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Abstract
An instantaneous and precise coating inspection method is imperative to mitigate the risk of flaws, defects, and discrepancies
on coated surfaces. While many studies have demonstrated the effectiveness of automated visual inspection (AVI) approaches
enhanced by computer vision and deep learning, critical challenges exist for practical applications in the manufacturing
domain. Computer vision has proven to be inflexible, demanding sophisticated algorithms for diverse feature extraction. In
deep learning, supervised approaches are constrained by the need for annotated datasets, whereas unsupervised methods
often result in lower performance. Addressing these challenges, this paper proposes a novel deep learning-based automated
visual inspection (AVI) framework designed to minimize the necessity for extensive feature engineering, programming, and
manual data annotation in classifying fuel injection nozzles and discerning their coating interfaces from scratch. This proposed
framework comprises six integral components: It begins by distinguishing between coated and uncoated nozzles through gray
level co-occurrence matrix (GLCM)-based texture analysis and autoencoder (AE)-based classification. This is followed by
cropping surface images from uncoated nozzles, and then building an AE model to estimate the coating interface locations
on coated nozzles. The next step involves generating autonomously annotated datasets derived from these estimated coating
interface locations. Subsequently, a convolutional neural network (CNN)-based detection model is trained to accurately
localize the coating interface locations. The final component focuses on enhancing model performance and trustworthiness.
This framework demonstrated over 95% accuracy in pinpointing the coating interfaces within the error range of ± 6 pixels
and processed at a rate of 7.18 images per second. Additionally, explainable artificial intelligence (XAI) techniques such as
t-distributed stochastic neighbor embedding (t-SNE) and the integrated gradient substantiated the reliability of the models.
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Introduction

Product inspection constitutes a vital phase in manufacturing
to ensure the quality of products. Manufacturers endeavor to
execute meticulous inspections, resulting in the inspection
process frequently constituting the most substantial por-
tion of production expenses (Chin & Harlow, 1982). Visual
inspection, which scrutinizes functional and cosmetic imper-
fections, is known as a versatile, simple, cost-efficient, and
contactless approach (Babic et al., 2021; Chin & Harlow,
1982). However, it primarily relies on human inspectors’
capabilities (Harris, 1969), and the performance of visual
inspection is susceptible to human factors that may be influ-
enced by elements such as the inspector’s expertise, the
intricacy of the inspection task, product defect rates, and
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repeatability (Chin & Harlow, 1982; Harris, 1969; Megaw,
1979). In other words, human factors might cause unreliable
and costly outcomes despite the merits of visual inspection.

It is particularly evident that the issues are connected to
production loss in the field of coating inspection, where both
precision and speed are important due to the heightened
vulnerability of coated surfaces to flaws, defects, or discrep-
ancies (Doering et al., 2004). Rapid and accurate inspection
is paramount, alongside the need for mitigating reliance on
human factors to avoid those risks. As one of the potential
solutions, machine vision reduced human error through the
automation of data acquisition, analysis, and image assess-
ment (Alonso et al., 2019). Nonetheless, its application is
often restricted to specific situations, with limited scope
for adaptability (Psarommatis et al., 2019), necessitating
extensive feature engineering and sophisticated algorithms
to function effectively across diverse scenarios.

Deep learning has enhanced visual inspection by auto-
matically abstracting features from data even in intricate and
high-dimensional scenarios (LeCun et al., 2015, p. 2; Ren
et al., 2022; Rusk, 2016). Deep learning can be classified into
supervised and unsupervised approaches, each with inherent
challenges. Supervised learning necessitates extensive man-
ually annotated datasets for model training, which can be
labor-intensive and impede the efficiency of deep learning
applications (Shinde et al., 2022; Wang & Shang, 2014). On
the other hand, unsupervised learning, while not requiring
annotateddata, relies onmanually set thresholds, often result-
ing in unacceptable performance in product inspection tasks
(Chow et al., 2020; Kozamernik & Bračun, 2020). Address-
ing the challenge of minimizing human intervention in data
labeling is thus important to enhance the efficacy of deep
learning-based inspection methodologies.

This study focuses on advancing the capabilities of auto-
mated visual inspection (AVI) by developing a novel frame-
work that autonomously annotates and inspects products
with high accuracy. Given the cost-effectiveness and high
precision the manufacturing sector requires, this research
targeted pinpointing coating interfaces on fuel injection noz-
zles, which demands pixel-level accuracy. The novelty of
this research lies in the application of self-supervised learn-
ing and autonomous data annotation algorithms, eliminating
the need for human labeling and precisely locating the coat-
ing interfaces. Thus, a robust AVI framework is capable of
pinpointing coating interfaces from scratch via autonomous
data annotation, which is expected to improve the efficiency
and reliability of the inspection process in real-world practi-
cal applications.

Moreover, most deep learning applications do not pro-
vide an explanation of their autonomous decision-making
processes, and it hinders understanding the process and exac-
erbates the reliability of models (Gunning et al., 2019).
Explainable artificial intelligence (XAI) offers transparency

in decision-making and aids the robustness and applicability
of deep learningmodels (Cooper et al., 2023; Lee et al., 2022;
Liu et al., 2022; Wang et al., 2019, 2023). Consequently, this
study investigated the interpretability and explainability to
validate the reliability of the deep learning models based
on t-distributed stochastic neighbor embedding (t-SNE) and
integrated gradient techniques.

