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Abstract
Developing new semiconductor processes consumes tremendous time and cost. Therefore, we applied Bayesian reinforcement
learning (BRL) with the assistance of technology computer-aided design (TCAD). The fixed or variable prior BRL is tested
where the TCAD prior is fixed or is changed by the experimental sampling and decays during the entire RL procedure. The
sheet resistance (Rs) of the samples treated by laser annealing is the optimization target. In both cases, the experimentally
sampled data points are added to the training dataset to enhance the RL agent. The model-based experimental agent and a
model-free TCAD Q-Table are used in this study. The results of BRL proved that it can achieve lower Rs minimum values
and variances at different hyperparameter settings. Besides, two action types, i.e., point to state and increment of levels, are
proven to have similar results, which implies the method used in this study is insensitive to the different action types.

Keywords Laser annealing · Bayesian statistics · Reinforcement learning · Semiconductor

Introduction

Due to the scaling of silicon technology, the process tuning
and optimization becomes critical in the advanced technol-
ogy node. Thiswork uses laser annealing as the case study for
Bayesian reinforcement learning (BRL). As far as semicon-
ductor annealing is concerned, traditional furnace annealing
leads to a high thermal budget, while rapid thermal annealing
(RTA) is generally full-wafer, non-localized.As a result, laser
annealing is a promising alternative, and it possesses several
advantages. First, the localized heating in laser annealing
results in less dopant diffusion, which leads to a shaper
junction profile and reduces the subthreshold leakage cur-
rent (Gluschenkov & Jagannathan, 2018; Robinson, 1978;
Takamura et al., 2002; Whelan et al., 2002). A low ther-
mal budget is important in monolithic 3D integrated circuits
in terms of reduced heat transfer to bottom layers. Control-
ling the shielding layer’s refractive index can confine the

B Albert Shihchun Lin
hdtd5746@gmail.com

1 Institute of Electronics Engineering, National Yang-Ming
Chiao-Tung University, Hsinchu 30010, Taiwan

2 Taiwan Semiconductor Research Institute, No. 26, Prosperity
Road I, Hsinchu Science Park, Hsinchu City 300091, Taiwan

heated region and prevent metal interconnects or devices
from being destroyed (Pey & Lee, 2018; Rajendran et al.,
2007). Second, the solidification after laser annealing only
takes several microseconds, and thus, the dopant diffusion is
highly alleviated (Pey & Lee, 2018). This enables the dop-
ing concentration to exceed the solid solubility, improving
the film’s conductivity (Gluschenkov & Jagannathan, 2018;
Zhang et al., 2006). Third, laser annealing can be conducted
in the air because the impurities in the atmosphere hardly
diffuse into the samples due to the fast solidification in laser
annealing (White et al., 1979).

Parameter tuning is inevitable to optimize the laser anneal-
ing process or, in general, any semiconductor processes.
In the new age of the industrial revolution, i.e., Industry
4.0, industries have developed strategic guidelines to facil-
itate process control and optimization by using emerging
technologies such as big data analytics, cyber-physical sys-
tems (CPS), data science, cloud computing, and Internet of
things (IoT) (Kotsiopoulos et al., 2021; Wang et al., 2018).
The concept of intelligent manufacturing (IM) refers to the
application of artificial intelligence (AI), IoT, and sensors
in manufacturing to make wise decisions through real-time
communication (Yao et al., 2017). It is also desired to adopt
new methodologies for better-optimized design, manufac-
turing quality, and production in modern factories (Kusiak,
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1990). To achieve the purpose of fully automated, optimized
manufacturing, the keys are machine learning (ML) and
deep learning (DL) algorithms that can help develop strate-
gies to automatically analyze, diagnose, and predict patterns
from high-dimensional data. Specific to the semiconduc-
tor industry, where the processes are complex, interwoven,
and sensitive to process parameters, ML provides contin-
uous quality improvement (Li & Huang, 2009; Monostori
et al., 1998; Pham &Afify, 2005; Rawat et al., 2023). Super-
vised learning (SL) and unsupervised learning (USL) have
been extensively used in manufacturing industries for pro-
cess monitoring, control, optimization, fault detection, and
prediction (Alpaydin, 2020; Çaydaş & Ekici, 2012; Gardner
&Bicker, 2000; Khanzadeh et al., 2017; Li et al., 2019; Pham
& Afify, 2005; Salahshoor et al., 2010; Susto et al., 2015).
Nevertheless, SL/USL possesses some drawbacks, such as
being more limited to the specific process of the entire man-
ufacturing system (Doltsinis et al., 2012).

