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Abstract This paper addresses the motion planning
problem of nonholonomic robotic systems. The sys-
tem’s kinematics are described by a driftless control
system with output. It is assumed that the control func-
tions are represented in a parametric form, as truncated
orthogonal series. A new motion planning algorithm
is proposed based on the solution of a Lagrange-type
optimisation problem stated in the linear approxima-
tion of the parametrised system. Performance of the
algorithm is illustrated by numeric computations for a
motion planning problem of the rolling ball.

Keywords Jacobian algorithm - Motion planning -
Nonholonomic system - Parametrisation

1 Introduction

The motion planning problem of robotic systems can
be regarded as a sort of an inverse kinematics prob-
lem, and solved by application of the continuation
method prototyped in the work of Wazewski [1]. Such
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an approach gives rise to various Jacobian motion
planning algorithms. In the context of robotics the
continuation method was introduced by Sussmann [2],
and then widely used in motion planning of robotic
systems, such as mobile robots [3, 4], mobile manip-
ulators [5], rolling bodies [6], as well as developed
theoretically [7, 8]. This paper concentrates exclu-
sively on nonholonomic systems subject to Pfaffian
phase constraints, whose kinematics are represented
by a driftless control system with output. In such
cases the motion planning problem consists of invert-
ing the end point map of the control system. A system
Jacobian is introduced by means of the linear approx-
imation to the original system [9]. A Jacobian inverse
can then be derived by solving a constrained optimi-
sation problem in the linearised system. Commonly,
for the constrained optimisation problem a minimisa-
tion of the control squared norm (equating its energy)
is employed. In this way the Jacobian pseudoinverse is
obtained. As a natural generalization, in [10] we have
designed a Lagrangian Jacobian inverse, based on the
minimisation of the Lagrangian objective function,
which takes into consideration both the control and
the trajectory of the the linearised system. This new
inverse leads to the Lagrangian Jacobian motion plan-
ning algorithm. It has been noticed that by a proper
choice of the Lagrangian objective function this algo-
rithm, beyond solving the primary motion planning
problem, also allows to shape the system’s perfor-
mance. Some of those features were presented in a
preliminary way in [11] and then proven in [12].
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Jacobian motion planning algorithms can be run in
either parametric or non-parametric formulation [13].
For practical and computational reasons the paramet-
ric formulation is beneficial, based on transferring the
Lagrangian Jacobian motion planning algorithm from
the infinite dimensional space of control functions
to a finite dimensional space of control parameters.
This is obtained by introducing a parametrisation of
control functions by truncated orthogonal series, e.g.
Fourier, Legendre, Chebyshev, Laguerre, etc. [14].
In this paper, assuming the continuation method, the
parametric form of the Lagrangian Jacobian inverse is
introduced, referred to as the parametric Lagrangian
Jacobian inverse. The parametric inverse is derived
by means of the methods of the calculus of varia-
tions. Along the new inverse a respective Jacobian
motion planning algorithm is proposed, called para-
metric Lagrangian Jacobian. Performance features of
this algorithm are examined, focusing on its capabil-
ities to shape the system’s trajectories. Three specific
cases are distinguished in this context: keeping the
trajectory or control close to the initial one, bound-
ing the length of the resulting trajectory, and obstacle
avoidance. These features of performance have been
demonstrated by numeric solutions of a number of
motion planning problems for the kinematics of the
rolling ball.

The main contribution of this paper lies in the
derivation of the parametric Lagrangian Jacobian
inverse and of the respective motion planning algo-
rithm. Additionally, with regard to the provided algo-
rithm, a proof of bounding the length of resulting
trajectory is presented. Performance of the Lagrangian
motion planning algorithm is illustrated with motion
planning problems of the rolling ball in the plane.
Admittedly, the primary motion planning problem for
this specific example could have been solved by a
sort of the inverse dynamics approach, however, our
intention has been to demonstrate the trajectory shap-
ing capabilities of the Lagrangian motion planing. By
design, the Lagrangian algorithm applies far beyond
the scope of the inverse dynamics approach. As has
been said, the driving force behind this paper is the
calculus of variations. Alternatively, a non-classical
formulation of the Pontryagin maximum principle
could be employed [15].

