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Abstract A new notion of joint, defined in terms of the state of motor (active or locked)
and type of the elastic or rigid element, gear and/or link that follows after the motor, is
introduced. Special attention is paid to the motion of the flexible links in the robotic
configuration. The paper deals with the relationship between the equation of elastic line
equilibrium, the “Euler–Bernoulli approach” (EBA), and equation of motion at the point of
elastic line tip, the “Lumped-mass approach” (LMA). The Euler–Bernoulli equations
(which have for a long time been used in the literature) should be expanded according to
the requirements of the motion complexity of elastic robotic systems. The Euler–Bernoulli
equation (based on the known laws of dynamics) should be supplemented with all the
forces that are participating in the formation of the elasticity moment of the considered
mode. This yields the difference in the structure of Euler–Bernoulli equations for each
mode. The stiffness matrix is a full matrix. Mathematical model of the actuators also
comprises coupling between elasticity forces. Particular integral of Daniel Bernoulli should
be supplemented with the stationary character of elastic deformation of any point of the
considered mode, caused by the present forces. General form of the elastic line is a direct
outcome of the system motion dynamics, and cannot be described by one scalar equation
but by three equations for position and three equations for orientation of every point on that
elastic line. The choice of reference trajectory is analyzed. Simulation results are shown for
a selected robotic example involving the simultaneous presence of elasticity of the gear and
of the link (two modes), as well as the environment force dynamics.

Keywords Robot . Modeling . Elastic deformation . Gear . Link . Coupling . Dynamics .

Kinematics . Trajectory planning

1 Introduction

Modeling and control of elastic robotic systems has been a challenge to researchers in the
last three decades. In [34], the control of robots with elastic joints in contact with dynamic
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environment is considered. In [4], the feedback control was formed for the robot with
flexible links (two-beam, two-joint systems) with distributed flexibility, robots with flexible
links being also dealt with in [14]. In paper [27] a nonlinear control strategy for tip position
trajectory tracking of a class of structurally flexible multi-link manipulators is developed.
Authors of papers [25] and [24] derived dynamic equations of the joint angle, the vibration
of the flexible arm, and the contact force.

The paper [35] presents an approach to end point control of elastic manipulators based
on the nonlinear predictive control theory. [31, 32] present a method for the generation of
efficient kinematics and dynamic models of flexible robots. In [30] author discusses the
force control problem for flexible joint manipulators.

In paper [13] the authors extend the integral manifold approach for the control of flexible
joint robot manipulators from the known parameter case to the adaptive case. The author of
paper [18] designed a control law for local regulation of contact force and position vectors
to desired constant vectors. In paper [6] differently from conventional approaches, authors
focus on the design of rigid part motion control and the selection of bandwidth of rigid
subsystem. Paper [20] presents the derivation of the equations of motion for application to
mechanical manipulators with flexible links. In [21] the equations are derived using
Hamilton’s principle, and are nonlinear integro-differential equations. Method of separation
of variables and the Galerkin’s approach are suggested in paper [22] for the boundary-value
problem with time-dependent boundary condition.

Mathematical model of a mechanism with one degree of freedom (DOF), with one
elastic gear was defined by Spong [29] as early as in 1987.Based on the same principle,
elasticity of gears is introduced into the mathematical model in this paper, as in paper [10–
12] also. However, when the introduction of link flexibility into the mathematical model is
concerned, it is necessary to point to some essential problems in this domain.

LMA is a method which defines equilibrium equation (motion equation) of any point of
considered mechanism. If any link of the mechanism is elastic then we also can define
motion equation of any point of presented link. We don’t know exactly when this approach
has been stated. It defines dynamic equation in any point of mechanism during movement.
The LMA (used in [2–5]) gives the possibility to analyze the motion of the any point of
each mode. Papers with this research topic (approach) were rare in robotics journals in the
last two decades.

EBA assumes the use of Euler–Bernoulli equations which appeared in 1750. EBA (used
in [7–9, 15–17, 23, 25, 31, 32] etc.) gives the possibility to analyze a flexible line form of
each mode in the course of task realization. (See Fig. 1; eij is the flexibility moment
defining flexural deformation of the considered body.)

The EBA is an approach that is still in the focus of researchers’ interest and it was
analyzed most often in the last decades.

In the pertinent literature no relationship has been established between the LMA and
EBA.

We consider that EBA and LMA, are two comparative methods addressing the same
problem but from different aspects [11, 12].

We consider them as two comparable methods considering the same problem but
from different aspects. Using the EBA we obtain the equations of flexible line model of
each mode and by setting boundary conditions we obtain model equations of motion at
the point of the tip (or any other point) of each mode, which is in fact the LMA. These
equations are of different types and can’t be combined. As the equation of motion for
the mode tip point is essentially LMA and it follows directly from the equation of
flexible line obtained via EBA for the preset boundary conditions, it clearly comes out
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that the structures of these equations are the same (whereas the content of elements of
these structures is not the same). Just for this reason, each of the two methods can be
used as a check of validity of the other (assuming that no crude approximations have
been made).

Mathematical model obtained by any of the methods should satisfy elementary
structure of the models of elastic mechanisms known in the literature [33]. This has been
treated in detail in our work, but it is not the only essential problem existing in the pertinent
literature.

In the previous literature [7–9, 15, 16, 26] the general solution of the motion of an elastic
robotic system has been obtained by considering flexural deformations as transversal
oscillations that can be determined by the method of particular integrals of D. Bernoulli.

It is known that flexural deformations of a body can be caused by:

– disturbance forces, causing an oscillatory motion,
– stationary forces, causing the motion of a stationary character.

We consider that any elastic deformation can be presented by superimposing D.
Bernoulli’s particular solutions of the oscillatory character and stationary solution of the
forced character. See papers [11, 12].

The first detailed presentation of the procedure for creating a reference trajectory was
given in [1] and later in [8].

In our work we have synthesized a reference trajectory for a robot model including
elastic gears and links and the presence of environment force. The reference trajectory is
calculated from the overall dynamic model, when the robot tip is tracking a desired
trajectory in a reference regime in the absence of disturbances.

Elastic deformation (of flexible links and elastic gears) is a quantity which is at least
partly encompassed by the reference trajectory. It is assumed that all elasticity character-
istics in the system (both of stiffness and damping) are “known”, at least partly and at that
level can be included into the process of defining the reference motion. The reference
trajectory thus defined allows the possibility of applying very simple control laws via PD
local feedback loops, which ensures reliable tracking of the robotic tip considered in the
space of Cartesian coordinates to the level of known elasticity parameters, too.