In contrast to SL/USL, reinforcement learning (RL) is
another ML approach where no supervision is mandatory
for training the model (Sutton & Barto, 2018). RL is a
well-known approach that was initially used in control and
prediction problems such as autonomous driving and go
games. It has also been used in many optimization prob-
lems (Jacobs et al., 2021; Ruvolo et al., 2008; Wang et al.,
2020). Specifically, in manufacturing industries, the produc-
tion environment is often dynamic and non-deterministic,
with unexpected scenarios or incidents (Monostori et al.,
2004). In such a stochastic environment where the random-
ness in the dataset makes prediction difficult, an RL agent
is more capable of learning the manufacturing process than
SL/USLmethods (Guevara et al., 2018; Günther et al., 2016;
He et al., 2022; Hourfar et al., 2019; Kormushev et al.,
2010; Silver et al., 2017). RL has been used in scheduling
and dispatching in the semiconductor industry in literature.
In particular, Washneck et al. used deep RL for produc-
tion scheduling and realized optimization and decentralized
self-learning (Stricker et al., 2018). Stricker et al. presented
deep RL usability in semiconductor dispatching and demon-
strated improved system performance (Stricker et al., 2018).
Khader et al. use RL to tune the surface mount technology
(SMT) in printed circuit boards (PCB) with experimental
data (Khader & Yoon, 2021). Besides, some semiconduc-
tor process-control efforts have been using RL on a more
theoretical side (Khakifirooz et al., 2021; Li et al., 2021;
Pradeep & Noel, 2018). While RL in the semiconductor
industry has been used extensively for production control
(Altenmüller et al., 2020) or scheduling (Lee & Lee, 2022;
Luo, 2020; Park et al., 2020; Shi et al., 2020; Waschneck
et al., 2018), there have been fewer works using RL in intel-
ligent semiconductor manufacturing, especially compared to
the efforts in SL/USL. The advantage of using RL in the

semiconductor industry is that, in general, RL can learn com-
plex and dynamic problems with reasonable generalizability
and efficient data utilization (Silver et al., 2017; Wiering &
Otterlo, 2012). In addition, RL has the advantage of split-
ting the primary task into several subtasks, resulting in a
flexible, decentralized structure that facilitates computation
parallelization (Chang et al., 2022; Wang & Usher, 2005).
In our previous attempt, we used an RL agent to analyze its
performance against human knowledge in the semiconduc-
tor fabrication field and show the importance of exploration
(Chang et al., 2022; Rawat et al., 2022).

In addition to RL, Bayesian inference is investigated and
applied to laser annealing problems in this work. Recently,
Bayes’ statistics and inference are regarded as highly promis-
ing inmachine learningfields and applications, such asBayes
network (BN) and Bayesian neural network (BNN). BN is
used to compute the conditional probability of each node
and is usually applied in classifiers such as Naive Bayes and
BN augmented Naïve Bayes (Muralidharan & Sugumaran,
2012). On the other hand, BNN can also be used in classifi-
cation (Auld et al., 2007; Thiagarajan et al., 2022) and even
regression problems (Chen et al., 2019). For example, BNN
is applied in the field of semiconductor manufacturing by fit-
ting the TCAD dataset and obtaining the weights and biases
of each neuron as prior, thus achieving lower regression loss
with a limited amount of true data (Chen et al., 2019). In addi-
tion to BN and BNN, Bayes’ theorem is also applied to RL,
leading to Bayesian reinforcement learning (BRL). Many
methods have been applied to realize BRL, such as Myopic
value of perfect information (Myopic-VPI), Q-value sam-
pling, and randomized prior function (RPF)(Dearden et al.,
1998; Ghavamzadeh et al., 2015; Hoel et al., 2020; Osband
et al., 2018; Vlassis et al., 2012). BRL is widely used in var-
ious fields (Gronewold & Vallero, 2010; Hoel et al., 2020;
Kong et al., 2020; Liu et al., 2021), such as autonomous driv-
ing, gaming, and energymanagement, andwe have not found
any prior arts used in semiconductor manufacturing. Advan-
tages of BRL are that agent can better select the actions with
the assistance fromprior, which possesses the domain knowl-
edge if informative prior is used. This reduces the required
training time and data amount and can lead to a more robust
model (Ghavamzadeh et al., 2015; Vlassis et al., 2012). The
work is included in our student thesis (Chang, 2023).

The optimization of the laser annealing process by itself is
not well studied in the literature, and thus, it can be difficult
to find many other papers on it (Alonso et al., 2022). Nev-
ertheless, optimizing semiconductor processing in general is
common in literature, but based on our literature review, very
few papers have applied Bayesian RL to semiconductor pro-
cessing (Li et al., 2023). We can only find Bayesian statistics
such as Bayesian belief net, Bayesian neural network, hierar-
chical Bayesian model, Bayesian parameter estimation, etc.,
in the field of semiconductor intelligent manufacturing. The
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novelty of this work lies in using TCAD prior and Bayesian
formulation incorporated into RL, while Bayesian RL has
been used in other fields instead of semiconductor process-
ing.

