows:

f (R) =
⎧⎨
⎩

d ≤ T
ot
near near,

T
ot

f ar > d > T
ot
near medium,

d ≥ T
ot

f ar far.
(7)

Where T
ot
near and T

ot

f ar represent near and far distance limits
to the object. Using this condition only the objects which

Fig. 12 Example images of drinking, placing, reaching actions from CAD-60 dataset
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are relatively nearer to human hand are considered. For
example, in real-time experiments, the following objects of
interest were identified (a) a glass, (b) a bottle, and (c) the
door. The distance between human torso and the door is
relatively smaller than the distance between human torso
and the glass, or the bottle. In our software, system we
also defined the associations between the objects and the
actions type which can be performed on them [15, 18]. For
example, if a hand is near to the glass, the possible action
will be grasping. But if we consider the same situation and
the object is a computer monitor, the possible action would

be turning on/off instead of grasping. It does not requires
any sophisticated algorithms.

8 Testing

In this section, we describe the evaluation of the presented
method for both: (a) offline data and (b) real-time settings. We
first give thedetailsof thedataset inSection 8.1.We then present
the experimental results in Section 8.2, and the performance
analysis of the proposed approach is discussed in Section 8.3.

Fig. 13 Action prediction accuracy results. The comparisons of the proposed method against other methods on both WUT and CAD datasets (the
figures are taken from [10]). The figure is best viewed in color
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Fig. 14 Error matrices of action prediction on the test video records of both WUT and CAD dataset. Figure 14a shows the confusion matrix of
prediction accuracy for WUT dataset. The confusion matrix of prediction accuracy for CAD test dataset is shown in Fig. 14b

8.1 Datasets

We tested the proposed method using two datasets: the
WUT-ZTMiR dataset (WUT) set 1 (WUT # 1) and set 2
(WUT # 2), the publicly available CAD-60 dataset set 1
(CAD # 1) and set 2 (CAD # 2).

We created a publicly available dataset (named as
WUT-ZTMiR) of human activities recorded in the office

environment under RGB-D settings, i.e. color plus depth as
shown in Fig. 11. The following activities are the part of the
dataset: drinking water, opening a door, object placing, etc..

The Cornell Activity Dataset (CAD-60) is composed of
12 different activities (see Fig. 12), performed in 5 different
environments: (a) office, (b) kitchen, (c) bedroom, (d)
bathroom, and (e) living room. The activities are performed
by 4 people: 2 males and 2 females. The dataset is a

Table 1 Confirming the correctness of trajectory prediction on WUT and CAD dataset, showing average precision, reall and F-score for the
actions

Action Number of users Number of objects WUT-ZTMiR dataset CAD-60 dataset

Pr Re Fc Pr Re Fc

Reaching 1 2 0.63 0.68 0.65 0.618 0.63 0.642

passing 1 1 0.65 0.43 0.52 – – –

Reaching 1 1 0.71±0.08 0.53±0.31 0.57±0.24 0.69 0.59±0.48 0.59

Approaching 1 2 0.76±0.28 0.79 0.77 – – –

Pouring 1 2 0.56 0.83 0.67 0.58 0.79 0.79

Drinking 1 2 0.68±0.01 0.80±0.07 0.77±0.02 0.76 0.85±0.18 0.81±0.42

Placing 1 1 0.66±0.28 0.59±0.7 0.52±0.02 0.67 0.62±0.7 0.65

Opening 1 1 – – – 0.56 0.59±0.7 0.53±0.09

Closing 1 1 – – – 0.42±0.28 0.49±0.7 0.46±0.02

Approaching 1 1 0.69±0.28 0.74±0.7 0.70 – – –

Bold font indicates the best results
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Table 2 Early and late predicted actions in both WUT and CAD
dataset

Early prediction Lately prediction

Reaching Pouring

Approaching Opening

Drinking Closing

Placing –

Actions are sorted according to the testing video records fallen in the
category of EP and LP

collection of RGB images, depth images, and skeleton data
with 15 joints. The activities are: rinsing mouth, brushing
teeth, wearing contact lens, talking on the phone, drinking
water, etc..

8.2 Experimental Results

We conducted an experimental evaluation comparing our
method to other methods using: (a) the so-called “chance
model” which randomly selects the time moments and
makes the prediction for that time, we use its published code
and followed the settings given in [17], (b) the method using
Hidden Markov Model (HMM) in which the hidden state
sequences corresponding to the observation is considered,
(c) Linear Support Vector Machine (LSVM) method where
the transitions between the actions are focused [42]. All
methods requires the ground truth progress to be known in
the testing phase.