The remaining part of this paper is composed in
the following way. Section 2 presents the basic con-
cepts. The parametrisation of control functions is
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presented in Section 3. Section 4 contains the main
result of this paper, i.e. the parametric Lagrangian
Jacobian inverse. Performance features and the dis-
crete version of the corresponding motion planning
algorithm are described in Section 5. A performance
study of the parametric Lagrangian Jacobian motion
planning algorithm is included in Section 6. Section 7
concludes the paper. Proofs of the main results are
exposed in Appendix.

2 Basic Concepts

The kinematics of a nonholonomic robotic system can
be represented as a driftless control system with output

{ G =G@u=7 i Gi(qQu,,
y =k(gq),

where ¢ = (q1, 92, - .., q,,)T € R” is the state vari-
able, u = (uy,u2,...,un)l € R” represents the
control and y = (y1, y2, ...,y,)T € R’ stands for
the output variable. The functions and vector fields
appearing in Eq. 1 are assumed smooth. Let 7 > 0
denote a control time horizon. The admissible con-
trol functions u(-) belong to the space L,ZH[O, T] of
Lebesgue square integrable functions defined on the
interval [0, T'], with inner product

(D

T
(ul(-),u2(~))s=/(; ul (1)S(tua(t) dt. )

The matrix S(t) = ST () > 0 imposes certain weights
on components of the control.

Let g(t) = ¢g4,,:(u(-)) denote the state trajectory of
Eq. 1 starting from ¢¢ and driven by a control function
u(+). This control function will be called admissible if
q(t) exists for every t € [0, T] and every qop € R".
In the control system (1) the motion planning problem
can be formulated as follows: given an initial state gq
and a time horizon 7', find a control u(t) steering the
system’s output to a desired point y, in the task space,
so that y(T) = yg.

The end-point map of system (1), defined as the
value of its output function at 7' driven by the control
u(-), takes the form of

Kgo,7 () = k(g(T)) = k(pgy, 1 (u(-))). 3)

For bounded measurable control functions u(-) e U C
L,zn[O, T] the end-point map K : &/ — R’ is contin-
uously differentiable (of class Ch, [9]. Its derivative
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can be computed by means of the linear approximation
to system (1) along (u(¢), q(t)),

{é(t)ZA(t)S(t)vLB(t)v(t), @)
n() = C)§(1),
where &(t) = Doy, (u(-))v(-) and
(G
A@) = W, B(1) = G(q(1)),
e = X1, s)
q

The derivative of system’s end-point map with respect
to control will be referred to as the system’s Jacobian

Jago. 7 () v() = DKy, 7 (u(-))v()
= C(ME(T)=n(T).
Solving Eq. 4 for §(0) = 0 yields

T
E(T) = / O (T, DB di, ©)
0

where the transition matrix ® (7, w) satisfies the fol-

lowing equation

oD (t, w)
ot

Therefore, the Jacobian can be expressed as

= ADOO(t, w), Ow,w)=1I,. ()

T
Jgo.r (v () = C(T)/0 (T, n)B()v(r)dr.  (8)

For a nonholonomic system with kinematics described
by Eq. 1, the motion planning problem can be
expressed in terms of finding a control function
ug(-) € U such that

Ko, 7(q(-)) = ya. 9

This motion planning problem can be solved using
the continuation method which leads to a Jacobian
motion planning algorithm. The algorithm arises as
follows: consider an arbitrary chosen control function
uo(-) € U. If this function solves the problem, we are
done. Otherwise, a deformation of uq(-) is made into a
smooth curve ug(-) € U, 0 € R, up—o(-) = ugp(-). The
motion planning error along this curve amounts to

e(0) = Kgo,7(ug()) — ya (10)
and is requested to decrease exponentially
de(8

e ye®).  y>0 an

By differentiation of the error we get an implicit
differential equation

Qol) _ Ky r(uo() = ya), (12)
a0 Y (Kqy,1(Up yd),

which can be made explicit by application of any right
inverse of the Jacobian, Jjo +@(-)) : R" — U, so that

d .
L;@@() — _VJ;),T(MQ('))(KQO,T(ue(‘)) _ yd)' (13)

By computing the control function as the limit

Jgo.1 (g ("))

ug(t) = QETOOMQ(I)’ (14)

a solution to the motion planning problem is obtained.

