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Abstract
This paper considers the efficient quality assurance of diverse geometric objects through the use of awhite-light interferometer,
with a primary focus on minimizing the number of required image captures. The motivation behind such an algorithm stems
from the extended recording times associated with various free-form sheet metal parts. Given that capturing images with
a microscope typically consumes 30–40s, maintaining high-quality assurance is imperative. A reduction in the number of
images not only expedites part throughput but also enhances the economic efficiency. A unique aspect in this context is
the requirement for focus points to consistently align with the part’s surface. We formulate this challenge in a mathematical
framework, necessitating a comprehensive literature review to identify potential solutions, and introduce an algorithmdesigned
to optimize the image acquisition process for inspecting object surfaces. The proposed algorithm enables efficient coverage
of large surfaces on objects of various sizes and shapes using a minimal number of images. The primary objective is to create
the most concise list of points that comprehensively encompass the entire object surface. Subsequently, the paper conducts a
comparative analysis of various strategies to identify the most effective approach.

Keywords Free-form surface · Automated inspection · Quality control of parts · View planning

Introduction

The quality assurance system is a key component of vari-
ous companies’ plans (Leopold et al., 2003). Components
with freeform surfaces are used in a variety of industries,
including aerospace, automotive manufacturing, mold mak-
ing, and more. The flawless functionality of these products
is significantly influenced by the geometric accuracy of the
freeform surfaces (Zahmati et al., 2018). Therefore, quan-
titative measurement of surface topography is essential for
precise surface processing. Yi et al. (2021) In this process,
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robot solutions are often used to cover the surface to be
inspected. Automated inspection of freeform surfaces helps
significantly reduce the mean time to error detection (Glo-
rieux et al., 2020). Geometric testing on free-form surfaces is
carried out using either contact or non-contact measurement
methods (Zahmati et al., 2018). This work deals with the
planning of a measurement using non-contact methods with
an automated microscope. The planning of the measurement
for capturing the images plays a crucial role, as without it,
the images cannot be automatically acquired.

The coverage path problem involves determining the
viewpoints and sequence from which the surface of the part
should be measured. When planning the coverage path, mul-
tiple criteria need to be considered, including the complete
coverage of target areas, aswell as the resulting cycle time for
the inspection task (Glorieux et al., 2020). Other boundary
conditions may also arise, such as compliance with so-called
focus points or something similar. In this case, numerous
sheet metal components should guarantee a surface that is
free from defects. Given the reflective properties inherent
to these specialized metal components, ensuring damage-
free production becomes highly imperative. If fingerprints,
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Fig. 1 Schematic illustration of microscope and carrier. The plate
moves in the X and Y axes to move the carrier. This allows the micro-
scope to take different images of the objects on the carrier

scratches or particles are found on the surface of the object,
it can no longer be delivered. In this case it has to go into
post-processing. To lower the costs of this quality assurance
measure, an automated white light interferometer (WLI) is
used for this application. There is also software logic for
controlling the axes and receiving the image. In general, the
metal objects are too large to be captured with just a sin-
gle image. The image frame is always very small, as the
resolution is very high to detect damage or particles in the
micrometer range. That’s why the metal object is displayed
in partial images. The partial images are then combined into
one image and evaluated. But before the automatic WLI can
get started picking up the images, scheduling is needed. This
involves strategizing the positions at which partial images
will be captured. Since taking the images takes a compara-
tively long time in this scenario, it is necessary to keep the
number of images required as low as possible. Therefore, a
solution is required that calculates the minimum number of
image positions from the geometry of the metal part and at
the same time can cover the entire part.

An automated WLI that can move on three axes is
employed to streamline the procedure. Figure1 shows a
sketch of the machine. A carrier is used to secure several
objects so they do not need to be placed separately under
the microscope by the operator. Sub-images are then created
from the object at a specific resolution, which are used to
analyze the object.

The objects must be recorded at a high resolution in order
to capture even the smallest particles. In this case, each image
has a resolution of 1336×1020 pixels. At this resolution,
objects are too large to be captured in a single image. As a
consequence, in order to capture an object in its entirety, a
series of partial images must be created, as shown in Fig. 2.
Then, partial images are merged to form a single large one.
Since that the sheet metal object can have its surface curved
in various ways, and due to the focussing process, creating
an image using WLI may take up to 30 or 40s. With 50–60
images required, capturing an entire object can take up to
25min. These partial products are frequently requested in a
variety of forms. Reduced image counts can be a valuable

Fig. 2 Division of the surface of the facet into partal images. Here for
example a surface of an object is divided into multiple images to cover
the surface

tool for process optimization. As a corollary, the total time
required can be decreased, improving production efficiency.

Therefore, an optimal division of the object into a mini-
mal amount of images is advantageous. Because each object
has a unique shape with different focus points, the minimum
number of images required to inspect the part must be con-
stantly calculated. However, the target geometry of the object
is known and can be called up to plan the measurement.

An essential step in the manufacturing process that sig-
nificantly affects the quality of industrial products is damage
detection on their surface (Zhou et al., 2019). Defect detec-
tion is also a crucial part of the inspection process to accept or
reject a part manufactured in a process or delivered by a sup-
plier. In addition, it can also enable rework and repair of parts,
thereby reducing material waste. In the past, error detec-
tion was performed by human experts who had experience
with the process (Bhatt et al., 2021). The manual detection
approach costs a lot of time and is easily influenced by the
subjectivity, vigor, and experience of the inspector (Zhou
et al., 2019). As a result, there is a rapidly growing market
for automated inspection in numerous industries, including
aviation.Automated inspection additionally quickens quality
control. Intelligent visual inspection systems are increasingly
in demand to guarantee excellent quality in industrial oper-
ations (Ben Abdallah et al., 2019). With this in mind, it is
crucial to create several algorithms for automated quality
control. The approach provided here can minimize the num-
ber of required photos by WLI, in the interests of lowering
quality assurance expenses.

The Zero Defect Manufacturing (ZDM) describes a dis-
ruptive concept that contributes to the realization of the
“First-Time-Right” quality strategy. Powell et al. (2022)
Since quality control is carried out by a WLI after the pro-
duction processes, it can be classified as ‘physical detection’
according to Psarommatis et al. (2019) and (2022). Detection
of errors and possible repairs are not new strategies (Psarom-
matis et al., 2022) and are not exclusively reserved for the
ZDM paradigm. According to Powell et al. (2022), strategies
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that focus on detecting and fixing errors should not be consid-
ered zero-defect strategies. Depending on which philosopher
you follow, the algorithms can be considered part of ZDM
due to the domain of this problem. In the authors’ opinion,
recognizing errors should be part of classic quality assur-
ance. However, this does not make the algorithms presented
in this work unimportant because they solve a real problem
in practice. In addition, the solution presented here can also
contribute to other sub-problems in which image positions
are to be determined based on geometries.

This paper presents a new variant of the inspection
problem in Chapter “Mathematical problem description”,
emphasizing the critical role of focus point positioning. To
address this problem, the literature is searched for solu-
tions. The results were presented in Chapter “Related work”.
In addition, the approaches were adapted to the inspec-
tion problem (Chapter “Selection and implementation of
the approaches”), with a novel approximation approach also
being introduced (Chapter “QuadPos-approximation”). In
Chapter “Experiments”, all approaches are compared and
evaluated in different test scenarios. Chapter “Discussion”
shows that the QuadPos approximation delivers significantly
better results when covering free-form sheet metal parts than
conventional approaches. In Chapter “Conclusion and out-
look”, the results are summarized again and an outlook for
further research is given.

Related work

Literature review

Due to its enormous potential, quality assurance in man-
ufacturing sectors has been the subject of numerous stud-
ies. Recent advancements in pattern recognition field have

widened the scope of research being conducted on automated
image recognition, as in Zhou et al. (2019), Ben Abdallah
et al. (2019), Konrad et al. (2019) or Huang et al. (2020).
The inspection problem for three-dimensional objects is for-
malized as a hitting set problem in Edelkamp et al. (2017)
and solved with a Monte Carlo-based hitting set solver. For
leather quality assurance, a process for detecting faults was
enhanced inBong et al. (2019). The camera’s high resolution,
moreover, enables a full capture of the entire object. It is com-
parable to the “watchman route” from Danner and Kavraki
(2000). To gather more information on this issue, a literature
review on surface inspection planning was conducted at the
beginning of the work. We decided to use a search engine to
classify the first 70 articles sorted as relevant in order to gain
an overview of the literature. The search term used was ‘sur-
face inspection,’ and only articles published after the year
2000 were included. The articles were then categorized into
different groups based on their titles and abstracts.

In Fig. 3, the result of this literature classification is pre-
sented. It is quite noticeable that the ‘Surface detection’ group
is very prominent. This group includes articles primarily
focused on defect detection on a surface, with 39 out of 70
articles classified within it. The second strongest category is
‘Inspection Planning,’ which is also the focus of this paper.
This category encompasses all articles related to the plan-
ning of quality assurance systems in some form. The ‘Full
inspection system’ category includes papers that introduce
comprehensive systems for addressing specific inspection
problems. Furthermore, the ‘Localization methods’ category
comprises articles discussing coordinate transformations or
position determinations. Articles summarizing other works
were labeled as ‘Literature summary.’ Detailed classifica-
tions and articles can be found in the Appendix.

