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Abstract
In various industry sectors, predicting the real-life availability of milling applications poses a significant challenge. This
challenge arises from the need to prevent inefficient blade resource utilization and the risk of machine breakdowns due to
natural wear. To ensure timely and accurate adjustments to milling processes based on the machine’s cutting blade condition
without disrupting ongoing production, we introduce the Fused Data Prediction Model (FDPM), a novel temporal hybrid
prediction model. The FDPM combines the static and dynamic features of the machines to generate simulated outputs,
including average cutting force, material removal rate, and peripheral milling machine torque. These outputs are correlated
with real blade wear measurements, creating a simulation model that provides insights into predicting the wear progression
in the machine when associated with real machine operational parameters. The FDPM also considers data preprocessing,
reducing the dimensional space to an advanced recurrent neural network prediction algorithm for forecasting blade wear levels
in milling. The validation of the physics-based simulation model indicates the highest fidelity in replicating wear progression
with the average cutting force variable, demonstrating an average relative error of 2.38% when compared to the measured
mean of rake wear during the milling cycle. These findings illustrate the effectiveness of the FDPM approach, showcasing an
impressive prediction accuracy exceeding 93% when the model is trained with only 50% of the available data. These results
highlight the potential of the FDPM model as a robust and versatile method for assessing wear levels in milling operations
precisely, without disrupting ongoing production.

Keywords Fused Data Prediction Model (FDPM) · Remaining Useful Lifetime Prediction · Hybrid-Model Prognostics ·
Physics-based Simulations · Recurrent Neural Network · Long Short-Term Memory

List of symbols

0-P Zero-to-peak vibration [mm/s]
Ae Radial depth of cut [mm]
Ap Axial depth of cut [mm]
α Contact angle [degrees]
BiLSTM Bidirectional long short-term memory
CNN Convolutional neural network
dFa Tangential force [N]
dFr Radial force [N]
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dFt Feed force [N]
EF External factor
ETS Exponential Triple Smoothing
Fc Average cutting force [N/mm2]
Ft ETS forecast
f1 Rake surface
f2 Flank surface
FDPM Fused data prediction model
FRIEND Feature selection approach on inconsistent data
gPC Generalized polynomial chaos
LSTM Long short-term memory
MACE Mean acceptable error [%]
MAE Mean absolute error [%]
mc Chip thickness compensation factor
Mc Simulated torque [Nm]
n Spindle rotational speed [rpm]
Pc Net power [kW]
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PCC Pearson correlation coefficient algorithm
PLC Programmable logic controller
P-P Peak-to-peak vibration [mm/s]
p-value Probability value
PPX Pay-per-x
Q Material removal rate [mm3/min]
ReLu Rectified linear unit activation function
RMS Root mean square [mm/s]
RMSE Root mean square error [%]
RNN Recurrent neural network
RUL Remaining useful lifetime [%/min]
St ETS seasonal forecast
t Time
Tanh The hyperbolic tangent activation function
Tend Final running time [min]
Ti Current running time [min]
Tt ETS trends forecast
Vb Flank wear [mm]
Vbf1 Flank wear on the rake surface
Vbf2 Flank wear on the flank surface
VbFc Cumulative flankwear value associatedwith aver-

age cutting force calculations [mm]
Vbmax Maximum measured flank wear on individual

blade [mm]
Vbmean Calculated mean of the blade-specific Vbmax val-

ues [mm]
VbMc Cumulative flank wear value associated with

torque calculations [mm]
VbQ Cumulative flank wear value associated with

material removal rate calculations [mm]
VbRNN Physics and data-informed recurrent neural net-

work
Vc Cutting speed [m/min]
Vf Table feed speed [mm/min]
X1 VbRNN input layer variable ‘Cumulative VbFc’
X2 VbRNN input layer variable ‘Milled meters’
X3 VbRNN input layer variable ‘Radial depth of cut’
X4 VbRNN input layer variable ‘Spindle motor

torque’
X5 VbRNN input layer variable ‘Profile length’
X6 VbRNN input layer variable ‘Table feed’
x̂1 Predicted variable ‘Cumulative VbFc’
Yt ETS forecast
z Number of teeth in the spindle
* Vbmean value location in Fig. 9

Introduction

Milling machines play a crucial role in various industry sec-
tors, enabling the cutting or shaping of raw materials to meet

Fig. 1 The case peripheral milling machine’s main components

specific requirements. This research focuses on a peripheral
milling machine used in the marine industry, where contin-
uous production is the norm and conventional methods for
investigating milling blade wear progress are not often fea-
sible. Therefore, the primary objective of this study is to
increase the understanding of the wear phenomena inmilling
machine spindle cutting blades by combining different meth-
ods to accurately evaluate the wear progress. To achieve this,
the study involves a thorough analysis of in-use data and
physical characteristics associated with the milling process
and combiningmeasuredwear data fromusedmilling blades.
The main physical components of the peripheral milling
machine are illustrated in Fig. 1, being an alternating electric
motor, gearbox, shaft, and spindle with cutting blades. The
main cutting components of the test case peripheral milling
machine comprise a spindle equipped with cutting blades
arranged in four rows, with 18 blades per row around its
circumference. Themilling is operating in a down-feed direc-
tion.

Presently, the ongoing research in this field places a grow-
ing emphasis on the integration of diverse methodologies for
prediction-making to overcome their respective limitations.
One of the most critical aspects is integrating data that is rel-
evant to the observed phenomena because inadequate data
may also contain information that impacts the expected out-
put negatively. Dimensionality reductionmethods, which are
based on machine learning, play a crucial role in unveiling
hidden patterns and relationships within complex machin-
ing processes. The attractiveness of dimensionality reduction
methods lies in their non-parametric nature, their efficiency
in terms of computational requirements, and their straight-
forward implementation (Sarmadi et al., 2022). Wu et al.
researched a physics-informed machine learning model to
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demonstrate that the physics-informed model incorpora-
tion with the long short-term memory (LSTM) prediction
model can achieve high-accuracy and reliable prediction per-
formance in real-life milling operations surface roughness
prognostics (Wu et al., 2022). However, the overall concern
on model operation only on the limited datasets as well as
potential shortcomings in the time-varying black box fea-
ture extraction process remains unanswered. In addition to
the uncertainties created by the black box process, the direct
usage of the input signals with LSTM may increase the pos-
sibility of bad-quality data. Processing raw time series data
directly with the LSTM network might lack robustness due
to the presence of noise in the sensor data (An et al., 2020).
To address this issue, an integrated and transparent feature
selection is needed to perform local feature extraction from
the original signal sequence data.