The Eq. 13 defines any Jacobian motion planning
algorithm for the system (1). A commonly used right
inverse of the Jacobian is obtained by minimisation of
the control energy,

T
min/ vl (1)v(@) dt, (15)
v() Jo

on condition that J,, 7 (u(-)v(-) = C(T)&(T) = n,
which results in the Jacobian pseudoinverse [5]

(it @) 0= BTO®T(T, DCT(T) G, (wn.
(16)

Hereabove G, r(u(-)) is the output controllability
Gramian of the system (4) that can be computed as

gqo,T(u(')) =

T
C(T)/ O (T, t)B@)BL(1)®V(T,1) d:CI(T). (17)
0

In the context of mobile robotics the Gramian is iden-
tified with the mobility matrix. It is easily seen that
the mobility matrix can be computed by solving for
M (0) = 0 the Lyapunov differential equation

M(t) = B(t)BT (1) + A()M(t) + M()AT (r), (18)

and then setting Gy, 7(u(-)) = C(T)M(T)CT(T).
In order for the Jacobian pseudoinverse to exist the
Gramian must be of full rank 7. In such cases the
control function u(-) is called regular, otherwise it is
singular.

3 Parametrisation

Generally, in order to improve the efficiency of the
computations, a finite-dimensional representation of
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control functions by the truncated orthogonal series
can be employed. Such an approach is referred
to as parametric. Consider a row matrix Pp(f) =
[¢o(?), #1(2), ..., ¢p(¢)] whose entries are some basic
functions defined on the interval [0, T']. The control
function of system (1) can be expressed as

u (t) = P()A, (19)
where
P(t) = diag{Py (), Pp(t), ..., Pp(1)} (20)

is a block diagonal matrix consisting of m copies of
Py(t),and A € R*, s = m(p + 1), denotes a vector of
control parameters. The basic functions are assumed
orthogonal with respect to the inner product (2), so

T
/ PT(HS@)P (1) dr = I. (1)
0

On account of Eq. 19, the control system (1) takes
form of

g = G(qlux(1),
22
{ y =k(q). 2
Let g5(t) = @go,1(u;(-)) denote the trajectory of

Eq. 22 starting from gg. The end-point map of Eq. 22
can be expressed as Ky, 7(A) = k(gi(T)). With
some abuse of notation the parametric Jacobian can be
computed as

k(‘I)H-on(T)) =

d
J, A) = —
!10,T( ) do .

T
CA(T)/ O, (T, t)B,(t)P(t)dt, (23)
0

where matrices Ay (), By(t), Cy.(t) are given by Eq. 5
taken along (u,(?), ¢»(¢)), and

09, (¢, w)

o7 = A, () Px(t, w),

D, (w, w) = 1,.

(24)
The parametric Jacobian J,, 7(A) is a matrix of
dimension r x s. It can be observed that J,, 7 (1) =
C,(T)J,(T), where J, (¢) fulfils a matrix differential
equation

Ji(6) = Ax () (1) + B () P (D), (25)

with initial condition J; (0) = 0.

The motion planning problem for system (22)
is described in the following way: find a vector
of control coefficients Ay € R’ which satisfies
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K40, 7(Ad) = yq. Again, the continuation method
leads to a Wazewski-Davidenko equation

dxr®)
JqO,T()V(e))W = —.(Kgo, 7 (A(0)) — ya), (20)

which, with application of some right inverse of the
Jacobian, can be transformed into a more explicit form
dir () #
TR Yadgo, 7 (M(O)) (Kgo, 7 (M(0)) — ya).  (27)

The solution of the motion planning problem is
achieved as the limit Ay = limg_, 4o, A(0).

