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Abstract
Artificial Intelligence (AI) has emerged as a promising solution for real-time monitoring of the quality of additively man-
ufactured (AM) metallic parts. This study focuses on the Laser-based Directed Energy Deposition (L-DED) process and
utilizes embedded vision systems to capture critical melt pool characteristics for continuous monitoring. Two self-learning
frameworks based on Convolutional Neural Networks and Transformer architecture are applied to process zone images from
different DED process regimes, enabling in-situ monitoring without ground truth information. The evaluation is based on a
dataset of process zone images obtained during the deposition of titanium powder (Cp-Ti, grade 1), forming a cube geom-
etry using four laser regimes. By training and evaluating the Deep Learning (DL) algorithms using a co-axially mounted
Charged Couple Device (CCD) camera within the process zone, the down-sampled representations of process zone images
are effectively used with conventional classifiers for L-DED process monitoring. The high classification accuracies achieved
validate the feasibility and efficacy of self-learning strategies in real-time quality assessment of AM. This study highlights
the potential of AI-based monitoring systems and self-learning algorithms in quantifying the quality of AM metallic parts
during fabrication. The integration of embedded vision systems and self-learning algorithms presents a novel contribution,
particularly in the context of the L-DED process. The findings open avenues for further research and development in AM
process monitoring, emphasizing the importance of self-supervised in situ monitoring techniques in ensuring part quality
during fabrication.

Keywords Directed energy deposition · Process monitoring · Self-supervised learning · Melt pool · Convolutional Neural
Network

Introduction

Directed EnergyDeposition (DED), similar to otherAdditive
Manufacturing (AM) methods, entails the continuous melt-
ing and deposition of material onto a designated surface,
following a Computer-Aided Design (CAD) model, where
it solidifies and fuses to create a dense part (Mazumder,
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2015). DED is a highly versatile AM technique, enabling
precise material deposition and finding extensive applica-
tions across diverse industries. The three primary categories
of DED applications encompass fabricating near-net-shape
parts, enhancing features, and performing repairs (Dutta
et al., 2011). The advantages of DED over conventional man-
ufacturing techniques are noteworthy, as it allows for the
production of near-net-shape components, thereby reducing
material wastage. This method also facilitates the fabri-
cation of new moderately bulk parts with minimal or no
tooling requirements and location-dependent properties. Fur-
thermore, it proves instrumental in augmenting existing
components by adding material to enhance their perfor-
mance. The repair and refurbishment ofworn-out or damaged
areas in components are efficiently achieved through DED,
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where additional material is built up. Moreover, the capa-
bility to combine dissimilar metals and create functionally
graded structures with varying material properties further
underscores DED’s versatility. A key strength of DED lies in
its ability to process new materials and multi-materials with
exceptional efficiency (Hauser et al., 2020). Industries such
as aerospace, automotive, tooling, and medical have widely
adopted DED for diverse applications, including rapid pro-
totyping, tool and die repair, coating, surface modification,
and even the production of large-scale components. Notably,
DED’s adaptability extends to a wide array of materials,
including metals, alloys, and composites.

In DED, a metal powder or wire is introduced at the focal
point of a thermal energy source, where it undergoes melt-
ing and is fused onto the substrate or previously deposited
layers. Various thermal sources can be employed in DED
processes, with the selection based on factors like the mate-
rial being processed, the desired application, and the specific
DED technology utilized. The primary thermal sources used
in DED are lasers and plasma or electric arcs. Laser-based
DED (L-DED) is more prevalent, offering precise control
and exceptional accuracy, making it suitable for a diverse
range of materials and applications. The intense heat from
the laser beam rapidly melts the material, facilitating solid
bonding with the substrate or the preceding layer. In the L-
DEDprocess, using powder as the rawmaterial, the powder is
conveyed toward the process zone and irradiated by the laser
source either co-axially or non-coaxially, promoting melting
and deposition. Typically, the part to be fabricated remains
stationary while a robotic arm moves to deposit material.
Alternatively, amovable platformwith stationary arms can be
used to reverse this arrangement. The motion control system
effectively guides the energy source and material deposi-
tion, enabling the fabrication of intricate geometries. The
process is commonly conducted within a controlled inert
chamber with low oxygen levels. Shielding the part with
protective gas is also practised to prevent contamination dur-
ing printing. Laser-based DED offers numerous advantages,
including high deposition rates, precise control, material
adaptability, minimal waste, in situ metallurgical bonding,
repair capabilities, and design flexibility. It finds extensive
applications in aerospace, automotive, tooling, and repair
industries, where it is employed for manufacturing complex
components, repairing damaged parts, and enhancing mate-
rial properties through localized deposition.

The primary process parameters crucial for ensuring the
quality of L-DED parts are laser power, travel speed, pow-
der mass flow rate, powder focus, and laser beam focus (Liu
et al., 2021a, 2021b; Song et al., 2012a, 2012b). Proper cali-
bration of these parameters is essential to achieve the desired
bead geometry and layer height for subsequent layer buildup.
Deviations in these parameters can affect subsequent layers,

leading to changes in printing distance, subsequently induc-
ing printing in a defocus zone and causing cumulative shape
deviation. Uniform track morphology is vital for consistent
material properties and minimal defects, but achieving it is
challenging due to the intricate interplay of multiple pro-
cess parameters. The thermal activity during layer stacking
also influences part geometry, microstructure, and mechan-
ical properties. Deviations from the suitable process space
can result in various anomalies like pores, fractures, cavities,
oxidation, delamination effects, geometric aberrations, and
distortion (Kim et al., 2017; Liu et al., 2021a, 2021b). Some
parameters may need real-time adjustments during the pro-
cess. Hence, monitoring and control strategies are explored,
including monitoring powder flow, thermal activity, and melt
pool characteristics. Precise alignment of powder flow and
laser beam focuswith the printing surface is necessary to opti-
mize process efficiency, minimize porosity, increase density,
achieve better mechanical properties, and reduce distortion
and thermal stresses. The right balance between laser power
and feed speed is crucial to attaining a homogenous temper-
ature distribution. Deviations during the process can reduce
powder catchment, delivered laser power, melt pool depth,
and area, resulting in minimized layer height and increased
defects. Consequently, this directly affects the finalmaterial’s
mechanical properties and 3D geometry. To ensure high-
quality products, precise control and monitoring of process
parameters are of utmost importance.

