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Abstract
In real-world industries, production line assets may be affected by several factors, both known and unknown, which dynam-
ically and unpredictably evolve so that past data are of little value for present ones. In addition, data is collected without
assigned labels. How can someone use run-to-failure data to develop a suitable solution toward achieving predictive main-
tenance (PdM) in this case? These issues arise in our case, which refers to a cold-forming press. Such a setting calls for an
unsupervised solution that can predict upcoming failures investigating a wide spectrum of approaches, namely similarity-
based, forecasting-based and deep-learning ones. But before we decide on the best solution, we first need to understand which
key performance indicators are appropriate to evaluate the impact of each such solution. A comprehensive study of available
evaluation methods is presented, highlighting misconceptions and limitations of broadly used evaluation metrics concerning
run-to-failure data, while proposing an extension of state-of-the-art range-based anomaly detection evaluation metrics to serve
PdM purposes. Finally, an investigation of pre-processing, distance metrics, incorporation of domain expertise, and the role
of deep learning shows how to engineer an unsupervised solution for predictive maintenance providing insightful answers to
all these problems. Our experimental evaluation showed that judicious design choices can improve efficiency of solutions up
to two times.
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Introduction

Predictive maintenance (PdM) is a key technology for every
modern industry, where among others it promises increas-
ing operation time of equipment, safer working environment,
better quality products and reducing maintenance expenses.
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PdM involves monitoring the condition of assets through
sensor devices to predict and prevent failures, typically
employing advanced data-driven techniques. Although there
are many PdM proposals in the literature, there exists no
generic solution because each case study has its own unique
characteristics Korvesis et al. (2018), Zhang et al. (2019). A
common challenge is to take advantage of as much expert
knowledge as possible without putting a burden to these
experts. Furthermore, some additional challenges that arise
in the field are training data availability since in real-world
scenarios, most commonly, data has no labels, data scarcity
because important failures are not that common, dealingwith
a dynamic environment and necessity of context-awareness.
Such challenges constitute the main motivation of our work
and are highlighted in other works as well, e.g., Dalzochio
et al. (2020). Moreover, evaluation using correct Key Per-
formance Indicators (KPIs) is not trivial. As implied above,
asking experts to manually label monitoring data to circum-
vent some of these problems is seldom an option.
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Our motivating case refers to the operation of a cold-
forming press in an industrial plant in Europe. In this set-
ting, we characterize the operation environment as dynamic
because different kinds of everyday changes, such as mate-
rials, temperature, and so on, lead to altered behaviour in the
collected data. Briefly, the operation takes place in a dynamic
environment in the sense that, in each production episode,
the equipment may be configured and behave differently.
This essentially rules out supervised PdM solutions because
equipment configurations change frequently and past data
do not provide insights into the behavior of the currently
configured operation, as evidenced by the proof-of-concept
experiment below.

As will be described in more detail later, our dataset com-
prises operation episodes from different modules and time
periods, some resulting in failure and others being replaced
without failure. We justify our claim that supervised tech-
niques are inappropriate through conducting the following
experiment (only for motivation purposes). We collect seven
out of the twenty operational episodes, which pertain to
the same module of the press, in order to build a labeled
dataset. Although the data initially arrive without labels, we
can assign labels by utilizing a period before each failure, in
which, if alarms are raised, there is an opportunity to prevent
failures. By classifying the data within that period as posi-
tive examples and data from other periods as negative, we
can train a classifier to predict the positive instances. For this
experiment, we choose the well-known XGBoost classifier
Chen and Guestrin (2016), but any other classifier can be
employed.

The key concept of this experiment lies in handling data
either with or without real-world constraints. Specifically,
we explore two approaches for selecting training and test-
ing data as depicted in Fig. 1. The first approach completely
disregards the time ordering of events in real-world cases.
We gather all the data into a single set and perform shuf-
fling. Then, we split the data into two equally sized parts,
one for training and another for testing. In the results, we
observe an F1 score of 0.81, which appears to indicate very
high performance. How exactly this F1 score can be mea-
sured requires special attention, given that we are interested
in alarms occurring only in a specific period, but we defer
the detailed discussion on this topic to the main part of
this work. In the second approach, we collect the first four
episodes: three with failures and one without failure. These
episodes are grouped together for training, while the remain-
ing three episodes are used for testing. The reported F1 score
for this approach is only 0.02 because past data cannot help
in detecting failures in future episodes. This extreme dispar-
ity between the two approaches is solely attributed to the fact
that the data evolve over time, although they stem from the
same source. In the first case, the algorithm has knowledge
about all episodes, including all failure cases, enabling it to

distinguish between negative and positive examples. How-
ever, this paradigm is not feasible in the real world, where
we utilize data that have already been collected for training
and apply the model to new data on the fly.

According to the results above, unsupervised techniques
are inherently more suitable. Since such techniques typically
rely on computing anomaly (i.e., dissimilarity) scores, their
main challenge is to ensure that high scores are either faults
or, even better, early warning signs for such faults without
any explicitly provided training set. There are three main
approaches to unsupervised anomaly scoring that are com-
monly explored: a) using deep learning (DL) techniques, b)
using forecasting techniques, and c) using similarity-based
techniques. We provide concrete evidence that the latter
approach is more appropriate for our case, similarly to pre-
vious results in a similar setting Giannoulidis et al. (2022).
However, given also the scarcity of AutoMLworks for unsu-
pervised anomaly detection Bahri et al. (2022), we face the
following research questions:

1. What are the KPIs that should be considered for the eval-
uation of a PdMmethods, and thus the choice of the final
solution using run-to-failure data?

2. How to engineer an appropriate similarity-based unsu-
pervised anomaly detection PdM solution?

3. How to leverage the domain expertise?
4. What is the role of deep learning in such a setting, and

how to use a DL model in an unsupervised fashion?

Our contribution lies in the fact that we provide concrete
answers to all these questions. Figure 2 presents a flowchart
of our study, which shows the engineering pipeline we fol-
low, from understanding the problem to the final solution.We
propose a novel evaluation metric (a.k.a. KPI) for anomaly
detection-based PdM solutions. We also discuss in detail
issues related to distance function selection, feature engineer-
ing and incorporating domain expertise, while we explain
how DL and supervised techniques can be applied. Also, we
thoroughly discuss the specific characteristics of our case,
which are not encountered in any common PdM benchmark
thus far (e.g., AI4I 2020 PdM dataset,1 Azure2 and Genesis3

for which supervised learning techniques are shown to be
efficientShi and Zhang (2023)); this allows other practition-
ers to understand whether their cases are similar to ours or
not. Finally, we provide both our codebase and the dataset.
In summary, we discuss a PdM scenario and dataset that are

1 https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Main
tenance+Dataset
2 https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-
predictive-maintenance?select=PdM_telemetry.csv
3 https://www.kaggle.com/inIT-OWL/genesis-demonstrator-data-for-
machine-learning?select=Genesis_pressure.csv
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Fig. 1 a Splitting the data
disregarding the time order. b
Splitting data in episode level
respecting time order

significantly different from existing cases already published
and we provide details about all steps required in order to
craft a fully operational solution in a manner that these steps
can be transferred to other scenarios as well.