4 Parametric Lagrangian Jacobian Inverse
As mentioned before, a right inverse of the Jacobian

(23) can be obtained by solving a constrained optimi-
sation problem for the linearised system

E(t) = A, (&) + B () P(Du,

(28)
n(1) = Cr(DE (1),
where
8 .
) = WO o w()POR (29)

oA

denotes a variation of system’s trajectory correspond-
ing to a variation u of control coefficients. In conse-
quence

Drp(t) = (pqo,t(uk—ku(')) =g () +&6.0). (30)

A natural generalisation of the objective function con-
sidered in Eq. 15 is an objective function in the
Lagrange form, that leads to the Lagrange-type opti-
misation problem in the linear system described by
Eq. 28

T
min /0 (&7 0eW&® +u" PTORWPOK) dr.
(31

where Q(t) = QT (1) > 0and R(t) = RT(t) > 0,
on condition that Jy, 7 (A)u = C,(T)&.(T) = n. The
resulting Jacobian inverse will be referred to as the
parametric Lagrangian Jacobian inverse J ng (2). The
following theorem establishes an explicit form of the
parametric Lagrangian Jacobian inverse. Its proof can
be found in Appendix (A.1).
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Theorem 1 The parametric Lagrangian Jacobian
inverse

TE0) = TN FL ()l (MM 6y, (2)
where the mobility matrix
Mg, 1) = CU(T)F (D) I (T FL(T)CT(T), (33)

and the matrices 1) (t) and F, (t) solve the differential
equations

L) = FL (0@ Fut) + PT(0OR@) P (1),
Fi(t) = Bi()P(t) + A, (1) Fa (1), (34)
with initial conditions I, (0) = 0, F,(0) = 0.

The mobility matrix will be assumed to have full
rank r. It is easily shown that, after setting Q(¢) = 0
and R(t) = I, the Lagrangian Jacobian inverse and
the Jacobian pseudoinverse coincide.

5 Motion Planning

Given the parametric form (32) of the Lagrangian
Jacobian inverse, the Lagrangian Jacobian motion
planning algorithm is obtained by inserting this
inverse into Eq. 27. In the sequel we shall first analyse
performance features of the algorithm concerned with
shaping trajectories of the robotic system, and then
transform the parametric motion planning algorithm
to a discrete setting.

5.1 Performance

The parametric Lagrangian Jacobian algorithm,
beyond solving the motion planning problem, is also
able to shape the trajectories of system (22) due to
appropriate choice of matrices Q(¢) and R(¢). In order
to support this claim the following cases will be stud-
ied. To begin with, for a fixed value of parameter 6, let
vector g be the solution of the Jacobian equation

Jgo. 1 MO g = Kgo,7(A(0)) — ya, (35)

provided by the parametric Lagrangian Jacobian
inverse, i.e.

o = JE(10)) (Kgo. 1 (A(0)) — ya). (36)

Invoking (27) implies that

dxr®)

= . 37
70 N (37

Now, the differentiation of the parametrised sys-
tem’s trajectory gi(g)(f) = @qq,r(U1()(-)),combined
with Eqs. 29 and 37, results in
@) @) 0@q,1 (u0) () dAO)

= — ).
10 I 0 v2.61.6) (1)
(38)

By inspection of the identities (37) and (38) it can
be seen that vector ng and function &,)(-) can be
regarded as directions of motion in the control and in
the trajectory space, respectively.

Given a control curve A(6), let us choose a
smooth curve cg(¢) in the state space of system (22),
parametrised by 6, and let Vy(¢) denote a vector field
along cg(t). Allowing the matrix Q(f) to be made
f-dependent, we set

Qo(t) = Vo)V (1), (39)

Then, for a fixed 6, the objective function (31)
becomes

T
fo (&) O Ve)? + uf PT@Rs () PW)1s) dr,
(40)

where matrix R(¢) is also allowed to depend on 6.
With a suitable choice of the vector field Vy(¢) and the
matrix Ry (t), the minimisation of this objective func-
tion will prefer the direction of motion & )(-) close
to the orthogonal to Vp(¢) at each ¢. In the next section
w shall show how this property may contribute to the
obstacle avoidance.