As far as the working regime of the robot is concerned we think that all forces should
participate in generating elastic deformations and that it is a crude approximation to assume

1,1

 1,n1-2

1,2

 

 

  

 

“L
um

pe
d-

m
as

s 
ap

pr
oa

ch
”

“E
ul

er
-B

er
no

ul
li 

ap
pr

oa
ch

”

ε
ε

ε
1,n1-1ε

ε

εn1

Fig. 1 LMA and EBA as two
comparative approaches
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that elastic effects are generated only by gravitational force, or only by the environment
force as in [23, 25], or that Coriolis and centrifugal forces can be neglected altogether that
elastic deviations are so small, so that inertia matrix is not dependent on them, as assumed
in [17].

“Assumed modes technique” appeared in 1967 and was proposed by Meirovitch in [26].
This technique was used by all authors in the last 40 years to form Euler Bernoulli equation.
In our paper we form Euler Bernoulli equation but we do not use “assumed modes
technique” in contrast to our contemporaries. We assume that the elastic deformation, and
also circular frequency of each mode of elastic element, is a consequence of the overall
dynamics motion of the robotic system.

Let us emphasize once again that in this paper we propose a mathematical model
solution that includes in its root the possibility for analyzing simultaneously both present
phenomena – the elasticity of gears and the flexibility of links, and the idea originated from
[5], but not on the same principles. We show how the continuously present environment
dynamics force affects the behaviour of an elastic robot system.

Section 2 defines the kinematics model (types of joints, direct and inverse kinematics).
Section 3 defines the dynamics model of elastic robotic systems. Subsection 3.1 gives the
interpretation of the source equations of elastic line. A supplement to the source equations
of flexible line is given. In Subsections 3.2, 3.3 and 3.4 we define a general form of the
equation of flexible line of a complex robotic system of arbitrary configuration, using EBA.
The flexible line equation is extended by a damping component. Also, we demonstrate that
the particular integral of D. Bernoulli is just a component of flexural deformation of any
point of the mode considered, to which it is necessary to add the component of flexural
deformation of the stationary regime. Section 4 demonstrates the relationship between the
equation of elastic line motion and equation of motion at any point of the elastic line.
Section 5 analyzes the choice of reference trajectory. Section 6 analyzes the movement
dynamics of a multiple DOF elastic robotic pair with elastic gear and flexible link in the
presence of the second mode and environment force. Section 7 gives some concluding
remarks.

2 Kinematics

Kinematics and dynamics of a robotic system are analyzed. Since elasticity elements are
introduced, it is necessary to explain in detail, first of all, the kinematics of these systems in
order to have dynamic modeling as efficient as possible.

In the presence of elasticity elements, the notion of a joint (degree-of-freedom, DOF)
requires a new meaning, which is necessary to expand and explain. We will define the types
of rigid and elastic elements that may appear in a robotic configuration. The joint type is
defined as a combination of rigid or elastic gear and/or rigid or flexible link and/or the
motor that is directly in front of these elements. In its configuration, each joint may contain:

– motor and/or
– gearing system and/or
– link.

The motor may be:

– Active, if it realizes the motion whereby the motor deflection angle θi 6¼ const or
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– Locked, if it is fixed at a certain position, and its speed and acceleration are zero, then
θi ¼ const:

Behind any motor there may be implemented a gearing system, which may be:

– Elastic, if the deformation is elastic, rigidity characteristic is Cxi Nm=rad½ � and damping
characteristic is Bxi Nm= rad=sð Þ½ �, then the gear deflection angle xi≠0.

– Rigid, if elastic deformation is xi=0.

Behind any motor and/or gear there may be implemented a link, which may be:

& Elastic (Flexible), rigidity characteristic is Csi[N/m] and damping characteristic is
Bsi[N.s/m], and then the link bending angle ϑi 6¼ 0:

& Rigid, if flexural deformation is ϑi ¼ 0:

This means that a joint can be defined in dependence of the working state of the
motor, type of gearing and type of link. Let @i be the elastic deformation of any type of
the elastic element after the motor. We define four types of joints, namely AE@,LE@ , AR
and CR.

Type AE@ is characterized by an active motor and an arbitrary elastic element (or more
of them in a series) behind the motor, where elastic deformation takes place in the direction
of motor motion. The overall coordinate qi contains the following components: θi–motor
rotation angle and @ei –elastic deformation of the elastic element behind of the motor (orP@ei , the sum of elastic deformations of the elastic elements in the series coming after the
motor).

All these angles vary in the course of robotic task realization.

qi ¼
C
θi þ

X
@ei : ð1Þ

This will be explained in more detail on the examples. If the motor is active, the gear
elastic (whereby elastic deformation takes place in the direction of motor motion) and the
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of the type AEx and its geometry
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link rigid, then this type of joint will be denoted shortly as AEx. In Fig. 2 is shown a spatial
sketch of the joint of the AEx type, as well as its geometry.

The angle qi contains the following components: θi and xei – the joint deflection angle.

qi ¼ θi þ xei : ð2Þ

If the gear is rigid and the link behind it flexible, as in Fig. 3, which has elastic
deformation taking place only in the direction of the motor shaft deflection, then such a
joint is defined as being of type AEϑ. The overall coordinate qi contains the following
components: θi and ϑei – the link bending angle. The angle ϑei can also vary in the course
of robotic task realization.

qi ¼ θi þ ϑei : ð3Þ

A joint is also of the AEx type if the gear and link behind the motor are elastic and if
both elastic deformations take place in the direction of motor shaft deflection. It bears the
designation of that elastic element that is directly behind the motor (see Fig. 4).

The overall coordinate qi contains the following components:

qi ¼ θi þ xei þ ϑei: ð4Þ

It is clear that these are only special cases, when elastic deformation takes place in the
direction of motor shaft deflection. Because of that it is important to define also a
“kinematics” connection for the case when elastic deformation of the gear or link is not
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taking place in the direction of motor shaft deflection or, if there is no a drive in front of the
elastic deformation (that is in front of the elastic element).

Type LE@ is characterized by a locked motor and an arbitrary elastic element (or more of
them in a series) behind the locked motor.

In fact, a locked motor has no an actuator’s function. It is present only as a mass. For this
reason the same designation LE@ is used when the motor either exists or is missing, but
there is only one elastic element (or more of them in a series, whose deformation takes
place in the same direction).