Interestingly, our approach to relying on such an unsu-
pervised technique is in line with the state-of-the-art in time
series anomaly detection Paparrizos et al. (2022), Schmidl
et al. (2022). More specifically, Paparrizos et al. (2022) is a
state of the art benchmarking of time series anomaly detec-
tion techniques, using more than 10,000 time series to test
the performance of unsupervised detectors, while Schmidl
et al. (2022) provides a comprehensive evaluation consid-
ering classical machine learning, DL (both reconstruction
and forecasting approaches), stochastic learning, statistics,
outlier detection and data mining techniques, in settings of
both univariate and multivariate data. The thorough evalua-
tion in these studies shows that unsupervised techniques are
not inferior to supervised techniques even when training can
be performed andDL-based solutions do not necessarily lead
to better performance. The research in this work is aligned
with such directions.

The remainder of our work is structured as follows.
Next, we discuss the related work. In Sect. “Problem set-
ting description”, we describe the setting, its challenges and
the baseline PdM technique. We present novel PdM-oriented
KPIs in Sect. “Which KPIs are actually good for data-driven
PdM?”. In Section “Engineering a PdM solution in practice”,
we discuss 4 main engineering problems when deploying
PdM solutions in practice. We conclude in Sect. “Conclu-
sion and future work”.

Related work

In PdM, when labels are available, then the prediction of
failures does not differentiate from any problem that uses
a supervised model. For example, the authors in Li et al.
(2018) use a convolution neural network (CNN) to predict
the Remaining Useful Lifetime (RUL) of assets, by trans-
forming multivariate time series in a two-dimension matrix
and leveraging one dimension convolutional filter to catch
sequential information. Similarly authors in Zhu et al. (2023)
use a DL architecture to predict the RUL in turbofan simula-
tion data. In more detail their proposal is the use of attention
mechanism combined with a CNN, and fussed with raw data
after they passed a fully connected layer before extracting the
RUL. In the work Li et al. (2023) a CNNmodel is chosen too,
to perform for fault identification. Authors here before apply-
ing the raw data to the model, explore how to produce more
informative features and propose an improved an improved
tranformation of signals to images method. Similarly, in a
PdM case Chakroun et al. (2024), where the objective is to
estimate the degradation of power transmitters in robots, the
authors perform a massive data analysis before applying a
supervised learning solution. After that, a Discrete Bayesian
Filter for estimating degradation is used to enhance schedul-
ingmaintenance in smart factories. In addition, when dealing
with labeled data, plenty of autoML solutions are applicable
Tornede et al. (2020),whichmitigate the need for fine-tuning.
When supervised learning is employed, it is common to
use datasets like Azure’s one, as mentioned in the introduc-
tion, e.g., Zonta et al. (2022). Such datasets are suitable for
classification problems based on telemetry data from sev-
eral machines; on the contrary, our contribution targets cases
where supervised learning is not fruitful.
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Fig. 2 Flowchart of our study

The survey in Zhang et al. (2019) provides an overview
of the current state-of-the-art data-driven methods in PdM
of industrial equipment. One of the conclusions stated in
this work is that unsupervised learning with unlabeled data
is considered a significant research direction for the future
since the current achievements of AI are mainly focused on
supervised learning using labeled data. The need for unsu-
pervised techniques is also stated in a survey of DL models
for PdM Serradilla et al. (2022), along with XAI. Addition-
ally, in the survey (Theissler et al., 2021), the challenges of
PdM in the automotive industry are discussed. One of them is
the underlying assumption that the models are trained using
representative data, which is something that is not neither
fulfilled in the automotive industry nor in our case. Note that
in the case where several forms of normal data are collected,
then semi-supervised PdMsolutions become applicable, e.g.,
as in Hundman et al. (2018), Silva Arantes et al. (2021),
Munir et al. (2019), Zhang et al. (2019).

When we need to resort to unsupervised techniques,
as in our case, things get more complicated in terms of
design choices and configuration selection. Although there
are suggestions for unsupervised anomaly detectionAutoML
systems Zhao et al. (2021), Zha et al. (2020), these do not
address the challenges encountered in our setting. More
specifically, Meta-OD Zhao et al. (2021) selects the out-
lier detector that best performs on existing datasets that are
similar to a target dataset, where the similarity is calculated
according tometa-features. Themain limitation that prevents
the use of such a solution in our case is the need for the
whole target dataset to decide the best detector, while we
are interested in real-time detection. The same severe limi-
tation, that is no support for real-time analysis, holds for the
Meta-AAD solutions (Zha et al., 2020), too. This method
uses reinforcement learning to train a model, using different
labeled datasets, to decide which instances to provide to an
analyst as potential anomalies, given a new dataset.

One way to accomplished PdM via anomaly detection is
by leveraging forecasting techniques to predict the next data
points and measure the deviation from the real value. Exam-
ples of such techniques are Hundman et al. (2018), Munir
et al. (2019), Makridis et al. (2020). In these solutions, a
training set consisting of normal data is required. Regard-
ing Hundman et al. (2018), a DL model is used to forecast
future telemetry values and measure the error from the real
data to calculate the anomaly score. Similarly, in Munir et al.
(2019), a convolution neural network is proposed to predict
the next value of time series data, and calculate the anomaly
score. Additionally, the authors in Zhang et al. (2021), Thiya-
garajan et al. (2020) use an automatic Prophet model Taylor
and Letham (2018) as a forecasting model. Prophet is a fore-
casting technique developed to automatically fit nonlinear
trends of data seasonality. We take advantage of the relative
easy applicability of Prophet and use it to test the forecasting
error in our case as well.

Furthermore, another anomaly detection methodology
consists of reconstruction techniques. The authors in Zhang
et al. (2019) use the normal data to train a convolution net-
work to reconstruct signatures of the data. The signatures
are computed using the correlation of data in a window, and
anomalies can be spotted in poorly reconstructed signatures.
Using the reconstruction error of data for a PdM applica-
tion, when sufficient amount of normal data are collected,
can be done using state-of-the art methods like Audibert
et al. (2020), Xu et al. (2018), Tuli et al. (2022) too. We
pick the Tuli et al. (2022) to test the usage of a (transformer)
deep reconstruction model in our PdM case given also that is
proposed for non-supervised settings that are similar to our
problem case and its evaluation shows superior performance
compared to alternatives.