Other components frequently incorporated into hybrid
models include physics- and data-based models. Physics-
based models provide essential data for prediction models
that cannot be obtained through machine or sensor data,
including information on structural integrity, material behav-
ior, and machining dynamics (Elsayed, 2012). In general, the
physics-based methodologies have the capability to assess
the health status of a specific system by utilizing a set of
equations that are derived from foundational principles in
physics and engineering (Sikorska et al., 2011). Their draw-
back is that they often become excessively complex and
require a deep understanding of the physical dynamicswithin
the system of interest (Wu et al., 2017). Therefore, despite
the progress in academia aimed at finding ways to optimize
complex systems with multiple conflicting objectives, such
as the data-driven sequential learning framework proposed
by Khosravi et al. (Khosravi et al., 2024), it may still hinder
the widespread implementation of the created model in other
applications. In contrast, data-driven models are constrained
by the extent of their training datasets (Arias Chao et al.,
2022). These algorithms rely on historical data and big data
rather than a comprehensive understanding of the system’s
physics (Heng et al., 2009). When evaluating the predictive
uncertainties linked to the observed data, model parameters,
and structures (Tian et al., 2023), data-driven models face
limitations due to their training data.

Hybrid techniques may offer more in-depth information
on the asset behaviour in contrast to physics-based mod-
elling or data-based model used alone, as both models often
suffer from their comprehensive applicability to complex
real-world domains (Arias Chao et al., 2022). As such,
hybrid approaches are continuously explored to leverage the
strengths of both methods across research fields. Sahoo et al.
proposed a hybrid model that merges the cutting force coeffi-
cient derived from finite element method (FEM) simulations
with a revised undeformed chip thickness (UCT) algorithm

to predict cutting forces in micro end milling. The com-
parison between the forecasted and actual results showed
a significant correlation, with the average peak force error
ranging between 8.1 and 10.21% in the x- and y-directions,
respectively.Despite the encouraging outcomes of their study
in predicting cutting forces using hybrid models, it did not
explore the relationship between cutting force and Vb pre-
dictions (Sahoo et al., 2019). Yang et al. (2022) proposed a
novel hybrid method that merges data-driven strategies with
insights from models for real-time wear detection in face
milling machines, using power or force measurements. This
model was put to the test with synthetic data created from
simulations of a physics-based model, considering a vari-
ety of operational conditions, levels of measurement noise,
and tool wear degrees. The model achieved an accuracy rate
of 92% in data where 1% noise was artificially introduced.
Importantly, this hybridmodel significantly reduced the num-
ber of false alarms compared to using either data-driven or
physics-based models on their own, demonstrating its effec-
tiveness in accurately detecting tool wear and anomalies in
real-time. Zhang et al. (2021) combined the digital represen-
tation of data with the physical inputs through a digital twin.
They proposed a digital twin-enhanced dynamic schedul-
ing methodology, which is based on the physical machine
and virtual machine inputs. Their model outputs are used to
enhance machine availability prediction, disturbance detec-
tion and performance evaluation. The highlighted limitation
of the study emphasizes the time-consuming and costly work
of the digital twins, which are required for the efficient imple-
mentation of the model. To overcome this challenge (Zhang
et al., 2021), the authors are proposing the usage of a partial
digital twin, comprising solely the relevant objects and essen-
tial model types (e.g. geometry models, physics models, or
behaviour models) based on specific requirements.

In various research, the developed methods are imple-
mented in controlled circumstances, yet, the real-world
domain predictions require memory effects due to environ-
mental noise and other natural disturbances in production.
Li et al. (2022) developed a hybrid method to predict the
Remaining Useful Life (RUL) of cutting tools by consider-
ing their wear state. They used support vector regression to
map the relationship between sensor signals and tool wear
in a controlled test setup. The findings indicated that this
approach achieved enhanced prediction accuracy when con-
trasted with the utilization of exclusively physics-based or
data-driven methods. However, the original support vector
regression is known for its broad applicability (Santos et al.,
2021) but is not widely acknowledged to accommodate large
datasets (Rivas-Perea et al., 2013) or to effectively handle
long-term dependencies in data (Bathla, 2020).

To capture memory effects more effectively from past
occurrences, a version of the Recurrent Neural Network
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(RNN) known asLSTMhas demonstrated its potential in pre-
dicting RUL. Zhou et al. (2019) proposed amethod involving
the creation of a unified representation of working conditions
and the extraction ofwear characteristics from the processing
signal. These extracted wear features, along with the cor-
responding working conditions, are combined into an input
matrix for predicting tool wear. They utilize an LSTMmodel
to capture the complex spatio-temporal relationships under
variable working conditions and establish a model for pre-
dicting the remaining useful life of the tool. In another study,
Nie et al. adopted an alternative approach by integrating
a convolutional neural network (CNN), bidirectional long
short-term memory (BiLSTM), and an attention mechanism
to predict RUL ofmilling cutters. The CNN in their approach
is responsible for handling sensor-monitored data, extracting
crucial local feature information. Simultaneously, the BiL-
STM neural network adaptively extracts temporal features,
while the attentionmechanism processes critical degradation
features and extracts information related to the tool wear sta-
tus. Their study demonstrated promising results compared to
traditional approaches in terms of predictive accuracy (Nie
et al., 2022).

In the context of milling blade wear prediction, there
is a noticeable paucity of attainable and implementation-
easy models concerning hybrid approaches suitable for
deployment in ongoing production assets. Furthermore, prior
studies have overlooked the utilization of prediction mod-
els that incorporate historical knowledge of past occurrences
into physics-based simulation model usage and transpar-
ent feature extraction processes. In summary, this research
introduces a novel Fused Data Prediction Model (FDPM)
approach to fill this gap by combining advanced simula-
tionmodel physics, rake wear results, and transparent feature
extraction process with the recurrent neural network for RUL
prediction.

The main contributions of this research are:

1. A novel data simulation model is established to emulate
machine behaviour based on cumulative trend behaviour
in terms of average cutting force (Fc), torque (Mc), and
material removal rate (Q).

2. A recurrent neural network called VbRNN is established
to predict rake surface wear in the milling machine con-
text.

3. A novel FDPM model is developed, which combines
simulated wear trend behaviour, real sensor data, a
transparent feature extraction process, VbRNN and the
Exponential Triple Smoothing (ETS) to extrapolate off-
set in the Vb predictions.