To summarize the architecture of this paper, in “Method-
ology” section will describe the method, including the
fabrication processes in laser annealing that is achieved in the
clean room facilities. The detailed formulations constituting
the entire BRL process and how the BRL framework and
formulas are fitted to the laser annealing case are described.
The definitions of the state, action, reward, and prior are clar-
ified in “Methodology” section. In “Results and discussion”
section provides experimental and numerical results of BRL.
The RL, BRL with a fixed prior, and a BRL with a vari-
able prior are compared. The variable prior refers to a prior
that changes continuously during the RL process. The rel-
ative strengths and weaknesses of respective methods are
stated, and the reason for improvement will be discussed.
The contribution of this work is highlighted in the “Results
and discussion” and “Conclusion” section. Essentially, the
application of BRL in the field of semiconductor manufac-
turing is less studied in the literature, and by using the study
case of laser annealing, the potential of using BRL in other
semiconductor processes can be seen. More importantly, the
TCAD informative prior provides valuable guidance in RL,
which is well demonstrated in this work.

Methodology

Sample fabrication

First, 6-inch p-type silicon wafers of resistivity 1–10 � cm
were cleaned using the standard (STD) clean process. In
the STD clean process, wafers were cleaned using a wet
bench before high-temperature deposition on wafers. First,
the wafers were cleaned in a solution of NH4OH:H2O2:H2O
in the ratio of 1:4:20 at 75 °C for 10 min. The wafers were
rinsed after the SC1 process. Then, the wafers are again
cleaned using the SC2 process, which includes the solution
of HCl:H2O2:H2O in the ratio of 1:1:6 at 75 °C for 10 min.
Again, after rinsing, the wafers were cleaned with diluted
hydrofluoric acid (DHF), which includes the HF:H2O in the
ratio of 1:50 at room temperature for 1 min. After the DHF
process, wafers were rinsed and dry spun.

After cleaning, the SVCS furnace system is used to deposit
two films, 500 nmSiO2, and 100 nm polysilicon, to form sili-
con on insulator (SOI) structure to isolate the doped substrate
because the target of this experiment is to get sheet resistance
(Rs) after conducting laser annealing. If the substrate is not
isolated, current may penetrate the substrate whenmeasuring
and make the experiment result wrong.

Table 1 Process parameters of laser annealing

UV (Blue) HiPPO
355–5

Green HiPPO
532–11

Wavelength (nm) 355 532

Output power (W) 1–3 (50 kHz)
0.5–2 (100 kHz)

0.5–6

Repetition rate (kHz) 50 and 100

Holder temperature
(°C)

25 and 300

The next step is implantation by Varian E500HP. In this
experiment, two different ions, arsenic and phosphorus, four
different ion energies, 10, 25, 40, and 55 keV, and four differ-
ent doses, 5 × 1015, 2 × 1015, 8 × 1014, and 5 × 1014 cm−2,
are used. After implantation, the wafer will be cut into 1.7 ×
1.7 cm2 to prevent a shift of correction factor of 4-point probe
measuring. The following step is laser annealing. There are
four different variables in this step: laser wavelength, laser
repetition rate (Rep. rate), laser power (P), and processing
temperature (T), as shown in Table 1. The laser anneal-
ing parameters selected in this work influence the annealing
results. For example, the laser power is themain factor affect-
ing the annealing procedure. Specifically, low laser power
can lead to activation energy not being achieved due to heat
loss, and overly high laser power leads to material dam-
age and surface defects. The substrate temperature during
laser annealing affects the lattice restoration phenomenon.
Laser wavelengths affect photon absorption due to differ-
ent photon energies, which in turn affect heating efficiency
and profiles. Dopant types affect material chemistry and acti-
vation energy during annealing. Implant energy affects the
dopant profiles in the polysilicon and the material damage.
The implant dosage affects the sample doping concentration
and the required annealing time and energy. The laser repe-
tition rate effect is more ambiguous and affects the cooling
and recrystallization during annealing.

NAPSON RT-80 measures every sample last to get sheet
resistance. Some samples are selected to check film thick-
ness by scanning electron microscope (SEM) with Hitachi
SU-8010 and conducting secondary ion-mass spectrometry
(SIMS) with CAMECA IMS 7F. Process steps are shown in
Fig. 1a, b below.

TCAD simulation

In TCAD simulation, Synopsys Sentaurus 2016 is used (Sen-
taurus Process User Guide, 2016). From the manual of the
laser used in this study, the pulse width of green and blue
lasers is around 10–20 ns for both repetition rates (rep. rate),
50 and 100 kHz. The reason that TCAD cannot simulate it is

123



Journal of Intelligent Manufacturing

that the pulsewidth of the laser is too short. To solve this prob-
lem, 6ts, the time laser energy is mostly released in TCAD
settings, is set to 1 ms and 2 ms for the rep. rate of 50 kHz
and 100 kHz, respectively. The reason why 6ts for 100 kHz
rep. rate is twice larger than that for 50 kHz rep. rate is the
total energy of two pulses at 100 kHz, the same as one pulse
at 50 kHz. This means it takes twice the amount to release the
same laser energy on wafers. To calculate fluence, the inte-
gral of Eq. (1) is set equal to the total energy per area of the
laser used in this experiment, as shown in Eq. (1). In Eq. (1),
the energy of the laser is assumed to distribute uniformly in
the region of the laser spot to simplify the calculation

∫
F√
2π ts

exp

[
−(t − t0)2

2t2s

]
dt � P

A
× treal (1)

where F is the fluence, ts is the full width at half maximum
(FWHM) time interval divided by 2

√
2 ln 2, t0 is set to be

3ts, P is experimental laser power, A is laser area, and treal is
time illuminated by laser and defined in Eq. (2).

treal � L/s (2)

where L is the long axis of the laser spot, and s is the scanning
rate, which is 5 cm/s.