The overall coordinate qi contains elastic deformation @ni of the elastic element (or sum of
elastic deformations

Pc
k¼1

@ni;k of the elastic elements in a series that take place in the same

direction). All these quantities of elastic deformations vary in the course of robotic task realization.

qi ¼
Xc
k¼1

@ni;k : ð5Þ

Let us explain this in more detail on the examples. If the motor is locked, the gear elastic
and the link rigid, then this type of joint is denoted as LEx. In Fig. 5 is shown a geometric
depiction of a joint of the LEx type, as well as of the same type of joint with elastic gear
and rigid link. The overall coordinate qi contains only xni.

qi ¼ xni : ð6Þ
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A joint of the LEϑ type, involving a rigid gear and a flexible link, is shown in Fig. 6.
The overall coordinate qi contains only ϑni.

qi ¼ ϑni: ð7Þ

It is also possible to define another type of joint LEx, whereby the gear is elastic and the
link is flexible, shown in Fig. 7. The joint bears the designation of that elastic element
which comes first in the sequence. The overall coordinate qi contains only the sum of
elastic deformations xni and ϑni.

qi ¼ xni þ ϑni: ð8Þ

Type AR is characterized by an active motor and all rigid elements that come after the motor
(both the gear and link).
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In this case, the overall coordinate qi is equal to the motor rotation angle θi.

qi ¼ θi: ð9Þ

Type LR is characterized by a locked motor, a rigid gear after it, and a rigid link.

qi ¼ 0: ð10Þ

By defining the type of every joint in the branched chain of the robotic system we define
the configuration of that system, which is a prerequisite for defining its mathematical model
and analyzing its dynamic behavior.

Therefore, in this paper we analyze the behavior of a robotic system which may contain
joints of the type AE@, LE@, AR and LR.

The rotation matrix which describes the change of the position (Cartesian coordinates)
and orientation (Euler angles) of the tip of every link (or mode of segment) is of the
form:

Ti�1
ei

¼
cos qi � sin qi � cos ai sin qi � sin ai li � cos qi
sin qi cos qi � cosai � cos qi � sin ai li � sin qi
0 sin ai cos ai di
0 0 0 1

2664
3775: ð11Þ

Where ai, li and di are the Denavit–Hartenberg parameters. The overall transformation
matrix is of the form:

T0
en
¼ T0

e1
� T1

e2
� T 2

e3
� � � Ti�1

ei
� � � Tn�1

en
� ð12Þ
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The Jacobi matrix for a manipulator with elastic joints maps the velocity vector of the
external coordinates �ps into the velocity vector of internal coordinates �q:

�q ¼ J�1
e qð Þ � �ps: ð13Þ

Where �ps ¼ �x �y �z �= �} �8½ �T defines the velocity of a given point of the robotic
system in the Cartesian coordinates, whereas �q ¼ �q1 �q2 �q3 �q4 ::: �qn½ �T defines the
velocity vector of internal coordinates of the joints defined by Eqs. 1–10. Elements of the
Jacobian are only functions of the elements of the homogenous transformation matrix T0

en. It
is clear that each branched chain in the complex mechanism has its finite transformation
matrix, as well as its Jacobi matrix.

3 Dynamics

3.1 Interpretation of the Source Equations of Elastic Line

Equation of the elastic line of beam bending is of the following form:

M̂1;1 þ β1;1 �
@2 ŷ1;1

@ x̂ 1;1
2 ¼ 0: ð14Þ

i.e.

M̂1;1 þ ê1;1 ¼ 0: ð15Þ

ê1;1 ¼ β1;1 �
@2 ŷ1;1

@ x̂ 1;1
2
: ð16Þ

where bM1;1 Nm½ � is the load moment, in these source equations encompassing only inertia,be1;1 bending moment, b1;1 Nm
2½ � is the flexural rigidity.

General solution of motion, i.e. the form of transversal oscillations of flexible beams can
be found by the method of particular integrals of D. Bernoulli, that is:

ŷto1;1 bx1;1; t� � ¼ bX 1;1 bx1;1Þ � bTto1;1 tð Þ:�
ð17Þ

bX1;1 bx1;1� � ¼ C1; 1;1ð Þ cos k1;1bx1;1 þ C2; 1;1ð Þ sin k1;1bx1;1þ
þC3; 1;1ð ÞCh k1;1bx1;1 þ C4; 1;1ð ÞSh k1;1bx1;1 : ð18Þ

bTto1;1 tð Þ ¼ A1;1 cos p1;1t þ B1;1 sin p1;1t: ð19Þ
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See Fig. 8. By superimposing the particular solutions (17), any transversal oscillation
can be presented in the following form:

byto1 bx1; j; t� � ¼X1
j¼1

bX1; j bx1; j� � � bTto1; j tð Þ: ð20Þ

x1,1, y1,1, z1,1 – is a local coordinate frame, which is set in the base of considered mode. In
this case (see Fig. 8.) this is the first mode of the first link, while in a general case this is xi,j,
yi,j, zi,j, where j is the serial number of the mode of considered link j=1, 2, 3…ni, and i is
the serial number of the link of the considered robotic system i=1, 2, 3…m.

x1, y1, z1 is a local coordinate frame, which is set in the base of the considered link. In a
general case it is xi, yi, zi.

x, y, z – is the basic coordinate frame, which is set in the root of the considered robotic system.
ϑ1,1 is the bending angle of the first mode of the first link.w1;1 is the rotation angle of the

top of the same mode (see [19]).
Remark I: Equations 14–20 need a short explanation that, we think, should be assumed,

but which is missing from the original literature [33]. Euler and Bernoulli wrote Eq. 20
based on ‘vision’. They did not define the mathematical model of a link with an infinite
number of modes, which has a general form of Eq. 21, but they did define the motion
solution (shape of elastic line) of such a link, which is presented in Eq. 20. They left the
task of link modeling with an infinite number of modes to their successors. Transversal
oscillations defined by Eq. 20 describe the motion of elastic beam to which we assigned an
infinite number of DOFs (modes), and which can be described by a mathematical model
composed of an infinite number of equations, in the form:

bM1;j þ be1;j ¼ 0
j ¼ 1; 2; :::; j; :::1 : ð21Þ

Dynamics of each mode is described by one equation. The equations in the model 21 are
not of equal structure as our contemporaries, authors of numerous works, presently interpret
it. We think that the coupling between the modes involved leads to structural diversity
among the equations in the model 21. This explanation is of key importance and is
necessary for understanding our further discussion.

 

Fig. 8 Idealized motion of elas-
tic body according to
D. Bernoulli.
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Remark II: The symbol “^” denotes generally the quantities that are related to an
arbitrary point of the elastic line of the mode, for example: by1;1; bx1;1 ; be1;1 . The same
quantities that are not designated by “^” are defined for the mode tip, for example:
y1;1; x1;1; e1;1.

