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Abstract This paper addresses computational as-
pects of the Jacobian motion planning algorithms
for non-holonomic robotic systems. The motion
planning problem is formulated in terms of a
control problem in the control affine system rep-
resenting the system’s kinematics. Jacobian mo-
tion planning algorithms are derived by means
of the continuation (homotopy) method applied
to the inverse kinematics problem in the space
of control functions. The solution of the motion
planning problem is obtained as the limit solution
of a functional differential equation involving the
control function. Two methods of representing
the control functions are studied: parametric and
non-parametric. The parametric method para-
metrizes the control functions by truncated or-
thogonal series. The non-parametric method can
manage without the parametrization. The func-
tional differential equation can be solved using
either the Euler method of integration or higher
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order methods. The paper focuses on the non-
parametric Jacobian pseudo inverse motion plan-
ning algorithms incorporating a higher order in-
tegration method. Performance of this algorithm
is illustrated by the numeric solution of a motion
planning problem for the rolling ball kinematics.

Keywords Non-holonomic system - Motion
planning - Jacobian algorithm - Continuation
method - Computations - Rolling ball

1 Introduction

The motion planning problem of robotic systems
can be regarded as a special instance of the in-
verse kinematics problem, and solved by means
of the continuation or homotopy method [1]. The
applicability of this method to the path or mo-
tion planning of non-holonomic robots was first
observed in [2], and then developed in [3-5].
A continuation method-based motion planning
algorithm for convex rolling surfaces has been
presented in [6]. A variation of the continuation
method is the endogenous configuration space ap-
proach, originally dedicated to mobile manipula-
tors, that explores systematically the analogies be-
tween stationary manipulators and mobile robotic
systems [7, 8]. The endogenous configuration
space approach will be adopted as a leitmotif in
this paper.
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All motion planning algorithms devised by
the continuation method rely on a functional
differential equation whose trajectory in the limit
yields the control function solving the problem.
In the references mentioned above, this equation
is first discretized in accordance with the Euler
integration method, and then reduced to a finite-
dimensional iterative process by the approxima-
tion of the control functions by truncated orthog-
onal series. A preference to the Euler method
results primarily from a wide acceptance of the
Newton method as a computational tool [9]. Also,
a certain tradition of using the iterative learning
control scheme in robotics, pioneered by Arimoto
et al. [10], might have been meaningful; for a
connection of the endogenous configuration space
approach with the iterative learning control see
[11]. Thus, the motion planning algorithm returns
coefficients of the control function with respect to
an orthogonal base in the control space. Such an
algorithm will be called parametric. In the con-
text of endogenous configuration space approach
a comparative study of motion planning algo-
rithms employing diverse orthogonal bases, such
as trigonometric functions, Legendre, Gegenbauer
and Tchebyshev polynomials as well as Haar
functions, can be found in [12]. Complementar-
ily, in [13] the use of Laguerre polynomials has
been recommended. The parametric algorithms
are conceptually simple and often computation-
ally efficient. However, for the reason of using
the Euler integration method, and being approx-
imate and base-dependent, the parametric algo-
rithm does not guarantee a convergence of the
“true” solution of the motion planning problem.
In order to improve the quality of convergence of
parametric motion planning algorithms a variable
step length has been introduced into the Euler
method. In [4] the step length adjustment was
based on the line searching strategy of the mini-
mum of error norm. The Armijo step adjustment
method and a more complex method resulting
from the affine covariant Lipschitz condition [9]
imposed on the Jacobian was examined in [14]. A
further improvement of the numerical properties
of motion planning algorithms could be obtained
after replacing the Euler (first order) method by
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more advanced, higher order integration schemes
along with the step size optimization.