Similarity-based techniques are also applied to measure
the degree of data anomalies. An unsupervised algorithm
to detect failures in bridge joints is proposed in Diez et al.
(2016), where normality is modeled using clustering algo-
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rithms or one class support vector machine Diez-Olivan et al.
(2018). We also employ a distance-based baseline solution.
Another unsupervised approach for vehicle fleetmaintenance
is proposed in Rögnvaldsson et al. (2018), where authors
use the wisdom of the crowd to define normality, using the
hypothesis that most of the vehicles are in normal condi-
tion on each time point and have common characteristics.
The Profile-Based (PB) Giannoulidis et al. (2022) solution
is used to detect early warnings on the same data as in our
case. This algorithm detects the degradation (a.k.a. wear) of a
component by measuring the distance between new data and
a small dataset collected in the initial operating phase of the
component. We use PB as our baseline model to accomplish
PdM in our case. Similarly, in Silva Arantes et al. (2021), the
authors use windows to calculate features across data and
use the training data to calculate optimized thresholds, after
cleaning them from outliers. The main difference from PB
lies in the form of data: in Silva Arantes et al. (2021), win-
dows are used to produce time series and calculate features,
while PBhandles fixed sequences of data,where time domain
features can be calculated without a windowing technique.

Table 1 summarizes the presented related work, where the
methodology limitations and goal of each technique family
is shown. In our work, we aim to engineer a PdM solution
considering and assessing the potential of all main represen-
tatives, namely reconstruction Tuli et al. (2022), forecasting
Taylor and Letham (2018) and similarity-based techniques
Giannoulidis et al. (2022).

Finally, the engineering problem we face is not focused
solely on the technique itself, but also on engineering choices,
which may boost the its performance. In Paparrizos et al.
(2020), Paparrizos et al evaluate the choice of distance met-
rics and discuss several relevant aspects, while they suggests
SBD (see Section 5) as a robust choice. However, to the
best of our knowledge, no such work has been conducted for
unsupervised anomaly-based techniques tailored to a PdM
problem.

Problem setting description

This work focuses on a cold-forming press that is a part of the
production line for cutters of the Philips factory; it is inspired
and motivated by the the promising results in Giannoulidis
et al. (2022). The aim is to monitor the state of the multiple
components that assemble the press. Specifically, the press is
composed of six different modules placed side-by-side. Each
different module has its die, which is designed to morph a
metal piece to be ready as an input for the next component
of the production line as shown in Fig. 3. A limitation is that
there is no means to monitor directly the condition of the
modules (i.e. if they are scratched or worn) other than stop-
ping the press from operating and inspecting the module. To

overcome this limitation piezoelectric sensors are installed in
each module that collect the force signature of press strikes.
These sensors produce 500 values for a single strike, for each
different module, where each value corresponds to a specific
angle as the press performs a single punch. These signals
are collected at periodic intervals, which are not fixed. As
a result, we have access to only one strike force signal in
each period, even though the press may have executed many
strikes. Based on these data, we try to estimate the degra-
dation of modules and decide when is the right time to take
action and prevent costly failures using anomaly detection
techniques. However, in PdM, the objective is slightly differ-
ent than merely detecting anomalies in time series. There are
no multiple anomalous periods, in which we are interested
but a single one corresponding to a restricted time frame
before the failure, called prediction horizon (PH). The time
frame should be restricted so that too early alarms are pun-
ished. Moreover, any correct anomaly detection should not
be extremely close to the actual failure to allow for actions
to be taken, so we need to account for a buffer period (a.k.a.
lead time) between the end of the PH and the failure.

Although RUL models are widely used for PdM, we can-
not apply this approach to our run-to-failure data due to
several reasons. Firstly, our run-to-failure data come from
different systems and components that may change over time
and do not exhibit smooth degradation. As a result, we have
limited data availability that corresponds to the same setting,
i.e., the same component, to build reliable models. Addition-
ally, there are many types of failure modes, and for most
of them, early warning signals are not evident in the data.
Moreover, in our case, similar data may correspond to a
healthy state in one episode and a near-failure state in another
episode. This prevents us from using a supervised algorithm
to estimate the remaining useful lifetime based on the col-
lected data.

As in many real-world problems, many factors might
impact the behavior and state of the press, some of which
remain unknown. Below we note some factors that affect the
performance of the press.

• Cold start and speed: in general, each time the press starts
after a pause period, it has a lower temperature and lower
speed (which are correlated). At these circumstances, it is
common to observe an increasing amplitude as the press
starts operating and gaining higher speed.

• Material change: the material used as input may affect
the operation of modules, since characteristics like thick-
ness cause change in the derived force signal from the
modules. Moreover, when material change takes place,
a welded area between the old and new material batches
may produce instantaneous outlier punches.

• Type of Modules: the different types of the same module
may have small differences, which can be seen from the
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Table 1 PdM related work
summary

Techniques Method Supervision Goal limitation

Li et al. (2023), Li et
al. (2018), Zhu et al.
(2023), Zonta et al.
(2022)

Regression supervised RUL need for vast
historic data

Chakroun et al.
(2024)

Discrete
Bayesian Filter

supervised Degradation
estimation

need for vast
historic data

Tornede et al. (2020) Auto ML supervised RUL need for vast
historic data

Hundman et al.
(2018), Munir et al.
(2019), Makridis
et al. (2020), Taylor
and Letham (2018)

Forecasting semi-supervised Anomaly
detection

need many
healthy data

Zhang et al.
(2019), Audibert
et al. (2020), Xu
et al. (2018), Tuli et
al. (2022)

Reconstruction semi-supervised Anomaly
detection

need many
healthy data

Silva Arantes et al.
(2021)

Similarity-Based semi-supervised Anomaly
detection

need many
healthy data

Zhao et al.
(2021), Zha et al.
(2020)

Auto-ML unsupervised Anomaly
Detection

no real-time

Diez et al.
(2016), Diez-Olivan
et al. (2018), Silva
Arantes et al.
(2021), Rögn-
valdsson et al.
(2018), Giannoulidis
et al. (2022)

Similarity-based unsupervised Anomaly
Detection

tuning-sensitive

Fig. 3 A cold-forming press
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resulting force signal when they operate. Therefore, the
different types of modules may affect the operation of
another module downstream, e.g., the module 2-type A
operating with module 1-type C has different behavior
than operating with module 1-type B. In general, due to
the orderedplacement ofmodules, operationof preceding
modulesmay affect the operation of succeedingmodules.
For example if a preceding cutting module does not cut
well the metal strip, the downstream module is affected.