Furthermore, there exists another possibility of
using the matrix Q(¢) for shaping system’s trajecto-
ries. Once again, consider the optimisation problem
(31). In case when both the matrices Q(¢) and R(t)
are positive and do not depend on 6, the following
inequality can be proved, see [12],

T
fo (@) — 90)T (1) Q(1)(qr0) — qo0) dt +
T
/ (0 — 20" PTOR@) P (1) (A(0) — ro) dt < y*0 x
0

6 T
[ [ (o080 ProR®POI) dide
(@)

It is easily noticed that the inner integral on the right
hand side of the inequality represents the objective
function (31) for a fixed «. As such, Eq. 41 imposes
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an upper bound on the distance between the system’s
current trajectory and control, and the initial ones. Pur-
suing further this line of reasoning, one can observe
that the relative weight assigned to matrices Q(¢) and
R(t) results in favouring one part of the minimised
objective function — either the variation of the system’s
trajectory, &, (0), or the energy of control variations,
P(t)ug. This dependency manifests in an attract—
repel behaviour between the final and initial trajec-
tory/control of the system. For a sufficiently large
matrix Q(¢) the motion planning algorithm steers the
system as close to the initial trajectory as possible. In
contrary, if the matrix R(¢#) dominates, then the result-
ing plan of motion approaches the one obtained by
employment of the Jacobian pseudoinverse.

Yet another choice of the matrix Q(¢) allows one
to further shape the system’s trajectories. Specifically,
for a curve A(0), let Qq(t) = A{(g)(t)A,\(g)(t). We
have the following result.

Lemma 1 For the matrix Qy(t) = A{(g)(z)m(@)(t),

(G (gre) @))ure) (1)
dq

where Ay @) () = , and the matrix

Ro(t) = B 4 (1) Byo) (1), for Bie) (1) = G(gae) (1)),
t € [0, T1,the length of &) (?) is upper-bounded in
the following way

T
/0 1€y (11dt < /2T

T
x\/ fo (16, Qo (&) (1) + 1 P()Ro (1) P(1)po)d1.
(42)

A proof of this lemma is found in Appendix (A.2). It
can be noticed that the integral on the right hand side
of Eq. 42 represents the objective function minimised
by the algorithm Thus, the choice of matrix Q(¢) as
in the lemma bounds from above the total length of
all variations of the system’s trajectory (30) in the
subsequent steps of the motion planning algorithm.

5.2 Algorithm

Associated with the parametric Lagrangian Jacobian
inverse is a parametric Lagrangian Jacobian motion
planning algorithm. For computational convenience
the algorithm will be represented in a discrete form
based on the well-known Euler method of solving
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differential equations. The advantage of such a formu-
lation lies in easy implementability often accompanied
with satisfactory accuracy. Specifically, the 8 variable
is discretised with a step length %, such that at the ith
step 6;+1 = 6; + h. Let A; = A(6;). Therefore, the
Eq. 27 is transformed into the difference equation

st = ki — Wy S O (Ko7 0) = ya)  (43)

initialised at 1y € R®. Set y = hy,. Having estab-
lished this, a computational scheme of the motion
planning algorithm is tantamount to solving for A the
following set of diffrential-difference equations

q‘)hi @) = G(CI)»,' @) P()A;,

Fy (1) = By, (1) P(t) + Ay, (1) Fy, (1),

L) = FLO QW) Fy, (1) + PT (R P(1),
higt = hi = Y IER 0 (K go, 7 (hi) = ya),
IR0 = LN FN(MCT (M0,
Mgy () = CU(T)EU(T) I (T FL(T)CI(T),

(44)

with initial conditions gy, (0) = gqo, F3,(0) = O,
I, (0) = 0, a chosen base representation of control func-
tions Pp(t), P(t) = diag{Py(t), Py(t),..., Py(1)},
initial vector of control parameters )¢, and desired
point in the task space y,;. The solution of the motion
planning problem is obtained as Ay = lim;_ 400 A;-
In the next section this algorithm will be applied
in order to solve example motion planning problems
for a rolling ball. Trajectory shaping features of the
algorithm will be emphasised.