The deposition occurs by means of the melt pool, which
is co-related to all those fundamental parameters govern-
ing the L-DED process, so it is reasonable to expect that
its state represents a significant portion of the quality of the
built part. Co-axial and off-axial process zone sensing are
two approaches used in DED to capture emissions from the
process zone, i.e. the melt pool, as encapsulated through a
didactic illustration as shown in Fig. 1. Analyzing the emis-
sions from the melt pool gives the current state of the DED
process. Co-axial process monitoring involves placing the
sensing and monitoring equipment on the same axis as the
energy beam used for material deposition. Co-axial process
monitoring involves integrating sensors and cameras along
with the energy beam to monitor the process in real time,
enabling immediate feedback, defect detection, and control
adjustments. On the other hand, off-axial process monitor-
ing places sensors at a distance from the deposition zone to
capture specific process characteristics without interfering
with the energy source. These sensors can be positioned to
capture specific aspects of the process, such as the plume of
moltenmaterial or the heat-affected zone. They can alsomon-
itor the temperature distribution on the workpiece or track
the growth of the deposited material. Off-axial monitoring
allows for collecting focused data on specific process charac-
teristics, such as temperature gradients or solidification rates,
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Fig. 1 Co-axial and off-axial process zone sensing are two approaches used in DED (Color figure online)

which can be vital for understanding the material’s proper-
ties andoptimizing the process.Both approaches are essential
in ensuring DED’s quality, accuracy, and optimization, pro-
viding valuable data for understanding material properties
and achieving high-quality additively manufactured parts.
It’s important to note that co-axial and off-axial sensing
approaches can complement each other. The advantage of
co-axial sensing is that it offers a top view of the melt pool
or the process zone independent of the feed direction.

Utilizing non-intrusive sensors in the process zone and
coupling them with advanced algorithms enables the col-
lection and decoding of crucial data, leading to improved
decision-making and enhanced process efficiency.Moreover,
these non-intrusive sensors do not alter the process’s envi-
ronment, allowing for undisturbed observations. One key
advantage of such systems is their continuous monitoring
capability, which surpasses intermittent machine diagnostics
and post-mortem inspection techniques. This real-time mon-
itoring allows immediate intervention if poor part quality is
detected, preventing subsequent anomalies and offering bet-
ter control over the manufacturing process (Stutzman et al.,
2018; Xia et al., 2020). Ultimately, these advancements con-
tribute to greater precision, reliability, and quality in DED
(Bi et al., 2007), elevating its value as a manufacturing
technology for various industries. Table 1 displays a list of
non-intrusive sensors documented in the literature that can

record different aspects of the process zone from laser-based
DED and differentiate between steady state and abnormality.

Due to the complicated physics involved in laser-based
processes, most events in the process zone are transient. In
order to ensure that online diagnostics is a prudent alternative
for quantification, the multifaceted data from sensors that
are capable of capturing such events are to be interpreted
seamlessly, and decisions have to be made simultaneously
withminimal human intervention (Pandiyan,Masinelli, et al.,
2022). The paradigm of Machine Learning (ML) and soft
computing techniques provides such a platform since it can
recognize nonlinear patterns in the data, learn from them, and
ultimatelymake decisions. Previous research intomonitoring
the DED process by integrating sensingmethods andML has
demonstrated the benefits of doing so.

Zhang et al. (2020) estimated melt pool temperature using
extreme gradient boosting (XGBoost) and long short-term
memory (LSTM) models with process parameters as input.
Sampson et al. (2020) suggested an image-based edge identi-
fication technique for determining the shape of the melt pool.
Khanzadeh et al., (2018a, 2018b) demonstrated the moni-
toring of process irregularities using principal component
analysis (PCA) based onmelt pool thermal imagery. Thermal
images have also been employed to locate porosity during the
DED process as input using Self-Organizing Maps (Khan-
zadeh et al., 2019). Convolutional Neural Networks (CNNs)

123



Journal of Intelligent Manufacturing

Table 1 Non-intrusive sensors
used for monitoring different
characteristics in all the variants
of laser-based DED systems

Sensor Remarks on process zone
information

Reference

Charged Couple Device (CCD)
and Complementary
Metal–Oxide Semiconductor
(CMOS) based imaging

• Geometric characteristics of the
deposit

Iravani-Tabrizipour and
Toyserkani, (2007),
Meriaudeau and Truchetet
(1996), Ribeiro et al. (2023),
and Toyserkani and
Khajepour (2006)

• Powder deposition
parameters/powder clogging

Doubenskaia et al. (2004),
Lee et al. (2022), and Lei
et al. (2012)

• Process zone dynamics Abe et al. (2013), Gharbi et al.
(2013), Haley et al. (2018),
Nassar et al. (2015), and
Vandone et al. (2019)

• Melt pool characteristics Pandiyan et al., (2022a,
2022b, 2022c), Sampson
et al. (2020), Vykhtar and
Richter (2021), Zhang et al.
(2021), and Zijue et al.
(2019)

• Process monitoring Li et al. (2020) and Zhang
et al. (2019)