Remark III: Under a mode we understand the presence of coupling between all the
modes present in the system. We analyze the system in which the action of coupling forces
(inertial, Coriolis’, and elasticity forces) exists between the present modes. To differentiate
it from “mode shape” or “assumed mode”, we could call it a coupled mode or, shorter, in
the text to follow, a mode. This yields the difference in the structure of Euler–Bernoulli
equations for each mode.

The Bernoulli solution 17–19 describes only partially the nature of motion of real
elastic beams. More precisely, it is only one component of motion. Euler–Bernoulli Eqs.
14–21 should be expanded from several aspects in order to be applicable in a broader
analysis of elasticity of robot mechanisms. By supplementing these equations with the
expressions that come out directly from the motion dynamics of elastic bodies, they become
more complex.

As already mentioned, Eqs. 14–20 were defined under the assumption that the elasticity
force is opposed only by the inertial force proper. Besides, it is supposed by definition that
the motion in Eq. 14 is caused by an external force, suddenly added and then removed. The
solution 17–19 of D. Bernoulli satisfies these assumptions.

The motion of the considered robotic system mode is far more complex than the motion
of the body presented in Fig. 8. This means that the equations that describe the robotic
system (its elements) must also be more complex than the Eqs. 14–20, formulated by Euler
and Bernoulli. This fact is overlooked, and the original equations are widely used in the
literature to describe the robotic system motion. This is very inadequate because valuable
pieces of information about the complexity of the elastic robotic system motion are thus
lost. Hence, it should be especially emphasized the necessity of expanding the source
equations for the purpose of modeling robotic systems, and this should be done in the
following way:

– based on the known laws of dynamics, Eq. 16 is to be supplemented by all the forces that
participate in the formation of the bending moment of the considered mode. It is assumed
that the forces of coupling (inertial, Coriolis, and elastic) between the present modes are
also involved, which yields structural difference between Eq. 16 in the model 21,

– Equation 17 is to be supplemented by the stationary character of the elastic
deformation caused by the forces involved.

3.2 Equation of the Elastic Line of the First Mode of the First Link

Let us consider the motion of the first mode of the given link. The link has n1 modes in
total. The first mode is the bracket (support) of uniformly distributed mass along the mode,
loaded by the moment bM1;1. The load moment bM1;1 is composed of all the forces acting on
the first mode of the link, and these are inertial forces (own and coupled inertia forces of the
other modes), centrifugal, gravitational, Coriolis forces (own and coupled), forces due to
relative motion of one mode with respect to the other, coupled elasticity forces of the other
modes, as well as the force of the environment dynamics, which is via Jacobian matrix
transferred to the motion of the first mode. This means that all these forces participate in
generating of bending moment that is in forming elastic deformation as well as of the

244 J Intell Robot Syst (2008) 52:233–261



elasticity line of the first mode. In that case the model of elastic line of the first mode of the
elastic link is of the form of Euler–Bernoulli equation:

bH1; j
d2by1; j
dt2

þ bh1;1 þ jTe1;1Fuk þ z1; j � e1 þ be1;1 ¼ 0: ð22Þ

j – ordinal number of the considered mode, j=1, 2, 3…n1.
Vectors in Eq. 22 are of the following form:bH1;j ¼ bH1; 1;1ð Þ bH1; 1;2ð Þ bH1; 1;3ð Þ ::::: bH1; 1;n1ð Þ

h i
, the vector characterizing the inertia of

the first mode. In forming these equations the choice of generalized coordinates can be
completely arbitrary. For example here we have chosen the following quantities:by1;1; by1;2; by1;3; ::::by1;n1 to follow the symbols from source Euler–Bernoulli equations. In

principle these can be any other quantities as, for example, in [12]. @2by1; j
@t2 ¼

@2by1;1
@t2

@2by1;2
@t2

@2by1;3
@t2 ::::

@2by1;n1
@t2

� �T .
ĥ1;1 – centrifugal, gravitational and Coriolis forces of the first mode. jTe1;1 ¼

Je1; 1;1ð Þ Je1; 1;2ð Þ Je1; 1;3ð Þ ::::: Je1; 1;6ð Þ
� �

, the first row of the Jacobian matrix serving to map
the impact of the dynamic force of contact Fuk on the behavior of the first mode.

z1;j ¼ 0 � 1

21
þ 1

22
� 1

23
::::: �1ð Þ n1�1ð Þ 1

2 n1�1ð Þ

� �
:

The vector z1,j characterizes the effect of elasticity forces of the other modes on the first
mode. The vector z1,j is obtained by modeling different link structures (with one, two,
three…modes).

Moment of bending defined for the tip of any mode of the considered link is:

e1; j ¼ F1; j � l1; j ¼ Cs1; j � r1; j � l1; j þ Bs1; j � �r1; j � l1; j: ð23Þ
The rigidity and damping characteristic for the tip of any mode is designated as Cs1; j

N=m

h i
and Bs1; j

N � s=m
h i

respectively, maximal deflection is r1;j, the mode length is l1;j. The vector
of bending moments is e1 ¼ e1;1 e1;2 e1;3 e1;4 e1;5 :::: e1;n1

� �T
. Bending moment

defined for an arbitrary point of the first mode is: ê1;1 ¼ β1;1 � @
2 ŷ1;1þη1;1�

�̂
y1;1ð Þ

@ x̂
2
1;1

.

The force acting on the formation of elastic line of an arbitrary mode of the considered
link is F̂1; j. Load moment M̂1;1 from Eq. 22 is defined as:

M̂ 1;1 ¼ Ĥ1; j
d2ŷ1; j
dt2

þ ĥ1;1 þ jTe1;1Fuk þ z1; j � e1: ð24Þ

Thus Eq. 22 can be now written in a simpler form:

M̂ 1;1 þ ê1;1 ¼ 0: ð25Þ
Equation 25 was defined under the assumption that the elasticity moment ê1;1 is opposed

by the load moment M̂1;1, which, among the other forces, encompasses also the coupled
elasticity forces of the other modes. In a stationary regime of robotic task realization, the
mentioned moments that oppose the elasticity moment be1;1 continuously change during the

J Intell Robot Syst (2008) 52:233–261 245



robotic task realization. Disturbance forces can also act on this system, which may be of an
instantaneous or permanent character.

Therefore, elastic deformations of a given body can be generated by:

– disturbance forces, causing oscillatory motion,
– stationary forces, causing stationary motion.