Methodology

A programmable logic controller (PLC) collects operational
data from the peripheral milling machine, presented in
Fig. 2a. The collected dynamic inputs consist of the follow-
ing variables: table feed speed (Vf), cutting speed (Vc), radial
depth of cut (ae), and axial depth of cut (ap). The online data
collection process is described in Mäkiaho et al., (2023).
The static inputs required for constructing the physics-based
simulation model construction are summarized in Table 3.
The machine static parameters Fig. 2b and dynamic vari-
ables Fig. 2d are used as the physics-based simulation model
inputs, which creates simulated cumulative trend behaviour
in terms of Fc, Mc, and Q. The blade wear laboratory mea-
surements are performed for four (4) milling cycles (T1C4,
T1C5, T2C4, and T2C5) presented in Fig. 2c. These results
are connected to the simulation model, which further creates
a time-integrated wear progress trend signal imitating tem-
poral rake wear in the spindle blades. Due to the ongoing
machine production, these measurements were taken only
once, at the end of pre-determined milling meter targets. The
results of the simulation model are evaluated by comparing
them to themeasured wear levels of individual cutting blades
on the rake surface. In the experiments, the best-performing
simulation model variable was found to be the cumulative
rake wear, which is associated with average cutting force cal-
culations (VbFc). This dynamic trend is then combined with
real machine data to create a hybrid dataset for the feature
reduction phase.

The hybrid dataset is formed in Fig. 2e, where the dynamic
variable data obtained from the PLC and the selected simula-
tion model output VbFc are conjugated. This merged dataset
is utilized as input for the Pearson Correlation Coefficient
(PCC) algorithm to ensure that only meaningful features are
selected for the neural network training. The PCC is a statis-
tical measure that calculates the linear correlation between
two variables (Zhang et al., 2016), providing insight into
the strength and direction of their relationship. The PCC is
used to select optimal degradation features and linear corre-
lations for the wear model (Cheng et al., 2019; Jiang et al.,
2021). Therefore, the PCC is used to identify features that
have a positive correlation with the VbFc, yet, ensuring more
informative and robust features for the RNN to learn and to
improve its accuracy.

The subsampled features from the PCC are used as inputs
(X1,…, X6) to train the LSTM neural network, named
VbRNN due to its aim to predict accumulated rake wear.
A generalized principle of a neural network is illustrated
in Fig. 2, point (f). The output layer of the neural net-
work supplies a probability value of a selected parameter
to forecast the RUL of the system (Li et al., 2018; Zhang
et al., 2016), which is detailed in Chapter 5.2. The Expo-
nential Triple Smoothing (ETS) method is used in Fig. 2g
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Fig. 2 Overall description of the
data inputs and the FDPM model

to visualize the compensation needed due to inaccuracies
in the VbRNN predictions. The prediction model developed
under this research is including the process steps depicted in
Fig. 2c–h utilizing aggregated simulation model data, blade
wear measurements, and real-life observations. The model
is herein referred to as the Fused Data Prediction Model
(FDPM).

Physics-based simulationmodel
construction

To construct a physics-based simulation model, understand-
ing the forces affecting the milling blade is essential. Cutting
forces are the forces generated when a cutting tool is in con-
tact with the milled material. These forces are generated due
to the interaction between the tool’s cutting edge and the
workpiece, as illustrated in Fig. 3. The cutting forces can be
divided into three components: feed force, radial force, and
tangential force (Wayal et al., 2015). The feed force (dFt) is
the force that pushes the tool into theworkpiece (Z-direction),
while the radial force (dFr) is the force that acts perpendicular
to the cutting direction (Y-direction) (Moufki et al., 2015).
The tangential force (dFa) is the force that acts in the direc-
tion of the cutting edge (X-direction) (Moufki et al., 2015).
These forces can vary depending on the machined material,
Vc, chip depth of cut dimensions (ae, ap), andVf, as annotated
in Fig. 3.

The forces affecting the blade will wear the surfaces in
contact with the milled material. The maximum surface wear
(Vbmax) describes the maximum width of the surface wear
land (Uhlmann et al., 2014) on each side of the contact flanks.
These flanks are annotated as a rake surface (f1) and flank
surface (f2) (Mia et al., 2017; Xie et al., 2012). The follow-
ing subchapters present the physics-based equations, cutting
blade wear measurements, and simulation model creation
and validation.

Physics-based equations

The physics-based equations used in the simulation model
are created with the input parameters Vf, spindle rotational
speed (n) derived from the Vc, ae, and ap that can create
as realistic variating output as possible to imitate physical
phenomena occurring whilst the milling machine is in opera-
tion. The input parameterswere collected from the peripheral
milling machine data provided by the embedded PLC. The
physical phenomena constructed in the simulation model are
tested and compared with Fc, Mc, and Q calculations. The Fc
formula is presented in Aaltonen et al. (1997):

Fc = hm × kc × b ×
(

360

z × α

)

(1)

where average chip thickness (hm), specific cutting force
(kc), and length of cut (b) are resolved bymultiplication. This
product is further multiplied with the result of 360 (degrees)
over the product of the calculated contact angle (α), and the
total number of cutting elements (z) in the spindle. The Mc

is constructed according to Sandvik (2017):

Mc = Pc × 30 × 103

π × n
(2)

Where the net power (Pc) calculations and n are dynamic
parameters. Lastly, theQ is calculated directly from the simu-
lationmodel inputs, as presented inErsvik andKhalid (2015),
Nee (2015):

Q = ap × ae × V f

1000
(3)

Detailed employment of the dynamic aspects in Eqs. (1)
and (2) can be observed in research paper (Mäkiaho et al.,
2022), where the simulation model architecture was pre-
liminarily prepared and used for vibration excitation and
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Fig. 3 Blade contact parameters
and affected forces

Table 1 Recorded operational
cycles with cumulative milled
meter values and recorded data
points

Operational cycle T1C4 T1C5 T2C4 T2C5

Milled meters [m] 2009 2505 2010 2518

Recorded data [points] 15,001 18,653 15,212 17,748

torque imitation to obtain additional information for pay-per-
x (PPX) business model (Schroderus et al., 2022; Uuskoski
et al., 2020) lifecycle calculations.

Cutting blade wear measurements

The blade surface wear measurements were performed from
four (4) different operational cycles at the customer facility.
The operational cycles generate the research datasets that
are used in different phases of the FDPM. Table 1 presents
the operational cycles along with their respective cumulative
meters milled and the number of recorded data points for
each cycle. The quantity of data points recorded during the
milling process is contingent upon twovariables: the duration
of the milling operation and the specific profile type being
manufactured. This relationship exists because material feed
speeds, which are controlled automatically, vary depending
on the type of profile being processed. The operational data is
collected with an online data procurement system connected
to the machine’s PLC system. Once in operation, the data
points were recorded with a frequency of 5 Hz, resulting in
200 ms between individual data points.

The naming convention of T1 and T2 in the opera-
tional cycles indicates the unique numbering of two separate
spindles. This is done to prevent unnecessary production
stoppages caused by the time required for blade changes.
Therefore, T1 is the spindle set number 1, and T2 is the spin-
dle number 2. During the blade wear measurement tests, the
spindles are changed to the peripheral milling machine once
the predetermined stage of milledmeters is reached. The pre-
determined stages were 2000 m and 2500 m which were met
in close approximation. In designations, C4 and C5, the letter
‘C’ refers to blade rows on a spindle,which are positioned at a
90-degree cutting angle perpendicular to the material being
milled. During the normal milling process, only one blade

Fig. 4 Carl Zeiss Jena optical microscope setup with the digital con-
nection to the NI Labview engineering software-based digital photo
measurement tool

row is in contact with the material. The numbers ‘4’ and ‘5’
indicate the specific blade edge used in a given operational
cycle.