The major contributions are outlined as follows:

• The autonomous deep learning-based coating inspection
framework is proposed. It identifies coated nozzles, gen-
erates self-labeled datasets, trains models, and pinpoints
coating interfaces without human intervention.

• The interpretation and explanation of the autoencoder
(AE) and convolutional neural network (CNN)-based
detection models are provided based on the concept of
XAI to validate the reliability of the developed models.

This paper consists of the following. “Related work”
Section describes an overview of the related literature in
machine vision, computer vision, deep learning, and visual
inspection applications. “Methodology” Section explains the
proposed framework. Then, the detailed analysis and dis-
cussion follow in “Results and discussions” Section. Lastly,
“Conclusion” Section describes the concluding remarks of
the research.

Related work

Industry 4.0 catalyzes the application of data-driven
approaches in qualitymanagement,which plays a critical role
in productivity and reliability in the manufacturing domain
(Psarommatis et al., 2022). The surge in customer demand
for diverse products increases the complexity of products and
production systems and necessitates flexible and versatile
automated inspection solutions for effective quality control
(Jacob et al., 2018; Psarommatis et al., 2019). The emer-
gence of contemporary technologies such as deep learning,
the internet of things, sensing, and computer vision initiates
a paradigm shift in product inspection techniques (Oztemel
& Gursev, 2020).

Katırcı et al. (2021) introduced a novel automated inspec-
tion technique based on electrical and thermal conductivities.
Their approach, however, necessitates immersing an object
in a solution or scattering powders over it, potentially causing
damage and deformation in some cases. To prevent damage
to products, nondestructive and contactless inspection solu-
tions have been investigated. A laser displacement sensor is
one of the nondestructive and contactless automated inspec-
tion methods and has a high resolution and sampling rate,
which fits for precisely measuring a surface thickness in real-
time without contact (Gryzagoridis, 2012; Nasimi &Moreu,
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2021). However, it is not applicable to identifying diverse
textures of fuel injection nozzle interfaces. Additionally,
such approaches demand complicated and finely calibrated
measurement systems compared to machine vision-based
AVI using Charge-Coupled Device (CCD) or Complemen-
tary Metal–Oxide–Semiconductor (CMOS) cameras. They
are implemented to offer an autonomous pipeline that cap-
tures and processes images and detects geometric or texture
features for decision-making based on defined criteria in
machine vision systems due to their versatility and cost-
effectiveness (Golnabi & Asadpour, 2007; Noble, 1995; Ren
et al., 2022).

As captured images often encounter issues like noise
and uneven contrast and brightness, the Fourier transform
(Brigham & Morrow, 1967) and the wavelet transform
(Graps, 1995) aid to adjust images, eliminate unneces-
sary data, and emphasize useful information. The two-
dimensional discrete Fourier transform (Gonzalez & Faisal,
2019) iswidely utilized for imageprocessing, and thewavelet
transform is a useful tool to denoise and find a sparse
representation in an image (Khatami et al., 2017). The Sta-
tionary Wavelet Transform (SWT) is known for offering an
approximation to investigate singularities at the interface and
maintain the consistency of image size (Nason & Silverman,
1995; Wang et al., 2010). Despite the benefits of denois-
ing and highlighting features (Bai & Feng, 2007), Ren et al.
(2022) stated that transform techniques require high com-
puting costs. It also introduced detailed wavelet transform
research including denoising (Jain & Tyagi, 2015; Luisier
et al., 2007), image fusion (Daniel, 2018; Xu et al., 2016),
and image enhancement (Jung et al., 2017; Yang et al., 2010)
and categorized visual inspection approaches into classifica-
tion, localization, and segmentation problems.

Traditionally, visual inspection methods such as the his-
togram technique, histogram of oriented gradients, scale-
invariant feature transform, and speeded-up robust features
have been used (Ren et al., 2022). However, there are draw-
backs like computational load, high requirements for image
quality, and irrelevance of spatial features. The support vector
machine (SVM) is a prevalentmachine learning approach and
proves the advantage of classification problems. Nonethe-
less, the SVM is not suitable for complexmulti-classification
problems and requires manual adjustment for hyperparame-
ters. The k-means clustering algorithm is an unsupervised
machine learning approach and can be applied to multi-
classification problems. For instance, Park et al. (2008)
demonstrated an AVI framework implementing computer
vision and the k-means clustering algorithm to find a defect
in cigarette packing by segmenting regions in a package. The
k-means clustering algorithm, however, is also improper to
use for large and complex datasets (Guan et al., 2003).