Input parameters Output

Ion Rep. 
rate Power

P 50 1.5 30

As 100 3 45

…

P 50 6 60

Si Substrate

500 nm SiO2

100 nm Si

5 cm/s

V

A

(a) (b)

Fig. 1 Summary of the experimental setup for BRL/RL optimization.
a Various steps are involved in device preparations, such as deposi-
tion of wet-oxide and polysilicon, ion-implantation and laser annealing,
b device measurement using a 4 probe system for sheet resistance and
the dataset, and c BRL/RL model implemented in this work

Regular reinforcement learning (regular RL)

In this study, Python 3.8.13 (Rossum & Drake, 2009), Ten-
sorflow 2.7.0 (Abadi et al., 2016), Numpy 1.21.2 (Harris
et al., 2020), Scipy 1.8.1 (Jones et al., 2001), scikit-learn
1.2.0 (Pedregosa et al., 2011), and Pandas 1.4.2 (McKinney,
2011) is used for constructing the models.

For data preprocessing, because some variations in laser
power and temperature can cause an error in Python training,
they are fixed to the ideal same values and transformed to
discrete levels. For example, there are 4different ion energies,
10, 25, 40, and 55 keV, and each corresponds to a level of
1, 2, 3, and 4, respectively. A deep Q network (DQN) is
selected for the RL agent in this study. In every trial, it will
compute theQ value of each action, as shown inEq. (3) (Mnih
et al., 2015), and select an action based on the epsilon-greedy
algorithm expressed in Eq. (4).

Q(s, a) �
{
rreal + γ max

a′∈A
Qoriginal (s

′, a′), sampled points

Estimate from Q - Table neural network, unsampled points
(3)

π (s, a) �
{
argmax Q(s, a), with probability 1 − ε

random choice, with probability ε
(4)

where rreal is the reward received from the current state (s)
to the next state (s′), γ � 0.2 is the discount factor, A is the
action space, a stands for the current action, and a′ stands
for the next probable actions, and ε is the exploration rate
defined in Eq. (5).

ε � 0.5 × 0.9(epoch − 1) (5)

For the state space, the state is defined ass � [Ion, Dose,
Ion energy, Wavelength, rep. rate, P, T ], the experimen-
tal parameters used in laser annealing. According to this
state and the action applied, the environment will return the
reward. This study has two different action types for the
action space. First, action (a) is defined as the direct tran-
sition to any state in the RL. This means the action space
is the same as the state space. In addition, this also implies
that regardless of the current state, the same action leads to
the same next state, and the transition can be directed to any
defined state in an RL problem. The other type of action is
to raise, maintain, or drop the level of each parameter in a
state, i.e., a + 1/0/− 1 action. In this way, the result of action
depends not only on the action but also on the current state.
As for the reward, each pair of a state and an action has its
reward, and it is defined as − Rs, which is the negative value
of sheet resistance at the next state. The agent will maximize
the reward by choosing a lower sheet resistance value. In this
study, the Q-Table neural network model has 2 or 5 hidden
layers with 100 neurons in each hidden layer, and the batch
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size is 2, 5, and 10 when updating the model based on Eq. (6)
(Mnih et al., 2015). Training will be finished in 5 RL epochs
with 10 timesteps in each epoch. The initial exploration rate
is set to 0.5 in the first epoch. It will be 0.9 times lower than
the previous epoch because the agent gradually receivesmore
data from the environment. Therefore, the Q-Table training
and selection should be based on the agent’s experience. The
update of Q-Table is based on (Mnih et al., 2015)

Li � E(s, a, r , s′)∼U (D)

[(
rreal + γ max

a′ Q
(
s′, a′) − Q(s, a)

)2]

(6)

where Lt is the loss function of the Q-Table neural network,
(s,a,r,s′) is the agent’s experience, and D is the restored
dataset of experiences at each time step.

Bayesian reinforcement learning (BRL)

InBRL, the definitions of the state space, the action space, the
reward, and the batch size are the same as those of the regular
RL. One difference is that BRL will initialize two different
Q-Table neural network models. Then, it selects one of them
when determining an action to apply at every 5 RL timesteps,
as shown in Eq. (7).Q values will be updated by the selected
model, as shown in Eq. (8).

k � Uniform{1, 2}, every 5 timesteps (7)

Qk (s, a)

�
{
rreal + γ max

a′∈A
Qk, original (s

′, a′), sampled points from k� 1 and 2

Estimate from Q - Table neural networks, unsampled points

(8)

In addition, there is a prior from TCAD, which will also
be incorporated to guide the agent to select better action, as
shown in Eq. (9).