Laboratory measurement setup and wear limit
criteria

Optical microscopic measurements are accomplished with a
1200–2400% zooming range from the original pixel frame
of 2560 times 2048 pixels. The Vbmax measurements were
performed with calibrated Carl Zeiss Jena optics connected
with internally created digital photo measurement software
based on NI Labview engineering software. Microscopic
measurement setup excluding the computer interface with
the measurement software is illustrated in Fig. 4. Due to the
confidential nature of the manufacturing equipment, a more
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Fig. 5 Numbered individual
cutting blade #46 flank surface
1–4 in (a), rake surface edges 4
(up left) and 8 (down right) in (b)

Fig. 6 Principle of the wear measurement

detailed illustration of the milling machine setup is not pro-
vided.

The sides of the cutting blades were marked with carved
numbering to reduce the risk of confusion after the milled
meters were received and the blade edge was turned or
changed in the spindle as illustrated in Fig. 5. In addition
to each cutting blade numbering, each of the edges was
carved for similar reasoning, as presented with numbers 1–4
in Fig. 5a. Similar identification for edges 5–8 exists on the
reverse side of the f 2. The f 1 surface side of the blade is
presented in Fig. 5b.

In this study, the blade-specific wear measurements are
presented by the maximum values of flank wear (Vbmax)
for individual flank surfaces, where the maximum peak
land width is measured (Siddhpura & Paurobally, 2013; The
American Society of Mechanical Engineers, 1985), as anno-
tated in Fig. 6.

The Vbmax tool life criterion can be considered as a wear
criterion when the wear pattern in the measurement area
results is relatively uneven (Siddhpura & Paurobally, 2013),
which meets the criterion in the results of this research. The
Vbmax is also referred to as the critical flank wear in which
the tool can be observed to reach its end of life and requires
replacement (Traini et al., 2019). In previous studies, differ-
ent Vbmax values were used: 0.24 mm in Panda et al. (2008),
0.3 mm in Lin et al. (2020), and 0.7 mm in Caldeirani Filho
and Diniz (2002). In this study, a blade change threshold
of 0.4 mm was established for the prediction phase. The
determination of this threshold was based on expert opinions
regarding blade condition, which involved visually inspect-
ing and comparing the blades after their operational cycle.
To achieve our research objective, a thorough evaluation of
how the blade condition affects milled material quality in the
specific machine construction was carried out in collabora-
tion with end users and machine manufacturer experts. This
evaluation centred around a critical threshold of 0.4 mm,
measured from the rake surface, which played a central role
as a defining parameter in our investigation. Therefore, the
normal operational rake wear and milling blade change limit
used in this study can be summarized by the presented crite-
rion as follows:

Normal operation: 0 mm ≥ Vbmax ≤ 0.4 mm.
The individual cutting blade physical dimensions are

given in millimetres to X, Y, and Z-directions according
to Fig. 7a, being 19.1 mm, 8.0 mm, and 19.1 mm, respec-
tively. Consequently, the selected Vbmax value corresponds
to approximately 5% of the flank’s physical dimensions in
the f 1 direction and 2.1% in the f 2 direction.

The f 1 surface side of an individual cutting blade is pre-
sented in Fig. 7a where the observed cutting edge is pointed
with a red colour rectangle. Each measured cutting edge sur-
face was analyzed by the software-based measuring tool to
accurately observe the maximum peak land width in Fig. 7b.

123



Journal of Intelligent Manufacturing

Fig. 7 Microscopic view of
milling blade Vbmax indicating
observed blade #44 flank #4 in
(a), close view in (b), and
Laplacian transformed view in
(c)

Fig. 8 Wear pattern comparison
between rake surface (f1) and
flank surface (f2) wear named as
Vbf1 and Vbf2, respectively

A Laplacian of Gaussian filter was occasionally employed in
the Vbmax pattern recognition, as the filter helps to estimate
the scales, shapes, and orientations of an object (Siddhpura
& Paurobally, 2013). An example of the Vbmax examination
with the help of the Laplacian of Gaussian filter is presented
in Fig. 7c to determine the f 1 surface wear maximum value.

Analysis of the wear measurements

The wear measurement results were analyzed to quantify
the amount of wear experienced by the milling blades during
their designatedmilling cycle. As previously discussed, these
forces act in three dimensions, with the primary effect being
the wear on the two blade surfaces that come into direct con-
tact with the milled material. Therefore, the milling blades’
f 1 surface and f 2 surface measurements were performed.
The f 1 surface-related inconsistency on test run T1C5 can be
observed in Fig. 8 where the majority of the measured data
points are scattered on the f 2 surface side of the blade, which
can be interpreted as anomalous behaviour.

Consequently, the T1C5 flank surface wear results are left
out from the wear prediction part of the research due to its
examined inconsistency on the wear patterns in comparison
to any researched time or cycle constraints. Despite this, the

rake surface measurements on the T1C5 remain consistent
in comparison to the number of milled meters with the other
test runs, which fortifies the f 1 surface measurement’s usage
in the simulation model creation. The scatter plot illustration
in Fig. 8 also presents the natural variation in rake surface
dimension between the individual blades. Naturally, some
degree of variation in the f 1 surface dimension is anticipated
in the measured results. After analyzing the measurements,
the recorded variation is deemed to fall within reasonable
limits.

Due to the natural variation in the results, the measured
mean value (Vbmean) of the blade wear is calculated for the
simulation model validation purposes. Minimum and maxi-
mum values are also recorded to obtain the scale in which the
Vbmax values are present in the circumference of the blades
in a specific row. The calculated mean values used in the
simulation model construction (T2C4) and validation phase
(T1C4, andT2C5) are found inTable 2 below.A complete list
of the blade-specific f 1 surface and f 2 surface Vbmax values
of each test run are recorded in Appendix 1, yet only the f 1

surface results are used in the simulationmodel construction.
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Table 2 The measured mean, minimum, and maximum f 1 wear values
in millimetres

Dataset Vb measured mean Vb scale min Vb scale max

T2C4 0.338 0.299 0.38

T1C4 0.327 0.274 0.374

T2C5 0.402 0.330 0.481

Table 3 Simulation model static input parameters

Static input parameters Value Unit

Spindle diameter, (D) 496 mm

Spindle number of effective teeth, (z) 18 pcs

Electric motor nominal power, (P) 45 kW

Gear unit ratio: (HSS/LSS ratio) 7.88 ratio

Low-speed shaft nominal torque, (Tg) 2290 Nm

Lead angle, (κ) 90 degrees

Material-specific cutting force, (Kc1.1)
(Sandvik P1.2.Z.HT)

1820 N/mm2

Chip thickness compensation factor, (mc) 0.25 –

Physics-based simulationmodel creation
and validation

The objective of the simulation model is to reconstruct the
continuous-time wear pattern to as close an approximation
to the known measured Vbmean -value as possible. All the
simulations are performed in MATLAB-Simulink software,
which is a commonly known design and programming plat-
form for dynamic and embedded systems. Simulation inputs
are divided into static parameters and dynamic input vari-
ables. Static input parameters used in the simulation model
construction are listed in Table 3, containing physical dimen-
sions of the millingmachine components, milling lead angle,
nominal component values, and feed material-related static
properties. All the static data presented in Table 3, including
the material-specific hardness factor Kc1.1, is received from
the case machine’s original equipment manufacturer. The
chip thickness compensation factor mc is obtained (Sandvik,
2017).