Profile-based anomaly detection: our baseline
technique

Previous work has shown that the Profile-Based (PB) algo-
rithm is effective in detecting component degradation Gian-
noulidis et al. (2022). This algorithm detects the degradation
of a component by measuring the distance between new data
and a small dataset collected in the initial operating phase
of the component. The algorithm is separated into two main
steps: 1) Construction of profile and 2) Anomaly detection.
With regards to thefirst step, a profile is constructed fromcon-
tinuous time points that have small distance between them.
More accurately, these continuous time points form a set of
data-points. If the maximum distance between the data of
this set is less than a threshold, then we accept this set as
a profile. Essentially, the profile is a homogeneous repre-
sentation of the initial state of the component. To eliminate
the need of a threshold to construct the profile, we use the
following methodology: instead of checking if the set has
maximum inner distance smaller than a threshold, we just
check if its distance is smaller than the next candidate set. If
that is true, then we accept the set as a profile. After a profile
is constructed,wemove to the second step for anomaly detec-
tion. Whenever a new point arrives, we calculate its distance
from the profile, which is determined from its closest point in
the profile. Each time the anomaly score is calculated as the
median of distances of the last n instances. This is done to
observe the trend of distances from upcoming points, while
in case of n = 1, only the last point distance is used as
anomaly score. To produce alarms, we use a threshold value
that can be calculated using several techniques as described
in (we choose the self-tuning one since, in Giannoulidis et
al. (2022), evidence regarding its improved efficiency is pro-
vided).

The second and the third research questions mentioned
in the introduction refer to engineering the PB solution, in
order to render it (more) effective. The first research ques-
tion deals with the assessment of such efficiency, while the
fourth research question explores other non-similarity-based
techniques.

Effect of factors in practice

To understand the complexity and the dynamicity of the
problem in practice, we discuss some indicative cases, called
episodes, as shown in Fig. 4. In the figure, in episode 7, we
can identify a change point in anomaly scores produced by
PB that is aligned with a change in module 1 due to pre-
ventive maintenance. This phenomenon supports previous
indications of the impact of different types of the same mod-
ule on the press’ operation, i.e. different types of the same
module may have varying effects on the other modules of the
press.

In the episode 15 of module 3 depicted on the top-right
part of the figure, a sharp increase is observed after a material
change in the middle of the episode, which is correlated with
a sudden change in the behavior ofmodule 6 too. This change
is depicted as a step increase in the amplitude of the force
signal of module 6 around the 180-degree angle, as shown in
Fig. 5. Note that seemingly small changes have a big impact.
We can see that the force amplitude changed only around
the 180-degree angle, while the remaining signal remains
at the same amplitude. In addition, by looking at the same
punch signals of module 3 in Fig. 6, we can observe that
after the material change (with grey color), we have higher
amplitude in the two peaks of the force signal and lower
amplitude in the remaining signal than before the material
change (black color). Interestingly, the error sharply dropped
after a change inmodule 2 due tomaintenance. The case here
is the opposite of the previous one, where module 3 returns
to a similar state to that before the change of material. More
specifically, looking at the signals ofModule 3 before (black)
and after (grey) the change of module 2 in Fig. 7, we observe
that the force amplitude increases in the peaks and drops in
the remaining signal. After discussing with engineers, at the
time of writing, we cannot justify the reason for that effect,
therefore we simply notice it.

In another run-to-failure episode, episode 16 (see Fig. 4),
we notice a generally increasing error. The produced error
shows a big rate of increase which is followed by a sharp
increase after a “gap” time (where no data are collected).
Here, we observe how “cold starting” affects the produced
error. The cold start can be observed also from the amplitude
of the signals where we have a gradual increase in force.
The duration of the cold start can vary (maybe depending
on factors such as temperature of the press and material).
The effect of cold start is depicted in Fig. 8, where force
signals ofModule 2 in the start of the episode are plotted. The
episode 17 depicted in Fig. 4 ofmodule 2 is one of the biggest
episodes in our dataset, which ends with a failure on the die.
Examining the big picture, we see an increasing trend of error
with fluctuations over time and a sharp increase due to the
change of Module 1. As described earlier, the different type
of the modules impacts on the behavior of the other modules
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Fig. 4 Results of PB in four run-to-failure episodes using euclidean distance. Vertical dotted lines show change of the metal strip (and welding),and
solid lines show maintenance in other modules

Fig. 5 Episode 15: Module 6 before and after the change material

too. By plotting the signals before and after the change of
module 1 type, we see a known behavior change of Module
2. In Fig. 9, we see that before the Module 1 changes, the
signal shows a small step around 160 degrees (black color),
which cannot be observed after the module 1 change (red
color).

Fig. 6 Episode 15:Module 3 before and after the change material

Our approach to dealing with the Dynamicity of the
environment

In the previous section, we have discussed volatility aspects
of the operation environment, which render early warning-
oriented anomaly detection particularly challenging. In our
solution, we proposal a novel pipeline, which introduces
profile reset in the baseline PB method, while detailed
engineering aspects are dealt with later in this work. This
pipeline generalizes to other anomaly detection methods.
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Fig. 7 Episode 15: Module 3 before and after the change of Module 2
die

Fig. 8 Episode 16: Cold start ofModule 2. Increasing number indicates
time order

Fig. 9 Episode 17: Change in force signal ofmodule 2when themodule
1 changes

Fig. 10 An illustration of the reset policy pipeline

In a nutshell, to address dynamicity, we propose a generic
readjustment policy, which is independent from the actual
method and enhances the PdM solution with context aware-
ness. Considering that the change of environment can alter
the characteristics of the data, including the historic data con-
sidered normal, we perform a readjustment of the utilized
method upon every noticed configuration change. A repre-
sentation of such policy is depicted in Fig. 10.

The monitoring assets produce different kind of data and
events. Given an early warning detection method that builds
a profile based on streaming data to produce alarms, we could
use a human in the loop, expert feedback or automatic process
that signals the need to reset the underlying technique (and
build the profile even from scratch) in order to capture the
environmental changes. This can be done automatically, e.g.,
using a technique that detects environmental changes using
data from other sources rather than using only actual moni-
tored data. In our case, these data could be events produced
from the monitored press, or data from adjustment modules
in the topology of the press. Another way to accomplished
that is via expert’s feedback, where the expert could provide
simple rules, which indicate when to refit. Interestingly, this
can implemented as a human-in-the loop process, where an
expert could send a signal for refitting thatmodels. In our case
we leverage the expert’s feedback, where the expert tags a
subset of events types produced from the press, as resetting
ones. The tags refer to the changes or maintenance actions
of the modules of the press, which are recorded.