By superimposing the particular solutions of oscillatory character and stationary solution
of forced character, any elastic deformation can be presented in the following general form:

ŷ1;1 ¼ X̂ 1;1 x̂1;1
� � � T̂ st1;1 tð Þ þ T̂ to1;1 tð Þ

� 	
¼

¼ â1;1 x̂1;1; T̂ st1;1; T̂ to1;1; t
� 	

:
ð26Þ

T̂ st1;1 tð Þ is the stationary part of elastic deformation caused by stationary forces that may
continuously change in time.
T̂ to1; j tð Þ is the oscillatory part of elastic deformation as in 19.

Total motion of the considered mode, defined by the sum of stationary and oscillatory
motion, is given by Eq. 26.

Orientation of any point of the first mode is defined by:

by1;1 ¼ bd1;1 bx1;1; bTst1;1; bTto1;1; t� 	
: ð27Þ

As we have defined the elastic line model of the first mode by Eq. 22 we can also define
the model of elastic line of the second, third…n1-th mode of the elastic link.

3.3 Equation of the Elastic Line of the link

The elastic line model of the first link that has n1 modes is given in a matrix form by the
following Euler–Bernoulli equation:

bH1 � d
2by1; j
dt2

þ bh1 þ jTe1 � Fuk þ z1 � e1 þ be1 ¼ 0: ð28Þ

Matrixes and vectors in Eq. 28 are of the following form:bH1 2 Rn1x n1 – the matrix characterizing the inertia of the each mode,bh1 2 Rn1x 1 – the vector characterizing the effect of centrifugal, gravitational and Coriolis
forces of each mode,

jTe 1 2 Rn1x 6 – the Jacobian matrix serving to map the impact of the dynamic force of
contact Fuk on the behavior of each mode,

z1 ¼

0 � 1
21

1
22 � 1

23 ::: �1ð Þ n1�1ð Þ 1
2 n1�1ð Þ

0 0 � 1
21

1
22 ::: �1ð Þ n1�2ð Þ 1

2 n1�2ð Þ
0 0 0 � 1

21 ::: ð�1Þ n1�3ð Þ 1
2 n1�3ð Þ

::: ::: ::: ::: ::: :::
0 0 0 0 ::: 0

26666664

37777775

246 J Intell Robot Syst (2008) 52:233–261



Matrix z1 characterizes the mutual effect of elasticity forces of the presented modes on
the observed mode. Bending moment defined for an arbitrary point of the first link is:be1 2 Rn1x 1.

be1 ¼ β1;1 �
@2 by1;1 þ η1;1 �

�by1;1� 	
@bx21;1 ::: β1;n1l �

@2 by1;n1l þ η1;n1l �
�by1;n1l� 	

@bx21;n1l
24 35T

:

Equation 28 represents the equation of motion of elastic line of the first link.
As we have defined the motion of any point on the first mode elastic line by Eqs. 26

and 27, we can also define the motion of any point on the elastic line of the second, third…
n1-th mode of the elastic link.

By superimposing the solutions 26 and 27 for all the present modes of the first link and
adding to it the dynamics of motor motion that drives it, we obtain total solution of the
system in the form:by1 ¼ R1

C
θ1; tð Þ þPn1

j¼1

bX1; j bx1; j� � bTst1; j tð Þ þ bTto1; j tð Þ� 	
¼

¼ ba1 bx1; j; bTst1; j; bTto1; j; Cθ1; t� 	 : ð29Þ

On considering Fig. 9 we can see that the position x̂1 should also be defined, which is

not only
Pn1
j¼1
bx1;j (because the directions of the axes bx1;1, bx1;2…bx1;n1 most often do not

coincide with the direction of the axis x̂1), but also includes to a significant extent the
geometry and characteristics of the mechanism bending, i.e. the mechanism’s dynamics.

bx1 ¼ N1
C
θ1; tð Þ þPn1

j¼1

bK1; j bx1; j� � bTst1; j tð Þ þ bTto1; j tð Þ� 	
¼

¼ bb1 bx1; j; bTst1; j; bTto1; j; Cθ1; t� 	 : ð30Þ

Any form of elastic line and the pertinent transversal oscillations, as well as the motor
motion, can be presented by Eqs. 29 and 30. To this equation one should add also the
equation defining the orientation of each point on the elastic line of the link.

by1 ¼ bd1 bx1; j; bTst1; j; bTto1; j; Cθ1; t� 	
: ð31Þ

In Fig. 9 we sketched the possible forms of elastic line of the i-th link having ni modes
that appear in the plane xi –yi. The plane xi –yi is rotated by the angle α, characterizing in the
figure the position of the link base with respect to the main coordinate frame x–y–z. In the
same figure we presented only some of the possible forms of elastic line. The link tip can
assume very different positions in the plane xijyi.

3.4 Equation of the Elastic Line of the Robotic System

Let us consider a robotic system with m links, whereby the first link contains n1 modes, the
second link n2 modes,…the m-th link contains nm modes. See Fig. 10. Model of the elastic
line of this complex elastic robotic system is given in the matrix form by the following
Euler–Bernoulli equation:

bH � d
2by
dt2

þ bhþ jTe � Fuk þ z �Θ � eþ be ¼ 0: ð32Þ
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If we define k ¼Pm
i¼1

ni then we have that bH 2 Rkxk – matrix characterizing the inertia,bh 2 Rkx 1 – vector of the centrifugal, gravitational and Coriolis forces, jTe 2 Rkx 6 – Jacobian
matrix mapping the effect of the dynamic contact force Fuk ,Θ 2 Rkxk – matrix
characterizing the robot configuration,

z ¼

0 � 1
21

1
22 � 1

23 ::: ð�1Þðk�1Þ 1
2ðk�1Þ

0 0 � 1
21

1
22 ::: ð�1Þðk�2Þ 1

2ðk�2Þ

0 0 0 � 1
21 ::: ð�1Þðk�3Þ 1

2ðk�3Þ
::: ::: ::: ::: ::: :::
0 0 0 0 ::: 0

2666664

3777775

Fig. 9 Possible positions of the tip of elastic line with n1 modes
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z 2 Rkxk– matrix characterizing the mutual influence of the forces of elastic modes of all
the links. e ¼ e1;1 e1;2 ::: e1; n1e 2;1 e2;2 ::: e2; n2 ::::: em; nm

� �T
:

be ¼ β1;1 �
@2 by1;1 þ η1;1 �

�by1;1� 	
@bx 21;1 ::: βnm;nml �

@2 bynm;nml þ ηnm;nml �
�bynm;nml� �

@bx2nm;nml
24 35T

Equation 32 represents the equation of motion of the elastic line of the overall robotic
system.