6 Simulation

To illustrate performance of the Lagrangian motion
planning algorithm, the kinematics of a rolling ball
will be used. The ball’s schematic view is presented
in Fig. 1. The ball’s coordinates are chosen as ¢ =
(x1,x2,9,0, 1//)T, whose meaning is the following:
(x1, x2) — the position of the ball’s contact point with
the ground in the space frame X¢YyZo, (¢, ) — the
position (azimuth and elevation) of the contact point
in the body frame XYy Zy, and v — the ball’s orien-
tation defined as the angle between the X axis and
the axis X p of a frame attached to the contact point.
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Fig. 1 The rolling ball

~y

Its kinematics are represented by the driftless control
system with output

sinfsinyr cosyr
—sin# cosy sinyr

qg= 1 0 |ux=G(q)uy,
0 1
—cosf 0
k(g) = (x1,x2)7. (45)

All computations of the algorithm (44) have been
performed for the following parameters and initial
conditions: y = 0.01, ¢(0) = (0,0,0, 0, 07, Vi =
(1, DT, T = 2. The control functions are taken in
the form of truncated trigonometric series containing
the constant term and up to the 2nd order harmon-
ics. The stopping condition involves a decrease of
the motion planning error below the predefined value,

Fig. 2 Motion planning with one obstacle

ie. |le(q(T))|] < 107*. By definition this error is
expressed in the length units.

The feature of directing the ball’s trajectory in
order to get the obstacle avoidance can be demon-
strated in the following way. Suppose that g ) (#)
is the ball’s trajectory for a certain fixed value of
parameter 6. Consider a set O = {01,...,0,} of p
task space point-obstacles in R2. Due to the form of
the output function in Eq. 45 the task space trajec-
tory equals k(qr@)(1) = (q1n0) (1), g0 )T =
(x1(1), x2(1))T . For the obstacle o; we define a direc-
tion

7. o —k(gue) @) 2
o) = wiRot(Z, ) ol

)

(40)

orthogonal to the direction between the system’s
trajectory at ¢ and the obstacle o;. Rot(Z,%) =

Fig. 3 Motion planning with two obstacles
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Fig. 4 Motion planning with three obstacles

1 .
|:(11 0] refers to the rotation by 7 around the Z

axis, perpendicular to the task space. The weighting
coefficient

{
wl
Wp

expresses the penalty for invading the discomfort zone
d in the vicinity of an obstacle, with w, defining the
penalty’s weight. Using this data we set

Vig(t) = (Djg(1),0,...,007 e R

if lloy —k(gue)ll = d,

otherwise, 47)

and define the matrix Q(¢) as

P
Qo(t) =Y Vig(t) Vi (1). (48)

=1

0.8f

0.6

%

0.4

0.2

Fig. 5 Motion planning with four obstacles
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0.8p

0.6

0.4}

0.2f

0 0.5 1 1.5 2
Fig. 6 Motion planning with dominating matrix Q(t)

As a result, the Lagrangian Jacobian motion plan-
ning achieves two goals — minimises the control
energy and, what may be favoured, elicits a motion in
the task space in the direction orthogonal to Dy (), and
thus repels the task space trajectory k(g )(¢)) from
obstacles. To illustrate this behaviour a set of simu-
lations was performed. Firstly, the motion planning
problem with no obstacles and Q(¢) = I5 was solved.
Secondly, a new obstacle was being added, directly
on the path resulting from the previous solution. The
new problem was then solved with the matrix Q()
obtained from Eq. 48. Such steps were repeated three
more times, thus up to four obstacles were defined.
The computations were made for matrix R(t) = Iy,
initial control u;, (1) = (0.2, 1T and parameters
d = 0.1, w, = 100. The additional constant gain

0.8f

0.6

0.4f

0.2t

0 0.5 1 1.5 2

Fig. 7 Motion planning with dominating matrix R(t)
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of matrix Q(¢) was set to 10. The results are shown
in Figs. 2, 3, 4 and 5. The numbered dots represent
the obstacles considered at the current step, while the
circles depict the choice for a new obstacle, that will
be placed in the next step of the simulation. In all
cases the obstacles were success- fully avoided which
supports the claim that the parametric Lagrangian
Jacobian algorithm can be employed to such tasks.