The articles (Andreas Bircher et al., 2018; Phung et al.,
2017) and Hoang et al. (2020) deal with the exploration of

Fig. 3 Representation of a
column chart of literature
classes grouped by year
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autonomous robots or unmanned aerial vehicles (UAV) in 3D
environments. InPhung et al. (2017) a discrete particle swarm
optimization (DPSO) is used to determine the path. Yi et al.
(2021) and Zhou et al. (2016) deal with contact measuring
devices and coordinate measuring machine (CMM) respec-
tively. The article (Wu et al., 2015) describes the pathfinding
problemwith laser scanners. Even if the domain is a little dif-
ferent here and the algorithm was primarily defined for 3D
environments, parts of the solution can be transferred to the
problem of this paper. Here, path planning is made possible
by determining the minimal enclosing rectangle (MER) of
the freeform geometry. The area of the MERwas then raster-
ized into segments with the size of the field of view (FOV).
Since this is a 3D problem, the corresponding angles for the
curvature of the 3Dobjectwere calculated here. However, the
solution cannot be transferred to the current problem with-
out adjustments because the alignment of the focus points
was not taken into account here. The same applies to the
reference articles (Zhou et al., 2011; Fernandez et al., 2008;
Lee & Park, 2000; Son et al., 2003). In terms of domain,
Pernkopf and O’Leary (2003) is similar to the domain of
this paper. Three image capture techniques are presented
in the paper. Unfortunately, this paper does not delve fur-
ther into the pathfinding of freeform surfaces. In Gronle and
Osten (2016), various algorithms are proposed for path plan-
ning of a microscope for quality assurance of a gear in three
dimensions. A greedy algorithm is used to make a selec-
tion between different points. This requires a list of possible
camera points. However, how the actual camera positions are
calculated remains open; only a determination is made using
sensor information and the model of the object.

In Glorieux et al. (2020) several methods for 3D path
planning are summarized and compared. 3D models of sheet
metal parts of a car door were used to compare them with
each other. The methods cannot be completely transferred to
the problem of this paper. The focus point is also not taken
into account here, which is an important secondary service
of this paper. However, these approaches offer initial clues.
Many random-based strategies are listed;which, according to
Glorieux et al. (2020), do not guarantee complete coverage.
Selected methods of Glorieux et al. (2020) are presented in
“Suggestedmethods for planning the coverage path” section.
More approaches are to be found in Glorieux et al. (2020).
However, since the domain differs so much, we do not elabo-
rate on them. The literature search shows that there are initial
approaches that address parts of the problem, but none of
the approaches are currently able to solve the problem com-
pletely. There is, therefore, a need for further research.

Suggestedmethods for planning the coverage path

Asshown in theprevious section, there are several approaches
to solving similar problems. In this section, the approaches

are broken down and summarized again. This is intended
to provide a structured overview of relevant approaches to
solving the problem in order to be able to conduct a compre-
hensible discussion of the approaches afterwards (“Selection
and implementation of the approaches” section).

Randomized algorithms

In González-Banos (2001) an algorithm based on a random
sampling strategy transforms the art gallery problem into
an instance of the set cover problem. The Greedy algorithm
will then be used to determine a route for driving through the
points (González-Banos, 2001). A similar sampling strat-
egy from the perspective is adopted in the methodology of
Bircher et al. (2018) and is intended to be integrated into the
proposed rapid exploration path planning algorithm “Ran-
dom Tree of Trees”. The probability of achieving complete
coverage increases with the number of randomly selected
permitted viewpoints. Unfortunately, these algorithms do not
guarantee complete coverage (Glorieux et al., 2020).

Grid viewpoints

In Raffaeli et al. (2013) is a strategy proposed that first clus-
ters the primitives based on distance and surface normal
direction in order to group primitives that can be covered
from the sameviewpoint (Glorieux et al., 2020). This is called
“surface sampling” (Raffaeli et al., 2013). Analogous to this
approach, the MER of the free form is determined in Wu et
al. (2015). The MER is then divided into segments that are
as large as the FOV. This principle is illustrated in Fig. 4.

In Raffaeli et al. (2013), for each segment, a viewpoint is
randomly selected that covers all primitives in the group and
is included in the coverage path. This significantly reduces
the number of viewpoints, but makes it difficult to ensure
complete coverage. Glorieux et al. (2020) If the approach of

Fig. 4 Surface sampling described by Raffaeli et al. (2013), Wu et al.
(2015) and Glorieux et al. (2020)
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Wu et al. (2015) is transferred to this 2D scenario, then the
center of the section is simply used as the viewpoint.

Coverage of basic geometric elements

In Englot and Hover (2017) an algorithm for path planning
on damaged ships is presented. The algorithm uses sphere
tessellation and cube grids to create view positions and eval-
uate their visibility (Glorieux et al., 2020). New viewpoints
are added until each geometric primitive has been observed
the required number of times. Start by selecting a geometric
primitive that has not been observed in the required number.
Different viewpoints are generated uniformly and randomly
in the local neighborhood of this primitive. After a view-
point is added to the roadmap, another primitive is selected
and the process repeats until the redundancy requirement is
met (Englot & Hover, 2017).

Methods to consider model of a hitting set problem

As already mentioned, there are similar approaches to solve
the problem under the consideration as a hitting set. Accord-
ing to Karp (1972), hitting set is an NP-hard optimization
problem and is defined as follows: Given is a bipartite graph
G = (V , E) with V = V1 ∪ V2, V1 ∩ V2 = ∅ and
E ⊆ (V1 × V2), find a set V ′ of V1 of minimal cardinality,
so that all nodes in V2 are convered, implying that there is a
v1 ∈ V1 for every v2 ∈ V2, so that (v1, v2) ∈ E (Edelkamp
et al., 2017). Since hitting set is NP-hard, brute force does
not appear to be a viable alternative. Hitting set is equivalent
to set cover and algorithm Greedy is one of the most natural
and effective heuristic for set cover (Skiena, 2008). Thus, the
Monte-Carlo approach of Edelkamp et al. (2017) as well as
a classical Greedy approach to the solution were considered
in more detail.

In single-agent games, nested Monte Carlo search has
consistently delivered impressive performance. The efficient
condensation of information occurs through a recursive pro-
cess, wherein the algorithm adeptly orchestrates each step.
This methodology is underpinned by a rollout concept, with
successive actions being generated as long as the game
remains ongoing. The generation of these actions is gov-
erned by a reinforcement strategy that leverages insights from
prior outcomes (Edelkamp et al., 2017). Greedy algorithms
are often used to solve optimization problems by maximiz-
ing or minimizing a set. A greedy algorithm typically seeks
a local optimum, studying only a small portion of the prob-
lem, thereby making a more efficient decision (Alsuwaiyel,
2016). Hence, greedy algorithms always prefer the option
that seems most advantageous at the time. The work of Cor-
men et al. (2013) demonstrates various greedy approaches.
In Algorithm 1, the approach of Alsuwaiyel (2016) will be
explained and implemented as a classical greedy algorithm.

Algorithm 1 Example of a Greedy-Algorithm following
Alsuwaiyel (2016)
1: Add 1 to List X
2: Add List V without entry 1 to List Y
3: For each vertex v ∈ Y if there is an edge from 1 to v then let δ[v]

(the label of v) be the length of that edge; otherwise let δ[v] = ∞
4: Let δ[v] = 0
5: while Y 	= do
6: Let y ∈ Y be such that δ[v] is minimum
7: move y from Y to X
8: update the labels of those vertices in Y that are adjacent to y
9: end while

Mathematical problem description

Object and grid model

An object o is defined by a set of points p. Since the problem
is two-dimensional, each point p has an x- and a y-value.

o = {p1, p2, p3, . . . , pn} (1)

p = (x, y) (2)

The set {p1, p2, p3, . . . , pn} symbolizes the shape of the
object o. The surface of the object is described by a point
raster. The columns in a row are shifted by half of the distance
employing a three-cornered rasterization. This will enable
better coverage of the object’s intermediate spaces. The cal-
culation of the triangular rasterization is outlined by the
following equations (3), (4) and (5). The row function,which
creates a series of points, is demonstrated by the Eq. (5). For
the x sequence, the points set is generated in a region between
ystart and yend . After that, the function tr i tacticRow in Eq.
(4)moves the odd rows by 0.5 in a range of 0 to rend . Equation
(3) defines the merging of the different rows of the function
tr i tacticRow from rows 0 to cend .

raster(rend , cend) =
cend⋃

x=0

tr i tacticRow(x, rend) (3)

tr i tacticRow(x, rend)

=
{
row(x, 0, rend), if x mod 2 = 0

row(x, 0.5, rend), if x mod 2 = 1
(4)

row(x, ystart , yend) =
yend⋃

y=ystart

(
x, y

)
(5)

The selection of the resolution size in relation to the
object’s edge and the raster image size is highly essential.
If the resolution is too high, uncovered areas that are not
detectable may arise automatically. If the resolution is too
low, the calculation’s performance will inevitably degrade.
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However, this is an empirical value that can vary depending
on the resolution of the camera and the size of the part to be
examined. In the scenarios of this paper, the camera’s field
of view has a width of 4.2 and a height of 2.8 (of any dimen-
sional unit). After a bit of experimentation, good results were
achieved with a grid resolution of 0.5 and a border resolution
of 0.25 (of any dimensional unit). These values may have be
adjusted for other use cases.

The surface shape is defined by Eq. (6). The variables
rF andwF , therefore, describe the object’s radius and width,
while the variables hminF and hmaxF characterize the object’s
beginning and ending points.

contur(x, rF , wF , hmaxF , hminF ) =⎧
⎨

⎩

√
r2F − x2 − rF ± wF

2 , if hminF ≤ x ≤ hmaxF

±wF
2 , if hmaxF ≤ x or x ≥ hminF

(6)

The circle function serves as the foundation for the equa-

tion
√
r2F − x2 − rF , while the part ±wF

2 describes the

division and translation of the function by −wF
2 and +wF

2 .
The facet length between hminF and hmaxF is constrained by
the equation hminF ≤ x ≤ hmaxF .

Microscopmodel

Amicroscope cameraC is also available, and it has advanced
features including adjustable field of view width and height
(wc, hc). A point drawn from the values xc and yc signifies
the current position of the camera center.