Recently, in [15] it has been observed that, by
a proper organization of computations, the func-
tional differential equation underlying the motion
planning algorithm could be solved without the
introduction of any parametrization. A motion
planning algorithm based on such an approach
will be referred to as non-parametric. From the
viewpoint of the control functions representation
and the integration method the motion planning
algorithms can be divided into four classes: (1)
parametric and Euler, (2) parametric and higher
order, (3) non-parametric and Euler and (4) non-
parametric and higher order. A majority of re-
ported research concentrates on the class (1). The
work [15] makes a first step toward the class
(3). The main contribution of this paper consists
in developing a non-parametric Jacobian motion
planning algorithm for non-holonomic systems,
based on a higher order integration method (so
belonging to the class (4)). For comparison, the
parametric and higher order computations (of
class (2)) will be studied. Also, the convergence of
the higher order integration method vs. the Euler
scheme will be examined.

The comparison will be accomplished by nu-
meric computations using an example motion
planning problem of the rolling ball. Although
not very complex, this example has been chosen
for the reason that, differently to the car or car-
with-trailers non-holonomic systems, the rolling
ball’s kinematics are not differentially flat [16],
thus harder to control. In summary, the novelty
of this paper lies in providing a non-parametric
solution to the motion planning problem for non-
holonomic robotic systems by ingenious organiza-
tion of computations and adaptation of available
numeric tools in order to solve the basic functional
differential equation.

The organization of this paper is the following.
Section 2 presents basic concepts of endogenous
configuration space approach, and a derivation of
the Jacobian motion planning algorithms based on
the continuation method. Section 3 is devoted to
the organization of numeric computations within
the Jacobian pseudo inverse motion planning
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algorithm. Results of numeric computations are
contained in Section 4. Section 5 concludes the

paper.

2 Basic Concepts

In control theoretic terms the kinematics of a non-
holonomic robotic system are represented by a
driftless control system with output

=" g(@u = Gqu

y =k(q), @

where the control variable u € R™, the state vari-
able g € R", and the output (task space) variable
y € R". The task space variable is the one sub-
ject to motion planning. The functions and vector
fields appearing in Eq. 1 need to be smooth (C*).
Let 7 > 0 denote a control time horizon. The
admissible control functions in Eq. 1 belong to
the space L2 [0, T] of Lebesgue square integrable
functions defined on the interval [0, T]. The space
Lﬁq[O, T1]is a Hilbert space with inner product

T
(Wi (), ur())g = fo ul (RO us(t)dt, ()

specified by a matrix R(f) = R”(t) > 0 imposing
certain weights on components of the control.
The inner product induces the norm ||u(-)||r =
(u(~),u(-))§/2 of the control function u(-). Let
q(t) = ¢4,.(u(-)) denote the state trajectory of
Eq. 1, initialized at g and driven by u(-). We shall
assume the existence of g(¢) for every time in-
stant ¢ € [0, T']. Given an initial state g of system
(1) and the time horizon 7', the motion planning
problem is formulated in the following way: find
a control u(f) steering the system’s output at T
to a desired point y; in the task space, so that

y(T) = ya-
2.1 Endogenous Configuration Space Approach
Our analysis of the motion planning problem will

be based on the concept of the end-point map
of system (1), defined as the value at T of the

output function resulting from the application of
a control function u(-),

Ko, 7(u()) = k(q(T)) = k(g 1(u(-))). 3)

For bounded measurable control functions u(-) €
X c L2]0, T] the end-point map K : X — R’
is continuously differentiable (C'), [17]. In the
context of mobile robots or mobile manipula-
tors the space A has been called the endogenous
configurations space, [8]. The derivative of the
end-point map is computed by means of the linear
approximation to system (1)

E(t) = ADE®R) + B(v(D),

n@ =CHs®, &0 =0, 4)
along the control-trajectory pair (u(t), g(t)), where
(G
A = "ELO) g~ G,
 ak(q(r)
c@t) = q (5)

Given the linear system (4), the derivative of the
end-point map at u(-) € X is equal to

DKy, r(u(-)v(-) = n(T) = C(TH&(T). (6)

In compliance with the robotic terminology, the
derivative (6) will be called the system’s Jacobian,

DKy 7W(-) = Jgo.7W(-)).