Photodiodes • Effect of build geometry and
powder morphology

Bi et al. (2006b)

• Powder flow rate Ding et al. (2016), and Hu and
Kovacevic (2003)

Pyrometers • Infrared thermography-based
melt pool characterization

Esfahani et al. (2022),
Khanzadeh et al., (2018a,
2018b), and Smurov et al.
(2012)

• Porosity prediction Khanzadeh et al., (2018a,
2018b), Khanzadeh et al.,
(2018a, 2018b), and Tian
et al. (2020)

• Melt pool surface temperature Bi et al. (2006a), Doubenskaia
et al. (2004), Hua et al.
(2008), and Song et al.,
(2012a, 2012b)

Acoustic Emission (AE) • Process stability Bond et al. (2019) and Hauser
et al. (2022)

• Porosities and cracks Chen et al. (2023) and Gaja
and Liou (2018)

• Powder deposition parameters Koester et al. (2018) and
Whiting et al. (2018)

Spectroscopy • Melt pool composition
monitoring

Bartkowiak (2010), Lednev
et al. (2018), Schmidt et al.
(2021), Song et al. (2016),
Song and Mazumder (2011),
Song, Wang, et al. (2012),
and Wasmer et al. (2023)

• Process quality Ren et al. (2022) and
Stutzman et al. (2018)

Hyperspectral camera • Melt pool temperature Devesse et al. (2016), Ertveldt
et al. (2020), and Lison et al.
(2019)
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have been trained on raw medium wavelength Infrared co-
axial images to correlate process dynamics and predict
quality (Gonzalez-Val et al., 2020). Bayesian approaches
and least squares regression have been used with photodi-
ode signatures to detect and localise defects efficiently (Felix
et al., 2022). Heterogeneous sensing techniques compris-
ing an optical camera, spectrometer, and Supervised Support
Vector Machine (SVM) have been demonstrated to detect
lack-of-fusion defects (Montazeri et al., 2019). Monitoring
strategies using CNN-based contrastive learners and gen-
erative models using process zone images have also been
reported by the authors of this work (Pandiyan et al., 2022a,
2022b, 2022c; Pandiyan et al., 2022a, 2022b, 2022c). Wang
et al. (2008) used AE and advanced pattern recognition to
detect fractures. In contrast, Gaja and Liou (2018) used
AE to assess the overall deposition quality. Using the Mel-
Frequency Cepstral Coefficients (MFCCs) of the acoustic
emission signals generated during the laser-material inter-
action in DED, defects such as cracks and keyholes could
be predicted by training a CNN (Chen et al., 2023). Ribeiro
et al. (2023) proposed a hybrid approach combining CNN
and Support Vector Regression (SVR) utilizing melt pool
images from an NIR camera to detect unexpected changes in
the Z-axis and optimize the layer height in the build process.
Besides monitoring, sensor information has been effectively
used with soft computing techniques to control the process
states. High speed dual color pyrometer sensor was used to
collect melt pool information, which was sent into a closed-
loop controller, which changed process inputs such as laser
intensity to preserve part dimensions (Dutta et al., 2011).
Using three high-speed charged couple device cameras in
a triangulation arrangement and a dual color pyrometer, a
hybrid controller was created to provide steady layer devel-
opment by preventing overbuilding and underbuilding (Song
et al., 2012a, 2012b).

Most approaches are trained using supervised and semi-
supervised methods in the literature addressing monitoring
strategies for DED processes based on process zone imag-
ing (Zhang et al., 2022). However, the work discussed here
by the authors represents a pioneering effort in developing
a framework for monitoring part quality in terms of build
density using a CNN trained in a self-supervised manner.
This idea was inspired by the Bootstrap Your Own Latent
(BYOL) approach (Grill et al., 2020). The motivation behind
this work arises from the challenges encountered in labelling
the dataset, mainly when dealing with process dynamics that
are not discrete and involve semantic understanding. The
authors recognized the limitations of traditional supervised
approaches, which rely on explicit labels provided by human
experts. In the context of DED processes, the complexities
involved in defining discrete labels for quality assessment
make the task challenging. To overcome these challenges, the
authors adopted a self-supervised learning approach based on

the BYOLmethod. Self-supervised learning not only simpli-
fies the training process but also reduces the time and cost
associated with algorithm setup while enabling the model
to learn meaningful representations from the data, leading
to improved quality assessment and monitoring capabili-
ties in the DED process. Once the model is trained using
self-supervised learning, the learned representations can be
transferred to downstream tasks. These representations serve
as a powerful feature extractor that captures relevant infor-
mation from the input data, enabling improved performance
on various tasks. This opens up opportunities for discovering
new insights and enhancing the monitoring and assessment
of DED processes, such as evaluating build density in this
case.

The scientific contribution presented in this paper is struc-
tured into six main sections. "Introduction" section serves
as an introduction, providing a concise overview of the
DED process and outlining the specific problem statement
addressed in the study. "Theoretical basis: bootstrap your
own latent (BYOL)" section offers a theoretical overview
of the self-learning technique employed, which is based
on BYOL. This section aims to provide readers with a
brief understanding of the underlying principles and con-
cepts involved in the self-learning approach used in the
study. The experimental setup, data collection pipelines
and the proposed methodology of self-supervised learning
are introduced in "Experimental setup and methodology"
section. "L-DED monitoring" and "Self-supervised learn-
ing" sections presents and discusses the results obtained
from machine-vision-based build quality monitoring using
the self-learning CNN and Transformer architectures, com-
paring them to similar architectures trained using supervised
learning. These section analyses the performance and effec-
tiveness of the self-learning approach in the context of build
quality monitoring. Finally, "Conclusion" section concludes
the paper by summarizing the main findings and contribu-
tions of the study. It also suggests potential avenues for future
research and development in this field, highlighting areas
that could be explored further based on current research out-
comes.