The equations (Eqs. 1, 2, and 3) represent various calcu-
lation formulas that incorporate both the static parameters
and the dynamic input variables for the simulation model
in Fig. 9. Base calculations for the simulated formulas are
presented in Mäkiaho et al. (2022). Due to diversity in the
equation output units, a unique external factor (EF) is needed
to accommodate the iterated simulation results as close as
possible to the measured Vbmean target value measured from
the T2C4 dataset. The purpose of the EF is to correct any

offset or discrepancy in the signal behaviour that may arise
due to differences in the units used in the equation’s output.
By applying the EF, the simulation results can be calibrated
to better match the measured target value, ensuring greater
accuracy in the model’s predictions. Also, the discrete values
provided by the equations require continuous-time integra-
tion (1/t) to obtain the cumulative trend behaviour of the
parameter’s progress in the time domain. Consequently, the
simulation model provides cumulative trends of the individ-
ual equation outputs to be validated, named VbFc, VbMc,
and VbQ, respectively.

The VbFc, VbQ, and VbMc values presented in Table 4
are the final results received from the physics-based simu-
lation model. The validation of the results is performed by
comparing the received simulation results to the measured
dataset-specific mean values already presented in Table 2.

The T1C4 dataset was primarily used in the simulation
model validation due to its relatively similar milled meters
values (2009m) in comparison to the T2C4 (2010m) used for
the model construction. All the simulated results are cumula-
tive values to present wear accumulation to the blades, which
are encountering stress behaviour when in physical contact
with the milled material. The simulated results illustrate rel-
ative error % in comparison to the measured mean values as
VbMc and VbQ indicating negative, and VbFc positive error
values with the T1C4. The scale of the variations in the T1C4
results is reasonable in accuracybut the variation in the results
propagated in further testing of the constructed simulation
model with another validation test run, T2C5. The model
was calibrated using data for a shorter milling cycle (T2C4,
2010 m); however, its extrapolation capability for produc-
ing accurate rake wear simulation results for a longer time
domain data cycle (T2C5, 2518 m) was exceeding expecta-
tions. The relative error % values obtained when compared
to the measured Vbmean at the final data cycle stayed within a
relatively small range, indicating much better accuracy than
the T1C4 results. The average error percentage of the dataset
relative errors also indicates that theVbFc method overcomes
the VbMc and VbQ in accuracy.

In conclusion, the VbFc produces the most accurate val-
ues to meet the measured Vbmean target value. The simulated
VbFc average error value of 2.38% is therefore bolded in
Table 4 to highlight the most applicable simulated signal
for the prediction algorithm. The accumulated VbFc trend
behaviour is visualized in Fig. 10 with the measured mini-
mum and maximum values for the test run. All the simulated
results are located inside the MinMax boundaries of each
dataset. The red asterisk ‘*’ symbols in the figure are pre-
senting the measured Vbmean value location of each test run
at the end of the milling cycle.

To conclude, the results from the presented two validation
rounds give good confidence in using the VbFc in the data
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Fig. 9 Structure of the simulation
model

Table 4 Simulated Vb results in
comparison to measured mean
values in Table 2

Dataset VbFc
[mm]

Relative 
error [%]

VbMc
[mm]

Relative 
error [%]

VbQ 
[mm]

Relative 
error [%]

T2C4 0.338 0.00 % 0.340 0.59 % 0.340 0.59 %

T1C4 0.355 7.89 % 0.300 -9.00 % 0.290 -12.76 %

T2C5 0.399 -0.75 % 0.390 -3.08 % 0.390 -3.08 %

Average error [%] 2.38 % -3.83 % -5.08 %

merging phase together with the operational data obtained
from the PLC.

Feature reduction process with Pearson
correlation

This stage of the FDPMmodel integrates the operational data
and physics-based simulation model data into one dataset.
The data collection was designed to collect data from PLC
as well as external vibration measurements during the blade
wear test duration (54 calendar days). The collected vibration
data contained vibration raw signal data from three (3) direc-
tions (axial, horizontal, and radial) as well as calculated Root
Mean Square (RMS), zero-to-peak (0-P), and peak-to-peak

(P-P) amplitude values. However, a malfunction in the vibra-
tion collection setup at the start of the wear measurements
hindered the ability to use the vibration excitation data in
conjunction with the other process-related data collected. As
a result, it was decided to only utilize the PLC data to obtain
usable parameters for the RNN, thereby creating a consistent
stream of data for the algorithm’s training. Although, some
methods are recognized in the literature for selecting fea-
tures on inconsistent data like the feature selection approach
on inconsistent data (FRIEND) in Qi et al. (2020) or mean
acceptable error (MACE) in Kim et al. (2017), using such
additional methods are excluded from this research due to the
existence of other operational data adequate for the purpose.
The collected data, excluding the vibration data, consisted of
operational data from eleven (11) variables, listed in Table 5.
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Fig. 10 Simulated VbFc trends
with a different test run T2C4
‘blue’, T1C4 ‘orange’, and T2C5
‘grey’ with measured MinMax
boundaries for the test run, as
well as Vbmean rake surface value
with ‘*’

Table 5 Input variables to Pearson correlation coefficient algorithm

Variables Unit Variable #

Axial depth of cut, (ap) mm 1

Cutting speed (Vc) m/min 2

Frame position mm 3

Milled meters m 4

Profile height mm 5

Profile length mm 6

ProfileType 1…2 7

Radial depth of cut, (ae) mm 8

Spindle motor torque (Mc) Nm 9

Table feed, (Vf) mm/min 10

VbFc mm 11

Variables 1–10 are obtained from PLC and variable 11 from
the simulation model.

Twowell-known correlationmethods, Pearson and Spear-
man’s (Myers & Sirois, 2006), were initially tested for the
T2C4 dataset. Upon observing a significant similarity in the
variable correlations between the two methods when com-
paring VbFc to other variables, the selection of Pearson
over Spearman was motivated by its renowned capability
in detecting linear relationships between variables measured
on continuous scales (Obilor&Amadi, 2018). Consequently,
the Pearson correlation coefficient was deemed more appro-
priate for the analysis.