Which KPIs are actually good for data-driven
PdM?

Quantified evaluation is crucial for testing new or existing
ideas and determining their capabilities and impact on exist-
ing problems. Data-driven PdM boils down to using ML
solutions, which are typically evaluated based on metrics
such as true/false positives/negatives.Our purpose is twofold:
first to explainwhy previously proposedmethods for evaluat-
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ing PdM during run-to-failure episodes are inappropriate to a
smaller or larger extent, and second, to propose a new metric
that is tailored to PdM scenarios like the one described in the
previous section. Note that questioning existing approaches
to evaluating failure prediction is not new, e.g., it is discussed
in Salfner et al. (2010), which highlights the role of param-
eters such as data size, prediction horizon (PH), and lead
time.

Episode-level performance

This type of assessment focuses on whether an anomaly-
based detection technique managed to lead to PdM actions
more directly. Given a set of run-to-failure (or run-to-target
event) episodes, this evaluationmetric characterizes each one
of the episodes as false positive (FP) or false negative (FN)
or true positive (TP). Then the recall, precision, and F1 val-
ues are used to summarize the overall performance of the
algorithm. As such, we characterize a whole episode as FP
if an alarm is raised before the PH. In the real world, this
would lead to an investigation or unnecessary maintenance
of the component and the production would stop. Moreover,
an episode is TP if anomalies are detected only within PH,
which results in the full usage of the component. Finally, if no
alarms are raised although the episode ends with a failure, we
characterize the episode as FN. It is worth mentioning that in
such a scenario, there is no sense in distinguishing between
micro andmacro calculation of F1 score. This evaluation set-
ting was used for an aviation PdM problem Korvesis et al.
(2018).

The main problem with this evaluation metric is that, in
a specific setting, it cannot differentiate between a dummy
method that always reports an alarm while a more preferable
method starts reporting alarms just before PH begins until the
end of the episode. Such an example is depicted in the Fig. 11.
Both of the methods, achieve zero precision, recall, and F1
score (since all episodes are characterized as false positives).
Although, for the specific example, the issue can be resolved
by increasing the predictive horizon period, in general, this
issue limits the ability of that evaluation metric to be used
for comparison purposes, as even some isolated anomalies
during the first part of the episode lead to the characterization
of the episode as FP, i.e., there is extremely low flexibility.

pw-ROCmetric

The pw-ROC (Preceding Window Receiver Operating Char-
acteristic) is a new evaluation metric for PdM scenarios
Carrasco et al. (2021). It is based on theROCcurve and uses a
non-overlapping time window to aggregate anomaly scores.
The data is split into episodes, with each episode consisting
of data from onemaintenance event or failure to the next. The
window aggregation process starts at the end of each episode

and works backwards, using a user-specified window length
w to calculate an aggregate score (e.g., mean or median) for
each window. The resulting time series of aggregate scores is
used to calculate TP, TN, FP and FN values. The w parame-
ter must be between 1 and the length of the shortest episode,
and can be varied depending on the problem. For example,
we count a TP if the aggregate score exceeds a threshold in
the last window, which coincides with the PH. Obviously,
the choice of aggregation function affects the results.

The w parameter is associated with the PH.The main
difference being that in the pw-ROC framework, the w

parameter is used for both positives (periods labelled as
anomalous) and negatives (periods labelled as normal) inter-
vals. Although the windowing technique results in a more
holistic view in such scenarios, there are two main issues.
First, by evaluating aggregated results we actually evaluate
something different than the anomaly detection output (we
may opt for an optimal aggregate function rather than a more
suitable anomaly detector), besides the fact that aggregated
results may mean that we impede real-time application. Sec-
ond, the applicability of the ROC in anomaly detection and
PdM scenarios has been studied in depth in works such as
Davis and Goadrich (2006), Saito and Rehmsmeier (2015),
and is found to be problematic, whereas an optimized AUC
(Area Under the Curve) - ROC (Receiver Operating Char-
acteristic curve) does not necessarily provide an optimized
AUC-PR (precision recall curve), where the latter is more
suitable for imbalanced datasets. Note that in practice, when
applying PdM in reality, we are interested in the performance
of the specific configuration, e.g., measured as a F1 score,
that we choose rather than in the potential of the technique in
general measured with AUC metrics. See Fig. 12 for a coun-
terexample.We elaborate on this in the following subsection.

On Improving PR and ROC curves

When evaluating the performance of a classification algo-
rithm, ROC and PR curves are typically calculated using
precision, recall, and false positive rate (FPR). These are
well-established metrics that are widely used in machine
learning and data analysis. However, when working with
time-series datasets, range-based variants of precision and
recall can also be used. In both cases, the PR curve is created
by plotting precision and recall (or range-based precision
and recall) on the x- and y-axes, respectively. A recent works
Paparrizos et al. (2022) has proposed using range-based PR
and ROC curves (and the volume under the surface) for more
flexibility in measuring detected real anomaly ranges. More
specifically, the work in Paparrizos et al. (2022) is well doc-
umented and deals with the limitations of existing evaluation
metrics and in the same time provides a non-parametric eval-
uationmetric.While typical AUC and ROC get an evaluation
metric for multiple values of threshold, the main idea of
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Fig. 11 Alarms of dummy and a more preferable method

Fig. 12 The images in the right columns show the anomaly scores produced from two potential solutions, trying to detect anomaly ranges (coloured
areas). In the left column depict the ROC curves for the two solutions, where, the conclusion is that best AUC-ROC doesn’t means best F1 score

Paparrizos et al. (2022) is that using VUS (Volume Under
the Surface) we can get an evaluation metric using multiple
parametrization in more than one parameter (such as thresh-
old and predictive horizon). In the samework, it is mentioned
that”Analternative solution is to learnnecessary parameters
and thresholds. However, such a solution works only under
supervised settings and may impact the generalizability to
new datasets.”. Although we agree with that statement and
despite the fact that we operate in an unsupervised setting,
the objective of utilizing a PdM solution is the prediction of
failures in particular case. Therefore we are not interested in
the general performance of our techniques in anomaly detec-

tion tasks, but in their application for a specific task. Finally
we consider good practice to test multiple time parameters in
evaluation such as predictive horizon, as VUS does, in cases
we are not sure about the time span of anomalies, as explained
later. Besides, fine-tuning unsupervised PdM solutions is a
topic that there is significant progress, e.g., Giannoulidis et
al. (2022) as already discussed.