Theoretical basis: bootstrap your own latent
(BYOL)

The training ofML algorithms is usually supervised. Given a
dataset consisting of an input and corresponding label, under
a supervised paradigm, a typical classification algorithm tries
to discover the best function that maps the input data to the
correct labels. On the contrary, self-supervised learning does
not classify the data to its labels. Instead, it learns about func-
tions that map input data to themselves (Hendrycks et al.,
2019; Liu et al., 2021a, 2021b). Self-supervised learning

123



Journal of Intelligent Manufacturing

helps reduce the amount of labelling required. Additionally,
a model self-supervisedly trained on unlabeled data can be
refined on a smaller sample of annotated data. (Jaiswal et al.,
2020; Pandiyan et al., 2023).

BYOL is a state-of-the-art self-supervised method pro-
posed by DeepMind and Imperial College researchers that
can learn appropriate image representations for many down-
stream tasks at once and does not require labelled negatives
like most contrastive learning methods (Grill et al., 2020).
The BYOL framework consists of two neural networks,
online and target, that interact and learn from each other
iteratively through their bootstrap representations, as shown
in Fig. 2. Both networks share the architectures but not the
weights. The online network is defined by a set of weights
θ and comprises three components: Encoder ( fθ ), projector
(gθ ), and predictor (qθ ). The architecture of the target net-
work is the same as the online network but with a different
set of weights ξ , which are initialized randomly. The online
network has an extra Multi-layer Perceptron (MLP) layer,
making the two networks asymmetric. During training, an
online network is trained from one augmented view of an
image to predict a target network representation of the same
image under another augmented view. The standard augmen-
tation applied on the actual images is a random crop, jitter,
rotation, translation, and others. The objective of the train-
ing was to minimize the distance between the embeddings
computed from the online and target network, as shown in
Eq. (1).

Loss function → Lθ , ξ � ‖qθ (zθ ) − z′
ξ‖2. (1)

The update of target network parameter ξ is given by

ξ � τξ + (1 − τ)θ , where τ is a decay parameter.

The weights are updated only for the online network
through gradient descent, and weights for the target network
are updated only through an exponential moving average
based on the weights from the online network as shown in
Eq. (1).

BYOL’s popularity stemsprimarily from its ability to learn
representations for various downstream visual computing
tasks such as object recognition (Afouras et al., 2022;Mitash
et al., 2017) and semantic segmentation (Tung et al., 2017) or
any other task-specific network (Zhou et al., 2020), as it gets
a better result than training these networks from scratch. As
far as this work is concerned, based on the shape of the pro-
cess zone and the four quality categories that were gathered,
BYOL was employed in this work to develop appropriate
representations that could be used for in situ process moni-
toring.

Experimental setup andmethodology

DED experimental setup

The experiments described in this study utilized a 5-
axis industrial DED laser system manufactured by BeAM
(Mobile 1.0, BeAM, France). TheDED systemwas equipped
with a co-axial process zone imaging setup, as depicted in
Fig. 3. For the fabrication process, four cubes were built on
a 4 mm thick baseplate made of 99.6% pure Ti6Al4V tita-
nium alloy sourced from Zapp AG, Germany. The titanium
powder used in the process was Cp-Ti grade 1 from AP&C
(Advanced Powders &Coatings, Inc., Canada), consisting of
particles ranging in size from 45 to 106 μm. The elemental
composition of the powder is given in Table 2.

The fabrication process employed a serpentine scan pat-
tern, and the DED process was carried out in an argon
environment with a controlled oxygen concentration of
5 ppm. The argon gas was supplied by Carba gas, with a
purity of 99.6%. The laser used was a ytterbium-doped fiber
laser manufactured by IPG Photonics, USA, operating at a
wavelength of 1068 nm. The laser deposition head was capa-
ble of focusing the laser beam to a nominal 1/e2 diameter
of 800 μm. The beam profile followed a Gaussian distri-
bution with a Rayleigh range of 18 mm. The deposition of
layers was achieved by verticallymoving the deposition head
along the Z-axis, while movement in the X–Y plane enabled
the formation of the desired 2D geometry. More comprehen-
sive information regarding the elemental composition of the
powder and detailed specifications of the experimental setup
can be found in previously published works (Pandiyan et al.,
2022a, 2022b, 2022c).

In terms of part density, four different build qualities were
achieved by keeping the scan speed constant at 2000mm/min
and varying the laser power from 175 to 475 W, as depicted
in Fig. 4. In other words, four distinct deposited energies
induced the build quality. The offline computed tomography
(CT) analysis confirmed all four quality grades (P1–P4). An
EasyTom XL Ultra 230-160 micro/nano CT scanner (RX
Solutions, Chavanod, France) was used to perform CT scan
observations on the cube cross-sections. The samples were
scanned with an 8 μm voxel size. Images were captured at
a frame rate of 8 frames/s with an average of ten frames per
projection. Images were reconstructed using filtered back
projection based on the FDK algorithm for 3D cone-beam
tomography. Figure 4a shows a 3D CT scan of the P1 state,
confirming the low density due to insufficient laser power,
which results in incomplete powder adhesion, i.e., Lack of
Fusion (LoF) porosity. However, the density increases with
increasing laser power. Although the densities of regions P3
and P4 are high due to high heat storage, an undesirable
microstructure evolution was observed, as reported in previ-
ous studies (Pandiyan et al., 2022a, 2022b, 2022c; Pandiyan
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Fig. 2 An illustrative
representation of the workflow
for a self-supervised
classification pipeline (Color
figure online)