The selection of input variables for theVbRNN is based on
two criteria: an overall positive average score and a positive
correlation to the simulated VbFc in at least two out of three

data cycles. Applying these criteria resulted in the selection
of six variables, denoted as X1 to X6, as presented in Table 6.
After exposing the input variables to the PCC algorithm, the
results are indicating the highest average correlation to VbFc
from’Milled meters’,’Radial depth of cut’,’Spindle motor
torque’,’Profile length’, and ‘Table feed’, with the correla-
tion of 0.834, 0.176, 0.166, 0.076 and 0.035, respectively.
All the selected variables were found to be statistically sig-
nificant with both the tested methods at a significance level
of p = < 0.01, as correlations are deemed significant when
p-values are below 0.05 (Obilor & Amadi, 2018).

Remaining useful lifetime prediction
with a recurrent neural network

TheRNNs are commonly used in real-life applications due to
their proven applicability to detect dependencies in the data as
well as solve several types of time series forecasting problems
in high-dimensional data structures (Sagheer & Kotb, 2019).
A recurrent neural network learns not only from the current
time series input but can accommodate relevant information
frompast states of a neuron in the network (DeBeaulieu et al.,
2022). A widespread version of the RNN neural network
is called LSTM, which was introduced by Hochreiter and
Schmidhuber in 1997 (De Beaulieu et al., 2022; Samek et al.,
2019).

The cell architecture in the LSTM algorithm comprises
this specialized capability to learn and remember long-term
dependencies with the help of dedicated backward flow.
Therefore, the LSTM algorithm is selected as part of the net-
work in a supervised manner to perform the forecasting for
the FDPM model dataset containing multidimensional data
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Table 6 PCC scores for the
datasets, the highest denoted as
X1 to X6 inputs to the VbRNN
algorithm based on their average
correlation to the VbFc variable

Variable Unit PCC
[T2C4]

PCC
[T1C4]

PCC
[T2C5]

Average VbRNN
input

VbFc mm 1.000 1.000 1.000 1.000 X1

Milled meters m 0.860 0.804 0.839 0.834 X2

Radial depth of
cut, (ae)

mm 0.183 0.244 0.101 0.176 X3

Spindle motor
torque

Nm 0.146 0.185 0.166 0.166 X4

Profile length mm 0.630 – 0.690 0.288 0.076 X5

Table feed, (Vf) mm/min 0.101 – 0.138 0.143 0.035 X6

Axial depth of cut,
(ap)

mm – 0.049 0.284 – 0.168 0.022

Cutting speed (Vc) m/min – 0.003 – 0.057 0.107 0.016

ProfileType 1…2 0.114 – 0.204 0.049 – 0.014

Profile height mm 0.047 – 0.120 – 0.265 – 0.113

Frame position mm 0.044 – 0.120 – 0.273 – 0.116

in time series. The predictions are performed with different
learning ratios of 50%, 70%, and 90% to obtain information
and knowledge on the model’s prediction accuracy towards
the end of the spindle blade set life cycle. The operational
data from the test run ’T2C5’ is selected for testing the
RNN algorithm due to its length in data points as well as
its absence in the physics-based simulation model construc-
tion. The computational evaluation was performed using an
Intel(R) Core(TM) i5-8365U CPU processor with 1.60 GHz,
1896 MHz, and 4 Core(s), along with 16 GB of physi-
cal memory. The Python algorithm was executed using the
Jupyter Notebook computing platform.

Architecture and training

Generally, the deep neural network developed consists of the
input layer, LSTM layer, dense layer, and output layer, as
presented in Fig. 11. To simplify, the complete deep neu-
ral network architecture developed in this research is further
referred to as VbRNN, to contain its function to predict blade
surface wear with the help of the recurrent neural network.

The input layer consists of six variables based on the
PCC results, being’VbFc’,’Milled meters’,’Radial depth of
cut’,’Spindlemotor torque’,’Profile length’, and ‘Table feed’,
the first being the forecasted variable. The input neurons are
depicted as X1…6, respectively. To enhance network perfor-
mance, sample values are normalized to fall within the range
of [0, 1] in the model training phase. For predicting the next
time step, a sliding window look-back technique with a value
of 10 is employed to select the number of previous time steps
used as input features. To prevent overfitting and conserve
computational resources, early stopping is implemented to

monitor the validation loss with patience of 3. This means
that if no improvement is observed in the validation loss for
three consecutive epochs, the training process automatically
stops. The combined use of the sliding window and early
stopping ensures the model’s performance on the validation
set is optimized and prevents unnecessary training iterations.

After the input layer, the network has a single LSTM layer
with 64 hidden units and hyperbolic tangent (Tanh) as an acti-
vation function, due to its robustness and non-linear insertion
capability for neural networks (Sartin & da Silva, 2013). The
Tanh function compresses the input between negative 1 and
positive 1, being: X∈ (−1, 1) (Herawan et al., 2016; Zeng&
Long, 2022). Rectified linear unit activation function (ReLu)
and logistics sigmoid (sigmoid) activation functions were
also tested for the dataset. The ReLu is commonly known for
allowing to find of complex nonlinear relationships from the
data. The ReLu retains the positive numbering and restrains
negative numbering to zero (Nanni et al., 2022). Sigmoid
is known for its capability to manage the output data of
the network layer between 0 and 1 (Xu et al., 2021): X
∈ (0, 1) (Zeng & Long, 2022). However, the comparison of
the Keras activation functions with 50% of training data indi-
cates the most sufficient prediction capability for the dataset
is addressedwith the Tanh activation function. Tanh indicates
dominancy to complywith the T2C5 test runVb value, where
the probability to converge the actual Vb value is stated as
0.402(0.378|tanh).

The comparison of the activation function influence on the
prediction accuracy, relatedMeanAbsolute Error (MAE) and
associated computational effect in terms of training time are
found in Table 7. The training time for Tanh and Sigmoid
activation functions is similar, while the ReLU activation
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Fig. 11 The VbRNN architecture
used for RUL prediction contains
an input, an LSTM layer, a dense
layer, and an output layer

Table 7 Activation function
Tanh, ReLu, and Sigmoid impact
on the VbRNN prediction
capability and associated training
times

T2C5 Vb Tanh ReLu Sigmoid

Vb 0.402 0.378 0.344 0.205

MAE – 0.011 0.030 0.104

Training time (s) – 74.53 109.39 73.37

function requires significantly more time for training. The
MAE indicates the model learning capability by estimat-
ing the performance degradation by comparing the estimated
trend with actual performance (Pecht & Kang, 2018), where
all individual differences have equalweight (Sagheer&Kotb,
2019). MAE calculation form is depicted in Chicco et al.
(2021), Peng et al. (2010), Tong et al. (2022):

M AE(x , x̂) = 1

N

N
∑

i=1

|xi − x̂i | (4)

Considering that each of the nodes is connected to the
following layer, the architecture is called a fully connected
network containing dependency between each active layer.
Another terminology for a fully connected layer is a dense
layer (Zeng & Long, 2022). The used dense layer consists of
32 nodes to reduce feature dimensionality from the LSTM
layer. The dense layer is further connected to a single pre-
dicted parameter ̂X1(VbFc) in the output layer.