Recent advances in deep learning circumvent the short-
comings of traditional approaches. Deep learning techniques

automatically extract features from datasets and aid to
develop improvedAVI frameworks. CNN is themost popular
supervised learning architecture in various fields includ-
ing the realm of computer vision including self-driving,
facial identification, robotic manufacturing, and remote
space exploration, which yields substantial advancements
(Gu et al., 2018; LeCun et al., 1998; Lee et al., 2022; Li
et al., 2022; Park et al., 2023; Yun et al., 2023a, 2023b), and
have been broadly employed in AVI applications (Alonso
et al., 2019; Park et al., 2016; Singh & Desai, 2022; Wang
et al., 2019; Yun et al., 2020).

In terms of the coating inspection, Ficzere et al. (2022)
presented an AVI method using RGB images from a
CCD/CMOS camera that could be readily applied in the
industrial field and showed the feasibility of accurately
inspecting tablet coating quality in real-time using machine
vision and deep learning techniques. Despite its advantage,
their study focused on detection and classification rather than
pinpointing defects, requiring manually labeled datasets. As
there are not enough references to pinpoint the dimension of a
defectwithin a fewpixels of error, this paper aimed to develop
a framework that precisely locates the interface of a fuel
injection nozzle while minimizing manual data labeling and
feature engineering processes with the simple configuration
of data acquisition. In short, the shortcoming of supervised
learning architectures is the necessity of labeled data (Wang
&Shang, 2014) implying that human intervention in labeling
is indispensable for assembling training datasets.

AE is an unsupervised learning or semi-supervised learn-
ing model comprised of encoder and decoder layers bridged
by a latent space (LS) that compresses data and extracts dis-
tinct features (Yun, 2023a, 2023b). It enables unsupervised
feature learning and assesses data similarity based on a recon-
struction error from the loss function and would be a useful
tool to improve the performance of deep learning at the ini-
tial stage of developing another model (Bengio et al., 2014).
Erhan et al. (2010) introduced the concept of unsupervised
pre-training to help deep learning performance andFeng et al.
(2020) proposed a self-taught learning technique using unla-
beled data to enhance the detection performance of target
samples. Both studies emphasized that unsupervised feature
learning can effectively substitute manual data annotation.

In the visual inspection domain, Chow et al. (2020)
implemented a convolutional AE model to detect defects in
concrete structures based on an anomaly detection method
comparing reconstruction errors of surface images. Their
model was trained by defect-free images, which used a non-
labeling process. Nevertheless, a threshold should be defined
to distinguish defects, and additional analysis was required
to get their exact location. Moreover, the recall and pre-
cision were from 30.1% to 91.3%, and it has a limitation
to be implemented in real-world inspection applications in
the manufacturing domain. Kozamernik and Bračun (2020)
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introduced a method to detect defects on the surface of an
automotive part automatically. The model, however, did not
provide the position of the defects in a few pixels of the error
range and the specific value of accuracy was not indicated.
Studies on pinpointing a particular surfacewithin a fewpixels
of the error based on the difference in texture for a practical
industrial application have still been limited.

In short, although deep learning resolves many issues in
the visual inspection domain, CNN approaches, supervised
learning, still require human effort to annotate data, and AE
methods, unsupervised learning, also necessitate defining a
threshold and do not attain enough accuracy for practical
applications. This prompted the development of an advanced
AVI framework in the present study, which combines the
benefits of automated data labeling via AE’s unsupervised
feature learning and the precise pinpointing capabilities of
CNN’s supervised feature learning. Meanwhile, many deep
learningmodels are like a black box and do not illustrate their
decision-making processes clearly. It prevents understand-
ing and aggravates the credibility of models. To address this,
XAI is getting significant attention for its ability to enhance
the reliability of deep learning models. The XAI approach is
advantageous for visualizing data structure and interpreting
prediction basis to provide intuitive insights into a model’s
decision-making. Recent studies have leveraged the advan-
tages of XAI to present cases where the explainability of AVI
models was substantially improved. Al Hasan et al. (2023)
introduced the interpretable and explainable AVI system to
detect hardware Trojans and defects in semiconductor chips.
Gunraj et al. (2023), developed the SolderNet, an explain-
able deep learning system aimed at improving the inspection
of solder joints in electronics manufacturing, by providing a
more transparent approach.

As the prominent method in XAI for data visualization, t-
SNE (Maaten&Hinton, 2008) is regarded as an unsupervised
algorithm that visualizes high-dimensional data by reducing
its dimensionality to levels, typically two or three dimen-
sions, that can be visually perceptible by humans. The t-SNE
is particularly effective in preserving probabilistic similari-
ties among samples when translating high-dimensional data
into a lower-dimensional space, thereby effectively revealing
complex data structures and patterns. In contrast, principal
component analysis (PCA) (Wold et al., 1987), while a stan-
dard approach for data reduction and visualization, is limited
by its linear transformation approach focused onmaximizing
data variance, thus struggling with non-linear data relation-
ships.While uniformmanifold approximation and projection
(UMAP) (McInnes et al., 2020) is efficient and adaptable for
large datasets, it occasionally merges distinct clusters, which
potentially obscures the finer local structures that are more
effectively preserved by t-SNE.