In summary, for our problem of predicting forthcoming
failures using run-to-failure episodes,we can compute the PR
curve (range-basedor not) anduse it alongwith the area under
the curve (AUC) to compare potential solutions. However,
when deploying the solution to a production line, we need
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a discrete output (typically in a binary form) such as alarms
or safe/warning/failure indications. A common approach to
this problem is to use the harmonic balance between preci-
sion and recall (F-measure) to find the parameter that results
in the optimal pair of recall and precision (as depicted in the
PR curve). However, this raises several questions: a) if we
use the F-measure to decide on the final solution, why not
use it to compare the performance of different solutions? b)
Does a solution with a larger PR-AUC lead to parametriza-
tion with a larger F-measure as well? To answer the second
question, we have already provided a counterexample in Fig.
12.Regarding the former question, in ourworkwhich focuses
on a specific real-worlds scenario, we adopt F-measures as
the main means to compare deployed solutions. However,
instead of F1, the F2 metric can be used to calculate the final
score, since in many industrial settings, the recall is more
valuable than precision (in the sense that a failure is costlier
than a needless inspection).

Fault detection alarm rate

The authors in Jiang and Yin (2019, 2017) demonstrate the
capabilities of the DB-KIT Matlab toolbox for fault detec-
tion. To evaluate the performance of the proposed solution,
the fault detection rate (FDR) and false alarm rate (FAR) are
used. Essentially, these metrics are calculated as the numer-
ical ratios of valid and false alarms to the total number of
samples. Each episode is divided into two periods: the faulty
and the healthy one. The division is based on the occurrence
of a fault, with the period following the fault being the faulty
period. FAR is calculated as the ratio of alarms to the total
number of samples in the healthy period, and the FDR is the
ratio of alarms to the total number of samples in the faulty
period. The goal is to have a low FAR (i.e., minimal false
alarms in a period without faults) and a high FDR (i.e., max-
imum alarms in a faulty period). The FDR can be thought of
as a measure of recall, while the FAR aims to quantify false
positives, and resembles modern approaches to evaluate time
series anomaly detection,whichwill be discussed next. Apart
from the essential difference in purpose between detection
and prediction, practically, in predictive tasks, a lead time
period prior to the fault occurrence shall often be employed
in practice. These differences make the FAR and FDR suit-
able evaluation metrics only for fault detection tasks.

Our proposal for an evaluationmetric for PdM

Following-up on the discussion above, our starting is the
proposal in Jacob et al. (2021), where range-based evalu-
ation metrics to calculate range-based precision and recall
are proposed. These evaluation metrics are tunable Tatbul
et al. (2018), where the parameters are selected based on the
problem. In Jacob et al. (2021), four different parametriza-

Fig. 13 Given an episode and the reported alarms, this figure shows
how the Recall and Precision are calculated. The blue line represents
the anomaly score and the red line the threshold. The pink part of the
signal is the Predicted Horizon (PH) time window and the dark grey the
buffer zone (lead time)

tions are selected where each one is stricter that the previous
one, to evaluate the results of anomaly detection algorithms.
Inspired by their work, we propose three range-based evalu-
ation parametrizations suitable for PdM.

We are interested in detecting faulty behavior of a com-
ponent within the PH. Any alarms raised during the buffer
period are practically ignored. Finally, the length of the PH
is application dependent and can range from a few hours to
several days. Adapting the rationale of Jacob et al. (2021)
to PdM, in each episode, we propose three anomaly detec-
tion (AD) evaluation scores regarding recall (AD1-AD3),
where each one adds extra requirements to the previous
one, as shown in Fig. 13. Moreover, it always holds that
AD1 ≥ AD2 ≥ AD3. Starting with AD1, we get the
maximum recall value, i.e., 1, if an alarm is raised within
PH, which means that we “predict” the failure. AD2 recall
is proportional to the relative size of alarms made in PH
(#alarms_in_PH

|PH | ). AD3 emphasizes on the capability of the
technique to detect anomalies as we move towards the end
of the PH. The key difference between AD3 and AD2 is that
the former employs a weight that is inversely proportional to
the time difference between the alarm and the failure time.
The precision is always computed as the ratio of the anoma-
lies detected within the PH over all anomalies detected. The
bottom part of the figure visually summarizes the precision
and recall variants.

Engineering a PdM solution in practice

In Sect. 3, we pointed out several factors that influence the
operation and data of the press, most of them not necessarily
related with the wear of the modules. In this section, we craft
a solution assembled from a suitable selection of pre-process,
domain expertise and anomaly detector class (distance based,
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DL and forecasting model), leading to a solution that is capa-
ble to distinguish the wear of modules with higher scores
than other cases (i.e., present of factors). In other words, we
build an unsupervised solution engineered to be robust to
the several factors adhering to the architecture of Fig. 10.
Although in the recent years, many Auto Machine Learn-
ing (AutoML) models have been developed, the majority of
them are dedicated to supervised problems, while the ones
dedicated to unsupervised anomaly detection are not robust
yet for streaming applications Bahri et al. (2022), as pointed
in Sect. “Related work”.

To evaluate engineering decisions, we use the proposed
evaluation metric of Sect. 4. The test dataset contains 12 run-
to-failure plus 8 episodes where no failure appeared. Three
different PH periods are used, namely 8, 12 and 24h, to mea-
sure the recall and precision. Moreover a lead time of 1h
is used since the objective is to prevent failures thus there
should be some time to react. In Fig. 14, we can see an exam-
ple of the PB algorithm using SBD (Shape-based distance)
distance Paparrizos and Gravano (2016). The PH here can
be seen from the light red periods, while the lead period is
in grey. In some episodes, there are grey colored periods in
the middle of the episodes, which indicate a period that we
ignore, since there was an expected change of behaviour in
the modules (irrelevant to a failure). The anomaly scores of
run-to-failure episodes (first 12 episodes) are in blue, while
green color is used for the episodes that end with no failure
(8 bottom episodes). Finally, we provide the implementa-
tion of our methods and the AD evaluation for PdM, both
implemented using Python 3.8, along with the 20 operational
episodes data. 4

All AD levels are important and each one has each own
meaning as describe above. In our problem, we would like to
get continuous alarms before the failure happens, so we pick
the AD2 as the basic evaluation measurement to compare the
potential solutions, without ignoring the other two.Moreover
we prefer a method that performs better for 8h PH than 24h,
since it indicates that it can predict the failure without losing
too much production.

