J Intell Robot Syst (2008) 51:187-201
DOI 10.1007/s10846-007-9186-1

Tri-tier Immune System in Anti-virus and Software Fault
Diagnosis of Mobile Immune Robot Based
on Normal Model

Tao Gong - Zixing Cai

Received: 13 October 2006 / Accepted: 30 September 2007 /
Published online: 31 October 2007
© Springer Science + Business Media B.V. 2007

Abstract In this paper, anti-virus problem and software fault diagnosis of mobile robot, an
immune robot, is discussed with proposal of a novel tri-tier immune system (TTIS). TTIS is
a novel artificial immune system, which is comprised of three computing tiers and based on
the normal model. The three tiers include inherent immune tier, adaptive immune tier and
parallel immune tier. The tri-tier immune model is built on some theories of human immune
system and has many good features, such as adaptability, immunity, memory, learning, and
robustness. At the same time, for such immune robot, a novel normal model for the robot
software is also proposed. The normal model is built on the space—time properties of each
component in the robot software and can uniquely identify the normal state of the robot
software. Such tri-tier immune system based on the normal model is suitable for anti-virus
and fault diagnosis, which enable the immune robot to detect all viruses and faults in the
robot software, recognize many viruses and faults, eliminate the viruses and faults, and
repair the damaged robot software to its normal state. Meanwhile, simulation results show
that the tri-tier immune system has the properties of immunity, security and robustness.

Keywords Artificial immune system - Normal model - Immune robot - Anti-virus -

Fault diagnosis

1 Introduction

Robot is a biomimetic technique inspired from some animals and human beings in nature,

and biomimetic robots/systems are also inspired from the natural mechanisms of some
creatures. So the robot technique is developed on the basis of the bioinformatics in nature.

T. Gong (<)

College of Information Science and Technology, Donghua University, Shanghai 201620,
People’s Republic of China

e-mail: taogongchina@gmail.com

T. Gong * Z. Cai
School of Information Science and Engineering, Central South University, Changsha, Hunan 410083,
People’s Republic of China

@ Springer

188 J Intell Robot Syst (2008) 51:187-201

For example, based on the artificial immune system (AIS) the immune robot was proposed
and investigated, which was suitable for dangerous environments [1]. The biomimetic robot
navigation was investigated on the behavior descriptions [2]. The basic motion control of a
free swimming biomimetic robot fish was designed [3]. In this paper, a novel tri-tier
immune model is used to improve anti-virus and fault diagnosis of the robot software,
which is a mobile robot simulator.

Immune computation is a biomimetic mechanism inspired from the natural immune
system of human beings and other creatures. The artificial immune system is very complex,
adaptive and intelligent. Many diseases, such as smallpox and measles, have been
recognized and eliminated by human immune system [4, 5]. On the other hand, the artificial
immune system has been used to detect, recognize and eliminate the computer viruses,
especially in the network such as Internet [6—8]. And the technique has been also used to
detect faults in the hardware and software of the computer system [9-10]. In this paper, the
immune model is comprised of three tiers. The inherent immune tier and the adaptive
immune tier are inspired from the natural immune system. And the parallel immune tier is
based on the parallel computer technique.

2 Tri-tier Immune Model Based on Normal Model

The tri-tier immune model of the robot software is based on the normal model of the
software system, and the normal model is built on the space-time properties of each
component in the software. The space property of each file is represented with the absolute
pathname of the file, and the time property of each file is represented with the last change
time of the file. The absolute pathname is a term in the operation system, and the last
change time refers to the last time that the file is changed. The tri-tier immune model is
inspired from some natural immune theories, and includes inherent immune tier, adaptive
immune tier and parallel immune tier, shown in Fig. 1. The parallel immune tier is built on
the parallel computing theorems in [11], and used to increase efficiency. When the antigen
enters the AIS, the random detectors begin to detect whether the antigen is self or non-self,
by matching the features of the antigen with the self information in the self database. The
self is the part of the AIS, such as the system file of the AIS. And the non-self is not any
part of the AIS or compatible with the AIS. The self information is used to define the
features of the self and represent the normal state of the AIS. And all self information is
stored in the self database.