Additionally, integrated gradients, which represent the
intensity of the network, are computed by accumulating the

gradients along the path line (Lundstrom et al., 2022). The
heatmap technique, a popular visualization tool in the com-
puter vision domain, aids in identifying the most important
parts of an input image through neural networks of a deep
learning model for classification problems using calculated
integrated gradients (Qi et al., 2020; Selvaraju et al., 2020).
The deletion metric quantitatively measures the impact of
removing these significant parts, which if correct, would hin-
der the accurate detection by a deep learning model (Petsiuk
et al., 2018).

According to the surveyed literature, this study imple-
mented AE and CNN architectures to conjugate their advan-
tages and built a feasible AVI framework for coating inspec-
tion based on self-supervised and self-annotation learning
with AE and CNN architectures to mitigate the required
resources for establishing the models. The explanation of the
developedmodelswas investigated to ensure their credibility.
The following section describes the detailed methodology.

Methodology

This study proposes an AVI framework pinpointing coating
interfaces with the autonomous data annotation technique
to mitigate the necessity of human intervention. As Fig. 1
illustrates, the proposed framework comprises six parts:
(1) Classifying nozzle types, (2) Cropping uncoated sur-
face images, (3) Training autoencoder model 1 (AE1), (4)
Generating datasets automatically annotated as coated and
uncoated surface classes, (5) Training a CNN-based detec-
tion model, and (6) Improving performance and validating
the trustworthiness of models. First, the framework identifies
two uncoated nozzles with the highest GLCM energy values
to train autoencoder model 1 (AE1). AE1 abstracts features
from uncoated nozzles and classifies mixed nozzle images
into coated and uncoated classes. Subsequently, autoencoder
model 2 (AE2) is trained with cropped surface images from
the classified uncoated nozzles. Coated and uncoated partial
surface images were autonomously extracted and annotated
according to the region exhibiting the highest reconstruction
error on each nozzle. Thirdly, an initial CNN-based detection
model is constructed utilizing the automatically collected and
labeled images. This model is refined through an iterative
training strategy with transfer learning, using datasets gener-
ated by a previously trainedCNNmodel to improve accuracy.
Lastly, the YOLOv8 (Jocher et al., 2023) algorithm accel-
erates localization speed by narrowing down the size of a
detection area.

This framework addressed not only the manual data anno-
tation issue but also the imbalance of the initial dataset. As
an unsupervised learning approach, AE is capable of training
a model with unclassified data. With just the two uncoated
nozzle images identified by the GLCM method, AE1 was
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Fig. 1 Pipeline of the proposed framework

effectively trained, categorizing the imbalanced dataset into
distinct coated and uncoated nozzle classes. On the other
hand, AE2 was developed using exclusively uncoated sur-
face images, thereby resolving the dependency for dataset
balancing. For the construction of CNNmodels, cropped sur-
face images were utilized. Having both coated and uncoated
surfaces, it was possible to generate balanced datasets from
the coated nozzle images. While the exact number of images
in each class varied during the iterative learning process,
approximately 120,000 coated and 100,000 uncoated surface
images were collected.

In this section, the proposed framework is explained in
detail. First, the image acquisition process is demonstrated.
The second and third sections explain the texture analysis
process and the two AE models that classified the types of
nozzles and surfaces and generated an initial training dataset.
Subsequently, how CNN-based detection models were built
is illustrated. Lastly, the final deep learning model fabricated
by integrating the YOLOv8 algorithm and the best CNN-
based detection model is described.

Procedure of data collection

Figure 2 depicts the setup to collect raw fuel injection noz-
zle images. The image acquisition system was comprised of
an industrial monochrome camera (Cognex In-Sight 9000)
connected to a laptop of which the specification was AMD
Ryzen 5 5500U, 8 GB RAM, 256 GB SSD, and Windows
11. Every side of a part was captured by placing a nozzle
on a turntable rotating with a speed of 1.6 rpm. Moreover,
direct lighting was applied by an LED desk lamp to provide
constant brightness. Eventually, 15 images per nozzle were

acquired at 4096 × 3000 pixel resolution, yielding a dataset
of 75 images from 5 uncoated and 525 images from 35 coated
nozzles. Since the collected images included unnecessary
background, the region of interest (ROI) of each image was
cropped to 512 × 1024 pixels based on detecting significant
differences between adjacent pixels in both vertical and hor-
izontal directions as boundaries by the developed computer
vision algorithm. The image was cut further inward horizon-
tally to exclude the curved interface region. The resultant
images were mixed to begin this investigation from scratch.
After the classification of the mixed image set into uncoated
and coated nozzle categories by gray level co-occurrence
matrix (GLCM) and AEmethods, the set was further divided
into training and test sets as per the requirements of the
deep learning model. Table 1 details the configuration of the
dataset.