It is known that the robot configuration can substantially influence the mutual position
of elastic lines of particular links (see Fig. 10). Solution of the system Eq. 32 and dynamic
motor motion, i.e. the form of its elastic line, can be obtained by superimposing the
solutions 29–31 for all the links involved in the presence of the dynamics (angle) of rotation
of each motor, as well as by taking into account the robotic configuration, i.e. the angle
between the axes zi−1 and zi.

by ¼Pm
i¼1

Di aið Þ � Ri θi; tð Þþ

þPm
i¼1

Di aið ÞPn1
j¼1

bXi; j bxi; j� � bTst i; j tð Þ þ bTto i; j tð Þ� 	 !
¼

¼ ba bxi; j; bTsti; j; bTtoi; j; Cθ;a; t� 	 : ð33Þ

bx ¼Pm
i¼1

Ai aið Þ � Ni θi; tð Þþ

þPm
i¼1

Ai αið ÞPn1
j¼1

bKi; j bxi; j� � bTsti; j tð Þ þ bTtoi; j tð Þ� 	 !
¼ :

¼ bb bxi; j; bTsti; j; bTtoi; j; C
θ;a; t

� 	 ð34Þ

Fig. 10 The shape of elastic line of the complex robotic system with m links
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bz ¼Pm
i¼1

Li aið Þ �Mi θi; tð Þþ

þPm
i¼1

Li aið ÞPn1
j¼1

bPi; j bxi; j� � bTst i; j tð Þ þ bTto i; j tð Þ� 	 !
¼ :

¼ bc bxi; j; bTsti;j; bTsti; j; C
θ;a; t

� 	 ð35Þ

Di, Ai, Li is the function that maps the rotation angle between the axes zi−1 and zi. Ri, Ni,
Mi is the function mapping the rotation angle of the motor shaft θi with respect to the y, x
and z axis, respectively.

Of course, it is also necessary to define orientation at each point of the elastic line. The
orientation of any point of the elastic line of the given robot is defined by:

by ¼ bd bxi; j; bTsti; j; bTtoi; j; Cθ;a; t� 	
: ð36Þ

bJ ¼ be bxi; j; bTsti; j; bTtoi; j; θ;a; t� 	
: ð37Þ

bϕ ¼ bf bxi; j; bTsti; j; bTtoi; j; θ;a; t� 	
: ð38Þ

Thus we defined the position and orientation of each point of the elastic line in the space
of Cartesian coordinates. It should be pointed out that the form of elastic line comes out
directly from the dynamics of the system motion.

4 Relationship Between the Equation of Elastic Line Motion and Equation of Motion
at Any Point of the Elastic Line

Robotics researchers are especially interested in the motion of the first mode tip. At this
point act inertial forces (own and the coupled ones of the other modes), centrifugal,
gravitational, Coriolis forces (own and coupled), forces due to the relative motion of one
mode with respect to the other, coupled elasticity forces of the other modes, as well as the
environment force, the effect of the latter on the motion of the considered mode being
transferred through the Jacobian matrix. We denote the sum of all these forces by the force
F1,1 and call it elasticity force.

All the forces forming the force F1,1 acting at the distance I1,1 from the base of the first mode
form the elasticity moment ɛ1,1 and cause the deflection of the first mode r1,1. (see Eq. 23).

The equation of motion of the forces involved at any point of the elastic line of first
mode, including the point of the first mode tip, can be defined from the equilibrium
equation of elastic line 22. The equation of motion of all forces at the first mode tip for the
given boundary conditions can be defined by the following equation:

H1; j

d2y
1; j

dt2
þ h1;1 þ jTe1;1Fuk þ z1; j"1 þ "1;1 ¼ 0

ΣF¼ 0
at the point of
first mode tip







 : ð39Þ
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Obviously, the term z1; je1 þ e1;1 in Eq. 38 could be written in a more compact form, but
here we have deliberately written it in a split form, to indicate the presence of elasticity
forces of the other modes characterized by z1; je1, and which influence the deformation of
the considered (first) mode. Equation 39 is interesting because it allows one to calculate the
position of the first mode tip. If we know the position of each mode tip we can always
calculate the position of the link tip too and eventually the position of the robot tip.

The motion of the mode tip, its position and orientation, are defined by the sum of
the stationary and oscillatory motion (cf. Eqs. 26, 27).

y1;1 ¼ a1;1 x1;1; Tst1;1; Tto1;1; t
� � tip position of the

first mode in the
direction of the axis y1;1







 : ð40Þ

ψ1;1 ¼ d1;1 x1;1; Tst1;1; Tto1;1; t
� � orientation of the

first mode tip
about the axis z1;1







 : ð41Þ

Vector equation of motion of all the forces at the tip of each mode of the first link can be
defined from Eq. 28 for the preset boundary conditions:

H1
d2y1; j
dt2

þ h1 þ jTe1Fuk þ z1e1 þ e1 ¼ 0

P
F ¼ 0

at the point of
each mode tip
of the first link









 ð42Þ

This equation should be supplemented with the mathematical model of motor.
To describe the behavior of the one-link robotic system having n1 modes, the vector Eq. 42

should be supplemented by the mathematical model of the motor. The motor’s mathematical model
can be defined by writing the equation of motion of all the moments that act on the motor shaft. In
the case of a rigid robotic system the motor moment is opposed by the mechanism moment. With
elastic robotic systems we have a somewhat different situation: the motor moment is opposed by
the bending moment of the first elastic mode that comes after the motor and, partly, by the bending
moments of the other elastic modes that are connected in series after the motor. All the modes that
come after the motor, due to their position, exert certain influence on the motor dynamics.

The effect of the first mode bending moment is defined by the factorþ 1
20, of the second

by� 1
21, of the third byþ 1

22, of the fourth by� 1
23, of the fifth byþ 1

24…
We add all these elasticity moments to the motor model because they are just to oppose

the rotation moment of the motor shaft. The mathematical model of motor is of the
following form of equation:

u1 ¼ R1 � i1 þ CE1 �
:
θ1

CM1 � i1 ¼ I1 �
::
θ1 þ Bu1 �

:
θ1 � S1 � zm 1; j � e1 þ e1;1

� � PM ¼ 0
about the rotation axis
of the first motor







 ð43Þ
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R1 4½ � is the rotor circuit resistance; i1 A½ � is the rotor current; CE1 V=ðrad=sÞ½ � and
CM1 Nm=A½ � are the proportionality constants of the electromotive force and moment,
respectively; Bu1 Nm=ðrad=sÞ½ � is the coefficient of viscous friction; I1½kgm2� is the inertia
moments of the rotor and reducer; S1 is the expression defining the reducer geometry;
zm 1; j � e1 þ e1:1
� �

is the equivalent elasticity moment that opposes the rotation moment of
the motor shaft.

zm 1; j ¼ 0 � 1

21
þ 1

22
� 1

23
::::: �1ð Þ n1�1ð Þ 1

2 n1�1ð Þ

� �

The vector zm1, j characterizes the influence of the elasticity moment of each mode on the
motor dynamics.