In Fig. 1, the immunization process is maximizing the percent of the selfs and
minimizing the amount of the non-selfs in the artificial immune system. When an antigen is
determined as a non-self, pattern recognition of the non-self is started in two ways. One
is the way of matching features, and the other is the way of matching rules. The former is
done through querying records in the database and matching the feature information of the
detected non-self with the record information in the non-self database, where the entire
known non-selfs store. The latter is done in a random way through searching some
antibodies in the rule base. If the non-self is known by the AIS (i.e. its features match some
non-self information in the non-self database), then the destroyer is called to eliminate the
non-self. For computer viruses and software faults, the deletion command in the operating
system is a kind of destroyer. Otherwise, the rule matching is used to recognize the non-self
by the antibody and the rule-base on the adaptive immune tier. The rule includes two parts:
the first one is the condition of the non-self feature, and the second one is the conclusion of
the rule-based reasoning, which shows the type of the non-self and the elimination

@ Springer

J Intell Robot Syst (2008) 51:187-201 189

Fig. 1 Tri-tier immune model
based on normal model

Innate immune tier Normal model

Selffnon-self detection

:

Known non-self recognition

Self databas € |

1

Adaptive itmmune tier

Unknown non-gelf learing

'

Unknown non-self memorization

v

MNon-self elimination %

¥

System failover [* W

Non-self
database

Parallel inumune tier

(:)Nndel (:)Nc.dez (::)Nuded

approach of the non-self. The rule matching is similar to the combination of DNA genes.
And the immune algorithm is built on the random search of the rules. If the random search
is done through evolutionary algorithm, then the immune algorithm is built on the
evolutionary algorithm [12-14]. Cooperative co-evolutionary adaptive genetic algorithm
(CCAGA) is suitable for parallel computation, which is convenient to solve complicated
problems [15].

In the immune model, the immune computation has the threshold alike in the immune
response of the natural immune system. And the threshold is caused by the long-time cost
of the random search. Moreover, the antibody search and rule matching are large-scaled in
the chaos state.

3 AIS for Anti-virus and Fault Diagnosis of Mobile Immune Robot

In unknown environment such as the Mars and the moon, mobile robot often encounters
with dangerous obstacles such as fire, trap, earthquake and enemy. In Internet/wireless
environment, the web control based mobile robot has the same bottleneck of anti-virus
security as the web applications on computers. Both viruses and dangerous environments
can cause faults in the robot software, and the reasons for the faults include wrong change
and missing component(s) in the software.

@ Springer

190 J Intell Robot Syst (2008) 51:187-201

Suppose a robot software is represented as S, a component of the software S is
represented as ¢;, the absolute pathname of the component ¢; is represented as p;, the last
change time of the component ¢; is represented as #;. The normal state of the component ¢; is
uniquely identified by its space—time properties p; and ¢; [16]. Moreover, the normal state of
the robot software is uniquely identified by the normal states of all the components in the
robot software. Therefore, the normal state of the robot software can be uniquely
represented with the space—time properties of all the components in the software.

i {sS)IN(s(S)) =1} = {<Pi,t; > [N(s(¢;)) = 1,i = 1,2,---,n} (1)

Here, f denotes a mapping function from the normal model to the self database, s(x)
denotes the state function of an object x, n denotes the sum of the components in the robot
software, and N(-) denotes the normal function that is defined as such.

| 1 ,yisanormalstate
N(y) = {0 ,»is an abnormal state @

The mobile robot is a good test-bed for the immune model [1], and the mobile robot
simulator is also a good test-bed of the immune model, as shown in Fig. 2.

3.1 Encoding of Normal Model

The Java-based robot simulator in Fig. 2 is comprised of 230 files and 9 directories, and
without any file in the simulator software the system will not work normally. Each file or
directory has its unique absolute pathname according to the managing rules of the operation
system, and the absolute pathname can be read with the Java method getdbsolutePath(). At
any time, the last change time of each file or directory is also unique, and the last change
time can be read with the Java method lastModified(). For a file ¢; of the robot simulator S,

Fig. 2 Simulator of a fire-
fighting robot

@i.
e | O

@

@ Springer

J Intell Robot Syst (2008) 51:187-201 191

the absolute pathname of the file ¢; can read and denoted as p;, and the last change time
of the file ¢, can also be read and denoted as #;.. The values of both the space property p; and
the time property ¢; are encoded as a record in the self database SDB.