It follows that the computation of the Jacobian in-
volves the integration of the differential equation
(4) from 0 to T at zero initial condition. If ®(z, w)
denotes the transition matrix of Eq. 4, so that

DL, w)
ot

then this means that the Jacobian

=ANPC, w), Pw,w)=1,, (7

Joo.1Ww()) : X — R’

can be expressed as

T
Jgo, 7(U())V() = C(T)fOCD(T, w) B(w)v(w)dw.

(®)
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The Jacobian allows to distinguish between regular
and singular controls (endogenous configurations)
of system (1). A control u(-) € X will be called
regular, if the Jacobian is a surjective map onto R’,
otherwise the control u(-) is referred to as singular.
It can be shown that at regular controls the control
affine system (1) is locally controllable.

The Jacobian (8) can be regarded as a linear
map Jg, 7(u(-)) : X — R’. Using the inner prod-
uct (2) in the endogenous configuration space as
well as the Euclidean structure of the task space,
and making the identifications X* = X, R"™* = R’
of dual spaces, the dual Jacobian map

J;;OYT(L!(-)) R — X

can be defined in the following way

(Ja.r@en) 0 = R™' 0BT @@ (T, 0CT (1.

)
The composition of the Jacobian and its dual
Jgo, 7@ Jg 7 W())
= Ggo, 7(W("))
T
= C(T)/ &(T, w)B(w)R™ ' (w)
0
x BT (w)®T (T, w)dwC* (T) (10)

yields the output controllability Gramian associ-
ated with the linear system (4). In the robotics
context (10) is referred to as the mobility (for
mobile robots) or dexterity (for mobile manipula-
tors) matrix of the system (1), as it has a form and
plays a role analogous to that of the manipulability
matrix of a robotic manipulator [18]. In particular,
at regular control functions this matrix has full
rank r. The mobility matrix can be computed by
solving the Lyapunov differential equation

M@ = BORY ()BT () + AOM©) + M() AT (v),
(11)

with zero initial condition M(0) = 0, and making
the substitution G, 7(u(-)) = C(T)M(T)CT(T).

2.2 Jacobian Motion Planning
In terms of the end-point map (3), the motion

planning problem in system (1) means computing
a control function u,4(-), such that K, 7(uq()) =

@ Springer

v4- The motion planning problem can be solved
using the continuation method that leads to a
Jacobian motion planning algorithm. To sketch
a derivation, we begin by picking an arbitrary
control function uy(-) € X. If this function solves
the problem, we are done. Otherwise, we define
in X a differentiable (C') curve uy(-) parametrized
by 6 € R, and compute the task space error

e() = Kgp.7(ma (")) — ya (12)

along this curve. The curve in the endogenous
configuration space is required to be a lift of the
error path

de®)
do

vanishing exponentially to 0 with a prescribed
decay rate y > 0. By differentiation of the error
we get the Wazewski-Davidenko equation [19, 20]

—vye(®) (13)

du (-
L:Q() = —y(Kq, 7 (-)) — ya). (14)

Finally, choosing any right Jacobian inverse

S0, 7o ()

Jh () R — X,

i.e. a map that satisfies JqO,T(u('))J*q‘O’T(u(o)) =
I,, the Eq. 14 is transformed into a functional
differential equation

d .
L;LQ() = _y‘lzo,T(uf)('))(Kqu,T(u‘)(')) = Ya) (15)

in X. By passing to the limit
uqg(t) = lim wug (),
6— 400

we obtain a solution to the motion planning
problem.

The dynamic system (15) defines any Jacobian
motion planning algorithm for the control system
(1). A frequently used right Jacobian inverse is
the Jacobian pseudo inverse, [8], resulting from a
constrained minimization of the squared norm of
the control function v(-)

: 2
Min (y()ex |/, rwe)e=nVEOlR (16)

and defined as
(747 r@m) ©

=R 0B 0@ (T.nC"(1G, ' ).  (17)
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The matrix G4, 7(u(-)) standing in Eq. 17 is just the
mobility matrix (Eq. 10). By design, the Jacobian
pseudo inverse motion planning algorithm is well
defined in regular endogenous configurations.