(9)p(s, a) � rTC AD

where rTCAD is the reward value from TCAD Q-table.
Combining the prior in Eq. (9) and the experiential sam-

pling, the agent selects an action based on Eq. (10) (Hoel
et al., 2020)

π (s, a) �
{
arg max(Qk (s, a) + 2p(s, a)), with probability 1 − ε

random choice, with probability ε

(10)

where ε is the exploration rate defined in Eq. (5).
There are two different types of priors, a fixed or variable

prior. A fixed prior will keep its value until the end of BRL
process. Nevertheless, the variable prior will keep changing
its values during the BRL process. One update on the prior

is that we partially correct the TCAD prior by the experi-
mentally sampled true values in our practice. Thus, at the
end of every RL step, true data from the experiment will fix
the TCAD values, and the data points to be modified in the
TCAD Q-Table are selected based on their adjacency to the
sampled data point in the input space. Since our input space in
the optimization objective function is discrete and levelized,
the difference of one level, when considering all seven semi-
conductor process parameter input variables, is regarded as
being within the distance eligible for TCAD prior modifica-
tion. Modification is expressed by Eq. (11). In addition to
the TCAD prior modification by the true experimental val-
ues, the weight of prior will keep decreasing from timestep i
� 11 to suppress the effect of prior inaccuracy, as shown in
Eq. (13), and the action is selected based on Eq. (14)
P(s, a)

�

⎧⎪⎨
⎪⎩
rreal , sampled points from k� 1 and 2

rTC AD × multiplicand, around sampled points from k� 1 and 2

rTC AD , others

(11)

where multiplicand is defined in Eq. (12)

multiplicand � abs(rewardi/TC ADi ) (12)

where TCADi and rewardi are -Rs value of experiment
parameters selected at timestep i from TCAD and environ-
ment, respectively.

P ′(s, a) �
{
P(s, a), i ≤ 10

P(s, a)/(i − 10)2, i ≥ 11
(13)

π (s, a) �
{
arg max(Qk (s, a) + 2P ′(s, a)), with probability 1 − ε

random choice, with probability ε

(14)

where i is the timestep, ε is the exploration rate defined in
Eq. (5), and Qk is defined in Eq. (7). The comparison of
algorithms between RL and BRL is shown in Fig. 2.

Results and discussion

Laser annealing analysis

Some samples with the same ion (Phosphorous), dose (5 ×
1015 cm−2), ion energy (40 keV), and wavelength (532 nm),
but different power, rep. rate, and chuck temperature are
shown in Table 2.

In Table 2, it is easy to observe that sheet resistance
increases with lower power because the depth of the melted
zone decreases, and lots of defects remain in the silicon. The
phenomenon can be solved with a high holder temperature
to compensate for the lack of laser power. From the top two
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Fig. 2 BRL/RL model
implemented in this work

End

Start

Objective function
(Minimize)

Epoch start
(Initializeto a fixedstate)

Action
(Selectan action

based on equation (4))

Reward
(Give a reward toaction

selected)

Is Rs
minimum?

Epochs
finish?

Save current
state and
timestep

Update
(Update model based 

on equation (6))

Yes

No
Yes

No

Initialize

Action
(Selectan action

based on equation (10) 

or (14))

Bayesian RL

Normal RL

State
(Modifycurrent state)

Timestep finish?
No

Yes

Table 2 Result of laser annealing

Power (W) Rep. Rate
(kHz)

Holder
temperature (°C)

Sheet
resistance
(�/sq)

2.996 50 25 118.9

2.996 50 302 76.3

2.995 100 25 417.87

2.999 100 299 242.37

6.001 50 25 50.58

5.999 50 304 47.54

5.997 100 25 100.68

5.996 100 299 63.93

columns of Table 2, the difference between these results is
about 40 �/sq with the same power and rep. rate, but there
is almost no variation in a sample with 6 W and 50 kHz.
The reason is that laser power is high enough to make silicon

recrystallize well without holder temperature. Another point
to pay attention to is that the holder temperature cannot be
too high. A higher holder temperature causes the dopant to
diffuse more easily in silicon, which loses the advantage of
laser annealing to confine the dopant in the region illuminated
by the laser.

The cross-sectional SEM images of the fabricated samples
are shown in Fig. 3, where the thicknesses of deposited layers
are labeled. SEM images confirm the deposited thicknesses
of 100 nm polysilicon and 500 nm wet-oxide over the p-type
silicon wafer. Figure 3a, b have arsenic as a dopant with a
dose of 5 × 1015 cm−2 and energy of 25 keV and 55 keV,
respectively. Figure 3c, d have phosphorous as a dopant with
a dose of 5 × 1015 cm−2 and energy of 25 keV and 55 keV,
respectively.