(P,-,t,—) — SDB (3)

Theorem 1 When all the files of the robot software S are normal, the space—time
properties{(P;, t;)|N (s(¢;)) = 1,i = 1,2,---,n} of all the files uniquely identify the normal
states(S), N(s(S)) = 1 of the robot software S [16].

Through mapping from the space—time properties{(?;,;)} of the files in the robot
simulator to the self database SDB, the normal model of the robot simulator is built. In a
visual 3D graph, the normal model can be visualized as some cells, as shown in Fig. 3.

In Fig. 3, the visualization of the mobile robot simulator is modeled in three dimensions,
which include the hierarchy, the directory and the file. The hierarchy means the hierarchy of
the directory where the file lies. The directory means the number of the directory under
some hierarchy. And the file means the number of the file in some directory.

3.2 Virus/Fault Detection

Non-AIS abnormity detection is based on recognizing the features of the abnormity such as
virus or fault, and traditional AIS-based detection is also based on this idea, which is called
non-self detection [13, 17, 18]. After the normal model of the robot software is established,
the selfs of the software are uniquely identified, and thus the non-self detection can be
carried out through detecting self(s). For an object in the robot software, if the object is not
detected as a self, then the object is determined as a non-self.

|1 ,{po,t,) € SDB
d(o) = {o pot) & SDB “)

Here, d(-) denotes the detector function of the artificial immune system, o denotes an
object in the robot software, p,, denotes the absolute pathname of the object o, ¢, denotes the

Fig. 3 Visualization of the
mobile robot simulator

@ Springer

192 J Intell Robot Syst (2008) 51:187-201

last change time of the object o, 1 represents that the object o is determined as a self, and 0
represents that the object o is determined as a non-self.

The non-self may be a kind of virus or fault, and the type of the non-self can be
recognized in the next step. Pattern recognition of the non-self is carried out by matching
the features of the non-self in the non-self database.

Theorem 2 Based on the normal model of the artificial immune system S, the detection rate
of the self is 100% and the detection rate of the non-self is also 100% [16].

3.3 Virus Recognition and Fault Recognition

In fact, the non-self is strictly a kind of fault, but not always a kind of virus. If the non-self
is not a virus, then the non-self is just a fault. Pattern recognition of viruses can be
categorized into two types; one is direct recognition of known viruses in the innate immune
tier, the other is adaptive recognition of unknown viruses in the adaptive immune tier. The
direct recognition is based on matching the features of known viruses through querying in
the virus database, and the adaptive recognition is based on learning the types of unknown
viruses from all known viruses and memorizing the learnt ones.

The faults of the robot software include two types; one is caused by changing some
components or adding foreign objects in the software, the other is caused by missing some
components of the software.

1 {po,t,)¢ SDB,o €S
u(o)f{o . (Pos1,) € SDB 0 ¢ § (5)

Here, u(-) denotes the function of fault diagnosis, o denotes an object, p, denotes the
absolute pathname of the object o, #, denotes the last change time of the object o, 1
represents that the fault is caused by the non-self 0, and 0 represents that the fault is caused
by missing the component o.

The viruses in the robot software can be known or unknown; known viruses are all
recorded in the virus database VDB, and unknown viruses are not recorded in the virus
database VDB at first, but after the unknown viruses are learnt by the AIS their features are
memorized into the virus database VDB in the end. Therefore, the unknown viruses can be
transformed into known ones by the AIS.

1 ,0€ VDB
v(o) = {0 ,o¢ VDB (6)

Here, v(-) denotes the anti-virus function, o denotes a possible virus, 1 represents that the
virus o is known, and 0 represents that the virus o is unknown.

The unknown viruses can be learnt with some learning mechanisms such as an improved
BP neural network (IBPNN), RBF neural network, evolutionary learning, and example-
based learning [16].