3 Organization of Numeric Computations
3.1 Parametric Approach

Usually, in order to make the computations
efficient, a finite-dimensional representation of
control functions by the truncated orthogonal se-
ries is utilized. This approach will be referred to as
parametric. Let us introduce a row matrix P(f) =
[¢o(D), @1 (D), ..., $,(H)] whose entries are some ba-
sic functions defined on the interval [0, 7]. Then,
the control function of system (1) may be repre-
sented as

u (1) = Py(n)r, (18)
where
Pi(t) = diag{ P(t), P(?), ... P(t)}

is a block diagonal matrix built of m copies of P(¢),
s =m(p+ 1),and A € R® denotes a vector of con-
trol parameters. The basic functions will assumed
orthogonal with respect to the inner product (2) in
the sense that

T
/ PI(OR() Py(t)dt = I (19)
0

or, equivalently, ||u,\(~)||§ =ATr. Steered by
Eq. 18, the control system (1) takes the form

q = G(q)u,.(b)
y = k(@).

Let g, (t) = ¢q4,./(u,.(-)) be the trajectory of Eq. 20.
With some abuse of notation we shall denote the
end point map of Eq. 20 by K, 7(A) = k(q,(T))
and the parametric Jacobian by J,, 7(1). For u €
R*, we compute

(20)

d
Jqo,T()‘)/JL = E

k(@y+au(T))
a=0

T
— C.(T) /0 ®,(T. 1) B, (1) Py(0)dipe.

eay

where matrices A;(f), B; (), C,(¢) are given by

Eq. 5 along (1, (¢), g,.(t)), and

0D; (1, w)
ot

The parametric Jacobian

= A, (0D, (1, w), D) (w,w)=I.

T
Jo 100 = Co(T) / ®,(T. 0B, () Py(nydi (22)
0

is a matrix of dimension r x s. It is easily ob-
served that Jg, 7(A) = C,(T)J,(T), where J,(?) is
obtained by integration of the matrix differential
equation

Tty = A, (O, (D) + By () Py (1), (23)

with initial condition J, (0) = 0.

The motion planning problem for system
(20) consists in computing a vector of control
coefficients A € R® such that K, 7(1) = ys. The
continuation argument, analogous to that used
in Section 2.2, leads to a Wazewski-Davidenko
equation

G
d(e) =~y (Koo 7(M0) — ya),  (24)

that can be converted into an ordinary differential
equation for the curve A ()

dr e
D T O Ky, 00D ~ v, (25)

by means of a right inverse JgO’T()») of the para-
metric Jacobian. The existence of the right inverse
requires that s >r. Given a trajectory A(0) of
Eq. 25, the solution of the motion planning prob-
lem is computed as the limit A; = limg_, o, A(6).
The motion planning algorithm based on Eq. 25
will be referred to as parametric in contrast to
the algorithm (Eq. 15) that will be called non-
parametric.

In what follows as the right Jacobian inverse we
shall use the Jacobian pseudo inverse

W) =J0 MG, (26)

where G, 7(1) = JqU,T()L)JqTO’T(A) is a parametric
mobility matrix of system (20). It is well known
that the inverse (26) results from the constrained
minimization of the squared Euclidean norm of
the vector of control parameters

S0, 7(1(0))

#P
]110, T

: T
MiN (e Ro|J,, rIp=nit" K- (27)
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It would be instructive to examine the connection
between the parametric and the non-parametric
Jacobian pseudo inverse motion planning algo-
rithms based on, respectively, the finite dimen-
sional dynamic system (25) driven by Eq. 26
and the infinite dimensional dynamic system (15)
driven by Eq. 17. To this aim, assume that uy (f) =
Py (H))(0), and differentiate both sides with re-
spect to 0. By invoking Eq. 15 along with Eq. 17,
we get

dug(t) dxr )
o Fs@ do
= —y I (o () (Kgo, 7t () — ya)