Figure 4 shows the images SIMS. SIMS is a useful tool
for analyzing the surface composition and studying the depth
profiling of the dopants in the multilayer sample. SIMS pro-
vides a detailed analysis of the composition formed on the
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Fig. 3 Cross-sectional SEM
images of the samples. Arsenic
as the dopant with dose 5 × 1015

cm−2 and energy of a 25 keV
and b 55 keV, respectively, and
phosphorous as the dopant with
dose 5 × 1015 cm−2 and energy
of c 25 keV and d 55 keV,
respectively

Fig. 4 SIMS profile confirms the presence of arsenic dopant in the sam-
ples. The dopant profiles for the sample annealed in a green light laser
at a 50kHz repetition rate and power of 5.999 and 2.997 W

sample. For depth profiling, SIMS is very efficient in deter-
mining even the very low concentration of sub-ppm or ppb
of dopants. In Fig. 4, the SIMS profile confirms the presence
of As dopant and its diffusion along the depth of the annealed
and non-annealed samples. Samples in Fig. 4 were annealed
at room temperature using a green light laser with a repetition
rate of 50kHz and two different powers of 5.999 and 2.997W,
respectively. SIMS profile also confirms the diffusion of As
dopant with increased laser power used in the annealing.

RL and BRL analysis

From Table 3 and Table 4, the average minimum Rs of RL is
over 50 using regular RL without a prior. Besides, the vari-
ance of the result is also significant, i.e., 20.73 in Table 3 and
44.25 in Table 4, and this is a serious issue since this indicates
the result strongly depends on hyperparameter selection and
can arrive at much degraded results with improper hyperpa-
rameters. Due to a lack of prior knowledge of each action,
regular RL can only retrieve information by experimentally
sampling the environment, which leads to selected states
whose rewards are very small, especially when the exper-
imental sampling is insufficient. To circumvent the problem
of regular RLwithout a prior, BRLwith a fixed prior is inves-
tigated. From the results of the BRL with a fixed prior in
Tables 3 and Table 4, the average minimum based on two
different action types are 47.29 and 44.32 �/sq, with the
average count before the minimum of only 11.50 and 10.50
counts. The average is over different settings of hyperparam-
eters. The reduced count before the minimum is an important
benefit in semiconductor process development, where the
experimental cost is very high. Additionally, from Tables 3
and Table 4, it can be observed that the variance of the min-
imum Rs values from different hyperparameters is reduced
in reference to regular RL. The variance of BRL with a fixed
prior in this case is 2.29 in Table 3 and 0 in Table 4, in ref-
erence to 20.73 in Table 3 and 44.25 in Table 4 in the case
of regular RL w/o a prior. Therefore, the burden and risk of
hyperparameter selection are alleviated with the assistance
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Table 3 Results in the first 50 timesteps for various hyperparameters and algorithms

Model Prior Result Average

Network Batch
size

Fixed Variable Minimum
Rs (�)

Min. Rs
variance
(�2)

Count
before
mini-
mum

Total
experi-
ment
count

Minimum
Rs (�)

Count
before
mini-
mum

Total
experiment
count

RL 2 2 0 0 57.97 20.73 14 21 53.70 15.17 28.67

2 5 0 0 47.54 8 36

2 10 0 0 59.71 15 25

5 2 0 0 54.25 13 34

5 5 0 0 51.67 26 34

5 10 0 0 51.07 15 22

BRL
w/fixed
prior

2 2 1 0 48.4 2.29 1 23 47.29 11.50 23.33

2 5 1 0 44.32 23 23

2 10 1 0 47.54 17 24

5 2 1 0 48.4 5 21

5 5 1 0 47.54 8 26

5 10 1 0 47.54 15 23

BRL
w/variable
prior

2 2 0 1 45.19 0 9 39 45.19 14.00 36.50

2 5 0 1 45.19 9 39

2 10 0 1 45.19 9 39

5 2 0 1 45.19 11 28

5 5 0 1 45.19 35 35

5 10 0 1 45.19 11 39

Bold value ndicates the best performance metrics
Action can point to any state directly

of a fixed prior. From the advantages mentioned above, a
fixed-prior BRL proves that it can guide the agent well to the
RL state parameters, i.e., the semiconductor process input
parameters, that possess a higher potential to attain lower
sheet resistance. Subsequently, the more effective locating
of the RL state reduces the optimization path and leads to
lower RS.