3.4 IBPNN-based Learning of Unknown Viruses and Learning Example

In natural immune system, adaptive learning of immune cells against unknown viruses is a
kind of very complex process, which is even known little by doctors and immunologists.
Alike, the adaptive learning of the artificial immune system against unknown computer

@ Springer

J Intell Robot Syst (2008) 51:187-201 193

viruses is also very complex. To explore the secret, the improved BP neural network is built
and used for the adaptive learning, and then the robot simulator S is immunized on its
normal model and the improved BP neural network.

The BP neural network consists of three tiers, which include input tier, hidden tier and
output tier, and one of its examples is shown in Fig. 4 [16, 19]. In the input tier of the
example, 5 features of the known viruses are represented as {x;[i = 1,2,---,5}, and these
features include coding language, proliferation manner, engine, feature string and damage
[16]. In the hidden tier, 3 types of the known viruses are represented as{x;|i = 6,7,8}. In
the output tier, the most similar type of the known virus for the unknown non-self or its new
type is represented as xog. The IBPNN structure in Fig. 4 is the initial state, and any new
type of unknown viruses that have been learnt can be added into the hidden tier as a
new node. The new function of updating the hidden tier is improved in this neural network,
which is different from other BP neural networks. Of course, new feature for recognizing
unknown viruses can also be added into the input tier, but that case will be more complex.

In Fig. 4, xpew represents a new type of unknown virus that has been learnt, and the new
type can be added into the BP neural network as a new node of the hidden tier. The BP
neural network satisfies the following formulas.

r=3(z o)

AWy =r0;(1 - 0)) B (7)
B = Xk:W_HkOk(l — Ox) B
e.=d, — O,

Here, P represents the performance of the BP neural network; y represents the training
input; z represents the output node; d,. represents the anticipant output of the node z
through the input y, and d; represents the anticipant output of the jth node; O,. represents
the actual output of the node z through the input y, and O; represents the actual output of the
Jjth node; w;_.; represents the weight value between the nodes of the ith tier and those of the

Fig. 4 Structure of the improved

BP neural network Input

@ Springer

194 J Intell Robot Syst (2008) 51:187-201

Jjth tier, and AW;_,; represents the weight value between the nodes of the ith tier and those
of the jth tier, and AW;_,; represents its change; r represents the learning rate; /3; represents
the value of the jth node, ¢, represents the error of the output node. Let the threshold for
classifying the known viruses be o, if virus v¢p(x;,0),j =6,7,8, then the virus v is
unknown and can be given a new type Xp.,. Here, p(xj, o-) represents the neighbor space
from the node x; with the neighbor radius o.

Example 1 Suppose the artificial immune system S has learnt to recognize and eliminate
only 3 types of viruses, which are the loveletter worm, the happytime worm and the Jessica
worm. So for the immune system S, other worms and the viruses that are not worms are
unknown. In the example, a new worm CrazyVBS.vbs is unknown for the immune system
S, and the feature string of the new worm is different from that of any type of 3 known
worms. Besides, the coding language, the proliferation manner, engine and damage of the
new worm are same as those of the known loveletter worm.

At first, the BP neural network is trained with all examples of 3 known types of worms,
and the curve for training the BP neural network is shown in Fig. 5. Here, the amount for
training the neural network is represented as m, and its value is about 28,000.

In Fig. 5, when the BP neural network has been trained for 22,800 times with the data of
all the known worms, the error of the output node in the neural network becomes enough
small.

Second, the important features of the new worm CrazyVBS.vbs are attained and
represented as a feature vector (1,1,1,4,1), and the values of the five dimensions for the
feature vector denotes the properties of coding language, proliferation manner, engine,
feature string and damage.

Third, the feature vector of the new worm CrazyVBS.vbs is input into the trained BP
neural network, and the output of the neural network is the result for learning the new
worm. The output of the neural network is 1.0000132865184477, which means that the first
known worm is most similar to the unknown worm.

At last, the type of the new worm Crazy VBS.vbs is added as a new node into the hidden
tier of the improved BP neural network shown in Fig. 6, and the features of the new worm
are memorized in the artificial immune system S.

e 4
1.751 |
1.605 |
1.459 |
1.313 |
1.167 |
1.021 |
0.875 |
0.729 |
0.583 |
0.437 |
0.291 |
D145 |
0o

§V

] 5000 10000 15000 20000 25000
Fig. 5 Curve for training the BP neural network

@ Springer

J Intell Robot Syst (2008) 51:187-201 195

Fig. 6 Structure of the improved
BP neural network after learning
the new worm

In Fig. 6, the type of the new worm CrazyVBS.vbs is represented as the new node xo of
the hidden tier in the improved BP neural network, and the old output node xo is named
with the new name x;o. Therefore, the structure of the improved BP neural network can be
expanded by learning new viruses, and the improved BP neural network is dynamic during
learning.