Two focus points are shown by positive and negative dis-
tances on the y-axis fc from the image’s center in Fig. 5.
The variables xc and yc represent the current position of the
image center. The function isOnSur f ace takes the object o

Fig. 5 Mathematical description of themicroscope camera. It describes
the width and height of the image. The focus points are also displayed
at a distance of fc

and a position defined by x and y as input parameters. The
function indicates that the position lies within the object’s
contour o by returning the value true. If the position is out-
side the contour, a result f alse is obtained. Applying to the
focus points we obtain

isOnSur f ace(o, xc, yc ± fc) = true (7)

so that the focus points must lie always be within the con-
tour of the object o. Unless this is done, no image can be
captured. Based on two corner points of a rectangle, Eq. (8)
defines the field of view.

f ov(x, y) =
{(

x − wc

2
, y − hc

2

)
,

(
x + wc

2
, y + hc

2

)}

(8)

The details regarding what a partial image can cap-
ture are represented in the Eq. (9). Here the function
vis(o, p) is defined inside a square area and the function
areaMatchesObject returns the contour points. This is
identified by the function f ov(x, y).

vis(o, p) =
{
areaMatchesObject( f ov(x, y), o), x ∈ p and y ∈ p

(9)

vis(o, p1, p2, . . . , pn) =
n⋃

i=0

vis(o, pi ) (10)

The function vis of Eq. (10) is overloaded with images.
This function takes as parameters the object and the positions
of the partial images p1, p2, . . . , pn , whereas n describes
the positions number to return. A quantity is returned for all
points when the union is applied.

Method

For the use case presented in detail in Chapter 3, the best
possible algorithm for the solution should be found. To do
this, different algorithms are compared against each other
and solve the problem for different parts. This solution is
then evaluated using the model for evaluating the algorithms
presented in the first part of this chapter. Next, this chapter
tests the various algorithms from the “Suggested methods
for planning the coverage path” section for their applicabil-
ity to this scenario and presents the implementation details.
Then, the QuadPos approximation is presented. The aim of
this chapter is to prepare for experimental testing of the algo-
rithms.
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Scoring and implementation of the approach
interface

This section presents the calculation of the solution qual-
ity of an algorithm and the implementation of the approach
interface.

Scoring

Two factors must be considered when assessing the validity
of a solution. On the one hand, the entire surface must be
covered. On the other hand, the number of image positions
generated by an effecient solution should be kept small, so
that the surface measurement time is as short as possible. In
general, the number of covered grid points may be applied
to determine the extent of surface coverage. If all points are
covered by at least one image, it is assumed that the sur-
face was covered using the partial images. Such a procedure
necessitates an adequate rasterization resolution. If the reso-
lution is too big, the part may not be completely covered. On
the contrary, if the resolution is too low, it’ll result in major
performance decline. The author created the raster using a
factor of 0.5, as described in “Other conditions” section. The
ratio of the object’s surface to the surface consumed by the
part-images is chosen for quality assessment.

cut(x) =
{
x, if x ≤ 1

1, if x > 1
(11)

quali t y(o, p1, . . . , pn) = count(vis(p1, . . . , pn, o))

count(o)
·

cut

(
area(o)

n · wc · hc
)

(12)

Equation (12) together with Eq. (11) represent an opti-
mization method based on complete coverage and image
number minimization. The maximum number of images is
denoted by n. The function count(...) simply returns the
number of elements. Term count(vis(p1,pn ,o))

count(o) indicates the
number of grid points covered by images and located on the
facet divided by the total number of grid points on the facet
by the count(o). When the entire facet is covered, an optimal
result is 1. As a ratio of the object’s surface to the cumulative
surface of the partial images, the term area(o)

n·wc·hc is used. Hence,
a result above 1 indicates that there are few images below
the theoretical minimum. By default, function cut(x) treats
any result over 1 as 1 since it does not match the optimized
solution.

In the scoring algorithm new solutions are iteratively gen-
erated. These solutions should be assessed, and the best one
should be chosen and developed further. To fullfill this, a
higher-level evaluation algorithm that follows a simple max-
imization logic is used. This is represented by Algorithm 2.

A new solution is only deemed effective if it covers more
than the previous solution or covers the same portion with
fewer images. The CalculateCover Rate method describes
the determination of the coverage percentage of the current
solution. A new solution with always a new image is gener-
ated until the calculated coverage corresponds to one. A new
solution is generated using the DoCalculationStep func-
tion. This function has to be implemented by each approach.
An implementation of QuadPos is presented in “Initiation”
section.

Algorithm2Algorithm to generate the positions of the partal
images
1: procedure imageRaster(object, image)

2: current I ndex = 0

3: cover Rate = 0

4: best Score = 0

5: best ImageSi ze = 0

6: best Solution = null

7: while cover Rate 	= 1 do

8: solution = DoCalculationStep(object, image, current I ndex)

9: cover Rate = CalculateCover Rate(solution)

10: if isBetter(cover Rate, best Score, best ImageSi ze, solution)

then

11: cover Rate = best Score

12: best Solution = solution

13: best ImageSi ze = solution.imageSi ze

14: end if

15: current I ndex = current I ndex + 1

16: end while

17: return best Solution

18: end procedure

19:
20: procedure isBetter(cover Rate, best Score, best ImageSi ze, solution)

21: return cover Rate > best Score or (cover Rate ≥ best Score and

best ImageSize > solution.imageSi ze)

22: end procedure

Selection and implementation of the approaches

“Suggested methods for planning the coverage path” section
presented various approaches to generate different view-
points to analyse a sheet metal part. In the first part of
the “Randomized algorithms” section, random-based algo-
rithms were introduced. However, according to Glorieux et
al. (2020), this does not guarantee complete coverage of the
plate part. Since complete coverage is always required, these
approaches are no longer considered. The approaches of Wu
et al. (2015) andRaffaeli et al. (2013) define a grid in sections
scaled like the FOV. They then attempt to set a view position
in that local section if the center point in the section does not
meet the two conditions. Otherwise, the center of the sec-
tion is simply chosen, as it most likely covers all points. On
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first glance, this procedure described in “Grid viewpoints”
section seems efficient. Unfortunately, the focus points that
are absolutely necessary for the solution are not taken into
account. However, the approaches of Raffaeli et al. (2013)
could be extended to include this function by a condition that
checks the position of the focus points. The method has also
been adjusted so that only 90% of the width and height of the
image is used to generate the grid. This procedure means that
there is more luck when generating the image points, since
only 90% of the geometric points have to be covered. This
means that the specifications with the focus points and the
coverage of the image points can bemet. Initial tests with this
approach show valid results. In the following, this approach
is called “Gridded Randomization”. The approach of Englot
and Hover (2017) is based on trying to cover basic geometric
elements. These do not exist in our problem. The approach,
therefore, is no longer be pursued.

In single-agent games, nested Monte Carlo search has
produced well-performing results. Information should be
condensed exponentially by nesting the search. The algo-
rithm controls this through recursive method calls. A rollout
concept underpins the procedure. Until the game is over, suc-
cessors are generated based on the current state. Through
a reinforcement strategy based on previous results, a suc-
cessor is randomly generated (Edelkamp et al., 2017). In
this way, several different solutions can be generated. When
implementing the algorithm, we decided to generate 50 dif-
ferent solutions. An updated current solution is generated by
selecting the solution with the largest coverage or the same
coveragewith fewer images. The process is repeated until the
entire surface is covered. This algorithm is known as “Roll-
out Monte Carlo”. Another idea is to create a Monte Carlo
algorithm that changes the hole sequence of the current solu-
tion to produce faster solutions. New solutions replace old
ones if they cover a larger or equal area but contain fewer
images. This is repeated again until the surface is completely
covered. “Sequence Monte Carlo” is the name for this algo-

rithm. A greedy algorithm is also implemented that solves
the problem as a hitting set.

Another approach is to view the issue from a geometric
standpoint. Since representing it as a Hitting Set prob-
lem raises it to an additional level and vastly abstracts the
problem, some facts might not be prominently featured.
Therefore, a more direct view of the problem may be more
convenient. The implementation of the QuadPos approxi-
mation is presented in detail in “QuadPos-approximation”
section.All algorithmsdiscussed in this chapter are explained
in text or pseudo code. The complete implementation of all
algorithms can be found in the repository https://github.com/
bschw4rz3/OptimizationOfImageAcquisition.

QuadPos-approximation

In this section, the QuadPos approximation method is intro-
duced. The fundamental idea here is that a quadratic surface
can be efficiently divided using uniformly sliced rectangles.
This is referred to as an image grid in the following.

As shown in Fig. 6, this uniform grid division is not suit-
able for shapes that are not squares. In the left example, using
the uniform image distribution requiresmore images to cover
the polygon. In the right example, adjusting the grid results
in the need for fewer image positions. The focus points must
be located on the surface of the object, as described in Eq.
(7). In summary, the following aspects have to be considered:

• Find start of the image grid (the first image determines
how the grid continues)

• Adjustment of the image grid to the contour to reduce the
number of images required

• The focus points must be located on the surface of the
object

This type of image decomposition is accomplished itera-
tively. An image must always be placed on the surface of the

Fig. 6 Various grids of a geometry. This shows how ineffective normal rasterization is compared to a indented grid
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Fig. 7 Different phases of the algorithm. Phase 1 searches for the position of the first image. Phase 2 Adjustment of this position by focus points.
Phase 3 and 4 covers the surface with images by rasterization

object in this case. Following that, it is determined whether
the grid points are adequately covered. This logic is discussed
in “Scoring” section. The algorithmic process is divided into
four phases, as shown in Fig. 7. In the first phase, iteratively
finding an optimal position for the first image is carried out.
The first image must fit well to the contour of the surface,
since all other images are based on it. Keeping the total num-
ber of pictures low requires a goodposition for thefirst image.
As starting points, the grid and contour positions are checked.