= —yRO BT, ) CJ(T)G, ' (s ()
X (Kgo, 7o () — Ya)-

By multiplying the terms no 2 and 4 above from
the left by R(¢) and PI(¢), then integrating from
0 to T, and using orthogonality (19) as well as
the definition of the parametric Jacobian (22), we
conclude that

dar (o)

do

=~y T 20§, s () (K 75 () — Y.
Now, since by definition K, 7(ug(-) =
K. 7o) () = Kg, 7(A(0)), the above identity
will convert into Eq. 25 for the Jacobian pseudo
inverse (26), on condition that for uy(f) =

U (t) = Ps(t)A(0) the non-parametric and the
parametric mobility matrices are identical, i.e.

Gon (U6 ())
T
— (D) / ®, (T, w)B,(w)R~" (w)
0
x Bl (w)®(T, w)dwCI(T)

= Jop 1MW) 7 (),

where A = A(0). Suppose that the number s of
control parameters has been chosen in such a way
that for a givenn € R”

Rt B (@] (T, )C] (T)n = Ps(t)v,
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where v € R® depends on 7. Using this assumption
and orthogonality (19), we compute the quadratic
form

T
0T Gon 1 uto (N = 7 / PTOR® Py (ydiv = v'v.
0

On the other hand, by definition of the parametric
Jacobian (22),

T
JqTOYT(A)nzfo ProBI@y®I (T, ndtCl(T)n

T
= / PI(OR(0) Py(t)dtv = v,
0
SO
r]TJqO,T()L)JqTOYT(A)n =T,

Finally, a combination of these identities results in
the desired identity

Gao 7o () = Jg 1M J ] (1),

We conclude that, if the number of parameters is
sufficiently big then the parametric and the non-
parametric Jacobian pseudo inverses coincide, so
the parametric and the non-parametric Jacobian
pseudo inverse motion planning algorithms yield
the same solution. Obviously, this happens in the
limit s — +o0.

3.2 Non-parametric Approach

An alternative approach to solving the func-
tional differential equation (15) is called non-
parametric. The non-parametric approach con-
sists in solving this equation directly. This means
that for each value of 8 we solve simultaneously
a system of differential equations composed of
the kinematics equations (1), the transition ma-
trix equations (7), and the Lyapunov differential
equation (11). Having solved these equations, one
can write directly the algorithm equation (15)
with the Jacobian pseudo inverse (17) substituted
into it.

3.3 Integration Methods
Besides choosing the parametric or the non-

parametric approach, another important compu-
tational problem is the choice of the integration
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method. As we have already said, traditionally
the functional differential equation (15) has been
solved by means of the Euler method with con-
stant or variable step length. This approach is
easily implementable and often provides sufficient
accuracy of solution. In accordance with the Euler
method, the 6 variable is discretized with a step
length £, so at the ith step 6; = 6,_; + h. Setting
ui(t) = uy(t), the Eq. 15 is transformed into the
difference equation

Uiy (1) — wi(r)
= —hy (78, 1O Ky, 1) = v0) 0, 8)

The main advantage of the Euler method is its
simplicity and modest computational demand. On
the other hand, this is a fixed-step and a first order
method whose accuracy considerably depends on
the step length, and that is lacking control over the
computation error.

Alternatively, the Eq. 15 can be solved by
means of a higher order integration method. We
have chosen the MATLAB built-in variable-step
length method using the Dormand-Prince pair
[21]. This method is a combination of the fourth
and the fifth order Runge-Kutta methods RK4(5).
In every step the algorithm computes the func-
tion derivative using the Runge-Kutta method of
orders fourth and fifth. Next, these two results
are used to assess the computation accuracy. As
long as the accuracy is high enough, no additional
corrections have to be made. However, when the
accuracy drops below a pre-assumed level then
the step size is decreased. On the other side, when
the computation accuracy is very high then the
same procedure can be enrolled to increase the
step size and speed-up the computations. Advan-
tages of using this approach will be revealed in
Section 4. As mentioned in Introduction, we shall
focus on the non-parametric and higher order
Jacobian motion planning algorithms that will be
compared with the parametric and higher order
algorithm.