Example 2 Suppose the artificial immune system S has learnt to recognize and eliminate
only 3 types of viruses, which are the loveletter worm, the happytime worm and the Jessica
worm. In the example, 7,168 viruses are not worms and are all unknown for the immune
system S. The features of the non-worm viruses are different from those of any type of 3
known worms, and they are classified into several types. The new types of the non-worm
viruses are added into the hidden tier of the improved BP neural network in Fig. 4 after
learning the non-worm viruses with the trained BP neural network in Fig. 5, and the new
structure of the BP neural network is shown in Fig. 7.

In Fig. 7, the types of the non-worm viruses are represented as the new node from xg to
xg+; of the hidden tier in the improved BP neural network, and / represents the amount of
the types for the non-worm viruses.

3.5 Viruses Elimination and Self Repair

After all the non-selfs are detected and recognized, the non-selfs can be eliminated with
some tools such as delete command of the operation system. If a virus file is opened at that
time, the virus file will have to be closed before it is deleted.

{0l(po.1,)¢SDB,0 € S} — 0

After the step of eliminating the non-selfs, all the changed files of the robot simulator
have been deleted. At that time, other files in the software are all normal, but some files are

@ Springer

196 J Intell Robot Syst (2008) 51:187-201

Fig. 7 Structure of the improved
BP neural network after learning
the non-worm viruses

missing. To repair the damaged robot simulator, the step of self repair is activated by
repairing the missing files with their backup files.

{0](pos 1) € SDB, 0¢S} — {o|(po,1,) € SDB, 0 € S}

In the example of the mobile robot simulator, the computer viruses are three worms. One
is the love worm, and the second is the happy-time worm. The former copies itself to the
computer disk, and spreads through e-mails. And the latter spreads all through e-mails.
Both the two worms destroy the operation system by overwriting the system files with the
worm files and deleting the crucial files. The last worm is a variant of the love worm.

4 Simulations

The immune model is simulated for the mobile robot simulator and the three worms. An
immune program is developed with JDeveloper tool and used to detect, recognize and
eliminate the worms in the mobile robot simulator. And the simulation results are shown
with the visualization technique based on the Java Applet.

After the three worms enter the mobile robot simulator and infect some files of the
simulator, the immune program detects every file by matching the features of the file with
the information in the self database. The detection results of the immune program show in
Fig. 8.

In Fig. 8, 20 non-self files are detected, including the files infected by the love worm, the
happy-time worm and the variant of the love worm. After these files are detected, the files
are recognized through feature matching in the non-self database and learning with the
improved BP neural network. The variant of the love worm is unknown for the artificial
immune system S, and the results for recognizing the non-self files and learning the variant
show in Fig. 9.

@ Springer

J Intell Robot Syst (2008) 51:187-201

197

Fig. 8 Detection results of the
immune program

|_| R

o

Auto Pilot

Stop

Reset

| 89-26/32 in
y: | 45-31/32 in
Angle: |UUU
Status: Virases are detected!

20 non-selfs are detected and some files are missing!

In Fig. 9, the non-self files are recognized as the infected files of the happy-time worm
through the string feature of ‘happy time’ etc. And the non-self files are recognized as the
infected files of the love worm through the string feature of ‘loveletter’ and ‘.copy’ etc.

After the visualization of the results, the recognition results show in Fig. 10.

& self is detected, and the 15th file is detected successfully. o
A non-self is detected, and now the non-self is being recognized...
File extension: vhs

Continue to recognize ...

The non-self' is among the non-self database, and is known.

The type of the non-selft Worm,

The name of the non-self: Loveletter Wonm

The non-self can be eliminated by the command: delete

The feature vector of the non-self is {1,1,1,1,1)

The non-self has been recognized and is being deleted ...

The non-self has been eliminated.