Fig. 3 Visual representation of
the experimental setup for DED
process incorporating co-axial
imaging capability (Color figure
online)

Table 2 Minimum and maximum percentage of elements comprising Ti grade 1, ASTM B348 powder

Material Carbon C Oxygen O2 Nitrogen N2 Hydrogen H2 Iron Fe Other each,
max

Other total,
max

Titanium
Ti

Composition
(wt%)

0.02 0.08 0.02 0.002 0.03 < 0.1 < 0.4 Balance

et al., 2022a, 2022b, 2022c). Of the four parameters con-
sidered in this work, P2 corresponds to favourable build
conditions. The selection of ‘P2’ is justified by its align-
ment with a conduction regime that prevents the formation
of defects. The P2 condition results in a uniform primary
α-microstructure, which is crucial for attaining the desired
quality. In contrast, P3 and P4, while having higher den-
sity, tend to exhibit the generation of primary α-acicular
and secondary α-microstructures (Pandiyan et al., 2022a,
2022b, 2022c; Pandiyan et al., 2022a, 2022b, 2022c). These
microstructures are considered undesirable as they indicate
unstable melt pools and non-uniformmaterial characteristics
within the process zone.

Dataset

The experimental setup utilized a co-axial color Charged
Couple Device (CCD) camera fromWatec, Japan, integrated
into the laser deposition head.This camera operates at a frame
rate of 30 frames per second and captures the morphology of
the process area. The captured images consist of three RGB
channels with a 640 × 480 pixels resolution. To enable the
camera to capture the radiation from the process zone, a beam
splitter is installed on Precitec’s laser applicator head. An
optical notch filter within the 650–675 nm range also blocks
the laser wavelengths. The captured images are extracted
from a continuous video stream using Image J software
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Fig. 4 Quantitative analysis of porosity in cubes fabricated using four different process regimes through Computed Tomography (CT) scans (Color
figure online)

for offline processing, as mentioned in reference (Schneider
et al., 2012). Figure 3 illustrates the variations in themelt pool
and process zone morphology for each quality grade under
the four different conditions. The dataset used in the study
comprises a total of 48,995 process zone images representing
the four quality grades. The dataset is randomly divided into
three training, validation, and testing subsets. The first sub-
set contains 60% of the training images, the second subset
(10%) is used for validation, and the remaining images are
reserved for testing the self-supervised algorithm’s perfor-
mance. To facilitate training and evaluation, the raw images
are rescaled to a resolution of 480 × 320 pixels while main-
taining the three-channel input. This rescaling operation aims
to reduce computational resources while preserving classi-
fication accuracy. It should be noted that further reduction
in image resolution may adversely affect the classification
results.

Methodology

This work’s suggested self-supervised learning methodol-
ogy is schematically depicted in Fig. 5 for learning the lower
dimensional representations from process zone morpholog-
ical images. In order to extract appropriate representations
unsupervisedly, we used a self-supervised learning method
based on Jean-Bastien et al. (Grill et al., 2020), who first
discussed BYOL. We expanded on this first effort to extract

appropriate representations to classify process zonemorphol-
ogy images that correlate with the quality of the part built.
The advantage of using learned representations from self-
supervised learning is that they capture rich and meaningful
information from the data. This can improvedownstream task
performance, even when labelled data is limited or unavail-
able. By leveraging the learned representations, models can
generalize better, extract relevant features, and make more
accurate predictions.

Training a CNN using the self-supervised method typi-
cally involves three steps. The first step in training a CNN
using the self-supervised method is data preparation. In this
phase, the process zone images from different categories are
gathered and combined to form the dataset. It is important to
note that no ground truth labels are utilized at this stage.
The process zone images are typically obtained from the
DED process and represent different aspects or variations in
the manufacturing process. Both online and target networks
get input from this unlabeled dataset. Random transforma-
tions and scaling are applied before inputting the raw process
zone image into the networks, as shown in Fig. 6. These
augmentations provide an augmented view of the raw pro-
cess zone image, which helps enhance the model’s ability to
learn invariant and discriminative features. These augmented
images capture different perspectives and variations of the
original image, which aids in training a more robust and gen-
eralized model.
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Fig. 5 Illustrative framework depicting the proposed methodology of self-supervised learning for process zone images (Color figure online)

Fig. 6 Application of data augmentation techniques (flipping and rotation) on process zone images of four build conditions
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Fig. 7 Architectural overview of
the CNN employed for
supervised classification (Color
figure online)

The second step of the methodology involves training the
online and target networks to extract lower-dimensional rep-
resentations from the augmented process zone images. This
is achieved by minimizing the distance between the rep-
resentations, which is calculated using the Mean Squared
Error (MSE) loss function. The loss is backpropagated only
in the online network. As the online network outperforms
the target network, the weights from the online network are
progressively transferred to the target network using an expo-
nential moving average. Throughout the training process, it
is ensured that the magnitude of the training loss decreases,
indicating the convergence of the network learning. This sig-
nifies that the network is effectively capturing the distinct
embedding among the four categories without prior knowl-
edge of their labels. In the third and final step, the network’s
performance trained using the self-supervised technique is
assessed on a labelled dataset. For training, the lower-level
feature map computed from each image and their corre-
sponding ground truths is fed into simple classifiers such as
RandomForest (RF), SVM, orK-Nearest Neighbors (k-NN).
Once these classifiers are trained, the models are utilized to
classify the feature maps acquired for samples in the labelled

Table 3 Training parameters of the CNN-1 model trained supervisedly
with cross-entropy loss

Training parameters CNN-1

Analysis type Supervised classification

Solver used ‘AdamW’

Learning rate used 0.01

Training epochs 100

Batch size (N) 256

Dropout 5%

Loss function Cross entropy

Shuffle Every-epoch

Labelled dataset 60% Training, 30% testing, 10%
Validation

Trainable weights 0.60 Million

dataset that were not part of the training process. The uti-
lization of the lower-level feature map in classification tasks
results in higher accuracy due to the network’s ability to learn
the distinct embedding among the four categories without
relying on explicit labels. Furthermore, beyond classifica-
tion, the lower-level feature map can be employed for other
downstream tasks, such as segmentation and process control,
which are crucial for industries relying on these processes.