The second phase evaluates whether the found position
takes into account that the focus points are on the object’s
surface. If this is not the case, an attempt is made to detect a
starting point based on the knowledge gained during Phase
1. It may happen that no position with all focus points on
the surface is found. In such a situation, the algorithm is
terminates. The screening is performed in the third phase,
based on the first image. This always occurs with the focus
points on the surface. As a result, images can be shifted back
and forth or not set at all. Therefore, uncovered areasmay also
form on the surface. When this occurs, Phase 4 is launched.
This phase’s primary function is to fill in any gaps that may
have developed so that the focus points are visible on the
surface. It is also possible to deviate from the remaining grid
of image positions.

The conditions for executing the phases are also depicted
in Fig. 8. For completeness, Algorithm 2 from “Scoring”
section illustrates the overhead. The QuadPos implementa-
tion initiates with the execution of the DoCalculationStep
function. Initially, it checks for potential starting positions,
generating a list of possible starting points, which are then
validated for being suitable as focus points. Each validation
and score calculation constitutes an iteration and contributes
to the solution.If the index exceeds the number of possible
starting points, it verifies the existence of a valid starting

point. If none is found, the algorithm attempts to approxi-
mate a starting point. When a starting point is successfully
identified, the algorithm endeavors to complete the adjusted
row or add a new row near the left contour of the geome-
try. This process results in the creation of an adapted grid
of image positions. Once the grid generation is complete,
if the coverage is not equal to 1, the algorithm searches for
uncovered positions on the surface and approximates image
positions to fill the gaps.

Initiation

The variables contourMarker , topLe f tCorner , and
possibleStart Points are initialized prior to the initial exe-
cution of DoCalculationStep. As a result, the surface’s
contour is pre-analyzed. The variable contourMarker first
marks a maximum on the Y axis with the smallest X value
possible. If multiple points on the Y axis have the same value,
the point with the smallest X value is chosen. This value is
constantly adjusted.

Algorithm 3 Algorithm for initiation
1: procedure preanalysis(possibleStart Points, object)
2: Analyse the conture of the object for corners
3: Filter for corner with maximal Y -value and X -value as small
4: Set topLe f tCorner to the result of the search
5: Filter for position with maximal Y -value and X -value as small
6: Set it to contourMarker to the result of the search
7: append contourMarker to possibleStart Points
8: end procedure

Just iteratively improving the contourMarker does not
suffice to find the corner of the surface’s contour. This neces-
sitates additional corner detection. The work of Karim and
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Fig. 8 The flowchart illustrates all the phases of QuadPos and the conditions under which they are executed

Nasser (2017) asserts that the algorithmsSUSAN,Harris, and
FAST recognize pixel matrices using gradients and neigh-
boring points. These algorithms cannot be directly applied
because they only know individual points, not pixels. How-
ever, corner detection can be achieved by using the concepts
of these attachments. Corner detection was carried out simi-
larly to the SUSANmethod by calculating an angle between
the first and last point within a radius. An angle that is outside
the tolerance is considered a corner. In this application, 60◦
and 300◦ tolerance values were effective for detecting cor-
ners. The topLe f tCorner variable defines then the corner
with the highest Y value and the lowest X value.

For generating the first image, contourMarker and
topLe f tCorner are considered important reference points
(see “Phase 1: Generation of the first image position”
section). This contourMarker serves as a starting point
on the possibleStart Points list. Also, the initialization
is shown in Algorithm 3. Following that, the routine
DoCalculationStep is executed. The pseudocode of Algo-
rithm 4 describes which one of the four phases is selected,
based on the logic depicted in Fig. 7. Initially, the algorithm
would seek an image in the upper left corner of the object.

This is accomplished through the generateFirst Image()
call, explained in “Phase 1:Generation of the first image posi-
tion” section. As Phase 1 fails to find a position with focus
points on the surface after several iterations, Phase 2 begins
to approximate that position. contourMarker is used here,
which has been repeatedly adjusted in Phase 1.When the first
image is located, Phase 3,which adds new columns or images
to an existing row at each iteration, can initiat. Images are
added until coverage reaches 100% or adding new images no
longer affects coverage positively. This is followed by Phase
4, which closes the gaps outside the image grid.

Phase 1: Generation of the first image position

Basically, to determine the position of the first image, dif-
ferent positions are selected. The starting point here is the
position of the contourMarker , from which the neighbor-
ing points are checked as starting points. The determination
of the contourMarker for the first iteration takes place
in the initiation of the algorithm. This point is read from
the possibleStart Points list at index 0 and is denoted
as current in Algorithm 5. Within the current posi-
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Algorithm4Algorithm to generate the positions of the partal
images
1: procedureDoCalculationStep(object, image, current I ndex)
2: try
3: if there is no starting image in solution then
4: image = GenerateFirst Image(...)  Phase 1
5: if focus points of new image are on the surface then
6: add image to solution
7: end if
8: else if can’t find a first image in solution then
9: aproximate focus points on surface  Phase 2
10: if can aproximate a focus point on surface then
11: throw exception
12: end if
13: add image to solution
14: else if can detect row in solution then
15: generate new images in the grid  Phase 3
16: if new image raise score then
17: add image to solution
18: else
19: add a new row to solution
20: end if
21: end if
22: catch unable to add images and coverage rate is not equal to 1
23: aproximate Holes  Phase 4
24: add a new row to solution
25: if cover rate of solution equals 1.0 then
26: Search for unnessary images
27: Remove unnessary images from solution
28: end if
29: end try
30: return solution
31: end procedure

tion, the point with the smallest x-value is searched for
within an image size. This point is denoted as nearest left
boarder point (NLBP) in Algorithm 5. With this search the
contourMarker should be improved iteratively. Using the
maximization function from the Algorithm 2, the starting
position is chosen that covers the most points on the contour.

The possibleStart Points list is updated to include all
raster and contour points covered by the image, if the
contourMarker is inside the image drawn around the
current and the determined NLBP is on the object’s surface.
The question of whether a better beginning point can be gen-
erated with these points is then explored in the next cycles.
The contourMarker will be replaced with the calculated
NLBP if its x-value is less than the existing contourMarker
value. The object’s contour is meticulously tracked using the
contourMarker as it moves through the many iterations.
This guarantees that the initial picture is always placed at
the contour’s edge, as the contourMarker must always be
within the image of a start position. In addition, the corner
point with the smallest x and highest y value must always
be within the image if this could be determined. Through
the different iterations of the possibleStart Points list, it
is possible to maximize the number of covered points of the
surface. New points are added to the possibleStart Points

Algorithm 5 Determines the first starting point
1: procedure GenerateFirstImage(object, picture, current I ndex,

possibleStart Points)
2: Set current to possibleStart Points at current I ndex
3: Set covered Points to the covered points of the solution including

current

4: Get point current from possibleStart Points at current I ndex
5: Search for point NLBP on surface between current .Y −

picture.Height ·0.5 and current .Y+ picture.Height ·0.5with lowest
X -value

6: contour I sPicture = pointIsInPicture(current , picture,
contourMarker )

7: corner InPicture = topLe f tCorner is invalid or
pointIsInPicture(current , picture, topLe f tCorner)

8: if contour I sPicture and corner InPicture then
9: Add covered Points to possibleStart Points that are not

included
10: if contourMarker .x > NLBP.x and

isOnSur f ace(NLBP, object) then
11: contourMarker = NLBP

12: end if
13: if isFocusValid(current, picture, object) then
14: Add current to solution
15: return solution
16: end if
17: return fail
18: end if
19: end procedure

list if they have been covered within the image and are not
already in the list.

Phase 2: Approximate the first position

If no start point could be established, Phase 2 is initiated.
As the focus points of the image cannot also be on the sur-
face, it is presumed there isn’t any spot on the grid where
such a scenario may occur. Hence, a position is roughly
determined using the contourMarker ’s previously iterated
position. The search is conducted within a perimeter of
contourMarker plus half the width and height of the image,
at intervals of 0.05.

This assumes that the contourMarker is positioned
in the top left corner. The Algorithm 6 calls the get
RelativeFocusPoints() function, which provides the rela-
tive position of the focus points. They are then added to the
estimated positions in order to establish the absolute ones.
Thus, it is possible to check each focus point for the relevant
area. If a location is discovered where all focal points are
on the surface, it is added to the possibleStart Points list.
The best starting position can then be revealed by repeating
Phase 1.
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Algorithm 6 Approximation of the first starting point
1: procedure GenerateFirstImage(picture, possibleStart Points, contourMarker )

2: relativeFocusPoints = picture.get RelativeFocusPoints();

3: x = contourMarker .x

4: while x < contourMarker .x + picture.width · 0, 5 do

5: y = contourMarker .y

6: while y < contourMarker .y + picture.height · 0, 5 do

7: isV alid Posi tion = true

8: i = 0

9: while i < relativeFocusPoints.si ze() do

10: Set relative to relativeFocusPoints on i

11: Set absoluteFocusPoint to (x + relative.x , y + relative.y)

12: if isOnSurface(absoluteFocusPoint) then

13: isV alid Posi tion = f alse

14: end if

15: end while

16: if isValidPosition then

17: Append position (x,y) to possibleStart Points

18: end if

19: y = y + 0.05

20: end while

21: x = x + 0.05

22: end while

23: end procedure

Phase 3: Continuation of the grid

Most of the image positions are generated in Phase 3. To
accomplish this, a distance equal to the width and height of
an image is added to the grid starting with the first image.
Three steps are required to complete this process.

A suitable starting point is to find a good position. This is
achieved byplacing the left-hand contour of the object closest
to the left edge of the image, without intersecting it. Accord-
ing to the Algorithm 7, this corresponds to rows three to ten.
It creates a point that is to the left of the first row, yet still
on the surface, by using the get Next Le f t XValueInRow
function. In Algorithm 8, the logic used to find the mini-
mum distance from the x-value of other points on the contour
and grid is explained. In the case of a point with a mini-
mum distance, it is checked whether the position has better
coverage of the grid and contour points and whether the
contourMarker is present at this location. If so, the algo-
rithm will repeat itself with the better solution.