The 16th file is detected successfully.

& non-self is detected, and now the non-self' is being recognized... ¥

(1) Results for recognizing the known worms

A non-self 1s detected, and is being recognized...
File extension: vbs

Continue to recogrize ...

The non-self can not be found in the non-self
database, and is urknown for the AIS.

The improved BP neural network is started to

learm the unknown non-self,

The feature vector of the non-self is (1,1,1,4,1).

The type of the non-self is new and added into

the hidden tier of the network as a new node.

The non-self has been leamt, and is being deleted.
The non-self has been eliminated.

The 294th file is detected successfully. b

(2) Results for learning the variant

Fig. 9 Results for recognizing the non-self files and learning the variant

@ Springer

198 J Intell Robot Syst (2008) 51:187-201

Fig. 10 Visualization of the
recognition results

In Fig. 10, the visualization graph of the recognition results is represented with three
colours and molecules. The black molecules represent the self files. The white molecules
represent the non-self files infected by the love worm. And the grey molecules represent the
non-self files infected by the happy-time worm.

After the non-self recognition, the infected files are eliminated immediately through the
deletion command of the operation system. When the infected file is useful system file of
the mobile robot simulator, such as the file test.htm, the file is marked in the useful-file
database before it is deleted. The results of the non-self elimination show in Fig. 11.

X | 89-26/32 in
v | 45-31/32 in
Angle: |°°°

Status: Viruses are deleted!

2 non-self files (infected by the happy-time worm) are
deleted!

16 non-self files (infected by the love worm) are deleted!

2 non-gelf files (infected by the variant of the love worm)
are deleted!

1 useful system file test htm (infected by the varant of the

Mg, womn) is deleted!
I The next step is to repair the damaged system.

Fig. 11 Elimination results of the non-self files

@ Springer

J Intell Robot Syst (2008) 51:187-201 199

Fig. 12 Visualization of the
non-self elimination

In Fig. 11, 2 non-self files, which are infected by the happy-time worm, are deleted. And
16 non-self files, which are infected by the love worm, are deleted. And 2 non-selfs, which
are infected by the variant of the love worm, are deleted. One of the two non-self files is the
system file test.htm, and it is marked in the useful-file database before it is deleted.

And the visualization graph of the elimination results shows in Fig. 12.

In Fig. 12, some non-self files in Fig. 6 are deleted. After the system file test.htm is
infected, marked and deleted, the file is repaired with its backup file in the backup disk.
And the failover results of the system file in the mobile robot simulator show in Fig. 13.

In Fig. 13, the black molecules represent the self files, and the yellow molecule
represents the repaired file test.htm. After the virus elimination and the failover of the
useful system file test.htm, the mobile robot simulator restores normal and can be started
with the Web explorer again. The system file test.htm shows normal, though it has been
infected by the variant of the love worm, deleted, and then repaired by the immune
program.

Fig. 13 Visualization of the
failover results

@ Springer

200 J Intell Robot Syst (2008) 51:187-201

The above example of the mobile robot simulator and its immune simulation show that,
the non-self detection, the non-self recognition, the non-self elimination and the failover of
the useful system files are all effective in the theories and experiments. So the tri-tier
immune model is correct and useful in the applications of the mobile robot simulator.
Moreover, further work will be emphasized on the complex theories of the more complex
artificial immune system and the complex applications in the real world.

Above all, anyway, the immune approach is another biomimetic technique inspired from
the natural immune system, like the robot technique inspired from some animals and human
beings in nature.

5 Conclusions

Like the robot, the immune model is also biomimetic. Besides, the robot is a good test-bed
of the burgeoning immune technique. And the immune robot will be a new useful robot in
the kingdom of robots.

In this paper, the tri-tier immune model has been proposed and analyzed for the immune
robot. And the simulation of the immune application to the mobile robot simulator shows
that, the immune technique is effective in the non-self detection, the non-self recognition,
the non-self elimination and the failover of the useful system files. More investigations and
applications will be done on the more complex theories and real-world problems of the AIS
technique and the robot technique.

Acknowledgments We sincerely thank editors and reviewers for their good advice, and greatly thank support
from the National Natural Science Foundation of China under Grant 60234030 & 60404021 and the
Foundation of Donghua University under Grant 104-10-0044017.