Finally, for all engineering choices regarding the detection
technique,when a training (or fitting to the data) is needed,we
use a homogeneous representation of data (profile) exactly as
described in PB anomaly detection 3.1, where the examined
sizes are equal to 30, 60 and 100 samples. Moreover, we use
the same smoothing of anomaly scores as described in 3.1
for all considered techniques, which is equal to 30 (i.e., each
time, we use the last 30 anomaly scores to calculate the final
score as their median).

4 https://github.com/EngineeringUnsupervisedPdM/EngUnsPdM

Comparison of anomaly detectionmethodology

As mentioned in Sect. “Related work”, we can apply three
methodologies to produce anomalies that act as early warn-
ings of upcoming failures, forecasting, reconstruction-based
using DL techniques and similarity-based anomaly detec-
tion. Here, we provide evidence regarding our choice for the
latter though showing that the former two are inefficient.

Behavior of a forecasting technique

Regarding the forecasting technique and to illustrate the rel-
ative difficulty of our problem, we peek the well known
Prophet Taylor and Letham (2018), which was used for the
task of anomaly detection in several works, e.g., Zhang et al.
(2021); Thiyagarajan et al. (2020). As mentioned already,
Prophet is a forecasting technique developed to automatically
fit nonlinear trends of data seasonality. We set the seasonal-
ity equal to one punch time in order the model to catch the
periodicity of punches. Finally, we fit the model to data from
the start of each episode (using profile size equal to 100).
Optimizing the threshold for PH 8h, we get 0.2, 0.3 and 0.4
F2 score using AD2, for 8, 12 and 24h PH, respectively.
The results are better for 8 and 12h PH when we increase
the size of the profile three times leading to 0.27, 0.32 and
0.39 F2 score, respectively. But a major limitation is that as
the profile gets bigger, the time of no monitoring grows too,
making this solution not feasible. We can see that the engi-
neering decisions we take based on the discussion below on
top of the PB algorithm yields much higher F2 scores, e.g.,
the improvement factor is more than 2X.We can say that just
using naively an automatic model (which is efficient in many
other tasks), does not provide necessarily a good solution.

PdM using DL for reconstruction

A valid question is whether DL outperforms any distance-
based solution, such as PB. As DL models, usually Auto-
Encoders-based models Tuli et al. (2022); Audibert et al.
(2020) are used for the task of anomaly detection in a semi-
supervised fashion. These are DL architectures trained in
data considered normal, to reconstruct their input. Then, in
the online phase, they use the reconstruction error (i.e. the
distance between reconstructed and actual data provided as
input) to produce an anomaly score.

To effectively apply aDLmodel in PdMsettings, twomain
challenges are encountered. Firstly, existence of normally
labeled data is rare, also due to the dynamic environment.
Even if we collect data from normal operations (which end
with no failures), these may not be suitable to train the DL
model because of the continuous changes in monitored com-
ponents, as already mentioned. We deal with such a problem
by following an approach that resembles semi-supervised
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Fig. 14 Results using SBD distance metric with PB algorithm

learning, but does not rely on any labeled data. Similarly to
PB, we use the same algorithm to calculate the profile, which
is used to train the model. The second challenge encountered
relates to the setting of a threshold on the produced loss of
the DL model to detect anomalies. Using a small amount of
data to train DL models results in an over-fitted model. So,
if a naive threshold is used, it would probably produce many
false positives. To solve the threshold issue, we choose the
self-tuning technique, again as used in PB algorithm. This
allows us to conduct an apples-to-apples comparison.

Regarding the DL architecture, we have chosen to adopt
the TranADmodel of Tuli et al. (2022), which corresponds to
a state-of-the-art transformer DLmodel and is endowed with
valuable properties, such as capability to operate with fewer
training data than competitors and to reconstruct data after
a small amount of epochs. In summary, we train the model
using a small portion of data that refers (most probably) to a

Table 2 PdM_TranAD F2
score

PH AD1 AD2 AD3

8 0.31 0.28 0.24

12 0.42 0.36 0.29

24 0.60 0.45 0.31

normal operation of the monitored component. This dataset
is extracted at the very beginning of the episode and requires
no further domain expertise. After that, we compute the dif-
ference between the reconstructed data and the real one and
use it as an anomaly score. We expect that the model will
be capable of reconstructing normal data with significantly
higher accuracy than faulty data. We refer to the TranAD
model with the additional extensions as PdM_TranAD.

The results are shown in Table 2. At a first glance, we
observe that we obtain higher F2 score than the Prophet,
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Table 3 F2 score for different distance metric choices, and baseline
prophet results

PH Distance AD1 AD2 AD3

8 Prophet 0.21 0.2 0.15

PB-DTW 0.28 0.28 0.26

PB-RBF 0.29 0.27 0.19

PB-SBD 0.36 0.34 0.27

PB-EUC 0.32 0.29 0.26

12 Prophet 0.35 0.3 0.17

PB-DTW 0.38 0.36 0.32

PB-RBF 0.45 0.38 0.24

PB-SBD 0.47 0.42 0.31

PB-EUC 0.44 0.39 0.32

24 Prophet 0.57 0.4 0.17

PB-DTW 0.55 0.47 0.37

PB-RBF 0.60 0.41 0.23

PB-SBD 0.64 0.45 0.28

PB-EUC 0.65 0.51 0.38

Highest values per column are in bold for different Predictive Horizon
values

but the results are still relatively low; e.g., the results are
significantly inferior to those presented later in Table 3. Note
that, these results are highly influenced by the training of the
model, since the training set is relatively small (profile size
is equal to 100) and not necessarily related to normal data.
This leads to the suggestion to use DL models with caution,
especially regarding the training phase in dynamic cases as
ours, where training data are difficult to collect.

Engineering a similarity-based PdM solution

Now we turn our attention to the similarity-based PB solu-
tion. To this end, we do not rely solely to the simple
algorithmic logic of PB, but the aim is to engineer a suit-
able PdM solution.