We assume that no better position exists if the image could
not be relocated and no better alternative could be found. In
this instance, a new image is added to the column. Follow-
ing that, the image will be continuously moved to the left
until the focus points are on the object. This approximation
is explained in the Algorithm 9. To determine whether the
focus points are pointing at the object’s surface in this case,
the isFocusValid function is utilized. Then, the position is
inserted in the solution, and it is examined to see if it has
resulted in a higher coverage. If a better solution is found,

Algorithm 7 Algorithm for generating the image grid
1: procedure CompleteGrid(solution, object, picture, contourMarker )

2: processRows = true

3: if last image of solution is first image in row then  Try to move the

image to get a better first position in row

4: set current Point to last image of solution

5: new ImagePoint =

getNextLeftXValueInRow(solution, current Point , picture)

6: if isFocusValid(newImagePoint, picture, object) then

7: Caluclate covered surceface points with new ImagePoint

8: if contourMarker .x + (picture.width/2) >= new ImagePoint .x

then

9: if New cover rate is bigger than old then

10: Overwrite last item from solution with new ImagePoint

11: processRows = false

12: end if

13: end if

14: end if

15: end if

16: if processRows equals true then  Add a new image to row

17: Set last ImagePoint to the last position of solution

18: Set newCalculated Image to last ImagePoint

19: newCalculated Image =

moveOnXAxeForValidFocus(newCalculated Image,

last ImagePoint , picture, object)

20: Add newCalculated Image to solution

21: Calculate cover rate of solution

22: if new cover rate is lower or equal the old rate then  Add new row

23: Remove newCalculated Image from solution

24: Set nearest Sur f acePoint to detected begin of current row

25: Set hal f Height to half of height of picture

26: Set rowStart to the result of nearest Sur f acePoint +

hal f Height

27: Approximate rowStart to valid focus

28: contourMarker = nearest Sur f acePoint

29: Append rowStart to solution

30: Calculate cover rate of solution

31: if new cover rate is lower or equal the old rate then

32: throw exception

33: end if

34: end if

35: end if

36: return solution

37: end procedure

the solution is returned and the algorithm is repeated for a
new image.

If the previous steps have not resulted in a better solution,
a new row is added to the image grid. To do this, the image
from the previous cut is deleted from the solution and the
beginning of the current column is searched for. If found,
this position is shifted by one image height on the y-axis.
However, since it cannot be guaranteed that the contour of
the object will also be in this position, the x-axis of the point
is shifted to the smallest x-value of the contour in a range of
±(picture.height/2). This point is added to the solution and
it is checked whether a higher coverage could be achieved.
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Algorithm 8 Generated the next X position
1: procedure getNextLeftXValueIn-

Row(sur f ace, point, picture)
2: minDistanceX = -99999
3: Set hal f Height to the half height of picture
4: i = 0
5: while i < surfacePoints.Length do
6: Set sur f acePoint to value from sur f ace on index i
7: Set distanceY to absolute Y-distance of sur f acePoint and

point
8: if distanceY is lower or equal than hal f Height then
9: SetdistanceX to relativeX-distance of sur f acePoint and

point
10: if distanceX >0 anddistanceX >minDistanceX then
11: Set current to new point with X of sur f acePoint and

Y of point
12: minDistanceX = distanceX
13: end if
14: end if
15: i = i + 1
16: end while
17: return current
18: end procedure

Algorithm 9 Search for the next position in the image plate
1: procedure moveOnXAxeForValidFo-

cus(newCalculated Image, last ImagePoint, picture, object)
2: raster Step = picture.width/100
3: while isFocusValid(newCalculated Image, picture, object)

do
4: if newCalculated Image.x < last ImagePoint .x +

(picture.width/2) then
5: newCalculated Image = last ImagePoint
6: end if
7: newCalculated Image.x = newCalculated Image.x -

raster Step
8: end while
9: return newCalculated Image
10: end procedure

If this is the case, the current solution is returned. If a better
coverage cannot be obtained, the end of the object is reached
and an exception is thrown. Throwing the exception starts
Phase 4.

Phase 4: Fill in any uncovered areas

This step is only carried out if the rasterization of the image
locations has been finished, but total coverage was not pos-
sible. As no spot could be located where the focus points
were covered, it is presumed that there are still gaps in
the covering of the object’s surface. Different places are
estimated and chosen in accordance with the maximum
coverage rate in order to fill these gaps. Here, the vari-
ables approximationFactor and max I terations must be
utilized. The value approximationFactor indicates the
delta’s percentage step size. While the maximum num-
ber of iterations allowed by the search is specified by

the max I terations argument. These settings should be
modified if required. The uncovered points are first iden-
tified via the Algorithm 10 method, and the findings are
saved in the rest Points variable. The focus points on
the list are then checked to verify that they are placed
on the object’s surface. Since this won’t initially be the
case, the focus points outside the surface are chosen. From
this focus point and the present point, a delta is calcu-
lated. By multiplying approximationFactor by delta, the
shift of current Point is calculated by subtraction.To the
rest Points list, the result is encoded as a new point.This
would be repeated until either a place is foundwhere all focus
points are on the surface or the number of iterations exceeds
max I terations. In the last scenario, no more approxima-
tions are made and no viable location could be identified.

Algorithm 10 Approximate the gaps in the image rasteriza-
tion
1: procedure fillHoles(picture, object)
2: approximationFactor = 0.1
3: max I terations = 1500
4: Set rest Points to the list of uncovered positions
5: maxScore = 0
6: Define max Point as undefined
7: i = 0
8: while i < rest Points.si ze() do
9: Set current Point to rest Points on index i
10: if isFocusValid(currentPoint, picture, object) then
11: Add current Point to solution
12: set covered to cover rate of solution
13: if maxScore < covered then
14: maxScore = covered
15: max Point = current Point
16: end if
17: Remove current Point from solution
18: else if i < max I terations then
19: Set f ocusPoint List to invalid absolut positions of focus-

point
20: h = 0
21: while h < f ocusPoint List .si ze() do
22: Set f ocusPoint to f ocusPoint List on index h
23: Set delta to the diference between f ocusPoint and

current Point
24: Set delta to the product of approximationFactor

times delta
25: Set newPoint to the Subtraction of current Point and

delta
26: Add newPoint to rest Points
27: h = h + 1
28: end while
29: end if
30: i = i + 1
31: end while
32: Add max Point to solution
33: return solution
34: end procedure

In the case that a valid position is detected, the cover-
age percentage is examined by including the position in
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the solution. This position is momentarily saved as a max-
imum if a more accurate calculation can be made with it
than with the previous one. After that, the item is eliminated
from the solution and other items are examined. The greatest
approximation is provided once this procedure has been run
max I terations times. In order to attain a coverage of 100%,
the Algorithm 10 is repeated until there are no more holes on
the object’s surface. When the surface has been completely
covered, it is crucial to inspect each image of the solution
once to determine if it enhances the coverage. Algorithm 10
is repeated until there are no more gaps on the surface of the
object and thus a coverage of 100% could be achieved. It’s
conceivable that the Phase 3 image positions overlap with
those in Phase 4 in such a way that they no longer serve to
increase coverage. In order to maintain a minimal number of
image positions, these images should then be extracted from
the solution.

Experiments

Analysis

The approaches outlined in “Method” section are cross-
compared in this section, and predictions are made regarding
how the problem will behave based on “Mathematical prob-
lem description” section. No research could be found that
fully addresses the issue. From the literature search, the algo-
rithmGriddedRandomizewas discovered aftermodification.
However, it is assumed that this generates inefficient solu-
tions because it always looks for new points in a given grid.
The autors of Edelkamp and Stommel (2012) formulates the
inspection problem in three dimensions. Since this technique

cannot be utilized to two-dimensional problem formulations,
the transformed Monte-Carlo solutions are highlighted. The
method is randomized, meaning the sole potential outcome is
an efficient one. By viewing the problem as a hitting set, the
formulation became compatible with brute force and greedy
solutions. The brute-force method is ineffective due to the
multitude of possible options. Greedy, on the other hand,
can definitely provide a solution. However, the Greedy algo-
rithm (see Algorithm 1) essentially computes local maxima.
Additionally, since geometrical aspects are lost, reducing the
issue to a hitting set problem has both beneficial and adverse
consequences. By contrast, QuadPos works directly on the
geometric aspect and is, therefore, capable of calculating a
solution immediately.As a result, compared to the other algo-
rithms q0 mentioned, the QuadPos algorithm covers a wider
spectrum of efficient solutions. This hypothesis is expressed
in Eq. (13).

Hq0 = q ≤ q0 or Hqa = q > q0. (13)

As already described above, we assume that the problem
cannot be solved efficiently, due to the reduction to a hitting
set problem.The hypothesis, therefore, applies to the velocity
as follows

Ht0 = t ≤ t0 or Hta = t > t0. (14)

Description of geometric shapes

To be able to carry out the experiment, the geometries listed
in Table 1 are selected. These are used in many different
dimensions formeasurement. According toKabacoff (2011),

Table 1 Overview of the geometries used

Geometry Description 1 Description 2 Description 3 Description 4

Square 8 × 16 16 × 8 5 × 5 18 × 18

A: 128 A: 128 A: 25 A: 324

Isosceles 16 × 8 7.8 × 16 3 × 5 10 × 10

triangle A: 64 A: 62.399 A: 7.5 A: 50

Trapezoids 7.8 × 16; A: 78 8 × 10; A: 50 3 × 5; A: 7.5 4 x 5; A: 12.5

Hexagon 16 × 14 10 x 8 4 x 4 6 × 4

Angle: 113.63◦/132.74◦ Angle: 113.63◦/132.74◦ Angle: 109.28◦/141.42◦ Angle: 117.7◦/124.6◦

A: 184.8 A: 66 A: 13.199 A: 19.8

Ellipse Radius: 4 Radius: 7 Radius: 5 Radius: 3.5; Center distance: 8

Length: 24 Length: 30 Length: 26 Length: 22

Center distance: 8 Center distance: 8 Center distance: 8 Center distance: 8

A: 23.0006 A: 194.74233 A: 43.9335 A: 43.9335

Car door without hole 4 × 5 8 × 6 12 × 10 20 × 18

A: 14.5 A: 34.8 A: 87 A: 261
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Fig. 9 Geometries used in the experiment

20–30 random samples are usually sufficient to carry out a
hypothesis test using bootstrapping.