GLCM& autoencoder model 1—classification
between coated and uncoated parts

AE1 model was developed under the hypothesis that it
could produce variable reconstruction errors for coated
and uncoated parts from their distinct features, and the
reconstruction errors would serve as classification metrics.
However, training an AE model requires a pre-categorized
set of images, which was not initially available in the early
stage of this investigation. To address this issue, a GLCM
method was employed for obtaining an initial categorized
image set for AE training. Proposed by Haralick (1979),
GLCM is a statistical texture analysis technique that quan-
tifies a two-dimensional histogram of paired pixels within a
specific spatial distance.
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Fig. 2 Experimental setup for image acquisition and processing steps

Table 1 Configuration of dataset
Total AE1 AE2 CNN

Category Dataset Nozzle
parts

Part
images

Nozzle
parts

Part
images

Nozzle
parts

Part
images

Uncoated
part

Train 2 30 5 75 0 0

Test 3 45 0 0 0 0

Coated part Train 0 0 15 225 = AE2 = AE2

Test 35 525 20 300 = AE2 = AE2

GLCM of an image presents the frequency of pairs of pix-
els with a specific intensity based on parameters (Gadkari,
2004) as shown in Fig. 3. xandy is the horizontal and vertical
coordinates of a point in an image. The size of an image is
represented byw and h. An angle θ is evaluated by the degree
of rotation from the horizontal line passing through a refer-
ence point to a line penetrating another point and a reference
point. Typically, angle θ is quantized by 0, 45, 90, and 135
degrees. Furthermore, i and j are indices corresponding to
the axis of a co-occurrence matrix and indicate pixel inten-
sities. d is the distance between a reference point to another
one. In consequence, the (i , j)th entry of GLCM g is defined
as Eq. (1).

gi j , θ=0◦ =
w∑

x=0

h∑

y=0

{
1, i f I (x , y) = i and I (x + d , y) = j
0, otherwise

gi j , θ=45◦ =
w∑

x=0

h∑

y=0

{
1, i f I (x , y) = i and I (x + d , y − d) = j
0, otherwise

gi j , θ=95◦ =
w∑

x=0

h∑

y=0

{
1, i f I (x , y) = i and I (x , y − d) = j
0, otherwise

gi j , θ=135◦ =
w∑

x=0

h∑

y=0

{
1, i f I (x , y) = i and I (x − d , y − d) = j
0, otherwise

(1)

With a GLCM parameter distance of 1 and angles at 0,
45, 90, and 135 degrees, GLCM energy values were calcu-
lated for each whole surface of coated and uncoated nozzle
parts by Eq. (2). Two nozzle parts with the highest GLCM
energy values were selected for trainingAE1 since the higher
GLCM energy value demonstrated more consistent textures
in uncoated parts.

Energy =
∑

i

∑

j

g2i j (2)

Subsequently, autoencoder model 1 (AE1) was developed
to separate mixed images into coated and uncoated nozzle
images thoroughly. AE1 comprised two CNN layers with
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Fig. 3 Parameters of GLCM

a two-pixel stride and 3-pixel zero padding connected with
fully connected layers and the latent spacewith 64 neurons as
depicted in Fig. 4. This architecture was determined through
a grid search. Among the gathered training sets, one uncoated
part was used to train themodel, and another one was utilized
to get a maximum reconstruction error. The Adam optimizer
was employed with a learning rate of 0.001, and the mean
squared error (MSE) loss function was applied. The number
of epochs for the training was 100. This training was done by
PyTorch 1.13.1 with GPU acceleration (Paszke et al., 2019)
operating on Ubuntu 20.04.5 LTS with an Intel i7-11700K
CPU, 64GB RAM, and Nvidia RTX A5000 GPU. The same
system was also utilized to develop the other deep learning
models of this investigation.

Evaluating the performance of AE1 was anchored on
maximum reconstruction errors, which were automatically
established at 1.529 during the prediction by AE1 on the
validation set. Notably, the minimum reconstruction error
recorded for the coated nozzle parts was 1.565, consistently
exceeding the maximum reconstruction error of 0.812 for
the uncoated nozzle parts. This led to a flawless 100% clas-
sification accuracy by AE1 in distinguishing between the
coated and uncoated nozzle parts. Additionally, the findings
were supported by Fig. 5, which presented a validation of the
GLCM energy analysis. While GLCM alone was not fully
capable of differentiating between coated and uncoated parts,
it did reveal a pattern: uncoated parts predominantly regis-
tered higher GLCM energy values compared to their coated
counterparts.

Fig. 5 GLCM energy values of the nozzle images

Autoencoder model 2—generating training dataset
without manual data labeling

Figure 6 illustrates GLCM analysis on cropped coated and
uncoated surfaces at a size of 512× 8 pixels. In this analysis,
GLCM correlation values were computed by Eq. (3), where
μ and σ are the mean and standard deviation of g. It was
also used to quantify linear dependencies across each type of
surface (Gadkari, 2004).

Correlation =
∑

i
∑

j (i j)gi j − μxμy

σxσy
(3)

While uncoated surfaces generally yielded higher GLCM
values, it was insufficient for precisely distinguishing
between the two types of surfaces. Specifically, utilizing a
threshold for GLCM correlation values, which was estab-
lished through k-means clustering, resulted in a classification
accuracy of less than 7% within a ± 6-pixel error range.
Given these limitations, the study transitioned to implement-
ing deep learning techniques for more precise identification
of coating interfaces.