The overall order of the system 42–43 is n1+1.
The motion of the first link tip is defined by the sum of the stationary and oscillatory

motion of the tip of each mode plus the dynamics of motor motion θ1 (cf. Eqs. 29–31):

y1 ¼ a1 x1; j; Tst1; j; Tto1; j; θ; t
� � first link

tip position in the
direction of the axis y1







 : ð44Þ

x1 ¼ b1 x1; j; Tst1; j; Tto1; j; θ; t
� � first link

tip position in the
direction of the axis x1







 ð45Þ

=1 ¼ d1 x1; j; Tst1; j; Tto1; j; θ; t
� � first link

tip orientation
about the axis z1







 : ð46Þ

The equation of motion of all the forces at the point of each mode tip of any link can be
defined from Eq. 32 by setting the boundary conditions. Vector equation of all the forces
involved for each mode tip of any link is:

H
d2y

dt2
þ hþ jTe � Fuk þ z �Θ � eþ e ¼ 0

P
F ¼ 0

at the tip of
any mode of the
link considered









 : ð47Þ

This equation should be supplemented by the vector equation of the mathematical model
of motor.

In order to describe the behavior of a robotic system having m links (each of them
containing ni modes), we have to add to the vector Eq. 47 the mathematical model of all
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the motors written in a vector form. Let us define it by setting for each motor the
equation of motion of all the moments acting about the rotation axis of the given motor.
It has the form of the mathematical model of the motor of a rigid robotic system, but
the difference being in that the moment of the i-th motor is not opposed by the
mechanism moment (as with rigid robotic systems). The motor moment is opposed by
the bending moment of the first elastic mode that comes after the motor, and also in
part, by the bending moments of the other elastic modes that are connected in series
after the given motor. All the modes after the motor, due to their position, influence the
dynamics of motor motion. Mathematical model of all m motors can be written in a
vector form as:

u ¼ R � iþ CE �
:
θ

CM � i ¼ I �
::
θþ Bu �

:
θ� S � zm � eþ emð Þ

P
M ¼ 0

about the rotation axis
of the each motors







 : ð48Þ

In Eq. 48 we have m equations of motors.
zm � eþ emð Þ is the matrix characterizing the effect of elasticity moment of each mode on

the motor motion dynamic. em ¼ e1;1 e2;1 e3;1 ::::: em;1
� �T

zm ¼
0 . . . �1ð Þ k�nm�1ð Þ 1

2 k�nm�1ð Þ �1ð Þ k�nmð Þ 1
2 k�nmð Þ

0 . . . �1ð Þ k�nm�n1�1ð Þ 1

2 k�nm�n1�1ð Þ �1ð Þ k�nm�n1ð Þ 1

2 k�nm�n1ð Þ
. . . . . . . . . . . .
0 . . . . . . 0

. . . �1ð Þ k�1ð Þ 1
2 k�1ð Þ

. . . �1ð Þ k�n1�1ð Þ 1

2 k�n1�1ð Þ
. . . . . .
. . . 0

26664
37775

The overall order of the system 47–48 is k þ m.
The robot tip motion is defined by the sum of the stationary and oscillatory motion of

each mode tip plus the dynamics of motion of the motor powering each link, as well by the
included robot configuration (cf. Eqs. 33–38):

y ¼ a xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip position of

the robotic system
in the direction of the axis y







 : ð49Þ

x ¼ b xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip position of

the robotic system
in the direction of the axis x







 : ð50Þ

z ¼ c xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip position of

the robotic system
in the direction of the axis z







 : ð51Þ
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= ¼ d xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip orientation of

the robotic system
about the axis z







 : ð52Þ

ξ ¼ e xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip orientation of

the robotic system
about the axis y







 : ð53Þ

ϕ ¼ f xi; j; Tsti; j; Ttoi; j; θ;a; t
� � tip orientation of

the robotic system
about the axis x







 : ð54Þ

From Eqs. 49–54 we can calculate the position of each mode tip, of each link, and
finally, of the robot tip motion.

Generally, we can derive the following conclusion:
To define the form of elastic line of the considered robotic system it is necessary to

expand the previously known solutions, namely:

– Supplement it by adding stationary solution to the particular solution of D. Bernoulli,
which is of oscillatory character. This means that the given solution depends directly on
the overall system dynamics.

– As the link elastic line does not usually conform to the direction of the preset axes but
extends in the space, we cannot define it by only one equation. General form of the
elastic line is a direct outcome of the dynamics of system motion and cannot be
represented by one equation but three equations are needed to define position and three
equations to define orientation of each point on the elastic line.

– The equation of elastic line of the robotic system should also encompass the angles of
motor shaft rotation θ as in [8], the robot configuration as well, i.e. the angles between
the axes zi�1 and zi.

5 Reference Trajectory

There are two aspects in defining the reference trajectory of the motor angle (see [10–12]), viz.:

1) Elastic deformation is considered as a quantity which is not encompassed by the
reference trajectory. This is the case when the elasticity characteristics in the system are
not known and are not included in the reference trajectory definition. The reference
trajectory is defined as for a rigid system.

2) Elastic deformation is a quantity which is at least partly encompassed by the reference
trajectory. It is assumed that all elasticity characteristics in the system (both of stiffness
and damping) are “known”, at least partly and at that level can be included into the
process of defining the reference motion.
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6 Examples of Simulation

A robot starts from a point “A” (Fig. 11) and moves toward a point “B” in the predicted
time T=2[s]. Dynamics of the environment force is included into the dynamics of system’s
motion [28]. The adopted velocity profile is trapezoidal, with the period of acceleration/
deceleration of 0 2IT.

The same example is analyzed as in paper [12] only with somewhat different parameters
flexibility.

Elastic deformation is a quantity which is at least partly encompassed by the reference
trajectory as explained in [12] (2.1 under 2).

Example 1: The rigidity characteristic for the tip of first mode is Cs1;1 ¼ 6:1569*
105 N=m½ � and Bs1;1 ¼ 10 N � s=m½ � and for the tip of the second mode is Cs1;2 ¼ 1:873*
104 N=m½ � and Bs1;2 ¼ 600 N � s=m½ �.