Table 1 shows the geometric properties of the different
geometries. The first two numbers are the dimensions of the
geometry. The area is noted in the property A (Area) and was
calculated for all geometries using the Gaussian trapezoidal
formula. To facilitate a better understanding of the geome-
tries used in this test, they have been depicted in Fig. 9. This
concerns the variant described as “Description 1” in Table 1.

Other conditions

AFujitsu PCwith an Intel(R) Core(TM) i7-8565Uprocessor,
8 MB of cache, a 4.6GHz maximum clock speed as well as
32GB RAMwas used for this measurement. Algorithms like
brute force, sequence, and rollout Monte Carlo can be run
with amaximumof 8 threads. Every other algorithm is run by
a single thread. Each algorithm applies an interface through
which the most effective solution is constantly inserted and
modified every frame, ensuring executionwith the same data.
In the “Scoring” section, see also Algorithm 4. As already
introduced in the “Object and grid model” section, the grid
is resolved with a resolution of 0.5 and the contours of the
geometries with a factor of 0.25.

Operationalization and evaluation of results

Quality measures

In “Scoring” section, the resulting solution is assessed using
the Eq. (12). It is calculated by taking the ratio of points
covered to total points. The number of solution images is

also required. The surface of the geometries can be extracted
using Eq. (1).

Duration of the calculations

The running time of the algorithms is measured in millisec-
onds. Prior to the first running of the related algorithm, the
beginng point is recorded. The end point is determined imme-
diately after the operation has fully completed or just after
the algorithm’s maximum allowed ten seconds have passed.
The time required for the calculation in milliseconds is the
difference between the beginning and ending points.

Results

The forms mentioned in “Description of geometric shapes”
section were used for the measurements. The results are
shown in the Appendix. As can be observed, the brute force
algorithm reaches a maximum coverage of around 98% in
ten seconds. Thus, the outcome is insufficient. The approach
based on Sequential Monte Carlo can achieve 100% cover-
age in many scenarios, but in each scenario the number of
images required is more than twice as large as the number
of other approaches. It is additionally apparent that all algo-
rithms except QuadPos and Sequential Monte Carlo failed
to solve the isosceles triangle 1. The “Discussion” section
offers substantial information upon that. The Appendix con-
tains a table of measurement findings. The evaluation in R
can be found in the repository https://github.com/bschw4rz3/
OptimizationOfImageAcquisition in the “Data” folder.

Evaluation of the quality

The solutions must initially be evaluated for quality using the
Eq. (12) from “Scoring” section, so that the hypotheses could
be verified with a simulation-based hypothesis test. Table 2
supplies an overview of the results obtained.

The quality values for the algorithmsGreedy, Brute Force,
Sequential Monte Carlo, Rollout Monte Carlo and Gridded
Randomize were simulated a total of 1000 times. It was
intended to show that all simulations had a normal distribu-
tion using theKolmogorov–Smirnov andShapiro–Wilk tests.
This has not been achieved in any simulation. The validation
of the normal distribution of Greedy using the Shapiro–Wilk
test failed and the distribution check of Brute Force, Gridded
Randomize, Rollout and Sequence Montecarlo could not be
confirmed by both tests because there are deviations at the tail
of the distribution. However, the authors are of the opinion
that these are indeed normally distributed simulations and
that the deviations at the edge of the distribution should not
play a significant role in the hypothesis test. In order to show
the deviations at the edge of the distribution, the histograms
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Table 2 Overview of the evaluated quality of the generated solutions

Geometry QuadPos Greedy Brute force Sequential Monte-Carlo Rollout Monte-Carlo Gridded random-ization

Elipse 1 1.000 1.000 0.424 0.540 1.000 1.000

Elipse 2 0.837 0.454 0.116 0.249 0.473 0.640

Elipse 3 0.172 0.120 0.106 0.070 0.110 0.150

Elipse 4 0.531 0.354 0.293 0.106 0.354 0.531

Hexagon 1 0.231 0.147 0.186 0.048 0.143 0.143

Hexagon 2 0.058 0.046 0.069 0.009 0.043 0.043

Hexagon 3 0.561 0.561 0.538 0.070 0.374 0.374

Hexagon4 0.531 0.354 0.517 0.101 0.354 0.087

Isosceles triangle 1 1.000 0.968 0.390 0.350 0.968 0.107

Isosceles triangle 2 0.663 0.415 0.344 0.084 0.415 0.415

Isosceles triangle 3 0.531 0.417 0.493 0.125 0.348 0.104

Isosceles triangle 4 1.000 1.000 0.984 0.432 1.000 1.000

Square 1 0.907 0.605 0.199 0.089 0.454 0.454

Square 2 0.557 0.424 0.208 0.071 0.371 0.371

Square 3 1.000 1.000 0.480 0.787 1.000 1.000

Square 4 0.107 0.121 0.108 0.016 0.062 0.062

Trapezoids 1 0.196 0.130 0.190 0.025 0.122 0.122

Trapezoids 2 0.425 0.472 0.477 0.079 0.387 0.387

Trapezoids 3 0.354 0.266 0.380 0.048 0.266 0.266

Trapezoids 4 0.561 0.421 0.602 0.062 0.421 0.421

Car Door 1 0.411 0.308 0.217 0.068 0.247 0.247

Car Door 2 0.493 0.423 0.324 0.087 0.296 0.296

Car Door 3 0.616 0.462 0.182 0.114 0.493 0.493

Car Door 4 0.793 0.528 0.096 0.137 0.444 0.528

The best rating was marked in bold

of the simulations were added to the Appendix. A p-value
below 0.033 was determined for all hypothesis tests.

The overall simulations of the algorithms are shown in
Fig. 10. The confidence interval (acceptance region) is repre-
sentedby the black section,while the rejection region (critical
region) is depicted in light gray.The p value is far right of cen-
ter, even beyond the rejection range. Furthermore, to ensure
the independence of the data, a Friedman test was executed.
The test resulted in a p-value very close to zero, indicat-
ing significant differences between the groups. Additionally,
a Kendall correlation of 0.581 was observed, indicating a
strong positive correlation between the algorithm and qual-
ity assessment. Thus, the Hq0 value may be ignored.

Evaluation of the runtime

The speed was also assessed using a simulation-based mort-
gage test. As a normal distribution was disproved by both
the Kolmogorov-Smirnov test and the Shapiro–Wilk test,
it turned out that the simulated speeds of the algorithms
were typically not normally distributed. These are fairly left-
skewed distributions, as shown by a graphical examination of
the simulation’s histogram. As a result, no simulation-based

hypothesis test can be carried out. A significant difference
between QuadPos and the other algorithms’ speeds was,
therefore, identified using the Mann–Whitney U test. The
test showed that there are significant differences between
the speeds of Greedy, Gridded Randomized and QuadPos.
Greedy’s average time is 2.2 s, while QuadPos needs an aver-
age of 24.13 milliseconds to generate a solution. This is only
exceeded byGridded Random’s average time of 6.8millisec-
onds. This means Ht0 cannot be rejected.

The speeds of QuadPos, Greedy, GriddedRandomize, and
RolloutMonte-Carlo are shown inFig. 11.Due to the fact that
the brute force and sequence Monte Carlo rates were almost
always above the ten-second limit, they were not included in
this analysis. In order to better compare the relevant times of
QuadPos, Gridded Randomize and Greedy, the scale is only
visualized up to 1 s.

Discussion

Especially in comparison to the algorithms Greedy, Brute
Force, Rollout, and Sequence Monte-Carlo, QuadPos appro-
ach delivers solutions that possess a significantly higher
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Fig. 10 Histogram of the
simulations including the
rejection range with p. The
simulations of the algorithms
Greedy, Brute Force,
Monte-Carlos and Gridded
Random are shown in black.
The rejection area is shown in
light gray. The p of QuadPos is
shown in dark gray

Fig. 11 Speeds of QuadPos, Greedy and Rollout Monte-Carlo clustered by passes ordered by speed of greedy

quality.When contrasted toGreedy andGriddedRandomize,
QuadPos was capable of minimizing the number of images
by an average of 3 and 4. Nonetheless, several factors must
be addressed while interpreting the results. For instance, the
geometry of the isosceles triangles 1 and 4 was exclusively
solved by the QuadPos and Sequence Montecarlo approach.
Furthermore, the other algorithms were unable to locate a
point in the tip’s grid, ensuring that the focus points were
also covered. No point can be located if no valid parame-
ter exists, as the algorithms only search for points on the
grid. This problem could be solved using QuadPos or a
random based approach, that is additionally capable of cre-
ating new points outside the grid. It might be argued that
these geometries deplete the database. Since this problem

was three-dimensional, the algorithm from Edelkamp and
Stommel (2012) could not be highlighted accurately. The
Monte Carlo algorithms are just simplified derivations. Also,
each geometry was only solved once with each Monte Carlo
approach because the algorithms are based on random vari-
ables. It’s highly questionable that a second attempt would
provide different outcomes. This, though, remains certainly
an option. In addition, a single “classic” greedy algorithm
was selected as a sample of the greedy algorithms for such
research. This greedy algorithm might have produced dif-
ferent results if it had been modified. The Gridded Random
approach generates good results much faster than QuadPos.
This is because inmost cases the center of the grid can simply
be used as the image position. On average, 20 milliseconds
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Fig. 12 Presentation of various solution approaches from QuadPos, Gridded Randomize and Greedy

can be saved compared to QuadPos. However, the generated
solution is also significantly worse than that of QuadPos.