AE2 was designed to estimate interface locations and
autonomously generate datasets for training CNN-based
detection models, eliminating the need for manual labeling.
The uncoated nozzle parts were already classified by AE1,
enabling the immediate extraction of segmented images of
uncoated surfaces. The input height of segmented imageswas

Fig. 4 AE Model 1 configuration
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Fig. 6 GLCM analysis on coated and uncoated surfaces

Fig. 7 AE Model 2 configuration

defined as 8 pixels via a grid search, then cropped to dimen-
sions of 512 × 8 pixels in the vertical direction, employing a
1-pixel stride on the uncoated nozzle parts. Similar to AE1,
the Adam optimizer was deployed with a learning rate of
0.001, and the MSE loss function was applied to the train-
ing process. The number of epochs for the training was 100.
Figure 7 outlines the configuration of AE2, which was deter-
mined through a grid search.

In a manner analogous to AE-based anomaly detection
(Yun et al., 2023a, 2023b), interface locations were esti-
mated at regions displaying the highest reconstruction errors
during prediction on a coated nozzle part. The mean aver-
age reconstruction error was 0.515 and the mean maximum
reconstruction error was 1.972. In addition, the mean stan-
dard deviation of the reconstruction error was 0.226. AE2
located the interfaces with an accuracy of 84.38%. This
study defined the success criteria as the capability to pin-
point the interface location in an image within a ± 6-pixel
margin of error, identically corresponding to the standard
error range of ± 0.127 mm (± 0.005 inches). The refer-
ence interface locations were determined by manual visual
examination.

CNN-based detectionmodel—improved interface
region detection

To develop a CNN-based detection model, partial images of
a size of 512 × 8 pixels were extracted from the coated noz-
zleswith a 1-pixel stride.According to the estimated interface
location byAE2, the upper side and the lower side of the inter-
face were categorized autonomously as coated and uncoated
image sets, respectively. Figure 8 depicts the configuration
of a CNN-based detection model, determined through a grid
search. Themodel deployed anAdam optimizer with a learn-
ing rate of 0.0001 and the cross-entropy loss function. The
training process included the early stopping method. Specif-
ically, the training was terminated when the training loss was
below 0.0001.

The initial CNN-based detection model achieved 90.00%
accuracywithin a±6-pixel error range. Further training, both
with and without transfer learning, was conducted on a new
dataset based on the estimated interface location by a prior
CNN-based detection model. This process was repeated,
resulting in 13 CNN-based detection models as described
in Fig. 9. The layers were not frozen during the transfer
learning processes. Overall, the models with transfer learn-
ing exhibited superior performance as shown in Fig. 10. The
best model, CNN6_T, achieved 95.33% accuracy within the
± 6-pixel error range.
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Fig. 8 Configuration of the
reference CNN-based detection
model configuration & detection
outline

Fig. 9 Pipeline of transfer and non-transfer learning

Fig. 10 CNN-based Detection
Model Interface Detection
Accuracy & Speed Comparison
(Higher is better)
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CNN-based detectionmodel+YOLO—improved
detection speed

The CNN-based Detection Models, especially CNN6_T,
demonstrated high accuracy, yet their detection speed was
approximately 1.5 to 1.8 images per second as shown in
Fig. 10. As the developed framework executed detections
from the bottom of a part image with a 1-pixel stride,
it led to numerous detections to ascertain the estimated
interface location. This is a typical detection speed issue
regarding object detection problems when using a stride for
detection. To address speed constraints in object detection,
CNN-based algorithms such as Region-based Convolutional
Neural Networks (R-CNN) (Girshick et al., 2014), Fast R-
CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015)
have been developed.

You Only Look Once (YOLO) (Redmon et al., 2016) is a
one-stage real-time object detection algorithm that provides a
balanced and acceptable combination of speed and accuracy
for object detection (Terven & Cordova-Esparaza, 2023). A
study (Kim et al., 2020) comparing Faster R-CNN, YOLO,
and Single Shot MultiBox Detector (SSD) (Liu et al., 2016)
demonstrated that while SSD was the fastest, its F1-score,
Precision, Recall, and mAP was up to 11% lower. On the
contrary, YOLO exhibited the best performance with a speed
only 20% slower than SSD. Consequently, YOLO was cho-
sen for this investigation requiring a balanced and acceptable
combination of speed and accuracy.

Although employing YOLO, as the initial approach
yielded 0% accuracy for pinpointing interfaces within a few
pixels error range, it showed reasonable accuracy in iden-
tifying broader interface regions. To harness the advantage,
this study devised a two-step prediction strategy, which inte-
grated a YOLO model with a CNN-based prediction model,
aimed to accelerate the prediction speed while maintaining
high accuracy: Initially, YOLO suggests a probable interface
area, which is then followed by a more focused CNN-based
prediction within the narrowed-down region.

The YOLOv8n model was used to propose a region
containing the interface by 0.25 of the default confidence
threshold with the CNN6_Tmodel predicting within the pro-
posed region. The datasets for training the YOLO model
were extracted by a height of 128 pixels according to the
same interface location used for developing the CNN6_T
model. The sample images of proposed interface regions by
the trained YOLO model are depicted in Fig. 11. As Fig. 10
demonstrates, the detection speed with the region proposal
from the trained YOLO model was approximately 4 times
faster, reaching 7.18 images per second in comparison to
other outcomes while maintaining the highest accuracy at
95.33%.