L-DEDmonitoring

Supervised learning: baseline: CNN architecture

To establish a baseline for self-supervised learning on a
Convolutional architecture, a CNN network, referred to as
CNN-1, was trained in a supervised manner to classify the
four quality categories using the dataset described in previ-
ous sections. TheCNN-1 architecturewas implementedusing
the PyTorch package provided byMeta (USA) (Paszke et al.,
2019). The architecture of CNN-1 comprised four convolu-
tional layers and three fully connected layers, as illustrated in
Fig. 7. This architectural design was selected after an exten-
sive search process.

The CNN-1 architecture consisted of four 2D convolu-
tional layers with a kernel size of 16. The number of kernels
gradually increased from four in the first layer to 32 in the
fourth layer. Max pooling with a kernel size of two was
applied to downsample the feature map after each convo-
lutional layer. For classification, three fully connected layers
were utilized. The Rectified Linear Unit (ReLU) activation
function was employed for all layers of CNN-1. The dataset
was divided probabilistically into training (60%), validation
(10%), and testing (30%) sets. The input to the first CNN
layer was a tensor of size N × 320 × 480 × 3, where N
represented the batch size (set to 256). This tensor corre-
sponded to the rescaled process zone image after applying
augmentation techniques such as flipping and rotation. The
output of CNN-1 was a feature map with dimensions N ×
1 × 4, which was compared with the ground truth labels
using the cross-entropy loss. The model was trained for 100
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Fig. 8 Inference plots after model training a Learning curves illustrat-
ing model training progress: evaluating performance and convergence

of the CNN-1 model and b Visualization of lower-dimensional repre-
sentations of process zone images for four build grades: leveraging the
encoding power of the CNN-1 model (Color figure online)

epochs, with each epoch taking approximately six hours. The
learning rate was adjusted every 20 epochs, starting at 0.01
and multiplied by a gamma value of 0.5. To prevent overfit-
ting, batch normalization was applied across the layers of the
CNN model. The datasets were randomized between epochs,
and the training optimizer used was AdamW. A 5% dropout
was applied during training between each cycle. The CNN-1
model was trained on a Graphical Processing Unit (GPU),
specifically the Nvidia RTX Titan and the training parame-
ters are summarized in Table 3. The total number of tuned
parameters in CNN-1 was 0.6 million.

Figure 8a depicts the visualization of the CNN-1 model’s
training loss values over 100 training epochs. The CNN-
1 model has figured out how to decode the distributions
encoded in images, as seen by the progression of the loss val-
ues. Additionally, the validation loss resembles the training
loss, demonstrating that the model appropriately generalizes
to new data. Visualizing the lower-dimensional representa-
tion, or the feature maps of the final fully connected layer,
is another technique to verify the effectiveness of the trained
CNN models. Figure 8b displays a 3D visualization of the
weights from three nodes in the last fully connected layer

of the CNN-1 model that was trained using the validation
dataset. This diagram shows distinct clusters corresponding
to the four various build grades. The clustered space on the
validation dataset images demonstrates that the models have
learned and separated themselves from other distributions by
learning the distributions corresponding to the same type.

Table 4 displays the classification results as a confusion
matrix. The classification accuracy is calculated by divid-
ing the total number of tests by the true positives. On the
test set, CNN-1’s average classification accuracy was 99.5%.
According to the classification accuracy results in Table 4,
CNN-1 has learnt the differences and similarities between the
process zone morphologies that correspond to the four build
grades.

Supervised learning: baseline: transformer
architecture

To establish a baseline for self-supervised learning also on a
Transformer architecture, the Transformer network, denoted
as TF-1, was trained in a supervised manner to classify the

Table 4 Confusion matrix on
prediction outcomes of trained
CNN-1 model

Classification [Accuracy (%)] Ground truth

P1 P2 P3 P4

P1 100 0 0 0

P2 0 100 0 0

P3 0 0 99.5 0.5

P4 0 0 0.5 99.5

The bold, Normal and italics are used to seperate threemethodologies as is consistent throughout the document
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Fig. 9 Architectural overview of
the TF-1 employed for
supervised classification (Color
figure online)

four quality categories using the dataset described in previ-
ous sections. The TF-1 architecture is based on the vision
transformer (ViT) (Dosovitskiy et al., 2020) and takes input
images with dimensions 3 × 480 × 320, where each image
has 3 color channels, a width of 480 pixels and a length of
320 pixels. The TF-1 architecture comprises three attention
blocks, each equipped with eight attention heads, as illus-
trated in Fig. 9.