It is observed that the fixed-prior BRL achieves better
results than the regular RL does, but there is still a draw-
back. From Figs. 5b, e, and 6b, e, it is clearly shown that
whatever the hyperparameters are set, it is easy to be stuck at
the same state because it is possible that the value of prior is
higher than the predicted value from experimental Q-Table
model. This makes the agent choose an action based on the
prior instead of the experimental Q-Table model, except at
the timestep that exploration is activated. Intuitively, when
more experimental steps are conducted, the experimental Q-
Table should be more and more reliable. In this scenario,
it can be desired to let the effect of the prior decay even if
the prior is informative. As a result, the prior decay here is
established based on the RL timestep, where the effect of the
prior is gradually diminished. In addition, the information

stored in the prior will also be corrected according to the true
experimental data to improve the TCAD prior if the state is
sampled.

From Tables 3 and Table 4, The minimum Rs values of
BRL with a variable prior for two different action types
are 45.19 �/sq and 44.32 �/sq, respectively, and the counts
before the minimum are 14.00 and 4.50, respectively. Com-
pared to fixed-prior BRL, the variable-prior method achieves
either smaller Rs at the expense of a higher step count before
the minimum or a reduced step count before the minimum
with the same resultant Rs. This reflects the improvement
from using variable priors to take into account the grad-
ually improved experimentally sampled Q-Table. Besides,
another important advantage is that its variance is smaller
than the other two methods across different hyperparame-
ters, where 0 is achieved in reference to 20.73 in Table 3 and
44.25 in Table 4 in RL w/o a prior and 2.29 in Table 3 and
0 in Table 4 in RL with a fixed prior. In conclusion, using
the BRL with a variable prior can achieve either lower Rs

at the expense of a higher step count or similar Rs with a
reduced step count. Besides, lower variance in the optimal
Rs value is observed in the BRL with a variable prior. One
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Table 4 Results in the first 50 timesteps for various hyperparameters and algorithms. Action is + 1/0/−1 applied to the input parameters in the state

Model Prior Result Average

Network Batch
Size

Fixed Variable Minimum
Rs (�)

Min. Rs
variance
(�2)

Count
before
mini-
mum

Total
experi-
ment
count

Minimum
Rs (�)

Count
before
mini-
mum

Total
experiment
count

RL 2 2 0 0 47.54 44.25 26 37 51.84 18.17 42.83

2 5 0 0 50.27 9 46

2 10 0 0 50.27 9 45

5 2 0 0 65.14 3 45

5 5 0 0 47.54 26 37

5 10 0 0 50.27 36 47

BRL
w/fixed
prior

2 2 1 0 44.32 0 15 27 44.32 10.50 28.00

2 5 1 0 44.32 15 29

2 10 1 0 44.32 24 31

5 2 1 0 44.32 3 25

5 5 1 0 44.32 3 27

5 10 1 0 44.32 3 29

BRL
w/variable
prior

2 2 0 1 44.32 0 6 45 44.32 4.50 40.00

2 5 0 1 44.32 6 45

2 10 0 1 44.32 6 44

5 2 0 1 44.32 3 38

5 5 0 1 44.32 3 33

5 10 0 1 44.32 3 35

Bold value ndicates the best performance metrics

Fig. 5 Path of RL with network � 2 and batch size � 2 a RL w/o prior b BRL w/fixed prior c BRL w/variable prior, and network � 5 and batch
size � 2 d w/o prior e w/fixed prior f w/variable prior whose action can point to any state directly
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Fig. 6 Path of RL with network � 2 and batch size � 2 a RL w/o prior b BRL w/fixed prior c BRL w/variable prior, and network � 5 and batch
size � 2 d w/o prior e w/fixed prior f w/variable prior whose action is + 1/0/− 1 of level to each input parameter in the RL/BRL state

Table 5 The results of conventional optimization methods

Method Minimum
RS

Count before
minimum

Total
experiment
count

Taguchi array
level 2 (Leung
& Wang,
2001)

190.94 – 8

Taguchi array
level 4 (Leung
& Wang,
2001)

55.27 – 64

Differential
evolution
(Jones et al.,
2001)

55.98 31 34

Basin hopping
(Jones et al.,
2001)

57.98 35 46

potential risk of using a variable-prior BRL is that the agent
can start to sample the areas with degraded sheet resistance
when the prior almost disappears, as shown in Fig. 6c. As
a result, balancing the decay of the prior and the guidance
capability of the informative prior on the agent in the BRL
is essential. While we use a decay rate specified in Eq. (13)
in this work, meta-learning can also be used to control the
decay rate adaptively to improve this aspect further. Table 5
further shows the results of some conventional optimization

methods applied to the same laser annealing parameter tun-
ing. The Taguchi method achieves either a higher RS or a
larger total experiment count compared to the BRL method
in Tables 3 and Table 4. Specifically, 2-level discretization
gives RS � 190.94, which is too high for practical use. 4-level
discretization gives RS � 55.27 using 64 total experiment
counts, though the RS value is higher than the values in BRL
using 50 total experimental counts. Scipy differential evolu-
tion gives a reasonably low RS � 55.98, but the count before
theminimum is large.On the other hand, Scipy basin hopping
gives RS � 57.98, which is still higher than the RS achieved
by BRL and has a large count before the minimum.