Results and discussions

Annotating datasets is inevitable for supervised learning and
results in human intervention. Hence, additional resources
are consumed to build a model for an inspection application.
The proposed framework overcame the issue by implement-
ing multi-stage deep learning strategies. Without pre-defined
datasets, manual labeling, and extensive feature engineering
processes, it pinpointed the interfaces of the coated noz-
zles as well as categorized the types of the nozzles from a
single uncoated nozzle. Consequently, this framework auto-
mated the inspection process thoroughly. In this section, the
explanation and interpretation of the developed models are
described based on t-distributed stochastic neighbor embed-
ding (t-SNE) and integrated gradient methods to validate the
reliability of the models. Moreover, the detection results of
the CNN-based detection models are analyzed.

Figure 12 presents the latent space of AE2, the most
compact dimensional region of partially cropped images
corresponding to the three areas of uncoated, coated, and
interface regions. It interprets the phenomena in the latent
space and elucidates howAE2 discriminated between coated
and uncoated surfaces and identifies the interface. Inputs for
AE2 were partially cropped images (512 × 8 pixels) com-
pressed in latent space features via the encoder. Subsequently,
each latent space feature, represented by 16-dimensional
values per AE2 architecture, was further reduced to a two-
dimensional representation using t-SNE (Maaten & Hinton,
2008). The t-SNE calculates pairwise similarities between
data points in the high-dimensional space, assigning higher
probabilities to pairs of points that are close together and
lower probabilities to those further apart. It achieves this by
minimizing the Kullback–Leibler (KL) divergence between
the high-dimensional and low-dimensional distributions of
pairwise similarities, effectively making similar objects
appear close together and dissimilar objects far apart in the
lower-dimensional space; this optimization problem could
be solved through gradient descent.

This reduction enables each partially cropped image to
be represented as a single point in a two-dimensional plane,
visualizing the latent space of AE2 for 1017 partial images
extracted from a single image. The resulting visualization
displays clusters within the latent space of AE2 according
to uncoated, coated, and interface regions. Remarkably, the
interface area, despite its adjacency to the uncoated region in
the original image, appears farther from the uncoated area in
the latent space, where AE2 underwent training. This con-
sistent pattern across multiple sample images, as depicted in
Fig. 13, affirms the ability of AE2 to estimate interfaces.

The initial CNN-based detectionmodel, CNN1, trained on
the AE2-generated dataset, yielded an accuracy of 90.00%.
Accuracy increased to 95.33% via iterative learning with
transfer learning and ultimately stabilized at 94.67% as
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Fig. 11 Sample results by YOLOv8 detections

Fig. 12 AE2 latent space visualization result for a sample coated image (cropped) based on t-SNE

Fig. 13 AE2 latent space visualization results for sample coated images (cropped)
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Fig. 14 Detection precision, recall, and accuracy of surface classifica-
tion

shown in Fig. 10. Conversely, iterationwithout transfer learn-
ing precipitously reduced accuracy from 91.33% to 69.00%
by the third cycle. Figure 14 demonstrates precision, recall,
and accuracy in surface classification detections, surpassing
all 98.00%, yet plummeting precision and accuracy with-
out transfer learning. Precision, recall, and accuracy became
stable from CNN4_T onwards in both training and testing
datasets when applying transfer learning, suggesting their
consistency contributes to interface detection accuracy con-
vergence, as similar training datasets were utilized from
CNN4_T. In contrast, without transfer learning, the variation
in training datasets, not utilizing pre-trained neural network
weights, led to inconsistent results. Especially, there are met-
ric discrepancies between surface classification detection and
interface location.Given the objective of this study, the detec-
tion accuracyof interface locationswasdeemed themost vital
metric.

Figure 15 shows the mean error, defined as the discrep-
ancy between estimated by the CNN-based detection models
and actual interface locations on coated training parts. The
blue line represents the mean error that predicted interface
locations were above the actual interface, and vice versa for
the red line with the black line demonstrating the overall
mean error. Notably, with iterative learning without transfer
learning from CNN1 to CNN2, the red line shows a decrease
from 6.37 pixels to 8.90 pixels, while the blue and black
lines remain consistent. Given that the height of the partially
cropped images was 8 pixels, it is inferred that dataset label-
ing along the interfaces in the red line case for CNN2 was
inaccurate since an overall error range exceeded 8 pixels.
Consequently, numerous coated part images estimated by
CNN2, CNN3, and CNN4 included uncoated surfaces, caus-
ing a continuous decrease in accuracy. These models, trained
without transfer learning and hence without any pre-trained

Fig. 15 Detection mean error from the actual interface location (for
coated train part)

weights or bias, resulted in deteriorating accuracy during
training and were built with high errors. On the contrary, the
models utilizing transfer learning displayed convergence in
mean error as they were built upon a pre-established network
with pre-trained weights and bias, reducing vulnerability due
to misclassified images.