The TF-1 network adopts a patch-based approach with
self-attention mechanisms to process the input image effi-
ciently. The image is divided into patches of size 20 × 20
pixels, resulting in 24 patches width-wise (480 pixels/20
pixels) and 16 patches length-wise (320 pixels/20 pixels).
These patches are then linearly transformed and reshaped
into a tensor of dimensions Batch size (B) × 384 × 64,
where 384 is calculated by multiplying the number of width-
wise patches and length-wise patches. This step allows the
network to extract meaningful features from each patch
effectively. The transformed patches undergo three attention
blocks, each containing eight attention heads. These atten-
tion blocks enable the model to focus on relevant parts of
the image and effectively capture local and global depen-
dencies. The output of each attention block is a tensor of
dimensions B × 384 × 64. After the attention blocks, adap-
tive pooling is applied to reduce the spatial dimensions of
the tensor, resulting in a tensor of dimensions B × 1 × 64.
This pooling operation aggregates information fromdifferent
patches, creating a more concise representation of the input.
Following the pooling step, the tensor is processed by two
linear layers, resulting in an output tensor of dimensions B
× 1 × 4. This tensor represents the extracted features from
the input image after being transformed by the Transformer
architecture. The cross-entropy loss function compares the
output tensor with the ground truth labels. This loss function
measures the dissimilarity between the predicted features
and the actual labels, facilitating the model’s learning and
improvement during training. The TF-1 model is trained for

Table 5 Training parameters of the TF-1 model trained supervisedly
with cross-entropy loss

Training parameters TF-1

Analysis type Supervised classification

Solver used ‘AdamW’

Learning rate used 0.01

Training epochs 100

Batch size (B) 256

Dropout 5%

Loss function Cross entropy

Shuffle Every-epoch

Labelled dataset 60% Training, 30% testing, 10%
Validation

Trainable weights 0.4 million

100 epochs, with each epoch taking approximately ten hours.
The learning rate is adjusted every 20 epochs, starting at 0.01
and multiplied by a gamma of 0.5 value. To prevent over-
fitting, batch normalization is applied across the layers of
the TF-1 model, and a 5% dropout is used during training
between each cycle. The TF-1 model is trained on an Nvidia
RTXTitanGPU, and the training parameters are summarized
in Table 5. The total number of tuned parameters in TF-1
amounts to 0.4 million. Overall, the TF-1 network architec-
ture with self-attention and attention blocks is a compelling
feature extractor, allowing the model to capture relationships
between different parts of the image and leading to accurate
predictions for the image classification task.

Figure 10a illustrates the training curve of the TF-1
PyTorch model, displaying its training loss values across
100 epochs. The TF-1 model exhibits a progressive reduc-
tion in loss, indicating its ability to decode the underlying
distributions present in the images effectively. Moreover, the
similarity between the training loss and the validation loss
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Fig. 10 Inference plots after model training a Learning curves illustrat-
ing model training progress: evaluating performance and convergence

of the TF-1 model and b Visualization of lower-dimensional represen-
tations of process zone images for four build grades: leveraging the
encoding power of the TF-1 model (Color figure online)

signifies that the model generalizes well to new data. To
further validate the efficacy of the trained TF model, lower-
dimensional representations, or feature maps, from the final
fully connected layer can be visualized. Figure 10b presents
a 3D visualization of the weights obtained from three nodes
in the last fully connected layer of the TF-1 model, trained
using the validation dataset. The distinct clusters observed
in this visualization correspond to the four different build
grades. The clear separation of data points in the validation
dataset demonstrates that the model has learned to distin-
guish and categorize distributions accurately, aligning with
their respective types.

Table 6 presents the confusion matrix depicting the clas-
sification results. The classification accuracy is determined
by dividing the total number of correct predictions (true pos-
itives) by the total number of tests. In the case of TF-1, the
average classification accuracy on the test set was found
to be 99.7%, as depicted in Table 6. This high accuracy
demonstrates that TF-1 has successfully learned to distin-
guish and recognize the distinct process zone morphologies
corresponding to the four different build grades.

Self-supervised learning

Self-supervised learning: CNN architecture

The architecture of the self-supervised network (CNN-2)
used in this research work is shown in Fig. 11. The design
of the online and target networks was inspired by the CNN-
1 architecture used for supervised classification in previous
sections above. The idea of using a similar CNN architecture

between supervised and self-supervised learning (CNN-2)
was to allow a fair comparison of the two techniques. The
online network generates a representation of N× 32 (N is the
batch size) as images are fed sequentially and get transformed
as they pass through the encoder ( fCθ ), projector (gCθ ), and
predictor (qCθ ). For the case of the target network, the size
of the output representation is similar to the online network.
However, it is to be noted that images are fed sequentially
only through an encoder ( fCξ ) and projector (gCξ ) in the tar-
get network. Though the dimensions of the encoder (five 2D
convolutional layers) and projector (fully collected layers)
are similar across the online and target network, their weight
(θ �� ξ ) are dissimilar.

As stated in previous sections, the dataset was randomly
divided into 60% for training, 10% for validation, and 30%
for testing. Although the dataset’s ground truth was known, it
was purposely left out of the training and validation datasets
to enable self-supervised learning. However, to check the
predictability of the trained model, the ground truths were
retained for the test dataset. During training across each
batch, the encoder and decoder were supplied individually
with two sets of random transformations computed from the
same batch in the training set. Three common transforma-
tions were simultaneously applied to the images: horizontal
flipping, vertical flipping and random rotation between (0°
and 180°). A probability score of 0.5 was also set to avoid
biasing with the transformations. The objective of the train-
ing was to decrease the distance between the representations
computed between the encoder and decoder network on the
same image subjected to two different transformations. The
distance metric to beminimized was theMSE. TheMSE loss
used as a similaritymetric was back-propagated to update the
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Table 6 Confusion matrix on
prediction outcomes of trained
TF-1 model

Classification [Accuracy (%)]) Ground truth

P1 P2 P3 P4

P1 100 0 0 0

P2 0 100 0 0

P3 0 0 99.8 0.2

P4 0 0 0.3 99.7

The bold, Normal and italics are used to seperate threemethodologies as is consistent throughout the document

Fig. 11 Proposed CNN-2 architecture for self-supervised computation of lower-dimensional representation (Color figure online)

weights of the online network (Cθ), whereas the weights of
the target network (Cξ ) are only updated periodically using
an exponential moving average based on the weights of the
online network, as stated in Eq. (1) with a decay parame-
ter (τ � 0.999).To prevent overfitting, a 5% dropout was
employed between each epoch for the two networks. The
model was trained over 100 epochs using a GPU (NVidia
RTX Titan, NVidia, USA). Table 7 shows the parameters
utilized during training. On CNN-2, there were 0.95 million
parameters tweaked (target and online network combined).