The LSTM and dense layers are added with a dropout
function with a rate of 0.2 to improve model generalization
in the training (Cheng et al., 2017). Bayesian optimization
function with log-uniformwas tested with the following lim-
its: low = 0.00001, high = 0.001 to uniformly sample in the
logarithmic space between low and high. Adam optimiza-
tion with a learning rate of 1.585E-5 was selected for the
model based on the result from the Bayesian optimization
function. The batch size was manually iterated receiving the
best scores when the batch size = 30. Following, the MAE

Fig. 12 The mean absolute error with the data set training size of 50%

loss function is used to evaluate the model performance with
different tested training % shares. The MAE loss behaviour
is illustrated in Fig. 12, where both the train and test trends
are presented with a 50% training share by using the Tanh
activation function and aforementioned optimization charac-
teristics.

The learning iteration capability of a model is controlled
with epochs. The results declare that themodel learning capa-
bility is saturated approximately after 15 epochs, however,
the network was further trained to achieve good accuracy,
learning rate, and loss minimization as proposed in Poorn-
ima and Pushpalatha (2019). Another widely used model
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Table 8 RMSE and MAE scoring with 50%, 70%, and 90% train set
with the T2C5

Data (trained data points) Test RMSE [%] Test MAE
[%]

Full cycle (17,748) – –

Prediction with 90% train
(15,972)

0.005 0.004

Prediction with 70% train
(12,422)

0.012 0.011

Prediction with 50% train
(8873)

0.016 0.014

prediction error was tested by applying root mean square
error (RMSE) for the train data. The RMSE measures the
standard deviation of the errors that the RNN architecture
yields in its predictions (Géron, 2017; Lughofer & Sayed-
Mouchaweh, 2019) by squaring the errors before averaging,
therefore, making it more sensitive to larger errors (Wang &
Lu, 2018). RMSE calculation form is given as in Chicco et al.
(2021), Peng et al. (2010), Tong et al. (2022):

RM SE(x , x̂) =
√

√

√

√

1

N

N
∑

i=1

|xi − x̂i |2 (5)

The lowest scores for RMSE and MAE are presented in
Table 8. As seen, both the RMSE and MAE scores decrease
as the training data amount increases. Considering the low
RMSE andMAE scores the model performance is proven, as
generally acknowledged that the lower the evaluation indexes
of RMSE and MAE are, the better the model performance is
considered (He et al., 2021; Wang et al., 2017).

Remaining Useful Lifetime (RUL) prediction

The training set size and data quality conclusively affect
the prediction accuracy of the model due to its capability
to retrieve dependencies from previously learned data. As
described earlier, the LSTM layer architecture creates long-
term dependencies with the help of dedicated backward flow,
which ultimately results in higher accuracy on the prognosis
as more data is fed to the model. The numeric results of the
prediction accuracy are illustrated in Table 9, which declares
the progressive learning impact on the Vb prediction accu-
racy for the simulated T2C5 dataset. The prediction result
of 93,6% with the given 50% training set size incrementally
increases being 94,7% with 70% train set size, and 97,6%
with 90% train set size when x̂1/Vbmean. Overall, the results
indicate that the rake wear phenomenon aggregation with Fc

Fig. 13 VbRNN prediction capability visualized with training data
share of 50%

calculations is relatively attainable by the VbRNN algorithm
to learn as indicated by the prediction accuracy results.

The trend behaviour between the simulated Vb progres-
sion and VbRNN prediction is visualized in Fig. 13. The
prediction is distinct to receive higher accuracy together with
the increase in the training data set. The’blue’ trend indicates
the training share,’green’ is the simulated Vb progression,
and’red’ is the VbRNN model’s capability to predict future
trend behaviour. The horizontal line’Blade change limit’ is
set to the selected rake surface blade change interval target of
0.4mm to indicate the appointed blade change threshold. The
VbRNNs prediction capability is visualized with a training
data share of 50%.

The trend of remaining useful lifetime is further illustrated
in Fig. 14, which employs a learning rate of 50%. The figure
presents the RUL in minutes, as well as the normalized wear
value ofVb forT2C5 (0.4019mm), expressed as a percentage
ranging from 100 to 0%. The normalized RUL for the system
degradation is expressed as:

RU L = (Tend − Ti )

Tend
(6)

where, Tend corresponds to the time at the selected Vb value
of 0.4019 mm at RUL [0%/0 min], and Ti is the current
time in operation (Feng et al., 2023). Since the prediction
value with a 50% training dataset resulted in the predicted
Vb of 0.3761 mm at the last data point (17,748), therefore,
extrapolation to reach the targeted Vb of 0.4019 mm was
performed to visualize the variation of the model inaccuracy
in terms of RUL minutes and % -values. The ETS is a gener-
ally acknowledged method used for time-series forecasting.
The ETS uses three parameters with different weights: level,
trend, and seasonal. The mathematical basis of the ETS is
observable in Airlangga et al. (2019), Chen and Ho (2020),
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Table 9 VbRNN prognostic
capability for the simulated T2C5
dataset, evaluated by absolute
error, related % -value, and the
model prediction accuracy %

Data (trained data
points)

Vbmean, (̂x1)
[mm]

Absolute
error

Absolute error [%] Prediction accuracy
[%]

Full cycle (17,748) 0.4019 – – –

Prediction with
90% train
(15,972)

(0.3923) 0.0096 0.96% 97.6%

Prediction with
70% train
(12,422)

(0.3806) 0.0214 2.14% 94.7%

Prediction with
50% train (8873)

(0.3761) 0.0259 2.59% 93.6%

Fig. 14 Remaining useful
lifetime in minutes and % with
VbRNN prediction and ETS
forecast trends

where the ETS forecast (Yt) is described in the following
equation by summing up level (Ft), trends (Tt), and seasonal
(St) over time (t) forecasts.

Yt = Ft−1 + Tt−1 + St (7)

The ETS method was employed to integrate 2000 his-
torical events (data points 15,748–17,748) of the predictions
made by the VbRNN. The primary utilization in this instance
was to display the number of timesteps by which the VbRNN
algorithm predictions fell short of the simulated wear Vb =
0.4019 mm. Thus, the RUL RUL = 0%/0 min is illustrated
with the extrapolated forecast targeted on the final Vb value.
The extrapolated trend based on the ETS calculation per-
formed in the simulation model is annotated with a dashed
line in Fig. 14.