3.4 Computational Procedure
The computation of a solution to the motion

planning problem by the Jacobian pseudo inverse
algorithm (15) is essentially tantamount to solving

for uy(r) the following set of differential-algebraic
equations (DAE)

d
ﬁm=Gwmmwx (29)
t
do, (T,
LD — 0T, 0 As0), (30)
t
WO _ pywor 0850
t
+Ag () My(t) + Mp() AL (D), (31)
dﬁg”:=—yR-kaQﬁ¢ZaanZav
x (Co(DMy(TICI (D) e®),  (32)
(G
mm=ii%%@91&m=Gmmx
@mzau?m{ )
q
e(0) = yo(T) — ya = k(go(T)) — ya, (34)

with boundary conditions g4 (0) = qo, ®o(T, T) =
I,, My(0) =0, and a given initial control func-
tion uy(¢). It should be noticed that in Egs. 29—
34 the subscript & means a dependence on the
trajectory gy(¢) corresponding to the currently
computed control function uy(¢). The system 29—
34 needs to be solved in the following way.
Given a control uy(f), we first solve the first three
differential equations, and find the functions gy (¢)
from Eq. 29, ®y(T,¢) from Eq. 30, and My (?)
from Eq. 31 for ¢ € [0, T]. Having determined the
trajectory gy (t), we compute matrices By (f), Cy(t)
and the error e(f) using the Egs. 33 and 34 re-
spectively. A substitution of previously computed
data defines the right hand side of the differential
equation 32, and allows us to accomplish one step
of its integration, resulting in computing uy, (f)
for every t € [0, T]. The newly computed control
function is then substituted again into the system
29-34, and the computations are repeated. For a
sufficiently large value of 6 this procedure returns
a solution u,(#) of the motion planning problem.
The presented arrangement of the DAE system
29-34 allows us to use the differential equation
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solver built-in MATLAB. As long as in the sys-
tem 29-34 there exist two independent variables,
namely ¢ and 6, two solvers need to be used, one

READ 0max> uO(O» h(-?,init’ ht,init» T, qo

h(-) = hG,init %
0=0 % initialization
REPEAT
ht = ht,init %
=0 (yo
q0(0) = qo % initialization
Oo(T, T) = 1, %
My(0) =0 %
REPEAT

qo(t + h) =RK45[1,q4 ()]

% input values

nested inside the other one. An outline of the
computer code illustrating the proposed compu-
tational procedure may look as follows

% incrementing q

Dy (T, t + hy) =RK45[t,®4(T, t)] % incrementing ®

Mo (t + hy) =RK45[t,My(1)]
h; =OPTIMAL-STEP[]
t=t+h

UNTILt>T

Ug1n, (1) =RK45[0, ug (1)]

hy =OPTIMAL-STEP|[6]

0 =06+ hy

UNTIL 6@ > Omax

% incrementing M
% correcting step length h,, if necessary
% taking next value of t

% incrementing u
% correcting step length hy, if necessary
% taking next value of 6

where “RK45” stands for the method based on
Runge-Kutta pair of order fourth and fifth (the
Dormand-Prince pair), and “OPTIMAL-STEP”
updates the optimal step length to guarantee the
pre-assumed computation accuracy. As it was al-
ready mentioned, the change of the step size
depends on the difference between the solution
obtained from the fourth and fifth order methods.
In the presented listing one can observe the nested
structure of the differential equation solvers: the
solver for the independent variable ¢ is nested
inside the solver for the independent variable 6.

4 Results of Numeric Computations

In this section the Jacobian pseudo inverse mo-
tion planning algorithm will be utilized to solve
a motion planning problem for the rolling ball.
We begin with the introduction of a model of
the ball’s kinematics, then state the problem and
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implement the non-parametric and the parametric
algorithm. Two series of numeric computations
have been accomplished. The first series shows
the performance of the parametric vs. the non-
parametric algorithm, both using the higher order
integration method. The second one focuses on
the convergence of the non-parametric algorithm
with the Euler scheme vs. the higher order inte-
gration method.