The next set of computations illustrates the ten-
dencies in shaping system’s trajectory depending on
the dominance of one of the matrices, either Q(¢) or
R(t). In the first case, the motion planning problem
was solved for a series of matrices Q;(t) = 107 0 (),
where j = —1,-0.5,0,0.5,1, 1, 5,2, Q(t) = Is and
matrix R(¢) = I,. Then, the situation was reversed
and the simulations were made for Rj(t) = 10/ R(D),
R(t) = @ and matrix Q(t) = I5. All problems
were solved for initial control u,(¢) = (—0.1, 0.8)7.
Figures 6 and 7 present the results. In both figures
the dashed line depicts the initial trajectory of the sys-
tem, driven by u;,(-). In case of Fig. 7 the additional
bold dashed line represents the solution obtained by
employment of the Jacobian pseudoinverse. It is eas-
ily seen that for sufficiently large matrices Q(¢) the
motion planning algorithm indeed steers the system as
close to the initial trajectory as possible. On the other
hand, strengthening the matrix R(¢) results in priori-
tising the energy of controls, which is visible in Fig. 7,
as the solutions approach the result obtained by the
classical Moore-Penrose algorithm.

Finally, the employment of matrix Q(t) =
AT(1)A(t) was compared against a standard case

Fig. 8 Motion planning with Q(z) = Is

1.5 2

Fig. 9 Motion planning with Q(r) = AT () A®@)

of Q(t) = Is. The motion planning problem was
solved for a series of matrices Q;(t) = 107 0 (1),
j = —1,-0.5,0,05,1, 1.5, 2, and matrix R(t) =
BT(1)B(t) = 2I, with initial control u, (1) =
(=0.3,0.9)T. The results are presented in Figs. 8 and
9. Moreover, for every solution the length of the final
trajectory was computed, as shown in Table 1. The
simulations support the claim that the choice of the
matrix Q(t) = AT (r)A(t) imposes a bound on the
length of the final trajectory obtained as a solution to
the motion planning problem by the minimisation of
the total length of all variations of the system’s trajec-
tory. Interestingly, such a behaviour is visible even for
small gains of matrix Q(t), when the minimisation of
the energy of controls is prioritised.

Table 1 Length of the final trajectory g (-) depending on the
choice of matrix Q(t)

Length of g ¢ (-) for

J o) = AT()A() o) =1Is
-1.0 1.5042 1.5076
-0.5 1.5057 1.5162
0 1.5101 1.5428
0.5 1.5234 1.6151
1.0 1.5612 1.7505
L5 1.6531 1.9121
2.0 1.8088 2.0499
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7 Conclusion

The contribution of this paper lies in providing the
parametric form of the Lagrangian Jacobian inverse
and the corresponding motion planning algorithm
for nonholonomic robotic systems. The inverse is
derived from the solution of a Lagrange-type opti-
misation problem, that takes into consideration both
system’s controls and trajectory, and represents a
natural generalisation of the Jacobian pseudoinverse.
An analysis of the inverse reveals that by a skilful
choice of the matrices Q and R in the Lagrangian
objective function it is possible to shape the sys-
tem’s trajectory. Achieving a solution of the motion
planning problem along with satisfying additional
performance requirements has been demonstrated by
numeric computations involving the kinematics of the-
rolling ball.

Acknowledgments The authors are grateful to anonymous
reviewers whose remarks allowed them to improve the contents
and the presentation of this paper, and suggested some topics
for future research.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Appendix
A.1 Proof of Theorem 1
The parametric Lagrangian Jacobian inverse is derived

from minimisation of the Lagrange-type objective
function for the linearised system

£.(1) = AL0E @) + B P(D)p,
n(t) = Cu()&r (1), §,(0) =0, (49)

i.e.