All other characteristics of the system and environment are the same as in paper [12].
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Fig. 14 The elastic deformations
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The characteristics of stiffness and damping of the gear in the real and reference regimes
are not the same and neither are the stiffness and damping characteristics of the link.
Cx ¼ 0:99 � Co

x ; Bξ ¼ 0:99 � Bo
ξ ,Cs1;1 ¼ 0:99 � Co

s1;1,Bs1;1 ¼ 0:99 � Bo
s1;1,Cs1;2 ¼ 0:99 � Co

s1;2,
Bs1;2 ¼ 0:99 � Bo

s1;2.
As can be seen from Fig. 12 in its motion from point “A” to point “B” the robot tip

tracks well the reference trajectory in the space of Cartesian coordinates.
As a position control law for controlling local feedback was applied, the tracking of the

reference force was directly dependent on the deviation of position from the reference level
(see Fig. 13).

The elastic deformations that are taking place in the vertical plane angle of bending of
the lower part of the link (the first mode) ϑm and the angle of bending of the upper part of
the link (the second mode) ϑe, as well as elastic deformations taking place in the horizontal
plane:, the angle of bending of the lower part of the link (the first mode) ϑq, the angle of
bending of the upper part of the link (the second mode)ϑd and the deflection angle of gear ξ
are given in Fig. 14.

The rigidity of the second mode is about 10 times lower compared with that of the first
mode, it is then logical that the bending angle for the second mode is about 10 times larger
compared to that of the first mode.

Figure 14a exhibits the wealth of different amplitudes and circular frequencies of the
present modes of elastic elements.

Example 2: In contrast to Example 1, the characteristics of stiffness and damping of the
gear, first and second mode of the link in the real regime differ significantly from those in
the reference regime.Cx ¼ 0:1 � Co

x ,Bx ¼ 0:1 � Bo
x ,Cs1;1 ¼ 0:1 � Co

s1;1,Bs1;1 ¼ 0:1 � Bo
s1;1,

Cs1;2 ¼ 0:1 � Co
s1;2,Bs1;2 ¼ 0:1� Bo

s1;2. All other characteristics of the system are the same
as in Example 1.

As can be seen from Fig. 15, the real robotic tip motion in the x, y, z-directions does not
track so well the reference trajectory in the space of Cartesian coordinates as in Example 1.
The partial lack of the knowledge of all flexibility characteristics in the robotic system may
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significantly influence the real robotic tip motion, which has now a much larger deviation
from the reference trajectory in the space of Cartesian coordinates (cf. Figs. 12 and 15).

In this example, the real force has a more pronounced oscillatory character compared to
the reference force (cf. Figs. 13 and 16).

The elastic deformations that take place in the vertical plane: the angle of bending ϑm
and the angle ϑe, as well as elastic deformations taking place in the horizontal plane: the
gear deflection angle ξ, angle of bending ϑq and the angle ϑd, are shown in Fig. 17.

A more significant lack of knowledge of flexibility characteristics of all the elastic
elements causes larger deviations of this quantity from the reference in the course of robotic
task realization. (cf. Figs. 14 and 17).

Let us show the special significance of results from Figs. 14a and 17a. These Figures
exhibit the wealth of different amplitudes and circular frequencies of the present modes of
elastic elements. We have oscillations within oscillations. This confirms that we have
modeled all elastic elements as well as high harmonics (in this case two harmonics of
considered link).

7 Conclusion

A joint is defined in a new way, in dependence of the motor state (active or locked) and
type of elastic or rigid element (gear and/or link) that follows behind the motor. With so
defined types of joints that may appear in a robotic construction it is possible to use the
known equations to calculate the matrices of transformation and Jacobi matrix. An analysis
was made of the choice of reference trajectory, which depends on the level of knowing
elasticity characteristics. The estimated elasticity characteristics may be included into the
reference trajectory, and thus into the control law.

Based on the EBA, we defined the equation of elastic line of the first mode of any link
of a complex robotic system. We have also defined a model of the elastic line of the first
link that has n1 modes, as well as a mathematical model of motor which moves the same
link. On the same principles is defined the model of the elastic line of complex elastic
robotic system with m segments, and each segment has nimodes and also the mathematical
model of motors which move each link.

We demonstrated that the equation of motion of all the forces involved at any point
follows directly from the equation of elastic line. If we define boundary conditions for the
mode tip as the most interesting point on the elastic line, we obtain the equation of motion
at that point, what is classical form of the mathematical model of the elastic robotic system
considered, which essentially LMA is. Thus we demonstrated the connection of the LMA
and EBA. LMA is just a special case of EBA. In addition to the comparative analysis of the
EBA and LMA, the paper also analyzes a number of other phenomena that make
constitutive parts of the motion dynamics of these systems.

a) Euler–Bernoulli equation has been expanded from several aspects:

1) Euler–Bernoulli equation (based on the known laws of dynamics) should be
supplemented with all the forces that are participating in the formation of the
bending moment of the considered mode, what causes the difference in the
structure of these equations for each mode.
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2) Structure of the stiffness matrix must also have the elements outside the diagonal,
because of the existence of strong coupling between the elasticity forces involved.

3) Damping is an omnipresent elasticity characteristic of real systems, so that it is
naturally included in the Euler–Bernoulli equation.

4) General form of the transversal elastic deformation is defined by superimposing
particular solutions of oscillatory character (solution of Daniel Bernoulli) and stationary
solution of the forced character (which is a consequence of the forces involved).

5) General form of the elastic line is a direct outcome of the dynamics of system
motion and cannot be represented by one scalar equation but three equations are
needed to define the position and three equations to define the orientation of each
point on the elastic line.

b) Structure of the mathematical models of actuators: With elastic robotic systems, the
actuator torque is opposed by the bending moment of the first elastic mode, which
comes after the motor, and partly by the bending moments of other modes, which are
connected in series after the motor considered. All modes coming after the motor,
because of their position, exert influence on the dynamics of motor motion. The
mathematical model in our paper is connected to the rest of the mechanism via the
equivalent elasticity moment. New structures of the stiffness matrix and mathematical
model of actuators appear as a consequence of the coupling between the modes of
particular links.

Elastic deformation is a consequence of the overall dynamics of the robotic system, what
is essentially different from the method that was used until today, which purports usage of
“assumed modes technique”. All this has been presented for a relatively simple robotic
system that offered the possibility of analyzing the phenomena involved. Through the
analysis and modeling of an elastic mechanism we made an attempt to give a contribution
to the development of this area.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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