4.1 Rolling Ball

A schematic view of the rolling ball is depicted
in Fig. 1. The ball can roll freely on the XY
plane. The ball’s coordinates are chosen as g =
(x,y,¢,0,¥)T € R°, where the x and y denote
the position of the contact point P expressed in
the space coordinate frame X,Y,Z,. Angles ¢
and 0 (azimuth and elevation) define the position
of the contact point in spherical coordinates with
respect to the body coordinate frame XpYpZp.
The angle 6 describes the ball’s rotation angle
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Zo

Fig. 1 Rolling ball

with respect to the space coordinate frame. There
are two components of the control function u =
(ur,u;)” € R?, that can be interpreted as veloc-
ities of change of ¢ and 0. The coordinate rep-
resentation of the rolling ball kinematics is the
following, compare [22],

<
Il
DR =

[ sinfsiny  cosyr
—sinf cosy siny

- 1 0 (”1> = G(qu, (35)
0 1 e
—cosf 0
y = k(CI) = (xv ) W)a (36)

where the output function reflects the assumption
that the ball’s position and orientation will be sub-
ject to motion planning. It is easily seen that the
kinematics (35) are well defined when 0 < 6 < 7,
so the ball cannot roll over its poles. A constrained
motion planning algorithm that prevents the ball
from rolling over the poles has been proposed in [23].

4.2 Simulation Results

For the kinematics (35) with output (36), the
following motion planning problem will be
addressed: Find a control u(¢f) that drives the

ball from the initial gy = (0,0,0,7/4,0)7 to
the desired point y; = (1, 1,0)7 in the task space
over the time interval [0, 2]. This problem will
be solved using the parametric and the non-
parametric Jacobian pseudo inverse algorithms
with higher order integration scheme. For both
these algorithms we have chosen the error decay
rate y = 4, the matrix defining the inner product
(2) R(t) = I,, the initial control uy(¢) = (0.1,0.2)7,
and the stop condition |le()| < 107*. Although
theoretically a solution of the problem is obtained
when 0 — 400, however we shall see that for
this particular motion planning problem the
desired accuracy is obtained for 6 = Oy = 3.
The parametric representation of the control
function uses a truncated trigonometric series
{1, sin (ZT”I) , COS (ZT”I) ,...,sin (ZI‘T”I) , COS (ZI‘T”I)}
for 2k = p. Numeric computations are made for
s=1{4,6,14,22,42,62,82,102}. Their results are
presented in Figs. 2, 3,4 and 5.

It follows that the motion planning problem has
been solved correctly. As can be seen from Fig. 2,
the x and y coordinates variable have reached the
desired point in the XY plane; also the orienta-
tion ¢ angle at the end of the motion assumes
the desired value. Figure 3 presents the control
function u,4(f) computed by the algorithms. In
Figs. 2 and 3 the thin line shows the functions
provided by the parametric algorithm, while the
thick line refers to the non-parametric algorithm.
To increase readability, the thin lines are marked
with the number s of control coefficients. When
the s number grows up, the parametric control
function gets closer to the non-parametric one,
as shown on the left hand side of Fig. 5, where
e(s) = lu(-) —u,(-)||, denotes the norm of the
difference between these control functions for
varied dim(X) = s. The method of solving the sys-
tem (29)—(34) described in Section 3.4 allows to
find the dependence of the control function uy(¢)
from both 6 and ¢ variables. This is presented
in Fig. 4. One can see that the control function
starts from the initial value uy(f) at & =0, and
reaches the solution u,(¢) of the motion planning
problem for 6 = 0,,«. Finally, the right hand side
of Fig. 5 refers to the convergence of the Jacobian
pseudo inverse algorithms. It can be seen that the
error convergence of the parametric and the non-
parametric algorithm is the same, determined only
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Fig. 2 Trace of contact
point in XY plane (left)
and trajectory of ball’s
orientation v (right)