References

1. Gong, T. Cai, Z. X.: Mobile immune-robot model. In: Proceedings of IEEE International Conference on
Robotics, Intelligent Systems and Signal Processing , 1091-1096 (2003).
2. Matthias, O.F., Hanspeter, A.M.: Biomimetic robot navigation. Robot. Auton. Syst. 30, (1), 133—153
(2000)
3. Yu, J.Z., Wang, S., Tan, M.: Basic motion control of a free-swimming biomimetic robot fish. Proc. IEEE
Conf. Decis. Control. 2, 1268—1273 (2003)
4. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. (Paris). 125C, 373(1974)
5. Deem, M.W., Lee, H.Y.: Sequence space localization in the immune system response to vaccination and
disease. Phys. Rev. Lett. 91, (6), 068101/1-4 (2003)
6. Balthrop, J., Forrest, S., Newman, M.E.J., et al.: Technological networks and the spread of computer
viruses. Science, 304, (5670), 527-529 (2004)
7. Dasgupta, D., Gonzélez, F.: An immunity-based technique to characterize intrusions in computer
networks. IEEE Trans. Evol. Comput. 6, (3), 281-291 (2002)
8. Harmer, PK., Williams, P.D., Gunsch, G.H., et al.: An artificial immune system architecture for
computer security applications. IEEE Trans. Evol. Comput. 6, (3), 252-280 (2002)
9. Branco, C.PJ., Mendes, V.R., Dente, J.A.: Using immunology principles for fault detection. IEEE Trans.
Ind. Electron. 50, (2), 362-373 (2003)
10. Luh, G.C., Cheng, W.C.: Identification of immune models for fault detection. Proc. Inst. Mech. Eng.,
Part I, J. Syst. Control Eng. 218, (5), 353-367 (2004)
11. Gong, T., Cai, Z.X.: Parallel evolutionary computing and 3-tier load balance of remote mining robot.
Trans. Nonferrous. Met. Soc. China. 13, (4), 948-952 (2003)
12. de Castro, L.N., Timmis, J.: Artificial immune systems as a novel soft computing paradigm. Soft
Comput. 7, (8), 526-544 (2003)

@ Springer

J Intell Robot Syst (2008) 51:187-201 201

13.

14.

15.

16.

17.

18.

19.

de Castro, L.N., Timmis, J.: Artificial Inmune Systems: A New Computational Intelligence Approach.
Springer, London (2002)

Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (AIRS): an immune-inspired
supervised learning algorithm. Genetic Programming and Evolvable Machines 5, (3), 291-317 (2004)
Cai, Z.X., Peng, Z.H.: Cooperative coevolutionary adaptive genetic algorithm in path planning of
cooperative multi-mobile robot systems. J. Intell. Robot. Syst. 33, 61-71 (2002)

Gong, T., Cai, Z.X.: Anti-worm immunization of web system based on normal model and BP neural
network. In: Wang, J., et al. (Eds.) ISNN 2006, LNCS 3973, 267-272 (2006)

Madhusudan, B., Lockwood, J.W.: A hardware-accelerated system for real-time worm detection. IEEE
Micro. 25, (1), 60-69 (2005)

Verma, V., Gordon, G., Simmons, R., et al.: Real-time fault diagnosis robot fault diagnosis. IEEE Robot.
Autom. Mag. 11, (2), 56-66 (2004)

Huang, G.B., Saratchandran, P., Sundararajan, N.: A generalized growing and pruning RBF (GGAP-
RBF) neural network for function approximation. IEEE Trans. Neural Netw. 16, (1), 57-67 (2005)

@ Springer

	Tri-tier Immune System in Anti-virus and Software Fault Diagnosis of Mobile Immune Robot Based on Normal Model
	Abstract
	Introduction
	Tri-tier Immune Model Based on Normal Model
	AIS for Anti-virus and Fault Diagnosis of Mobile Immune Robot
	Encoding of Normal Model
	Virus/Fault Detection
	Virus Recognition and Fault Recognition
	IBPNN-based Learning of Unknown Viruses and Learning Example
	Viruses Elimination and Self Repair

	Simulations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