In Fig. 12, the different solutions from QuadPos, Gridded
Randomize and Greedy are shown in two parts for compari-
son. This shows that the reduction of images can be achieved
by reducing the overlapping images.While there is little over-
lap in QuadPos, the overlaps of the images in the Gridded
Randomize and Greedy solutions are greatly increased due
to the reckless positioning of the images. With Gridded Ran-
dom, this comes about through the division into sections and
the random setting. In Greedy, this is achieved by locally
maximizing the image setting. Through the compromise of
a loose grid and taking the beginning into account, QuadPos
manages to very elegantly reduce the number of images that
are required for full coverage.

Conclusion and outlook

This paper explores the efficient quality assurance of var-
ious geometric objects using a WLI by minimizing the
number of required image captures. The need for such an
algorithm arises from the extended recording times asso-
ciated with various free-form sheet metal parts. Reducing
the image count enhances part throughput, thereby increas-
ing the economic efficiency of a WLI. A distinctive aspect

of the WLI employed in this context is the requirement for
focus points to consistently reside on the part’s surface. This
paper formulates this challenge mathematically, necessitat-
ing a comprehensive literature review to identify potential
solutions. Many of the solution strategies had to undergo
modifications to address the problem adequately.

In response to these requirements, the novel QuadPos
approximation allgorithm, was developed to accommodate
the idiosyncrasies of automaticWLI focusing. Two hypothe-
seswere formulated:QuadPos generates the best solution and
is the fastest algorithm. To assess the quality of a solution,
an evaluation formula was developed. Following extensive
testing with various geometric parts, a simulation-based
hypothesis test was employed to demonstrate that the Quad-
Pos approximation method significantly outperforms brute
force, greedy, and gridded random, along with other Monte
Carlo algorithms, all while considering the specificities of
WLI. It is important to note, that QuadPos exhibits slightly
slower performance compared to gridded random.

TheQuadPos approach holds significant promise andmay
pique further research interest within this field. It’s plausible
that performance and efficiency could be further enhanced.
Moreover, the realm of free-form parts presents additional
challenges, such as components with holes within their con-
tours, which were not addressed in this study. Furthermore,
the need for an algorithm that efficiently covers a part extends
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beyond quality assurance in sheet metal using WLI. Addi-
tional domains, like quality control in natural products such
as leather or the examination of ship hulls, have been iden-
tified in the literature as potential areas of application. The
algorithm requirementsmay vary, necessitating similar atten-
tion to domain-specific nuances as with the focus points in
WLI.
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Appendix

Raw data of the experiment

Algorithm Geometry Time (ms) Number
of images

Coverage
rate

QuadPos Elipse 1 6 5 1.000
Greedy Elipse 1 11 4 1.000
Brute
Force

Elipse 1 121,198 3 0.424

Sequence
Monte-
Carlo

Elipse 1 111,134 10 0.992

Rollout
Monte-
Carlo

Elipse 1 28 5 1.000

Gridded
Random

Elipse 1 3 5 1.000

QuadPos Isosceles
triangle 1

10 9 1.000

Greedy Isosceles
triangle 1

398 12 0.968

Brute
Force

Isosceles
triangle 1

11,1218 3 0.390

Algorithm Geometry Time (ms) Number
of images

Coverage
rate

Sequence
Monte-
Carlo

Isosceles
triangle 1

62,690 45 1.000

Rollout
Monte-
Carlo

Isosceles
triangle 1

20,332 14 0.968

Gridded
Random

Isosceles
triangle 1

3 1 0.107

QuadPos Hexagon1 57 23 1.000
Greedy Hexagon1 6593 36 1.000
Brute
Force

Hexagon1 115,698 3 0.186

Sequence
Monte-
Carlo

Hexagon1 46,530 109 0.994

Rollout
Monte-
Carlo

Hexagon1 1303 37 1.000

Gridded
Random

Hexagon1 3 37 1.000

QuadPos Isosceles
triangle 2

46 10 1.000

Greedy Isosceles
triangle 2

1992 16 1.000

Brute
Force

Isosceles
triangle 2

112,016 3 0.344

Sequence
Monte-
Carlo

Isosceles
triangle 2

46,036 79 1.000

Rollout
Monte-
Carlo

Isosceles
triangle 2

294 16 1.000

Gridded
Random

Isosceles
triangle 2

3 16 1.000

QuadPos Trapezoids
1

28 10 1.000

Greedy Trapezoids
1

1334 15 1.000

Brute
Force

Trapezoids
1

112,643 3 0.292

Sequence
Monte-
Carlo

Trapezoids
1

39,642 79 1.000

Rollout
Monte-
Carlo

Trapezoids
1

248 16 1.000

Gridded
Random

Trapezoids
1

2 16 1.000

QuadPos Square 1 26 12 1.000
Greedy Square 1 3619 18 1.000
Brute
Force

Square 1 107,064 3 0.199

Sequence
Monte-
Carlo

Square 1 44,264 122 1.000

Rollout
Monte-
Carlo

Square 1 809 24 1.000

Gridded
Random

Square 1 3 24 1.000
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Algorithm Geometry Time (ms) Number
of images

Coverage
rate

QuadPos Car Door
1

5 3 1.000

Greedy Car Door
1

34 4 1.000

Brute
Force

Car Door
1

121,265 3 0.528

Sequence
Monte-
Carlo

Car Door
1

96,094 18 1.000

Rollout
Monte-
Carlo

Car Door
1

52 5 1.000

Gridded
Random

Car Door
1

2 5 1.000

QuadPos Elipse 2 8 13 1.000
Greedy Elipse 2 383 24 1.000
Brute
Force

Elipse 2 127,073 3 0.116

Sequence
Monte-
Carlo

Elipse 2 72,529 43 0.981

Rollout
Monte-
Carlo

Elipse 2 320 23 1.000

Gridded
Random

Elipse 2 12 17 1.000

QuadPos Isosceles
triangle 3

12 8 1.000

Greedy Isosceles
triangle 3

303 10 0.982

Brute
Force

Isosceles
triangle 3

116,670 3 0.493

Sequence
Monte-
Carlo

Isosceles
triangle 3

68,813 34 1.000

Rollout
Monte-
Carlo

Isosceles
triangle 3

19,683 12 0.982

Gridded
Random

Isosceles
triangle 3

5 1 0.104

QuadPos Hexagon2 19 11 1.000
Greedy Hexagon2 472 14 1.000
Brute
Force

Hexagon2 119,287 3 0.324

Sequence
Monte-
Carlo

Hexagon2 50,751 69 1.000

Rollout
Monte-
Carlo

Hexagon2 268 15 1.000

Gridded
Random

Hexagon2 3 15 1.000

QuadPos Isosceles
triangle 4

6 3 1.000

Greedy Isosceles
triangle 4

55 5 1.000

Brute
Force

Isosceles
triangle 4

113,166 3 0.984

Sequence
Monte-
Carlo

Isosceles
triangle 4

99,188 13 1.000

Algorithm Geometry Time (ms) Number
of images

Coverage
rate

Rollout
Monte-
Carlo

Isosceles
triangle 4

108 5 1.000

Gridded
Random

Isosceles
triangle 4

4 5 1.000

QuadPos Trapezoids
2

23 10 1.000

Greedy Trapezoids
2

401 9 1.000

Brute
Force

Trapezoids
2

109,928 3 0.477

Sequence
Monte-
Carlo

Trapezoids
2

52,239 54 1.000

Rollout
Monte-
Carlo

Trapezoids
2

110 11 1.000

Gridded
Random

Trapezoids
2

3 11 1.000

QuadPos Square 2 32 16 1.000
Greedy Square 2 4697 21 1.000
Brute
Force

Square 2 105,714 3 0.208

Sequence
Monte-
Carlo

Square 2 31,094 126 1.000

Rollout
Monte-
Carlo

Square 2 520 24 1.000

Gridded
Random

Square 2 4 24 1.000

QuadPos Car Door
2

13 6 1.000

Greedy Car Door
2

132 7 1.000

Brute
Force

Car Door
2

113,000 3 0.328

Sequence
Monte-
Carlo

Car Door
2

71,783 34 1.000

Rollout
Monte-
Carlo

Car Door
2

80 10 1.000

Gridded
Random

Car Door
2

3 10 1.000

QuadPos Elipse 3 6 7 1.000
Greedy Elipse 3 33 10 1.000
Brute
Force

Elipse 3 126,278 3 0.264

Sequence
Monte-
Carlo

Elipse 3 105,365 17 0.995

Rollout
Monte-
Carlo

Elipse 3 66 11 1.000

Gridded
Random

Elipse 3 5 8 1.000

QuadPos Hexagon3 3 2 1.000
Greedy Hexagon3 7 2 1.000
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Algorithm Geometry Time (ms) Number
of images