We were following the settings given in [42] and tuning
parameters according to our needs. We actually achieved
comparable performance to those reported in [17, 42].
The proposed method was evaluated using testing video
records. The observation ratio is defined as the proportion
between the frames considered as observed towards the
total amount of frames. Figure 13 gives the comparison of

our method with the other baseline using the two datasets
described in Eq. 8.1. We applied a test video with different
combinations of action. The accuracy (prediction rate) is
defined by Eq. 8 and the results are shown in Fig. 13.

ac = Number of correctly predicted actions

Number of total actions
. (8)

In order to evaluate the interpretable aspect of our method,
we demonstrated its ability with using error matrix, also
known as a confusion matrix (see Fig. 14). Note that in
Fig. 14b a diagonal indicates few errors, such as closing
sometimes was predicted as an opening, the reason is that
both movements range is small. Moreover the placing action
was predicted as a pouring due to the problem with light
sensitive object recognition.

In the experiments, we found that the proposed method
is generally capable of improving the high-level detection
using joint reasoning. For example, a “closing microwave”
video has an input action prediction accuracy of 48.9%.
After joint reasoning, the output action prediction accuracy
raised to 64.0%.

8.3 Performance Analysis

The evaluation of the proposed method was made using
binary scores tpi

, tni
, fpi

, fni
∈ [0,1].

– tpi
= 1 if the condition (c1) is true,

– tni
= 1 if the condition (c2) is true,

– fpi
= 1 if the condition (c3) is true,

– fni
= 1 if the condition (c4) is true.

– tpi
, tni

, fpi
, fni

= 0, otherwise.

c1 is true - when the system successfully identified an
action that match a real situation (ground truth), c2 is true
- when the system rejected an action but in reality there it
is the actual action, i.e. ground truth. c3 is true - the system
identified an action which does not match the real scenario,

Fig. 15 Qualitative results of action prediction on CAD-60 dataset.The figures show the predicted right hand trajectories with heat maps. The
following actions are: a reaching, b pouring, and c closing. The figure is best viewed in color
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Fig. 16 Experimental results. The figures show the visualization of predicting the actions in the real-time scenario. The following actions are: a
reaching, b pouring, and c drinking. Figure 16b and c are taken from [10]. The figure is best viewed in color

and c4 is true - when the system successfully rejected an
action which matches the real situation.

In Eq. 9, the global scores tp, tn, fp, and fn are evaluated
as follows.

tp = ∑
i

tpi
, tn = ∑

i

tni
,

fp = ∑
i

fpi
, fn = ∑

i

fni
.

(9)

Where tp, tn, fp, and fn are known as true positive, true
negative, false positive and false negative respectively. The
above binary scores were used to evaluated the recognition
accuracy of an unfinished action and its limitations.
Following [10], the precision (Pr) = tp

tp+fp
, recall (Re) =

tp
tp+fn

, and F-score (Fc) = 2 Pr·Re
P r+Re

were calculated, results
are summarized in Table 1.

We analyzed the prediction of all the selected actions in
CAD-60 and WUT-ZTMiR dataset and observed at what
stage an action was predicted. In general, we defined two
categories of action prediction according to the prediction
stage: early prediction (EP) and lately prediction (LP). Early
prediction means that the action was predicted if no more

than 30% of the video was observed. However, the LP
means that an action was predicted if more than 30% but
less than 60% of the video was observed. Results are shown
in Table 2.

Basis on the results is can be concluded that the proposed
method performs well with partial observation (up to 60%),
and is capable to make the real-time prediction with our
equipment. It was collected 60 frames per second using 3.7
GHz Intel core 7 computer with 16 GB of RAM, with 64-
bit Linux operating system. The average prediction time
vary from 0.18s to 0.32s, what is acceptable for real-time
applications.

Figures 16 and 15 show the visual output of the human
action prediction for both: offline and online datasets. The
blue circle indicates the moving hand and yellow circle
indicates that the hand is stationary. The red curve with
green and yellow outline along around black trajectory
describes the possible future action. Figure 17 shows the
predicted trajectories in 3D space (blue color) with respect
to the ground truth trajectories (black color) of a particular
action as well as the training sample trajectories defined by
violet color.

Fig. 17 The 3D graphs of both ground truth and predicted trajectories of an action while performing a task. The actions are following: a reaching,
b pouring, and c drinking. The figure is best viewed in color
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Fig. 18 Block diagram of the proposed method

9 Conclusions

In this paper, we presented the problem of human action
prediction. The scheme illustrating the main components
of the method is given in Fig. 18. The object affordance
concept for predicting future actions was applied. The
most possible motion trajectory was used as the “kernel”
for producing the heat-maps representation of expected
trajectory disparity area. The method was tested using
on both: offline and online data. Obtained results were
quantified and the method was validated as satisfactory. For
selecting the possible actions we considered the probability
functions which is based on the normal distributions.
The choice of such function was justified, however, it
would be interesting in the future to investigate the other
possible distributions. We also showed that it is important to
model the different properties (object affordances, temporal
interactions, appropriate segmentation, etc.) in order to
achieve good performance. In future, our intention is to
study a wider range of actions with different environments
and to expand the prediction process from the selecting one
action among several alternatives to the chain prediction of
actions aiming an activity.
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