To interpret and validate the reliability of the optimal
CNN-based detection model, CNN_6T, integrated gradients
were used to generate heatmaps, and the deletion metric
was applied (Qi et al., 2020; Selvaraju et al., 2020). In
the jet colormap, red signifies key pixels for uncoated class
detection, and blue represents those crucial for coated areas.
Figure 16 depicts the heatmap examples of correctly pre-
dicted images and Fig. 17 illustrates heatmaps for correctly
predicted images, including those with complex interface
geometry. The black and white lines indicate the actual and
estimated interface locations, respectively. The highlighted
heatmaps confirm the clear separation between two classes
along the interface, even in instances of complex geometry
with diverse shapes as in Fig. 17a, b, or blurred boundaries
as in Fig. 17c that make interface identification challenging.
Furthermore, the heatmap examples of incorrectly predicted
images are displayed in Fig. 18. Figure 18a suggests exces-
sive light reflection obscuring the interface feature, Fig. 18b
demonstrates the failure of the detection model to extract
features near the interface, and Fig. 18c shows wrong detec-
tion due to the existence of multiple candidates of potential
interface location. Therefore, future research involves devel-
oping amultiple-layered and configured deep learningmodel
to resolve these issues and enhance accuracy.

The deletion metric was implemented to examine the
effects of the weight of each pixel in the CNN6_T detection
model. As in Fig. 19, pixels with high weights were firstly
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Fig. 16 Heatmap examples of correctly predicted images

Fig. 17 Heatmap examples of correctly predicted images having complicated geometry of interface

deleted as per a specified deletion ratio, with zero-weighted
pixels being disregarded during this operation. Figure 20
illustrates that the detection accuracy declined steeply upon
the removal of the important pixels. This observation vali-
dates the proper constructionof theCNN6_Tdetectionmodel
and the weighing of the pixels during interface detection.
Furthermore, the area under the curve (AUC) was assessed,
yielding a score of 0.1135, confirming the reliability of the
developed predictive model according to the reference (Pet-
siuk et al., 2018).

Lastly, a YOLO model was employed to improve the
detection speed for industrial applications. The developed
CNN-based detection model predicted from the bottom of

an image with a 1-pixel stride, and it resulted in a time-
consuming detection speed of 1.5 to 1.8 images per second.
This study appliedYOLOalone at first, showing 0%accuracy
for the detectionwithin the±6-pixel error range.Therefore, a
two-stage detection pipelinewas devised proposing the broad
range of an interface region by a YOLO model and predict-
ing from the bottom of the proposed region by the CNN
model. Even though YOLO could not predict accurately the
interface within the error range, it successfully proposed an
interface region with a wide range of an area which led to
up to 4 times faster detection speed, 7.18 images per second,
without a reduction in accuracy.
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Fig. 18 Heatmap examples of incorrectly predicted images

Deletion ratio = 80% Deletion ratio = 60% Deletion ratio = 40% Deletion ratio = 20%

Fig. 19 Pixel deleted sample images

Conclusion

This study proposed the framework for distinguishing the
types of fuel injection nozzles and locating interfaces
between coated and uncoated surfaces with autonomous data
annotation. While computer vision techniques reveal the
progress in the visual inspection domain, it suggests that
an elaborate algorithm would be necessary to detect com-
plex objects. The features of the fuel injection nozzles varied
across different parts and even the viewing angles. As a
result, this research implemented multi-stage deep learn-
ing strategies to develop an automated visual inspection

method. By conjugating autoencoder and CNN configura-
tions, it addressed challenges in the application of coating
inspection to classify the coated and uncoated nozzles and
pinpoint the interface locations. Furthermore, the applica-
tion of the YOLOv8 improved the detection speed of the
CNN-based detection model. Finally, the interpretation and
explanation of the deep learning models were described and
validated their robustness.

Nonetheless, the framework still has limitations.Although
the GLCM approach identified coated and uncoated noz-
zles without pre-defined datasets, it required at least two
parts to be distinguished for developing an AE model.
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Fig. 20 Result of deletion metric

Additionally, this approach is not applicable to parts with
more than two surfaces. The detection speed still requires
optimization to exceed 30 images per second for real-time
applications. Lastly, this framework is not validated for
images from different sources and environments. There-
fore, future research will focus on the adaptability of the
framework concerning other coatings, materials, various
inspection conditions, and intricate geometries, along with
investigating further enhancements in detection speed and
accuracy. Furthermore, a more affordable image acquisition
setup will be investigated.

Then, this framework is expected to be implemented in
a wide range of industries such as aerospace, automotive,
and electronics manufacturing, where the feature of sur-
faces plays an important role in enhancing the performance,
durability, and protection of components. Eventually, it is
anticipated that this investigation would be a practical solu-
tion for real-time applications in industries by the achieved
reasonable detection accuracy and speed evenwith less effort
in training deep learning models. In addition, the ability to
generate training datasets with autonomous data annotation
could lead to cost savings, increased efficiency, and reduced
potential for human error. Consequently, it is expected that
this framework will aid cost and reliability issues in the
inspection process of manufacturing domains.
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