Coverage
rate

Brute
Force

Hexagon3 125,514 1 0.538

Sequence
Monte-
Carlo

Hexagon3 102,507 16 1.000

Rollout
Monte-
Carlo

Hexagon3 32 3 1.000

Gridded
Random

Hexagon3 4 3 1.000

QuadPos Trapezoids
3

6 3 1.000

Greedy Trapezoids
3

46 4 1.000

Brute
Force

Trapezoids
3

121,445 2 0.716

Sequence
Monte-
Carlo

Trapezoids
3

81,637 22 1.000

Rollout
Monte-
Carlo

Trapezoids
3

51 4 1.000

Gridded
Random

Trapezoids
3

3 4 1.000

QuadPos Square 3 12 4 1.000
Greedy Square 3 230 6 1.000
Brute
Force

Square 3 114,129 2 0.480

Sequence
Monte-
Carlo

Square 3 64,310 35 1.000

Rollout
Monte-
Carlo

Square 3 51 6 1.000

Gridded
Random

Square 3 2 6 1.000

QuadPos Car Door
3

23 12 1.000

Greedy Car Door
3

864 16 1.000

Brute
Force

Car Door
3

112,869 3 0.182

Sequence
Monte-
Carlo

Car Door
3

46,225 65 1.000

Rollout
Monte-
Carlo

Car Door
3

181 15 1.000

Gridded
Random

Car Door
3

4 15 1.000

QuadPos Elipse 4 2 2 1.000
Greedy Elipse 4 6 3 1.000
Brute
Force

Elipse 4 129,854 2 0.551

Sequence
Monte-
Carlo

Elipse 4 98,654 10 1.000

Rollout
Monte-
Carlo

Elipse 4 8 3 1.000

Algorithm Geometry Time (ms) Number
of images

Coverage
rate

Gridded
Random

Elipse 4 3 2 1.000

QuadPos Hexagon4 6 4 1.000
Greedy Hexagon4 99 6 1.000
Brute
Force

Hexagon4 103,823 2 0.517

Sequence
Monte-
Carlo

Hexagon4 83,993 21 1.000

Rollout
Monte-
Carlo

Hexagon4 70 6 1.000

Gridded
Random

Hexagon4 4 4 0.163

QuadPos Trapezoids
4

3 3 1.000

Greedy Trapezoids
4

25 4 1.000

Brute
Force

Trapezoids
4

103,874 2 0.716

Sequence
Monte-
Carlo

Trapezoids
4

78,910 27 1.000

Rollout
Monte-
Carlo

Trapezoids
4

39 4 1.000

Gridded
Random

Trapezoids
4

2 4 1.000

QuadPos Square 4 132 35 1.000
Greedy Square 4 19,870 27 0.877
Brute
Force

Square 4 92,300 3 0.108

Sequence
Monte-
Carlo

Square 4 33,565 238 0.999

Rollout
Monte-
Carlo

Square 4 2818 60 1.000

Gridded
Random

Square 4 3 60 1.000

QuadPos Car Door
4

88 28 1.000

Greedy Car Door
4

11,169 42 1.000

Brute
Force

Car Door
4

94,277 3 0.096

Sequence
Monte-
Carlo

Car Door
4

32,940 161 0.996

Rollout
Monte-
Carlo

Car Door
4

2384 50 1.000

Gridded
Random

Car Door
4

80 42 1.000

123



Journal of Intelligent Manufacturing

Normal distribution of simulations
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Overview of the search results for “surface
inspection”

ID Title Author Year Category

1 Free-form
surface
inspection
tech-
niques
state of
the art
review

Yadong
Li and
Peihua Gu

2004 Literature
summary

2 Review
of vision-
based
steel
surface
inspection
systems

Nirbhar
Neogi,
Dus-
manta K
Mohanta
& Pranab
K Dutta

2014 Literature
summary

3 Automated
surface
inspec-
tion for
statistical
textures

Du-Ming
Tsai and
Tse-Yun
Huang

2003 Surface
detection

4 Image-
Based
Surface
Defect
Detection
Using
Deep
Learning:
A Review

Bhatt,
Prahar and
Malhan,
Rishi and
Rajen-
dran,
Pradeep
and Shah,
Brual and
Thakar,
Shan-
tanu and
Yoon, Yeo
Jung and
Gupta,
Satyandra

2021 Literature
summary

5 Surface
Defect
Detection
Meth-
ods for
Industrial
Products:
A Review

Chen,
Yajun
and Ding,
Yuanyuan
and Fan,
Zhao and
Zhang,
Erhu
and Wu,
Zhangnan
and Shao,
Linhao

2021 Literature
summary

6 Surface
Defect
Detection
Meth-
ods for
Industrial
Products:
A Review

Melanthota,
S.K.,
Gopal, D.,
Chakrabarti,
S.

2022 Literature
summary

ID Title Author Year Category

7 Automated
surface
inspection
of cold-
formed
micro-
parts

Bernd
Scholz-
Reiter and
Daniel
Weimer
and Hen-
drik
Thamer

2012 Surface
detection

8 A Generic
Deep-
Learning-
Based
Approach
for Auto-
mated
Surface
Inspection

Ren,
Ruoxu
and Hung,
Terence
and Tan,
Kay Chen

2018 Surface
detection

9 Automated
Surface
Inspec-
tion Using
Gabor
Filters

Tsa, D.-
M. and
Wu, S.-K.

2000 Surface
detection

10 Automatic
surface
inspec-
tion using
wavelet
recon-
struction

Du-Ming
Tsai and
Bo Hsiao

2001 Surface
detection

11 Anomaly
detection
with con-
volutional
neural net-
works for
industrial
surface
inspection

Benjamin
Staar and
Michael
Lütjen and
Michael
Freitag

2019 Surface
detection

12 Receding
horizon
path plan-
ning for
3D explo-
ration and
surface
inspection

Andreas
Bircher,
Mina
Kamel,
Kostas
Alexis,
Helen
Oleynikova
and
Roland
Siegwart

2018 Inspection
planning

13 Real-time
surface
inspection
by texture

Topi
Mäen-
pää and
Markus
Turtinen
and Matti
Pietikäi-
nen

2003 Surface
detection

123



Journal of Intelligent Manufacturing

ID Title Author Year Category

14 A Hier-
archical
Extractor-
Based
Visual
Rail
Surface
Inspection
System

Gan, Jin-
rui and Li,
Qingyong
and Wang,
Jianzhu
and Yu,
Haomin

2017 Full
inspection
system

15 A Sim-
plified
Computer
Vision
System
for Road
Surface
Inspection
and Main-
tenance

Quintana,
Mar-
cos and
Torres,
Juan and
Menén-
dez, José
Manuel

2016 Full
inspection
system

16 A smart
surface
inspection
system
using
faster R-
CNN in
cloud-
edge
com-
puting
environ-
ment

Yuanbin
Wang and
Minggao
Liu and
Pai Zheng
and Huay-
ong Yang
and Jun
Zou

2020 Surface
detection

17 Enhanced
discrete
particle
swarm
optimiza-
tion path
planning
for UAV
vision-
based
surface
inspection

Manh
Duong
Phung
and Cong
Hoang
Quach and
Tran Hiep
Dinh and
Quang Ha

2017 Inspection
planning

18 Convolutional
networks
for voting-
based
anomaly
classi-
fication
in metal
surface
inspection

Natarajan,
Vidhya
and Hung,
Tzu-
Yi and
Vaikun-
dam,
Sriram
and Chia,
Liang-
Tien

2017 Surface
detection

19 Adaptive
surface
inspec-
tion via
interactive
evolution

P. Caleb-
Solly and
J.E. Smith

2007 Other

ID Title Author Year Category

20 Automatic
localiza-
tion and
compar-
ison for
free-form
surface
inspection

Yadong
Li and
Peihua Gu

2006 Localization
methods

21 Semi-
supervised
anomaly
detection
with dual
prototypes
autoen-
coder for
industrial
surface
inspection

JieLiu and
Kechen
Song and
Mingzheng
Feng and
Yunhui
Yan and
Zhibiao
Tu and
Liu Zhu

2021 Surface
detection

22 Detecting
Change
for Multi-
View,
Long-
Term
Surface
Inspection

Stent,
Simon and
Gherardi,
Ric-
cardo and
Stenger,
Bjorn and
Cipolla,
Roberto

2015 Surface
detection

23 A Generic
Semi-
Supervised
Deep
Learning-
Based
Approach
for Auto-
mated
Surface
Inspection

Zheng,
Xiaoqing
and Wang,
Hongcheng
and Chen,
Jie and
Kong,
Yaguang
and
Zheng,
Song

2020 Surface
detection

24 System
Archi-
tecture
for Real-
Time
Surface
Inspec-
tion Using
Multiple
UAVs

Hoang,
Van
Truong
and
Phung,
Manh
Duong
and Dinh,
Tran Hiep
and Ha,
Quang P.

2020 Inspection
planning

25 Surface
Inspection
System of
Steel Strip
Based on
Machine
Vision

Tang, Bo
and Kong,
Jian-yi
and Wang,
Xing-
dong and
Chen, Li

2009 Surface
detection
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ID Title Author Year Category

26 Design
of online
surface
inspection
system of
hot rolled
strips

Guifang
Wu and
Hoonsung
Kwak and
Seyoung
Jang and
Ke Xu and
Jinwu Xu

2008 Full
inspection
system

27 Coverage
path plan-
ning with
targetted
viewpoint
sampling
for robotic
free-form
surface
inspection

Emile
Glo-
rieux and
Pasquale
Fran-
ciosa and
Dariusz
Ceglarek

2020 Inspection
planning

28 A Method
for Auto-
matic
Surface
Inspection
Using a
Model-
Based 3D
Descriptor

Madrigal,
Carlos
A. and
Branch,
John
W. and
Restrepo,
Alejandro
and Mery,
Domingo

2017 Full
inspection
system

29 Automated
surface
inspec-
tion for
steel prod-
ucts using
computer
vision
approach

Jiaqi
Xi and
Lifeng
Shentu
and Jikang
Hu and
Mian Li

2017 Full
inspection
system

30 Automatic
inspection
of metal-
lic surface
defects
using
genetic
algo-
rithms

H Zheng
and L.X
Kong and
S Naha-
vandi

2002 Full
inspection
system

31 Robust
local-
ization
to align
measured
points on
the man-
ufactured
surface
with
design
surface for
freeform
surface
inspection

Vahid
Mehrad
and Deyi
Xue and
Peihua Gu

2014 Localization
methods

ID Title Author Year Category

32 Automatic
inspection
data col-
lection of
building
surface
based on
BIM and
UAV

Yi Tan
and Silin
Li and
Hailong
Liu and
Penglu
Chen and
Zhixiang
Zhou

2021 Full
inspection
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