The prediction results indicate that the trained dataset with
a 50% training deviates by approximately 4 min of machine
operation, having 6% in RUL normalized % -value left in
comparison to the original T2C5 data set simulated values.

Additionally, Fig. 14 contains proposed threshold lim-
its, which are illustrated in traffic light colours. Such limits
are feasible to indicate forthcoming milling blade change
operations with predetermined warning thresholds. These
thresholds are set and visualized, with the first notification at
27%/15 min, and the second at 17%/10 min of the remaining
lifetime. The last threshold indication is undertaken at 5 min
and 8% before the predicted end of life, giving the operator
sufficient time to react and prepare for the spindle change
operation.

Conclusions

The assessment and measurement of blade wear in real-
life applications present a significant challenge, primarily
due to the reluctance of real-life manufacturing processes to
undergo operational stoppages unrelated to planned or forced
downtime. This limitation hampers the ability to comprehen-
sively investigate the wear progression of milling blades, a
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process that often requires repetitive measurements at differ-
ent stages of the milling cycle and throughout the predicted
lifetime of the blades. In this research, a novel FDPMmodel
is proposed enabling accurate blade wear predictions yet
minimizing the need for additional downtimes in production
often required for empirical studies. While previous studies
consider physical dynamics with the inclusion of machining
data, they often lack attainability and efficient implementa-
tion for in-production industrial assets. The FDPM’s open
architecture and demonstrated capability to predict avail-
ability with limited training data address these gaps left by
previous research.

The validation of the physics-based simulation model
demonstrates its excellent predictive capability for the VbFc,
yielding a low average relative error of 2.38% when com-
pared to the measured mean of the milling cycle rake wear.
This finding underscores the model’s accuracy and reliabil-
ity in simulating real-world scenarios. However, the model’s
foundation heavily relies on the physics-based simulation
model, which incorporates the physical behaviour occurring
during milling machine operations. As a consequence, the
model’s physics-based simulation model construction pro-
cess requires only a limited amount of operational data.
Whereas the model relies highly on the physical features, the
reliance on specific physical effects in the simulationmodel’s
architecture limits its direct generalizability for use in other
applications.

The PCC stage of the FDPM process is incorporated to
retain the variables having a positive correlation toVb, which
enables faster training times and improves the model perfor-
mance of the VbRNN prediction algorithm by reducing the
dimensional space. The VbRNN prediction method is con-
sidered suitable for the peripheral milling machine setup due
to its capability to retain information on past occurrences,
as well as the capability to adapt changes in the produc-
tion setup while offering transparent implementation of the
selected features.

The prediction accuracy of 93.6% with the limited 50%
training data gives a profound ground towards further devel-
oping the FDPM model’s RUL prediction for onsite use. In
the results, the prediction result of 93,6% with the given
50% training set size incrementally increases being 94,7%
with 70% train set size, and 97,6% with 90% train set size.
These results highlight the excellence of the FDPM model
and lay a solid groundwork for the potential development
of semi-autonomous or fully autonomous variable selection,
prediction offset analyzing, and RUL estimation systems,
thereby enhancing productivity and enabling on-site utiliza-
tion of FDPM in milling machines.

The constrained availability of comprehensive machine-
related datasets hindered the opportunity to conduct a more
extensive and thorough investigation of the FDPM model

over a prolonged time frame. In future research, it is rec-
ommended to give priority to incorporating the FDPM
model into diverse applications. This will allow for an
assessment of the model’s generalizability across various
configurations, considering the physical differences present
in different applications. By testing the FDPM model in dif-
ferent contexts, researchers can gain valuable insights into its
adaptability and robustness, ultimately enhancing its practi-
cal utility and widening its scope of applicability. Particular
attention needs to be given to prediction accuracy made at
the beginning of the milling cycle with low training share,
where data may be scarce, resulting in higher uncertainty
in predictions. Furthermore, future research should address
any anomalous behaviour that could affect the prediction
accuracy of the FDPM model and how effectively the ETS
can be used to extrapolate the offset in predictions while
affected by anomalous instances. It is essential to note that
the FDPMmodel in this research is limited to detecting blade
wear exclusively during normal operation, and any potential
anomalous occurrences should be thoroughly investigated
to understand their impact on the model’s performance in
such circumstances. However, this study has appointed sig-
nificant avenue for improving availability in high-energy
milling applications, especially where other wear measure-
ment methods pose implementation challenges.
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Appendix 1 illustrates themeasured Vb
values for each blade. The blades are used
in four milling cycles, named T1C4, T1C5,
T2C4, and T2C5, which generated
the research datasets. The wear on blade
surfaces f1 and f2 was recorded separately,
named Vbf1 and Vbf2. The datasets are
named using the following format: spindle
(T), spindle #, row (C), blade edge #; milled
meters per milling cycle.

Operational cycle T1C4; 2009 m T1C5; 2505 m T2C4;2010 m T2C5;2518 m

Blade # Vbf1 Vbf2 Vbf1 Vbf2 Blade # Vbf1 Vbf2 Vbf1 Vbf2

41 0.346 0.072 0.397 0.184 141 0.318 0.146 0.33 0.096

42 0.373 0.168 0.378 0.541 142 0.337 0.149 0.367 0.075

43 0.327 0.126 0.346 0.337 143 0.324 0.147 0.355 0.093

44 0.311 0.143 0.364 0.445 144 0.38 0.184 0.386 0.076

45 0.346 0.217 0.38 0.485 145 0.331 0.149 0.355 0.073

46 0.324 0.114 0.336 0.573 146 0.336 0.187 0.392 0.076

47 0.299 0.148 0.367 0.441 147 0.311 0.112 0.373 0.084

48 0.337 0.112 0.336 0.503 148 0.33 0.149 0.387 0.077

49 0.311 0.15 0.361 0.581 149 0.373 0.151 0.415 0.072

50 0.373 0.148 0.38 0.751 150 0.355 0.146 0.42 0.058

51 0.317 0.185 0.392 0.91 151 0.336 0.148 0.429 0.057

52 0.274 0.148 0.336 0.778 152 0.38 0.148 0.411 0.075

53 0.299 0.146 0.398 0.742 153 0.336 0.151 0.423 0.072

54 0.342 0.187 0.401 0.635 154 0.358 0.167 0.481 0.075

55 0.319 0.14 0.38 0.672 155 0.33 0.149 0.436 0.075

56 0.308 0.149 0.392 0.556 156 0.299 0.184 0.416 0.059

57 0.374 0.151 0.38 0.523 157 0.332 0.113 0.429 0.073

58 0.308 0.148 0.349 0.414 158 0.317 0.149 0.43 0.056
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