Impact of distance metrics

As mentioned earlier, the PB algorithm calculates the
anomaly score of new data as their distance from the pro-
file. But the choice of the distance metric does make a
big impact. In our scenario, we test the Euclidean (EUC,
default), DTW, RBF and SBD. DTW is a distance metric that
seeks the optimal match between two time series and deals
with misalignment of signals. Although our signal consist of
dimensions of fixed number, i.e., force over 500 angles,DTW
can be useful in scenarios as speed change, which may shift
the signal, i.e. the modules may hit harder in to the material
as they contact it. Similarly, the SBD (Shape-based distance)
distance metric measures the similarity between two time

Table 4 F2 score achieve by PB algorithm using features and PCA

PH Solution AD1 AD2 AD3

8 PB(feats.) 0.37 0.34 0.26

PBr(feats.) 0.47 0.43 0.38

PB(pca) 0.33 0.30 0.22

12 PB(feats.) 0.48 0.41 0.28

PBr(feats.) 0.60 0.53 0.44

PB(pca) 0.42 0.38 0.26

24 PB(feats.) 0.63 0.49 0.30

PBr(feats.) 0.83 0.63 0.48

PB(pca) 0.56 0.45 0.27

Highest values per column are in bold for different Predictive Horizon
values

series based on coefficient-normalized cross-correlation as
proposed in Paparrizos andGravano (2016). Finally, the RBF
kernel similarity measure is tested too (with σ = 0.5). In
Table 3, we can see the best results for F2 score of PB using
each one of the distance metrics. The same parameters are
used for all different PHs, where the results are optimized
for PH equal to 8h. Although the differences are small, the
best choice among distancemetrics seems to be the SBD. For
PH=8, the improvements of SBD over the default Euclidean
is 17.2% and, over Prophet, it is 70% for the same profile
size (equal to 100 samples).

In addition, we apply the profile reset Rp policy, incor-
porating the domain knowledge for all four distance metrics,
where PB resets based on expert feedback (every time amod-
ule of the press is changed).We refer to this approach as PBr.
In these distancemetrics-oriented experiments, PBr could not
outperform the PB solution. Although, the inherent of con-
textual information is useful, its benefits should not be taken
for granted and assessed along with the choice of distance
metric or other aspects (e.g., feature engineering).

Finally, compared with the results are shown in Table
2, it seems that using the right distance metric, PB outper-
forms PdM_TranAD. The main lesson learned is that using
the right distance metric, PB outperforms PdM_TranAD.
These findings are aligned with the statement in the discus-
sion of the article Schmidl et al. (2022), indicating that in
some cases, traditional machine learning methods and sim-
pler approachesmayoutperformDL techniques in time series
anomaly detection tasks, which bears similarities with our
case.

Impact of feature engineering

Viewing each force signature as a time series, we examine
the impact of extracting time domain features. Specifically,
we use the median, peak-to-peak, variance, standard devi-
ation, root mean square, skewness and kurtosis of the force
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Fig. 15 Precision-Recall curve for PBr using features

signal, which are selected fromTable 3 in Zhang et al. (2019).
So, we first transform each punch to a 7d-vector and then,
we apply the methodology of PB algorithm. Moreover, we
test the application of Principal component analysis (PCA),
to reduce the dimensionality of the 500 size vector to a 10d
vector. To do this, we fit PCA using historic values and then
we apply the transformation to upcoming punches. As shown
from the results in Table 4, PB using features could lead to
better results regarding AD2 for the two shorter predictive
horizons. Interestingly , the PBr approach (with profile size
equal to 60 samples) managed to outperform both PB with
features and PB with SBD distance. For PH = 8, the increase
in F2 compared to Prophet now reaches 115%. Note that
conceptually, it makes no sense to apply SBD along with
the feature engineering suggested (and the corresponding F2
metrics do not improve).

We provide a trade-off analysis regarding the best engi-
neering choice (PBr with features) by creating the precision-
recall digram and a diagram which plots the F2 score against
the different threshold factors (using AD2) for all three
PHs tested in Figs. 15 and 16, respectively. An interesting
observation is that our solution is not extremely sensitive to
fine-tuning (Fig. 15), which is also implied by Fig. 16, where,
especially for the longer PH, precision is rather stable for a
wide range of recall values.

The aforementioned suggest that time series transforma-
tions of data could lead to improvement of results. Another
benefit is that, becomes easier for the end user to understand
the changes in data looking at features rather than the whole
signal. Finally, contrary to the distance metric experimenta-
tion, contextual information using Rp combined with feature
engineering is shown to boost the results.

Fig. 16 F2 score against threshold values plot for PBr using features

Table 5 PBre f F2 score PH AD1 AD2 AD3

8 0.36 0.26 0.10

12 0.44 0.30 0.11

24 0.50 0.29 0.09

Supervision

In this section, similarly to the experiment in Sect. 1, we test
the usage of PB employing more supervision (which in prac-
tice transforms our methodology to a semi-supervised one).
In detail, we investigate to leverage historic information to
decide abnormal behavior of new data. To do so, we apply
PB using further domain expert knowledge. Looking at his-
toric data, experts selected punches that represent a healthy
state for each different module and these were used as the
profile for PB (in our case, this number of punches was 30).
We use the notation of PBref for that implementation, which
is a semi-supervised solution. Again we test all distance met-
rics and feature engineering to find the best results for this
method, which are for SBD distance (see Table 5).

Although for AD1, the results are similar to PB using SBD
and raw data, the low AD2 and AD3 indicate that, in most
cases, this solution did not produce continuous alerts before
the failure. Furthermore, the best score achieved is still lower
than PBr and PB using features. Interestingly, PBref using
features performed poorly (F2 score below 0.2 for AD1).
Specifically, in many episodes we observe the error starting
high and ending low. This is another evidence that the prop-
erties of the signals change from time to time, and justifies
our choice for an unsupervised solution.

123



Journal of Intelligent Manufacturing

Conclusion and future work

This work aims to answer practical aspects when engineering
and deploying PdM solutions in real industrial cases, where
no supervised learning solution can be efficiently applied. In
summary, we first investigate the most appropriate KPIs to
assess PdM solutions. To this end, we still employ metrics
using true/false positives/negatives, but we propose a novel
combination tailored to the PdM settings. In addition, we
present a novel pipeline for PdM, which is based on buidling
and resetting profile data; this profile data are used as refer-
ence datasets to reason about data anomalies. Then, given the
KPIs, we tested the impact of different choices in distance
metrics and feature engineering to conclude that the most
suitable solution for our problem is to use SBD over time
series, or even better, to perform feature engineering over
these time series and convert them to vectors. Moreover, we
have shown how the domain expertise could be leveraged in
the rationale of the Profile Based solution. Finally, we pro-
pose an unsupervised framework for DLmodels dealingwith
Run-to-failure data.

The next step for an end-end PdM calls for a Decision
Support System (DSS). Some interesting questions to be
answered in near future could be how the KPIs could be
used to gain knowledge from historic data to change config-
urations of existing solutions (e.g. threshold) on the fly? How
the information about continuous or sparse alarms could be
used in scheduling maintenance? Additionally, can the dif-
ferent approaches (e.g PdM_TranAD and PB) be fused to get
better results?
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