Fig. 3 Solution of motion
planning problem: ug (f)
(left) and ugo (¢) (right)

Fig. 4 Parametrized
control function: ug (¢)
(left) and ugy (1) (right)

Fig. 5 Convergence of
parametric to
non-parametric (left) and
algorithm convergence

(right)
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Fig. 6 Convergence of 1st order vs. higher order integra-
tion method

by the pre-assumed error decay rate y. This is
exactly what should be expected from Eq. 13.

To complement these results, the same mo-
tion planning problem will be solved by means
of the non-parametric algorithm, first with the
higher order integration method (Runge-Kutta—
RK4(5)) and then by the first order, fixed step size
method (the Euler scheme) with varied hy. The
algorithm’s convergence is summarized in Fig. 6,
where the thick line refers to the higher order
integration method while the thin lines present the
convergence of the first order method with the
varied step size. From the plot one can observe
that, if the very high accuracy is not critical then
the Euler scheme with relatively large step size
is acceptable. As could be expected, decreasing
the step size results in increasing the computation
accuracy. Apparently, for the step size hy = 0.001,
convergence of the algorithm based on the Euler
scheme is practically the same as that of RK4(5)
method, and corresponds to pre-assumed error
convergence ratio y = 4 in Eq. 13. Computational
properties of the examined integration meth-
ods can be assessed using the data collected in
Table 1. One can observe that the Euler method
with sy = 0.01 needs about twice as much steps
as the RK4(5) method. In the Euler scheme, the
function standing on the right hand side of Eq. 32

is evaluated once for every step. In the higher
order method this function has to be computed
more than once in every step. The number of the
function evaluations in Table 1 could be used to
compare the computation effort for each integra-
tion method. As could be seen, this number for
the first order method with step size sy = 0.001 is
almost four times bigger than in the case of the
RK4(5) method.

5 Conclusion

This paper has been devoted to computational
aspects of the Jacobian pseudo inverse motion
planning algorithm of nonholonomic robotic sys-
tems. Special attention has been paid to the non-
parametric representations of control functions. A
thoughtful way of arranging the Eqs. 29-34 has
been introduced, enabling to solve the basic func-
tional differential equation of motion planning by
means of a higher order (non-Euler) integration
scheme.

Efficiency of this approach has been tested
on the example motion planning problem of the
rolling ball. Intuitively, it may be expected that the
computations with the parametric algorithm are
less time consuming. Nevertheless, the computa-
tion time depends on the number of the control
coefficients s. The total computation time of the
same problem achieved by the non-parametric
version is comparable to the computation time
of the parametric algorithm with s =30. After
an assignment of the computed control functions
to the resulting rolling ball trajectories, one can
observe that the trajectories provided by the non-
parametric algorithm are smoother and more in-
tuitive than those obtained from the parametric
algorithm. It has been also confirmed by numer-
ical computations that the increase of the number
of control parameters s results in the parametric

Tablg 1 C.omparis.on of Algorithm RK4(5) Euler Euler Euler Euler Euler Euler
examined integration -
methods Step size hy - 0.2 0.15 0.1 0.05 0.01 0.001
No of steps 231 25 35 50 100 500 5000
No of function 1399 25 35 50 100 500 5000

evaluation

@ Springer



456

J Intell Robot Syst (2015) 77:445-456

control functions approaching the non-parametric
ones.

Comparison of the integration methods has
shown that, if the step size in the first order
method is small enough then the obtained accu-
racy is similar as in the higher order method. How-
ever, the former method needs much more com-
putational effort to produce the solution. Another
advantage of the RK4(5) method is the control
of computation accuracy by suitably adapting the
step size. The numeric computations have also
revealed a close to theoretic performance of the
non-parametric, higher order Jacobian pseudo in-
verse motion planning algorithm. This contrasts
with the performance observed, e.g. in [§].
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