T
min fo (&7 ©owa® +u" PTORWPOW) d1,
(50)

@ Springer

where A € R® is fixed, u € R® varies, Q(t) =
0T(t) > 0and R(r) = RT () > 0, on condition that

Jgo.1 M = Cu(T)E(T) = n. (51)

To solve this problem the classical method of con-
ditional optimisation is applied. Firstly, a Lagrange
function for problem (50) is defined using the Jacobian
(23) in the following way

T
Lo a) = /0 T (1) Q1) (1) di
T
+ / nt POT (R Pt dt
0

T
+aT i (T) /0 @, (T, 1)B.(t) P(t)n dt,

where o € R” denotes a vector of Lagrange multipli-
ers and

t
£.(1) =f0 (1, 5)Br.(s) P (s)ds (52)

is a trajectory of Eq. 49. The derivative of the
Lagrange function £(u, o) for w € R* can be com-
puted as

DL(, )w = L+ pw,a) =

il

dp g
T t

2/0 [E{(I)Q(t)/o @, (1, 5)Br(s)P(s)ds +

w" PT @R P (1) + %aTcA(Tm(T, t)BmP(z)] dtw

The optimality condition, DL(u, «)w = 0, Yw € R?,
enforces that

T t
/0 [s{mQ(r)/o ®;(, $)Br(s) P(s) ds +
T pT l T
w P ()R(@)P(t) + 2a C, (TP, (T, t)B,(t)P(t) | dt
=0 (53)
Invoking (52), after transposition of Eq. 53 we obtain
T
/ <F,\T(t)Q(t)FA(t)+PT(t)R(t)P(t)> dt p+
0
1
EF)\T(T)C{a =0, (54)
where

t
Fo(t) = / ®,.(t, 5)B;.(s) P (s) ds. (55)
0
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Equation 54 can as well be expressed as

1
p=—5I (DFE (T, (56)
where
T
L() = fo (FL () Q) F(t)+ PT(t)R(t) P (1)) dt = 0.
(57)

After considering Eq. 51 and combining it with
Eq. 56, the vector of Lagrange multipliers can be
derived

a=—2M_ (L,
where
Mgo, 1) = CL(T)Fu(T) I (T FF(T)CT(T)

is the mobility matrix of system (22). Finally, after the
elimination of & from Eq. 56 we obtain the parametric
form of Lagrange Jacobian inverse

It Oom = w = 1. MEN MMM 0on.

It is easily seen that in order to compute the paramet-
ric Lagrange inverse additional rules for calculating
I,(T) and F) (T) are advantageous. On account of

oD, (t,s)

TR Ap()Pi(2, 5), .5, 8) = In,
the time differentiation of Eq. 55 yields

dF,(t)

T B, (t) P(t) + Ay (1) Fy. (1),

with F; (0) = 0. Analogically, matrix I, (T) can be

computed from

dl, (1)
dt

for I, (0) = 0, what concludes the proof.

= Fl (1) QW)F. () + PT ()R P (1),

A.2 Proof of Lemma 1

Let A(8) = A. For the linearised system (49) and the
Lagrange-type objective function (50) we set &, =
%. The square of its length can be computed as

NG = ETE = 1A (& + Bu() P(Ourl)®. (58)
It is easily shown that

1A, (0)E, + Br(t) Pl <
2011 A (D& + 1B () Pl *). (59)

The right side of this inequality can be rewritten into

20114 (&P +IBL() P(O 1)
=21 AL ()AL (0E + 1" PT () B] (1) Bi() P(t) ).
(60)

Let Q(t) = AT(1)A,(t) and R(t) = Bl (t)B;.(1).
Then, combining the identity (58) with inequalities
(59), (60), and then integrating both sides for r €
[0, T'] yields
T . T
fo €117 dt < 2/0 ELDOME()
+ u POR@)P(r)p)dt.

Finally, an application of the Schwartz’s inequality
results in

T . T .
/Olléxlldtfﬁ /0 &P di <

T
«/ﬁ\/ /0 ENOQ0E@) +uT PORE)P(1)),

concluding the proof.
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