Discussions

Comparison of two different actions

The results of RL are shown in Tables 3 and Table 4. It is
clearly shown that the case of action pointing to any state
directly is worse than the case of + 1/0/− 1 actions. The
reason is that there are 1024 different actions, and the agent
does not know their true rewards before sampling and can
only learn them one by one. In addition, once an agent finds
an action with a higher reward, it is likely to use the same
action in the next trial and get the same reward. This can
mislead the agent by making it think this is the best action
and thus trapped. Although the case of + 1/0/− 1 actions also
selects an action with a large reward from previous trials, the
next state and reward are dependent on the current state. This
means it can get a better or worse reward when choosing the
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same action. As a result, this prevents the agent from being
trapped in the same state and facilitates learning each action’s
meaning. The disadvantage of this method is that it samples
more data points.

Bayesian formulation

With normal Bayes’ theorem, which is a multiplication of
likelihood and prior, the agent is excessively influenced by
the likelihood that is non-informative in the beginning and
wastes lots of trials to modify those points. The advantage
of the addition of prior and likelihood is that it can adjust
prior decay. This benefits the agent to follow the instructions
of prior appropriately to sample the space with lower sheet
resistance to increase sampling efficiency. Compared to VPI,
which embeds prior information in the likelihood model, the
methods applied in this study can easily change the decay of
prior because our method does not have to fit the likelihood
model with prior embedded inside at each step. Besides, VPI
is computationally expensive due to the requiredVPI integra-
tion at each potential action. Therefore, in our case, at least
128 different integrations at each step are needed, which will
take a lot of time to finish one trial.

Fixed and variable prior

In priorwork (Hoel et al., 2020), 10 different non-informative
prior functions are used in each member of the ensemble
RL model, which can prevent agents from being trapped
in local minima with priors’ uncertainty. In fact, there is
no need to modify the decay of the prior because they are
non-informative and are trained and varied together with the
likelihood in most cases. In semiconductor manufacturing,
informative prior methods are always preferred over non-
informative prior methods due to the extremely high cost in
fabrication. In this study, there may be wrong data due to
the inaccuracy of TCAD simulation, which leads the agent
to be stuck or easily waste trails. Due to the above reasons,
balancing the decay of prior and information stored in prior
is the most important issue. In our algorithm, the prior is only
modified according to collected data but not diminished at the
first epoch to specify where underestimation or overestima-
tion is. This makes the agent modify its searching direction
and avoid wasting trails. The advantage of initiating prior
decay from the second epoch is that the agent will not be
trapped in future trials and can incorporatemore environmen-
tal knowledge and sample more efficiently. In addition, it can
also prevent wrong data from being accumulated, according
to Eq. (12).

Comparison with other machine learning methods

Compared to supervised learning (SL) and unsupervised
learning (USL), RL trains the agent based on the data col-
lected by the interactions with the environment instead of
a fixed dataset. In SL and USL, the prediction accuracy is
highly dependent on whether the data collection properly
spans the entire sample space. Suppose the SL is going to
be used to optimize the process condition. In that case, the
data collection should be extendedover all possible choices in
input process parameters, leading to inefficient optimization.
Besides, active learning (AL) is another method to sample
other data from unlabeled pools like RL to search the envi-
ronment. The major difference between AL and RL is that
RL can predict future rewards based on the gamma factor,
which means RL can make a decision based on the current
and future rewards while AL cannot. In addition, RL can be
more flexible by adjusting its reward function according to
specific tasks instead of labeling data directly. In this regard,
RL can select a better path and be a more potent way to
optimize parameters.

Conclusion

In this study, we investigate the Bayesian approach in RL to
accelerate the optimization of semiconductor process param-
eter tuning. The RL without TCAD prior knowledge shows
that it requires more trials to achieve lower Rs values and
has a large variance with different settings of hyperparame-
ters. In contrast, BRLwith a fixed prior can guide the agent to
the search space where the reward is larger. This significantly
prevents the agent fromwasting trials. The fixed TCAD prior
effectively guides the learning process in the laser anneal-
ing problem. On the other hand, the variable TCAD prior,
where the TCAD prior effect is gradually decayed and cor-
rected to reflect the increased experimental data collection, is
improved so that the agent can achieve lowerRs at the expense
of more step count or a similar Rs with a reduced step count.
Specifically, using the action with direct state transition, the
achieved Rs and the step count before minimum Rs for RL,
BRL with a fixed prior, and BRL with a variable prior are
53.70 �, 15.17, 47.29 �, 11.50, 45.19 �, and 14.00, respec-
tively. On the other hand, using the + 1–0/− 1 action, the
achieved Rs and the step count before minimum Rs for RL,
BRL with a fixed prior, and BRL with a variable prior are
51.84 �,18.17, 44.32 �,10.50, 44.32 �, 4.50, respectively.
Based on this study, it is seen that BRL with informative
prior can be an essential infrastructure for future intelligent
semiconductor manufacturing.
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