Figure 12a depicts the visualization of theCNN-2model’s
loss values, basically the distance between the online net-
work and the target network over 100 training epochs. As
seen by the progression of the loss values and its satura-
tion after 20 epochs, it is evident that the CNN-2 model has
figured out how to decode the distributions encoded in trans-
formed images. Additionally, the validation loss resembles

the training loss, demonstrating that the model appropri-
ately generalizes to similar distributions. Another method
for validating the effectiveness of trainedCNN-2models is to
visualize the lower-dimensional representation from the pro-
jector (gCθ ). The testing dataset with known ground truths
was used in this study.

Figure 12b displays a 3D visualization of the lower-
dimensional representations on the output from the projector
(gCθ ) of the CNN-2 model computed using t-distributed
stochastic neighbour embedding (t-SNE) with a perplexity
value of 20. This diagram shows distinct clusters correspond-
ing to the four various build grades. The clustered space on
the test dataset images demonstrates that the models have
learned and separated themselves from other distributions
by learning the distributions corresponding to the same type.
Additionally, distributions produced by individual nodes of
the projector (gCθ ) was also computed on the test dataset
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Table 7 Training parameters for self-supervised training of CNN-2
model

Training parameters CNN-2

Type of analysis Lower-dimensional
representation

Solver used ‘AdamW’

Learning rate 0.001

Epochs 100

Batch size 100

Dropout 5%

Similarity metric Mean Squared Error (MSE)

Shuffle Every-epoch

Training/Validation set 60%/10% (Unlabeled)

Testing set 30% (Labelled)

Trainable weights 0.95 Million (Online and target
network combined)

for visualization, as shown in Fig. 13. The distribution of
representations by each node of the projector (gCθ ) on the
four categories had distinct overlaps betweenP1 andP2 from
others suggesting self-supervised learning without labels is
feasible on the process zone image for process monitoring,
which was the primary objective of this work. It is also to
be noted that there were overlaps between P3 and P4 among
them.

In this work, supervised classification among the cate-
gories was accomplished from various down-streaming tasks
that could be performed on the lower dimensional represen-
tation. The trained online network (CNN-2) was truncated
to the projector (gCθ ) and was used as a feature extrac-
tor (CNN-3). The whole dataset was passed to the network,
and the weights, i.e. a feature map of N × 32 dimensions

corresponding to each image, were stored along with the
ground truth. This new down-sampled dataset consisting of
feature maps was split into the training and testing set at
a ratio of 70:30. Supervised classification was performed
using three traditional classifiers: RF, SVM and k-NN . The
training parameters for the chosen classifiers were deter-
mined using empirical guidelines as outlined in Table 8 and
their performance was assessed by considering prediction
accuracy. It should be emphasized that subsequent research
endeavours will prioritize the refinement of these training
parameters, considering additional factors like training time
and prediction accuracy. By conductingmore comprehensive
experiments, exploring diverse combinations of hyperparam-
eters, and employing advanced optimization techniques, the
goal is to enhance the classifiers’ performance and general-
ization capabilities.

Table 9 displays the classification outcomes from the three
classifiers as a confusion matrix.CNN-3’s average classifica-
tion accuracy on the test set was 97% on all three classifiers.
The observed misclassifications were more prevalent in sce-
narios denoted as P3 and P4, which was also evident from
the plot depicted in Figs. 12b and 13. These scenarios involve
higher energy density and are positioned in close proximity
to each other in terms of process dynamics, as evidenced
by our tomography data and microstructure analysis. Of the
three classifiers trained,RF showedhigher predictability than
the other two.

Self-supervised learning: transformer architecture

The architecture of the self-supervised Transformer network
(TF-2) proposed in this research work is shown in Fig. 14.
The design of the online and target networks was inspired by
the TF-1 architecture used for supervised classification.

Fig. 12 Inference plots after model training a Learning curves illustrat-
ing model training progress: evaluating performance and convergence

of the CNN-2 model and b Visualization of lower-dimensional repre-
sentations of process zone images for four build grades, computed using
t-SNE on the encodings of the CNN-2 model (Color figure online)
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Fig. 13 Distribution analysis of lower-dimensional representations computed usingCNN-2 on four grades of process zone images from the projector
(gCθ ) (Color figure online)
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Table 8 Training parameters of classifiers for predicting build condi-
tions (RF, SVM and k-NN)

Classifier type Parameters Values

Random Forest (RF) n_estimators 100

Split criterion Gini’s
diversity

Maximum-features Sqrt

Support Vector
Machine (SVM)

SVM kernel function Radial basis
function

Gamma scale Automatic

Multiclass method One-vs-rest

Standardize data True

k-Nearest Neighbor
(k-NN)

Classifier Minkowski

Number of neighbours 10

Distance metric Distance

Distance weight Uniform

Table 9 Confusion matrix depicting the comparative performance of
the three traditional classifiers (RF, SVM and k-NN)

Classification [Accuracy (%)] Ground truth

P1 P2 P3 P4

P1 100 0 0 0

100 0 0 0

100 0 0 0

P2 0 100 0 0

0 100 0 0

0 100 0 0

P3 0 0 97 3

0 0 98 2

0 0 98 2

P4 0 0 6 94

0 0 10 90

0 0 7 93

The bold, Normal and italics are used to seperate three methodologies
as is consistent throughout the document
Table displays the classification results obtained with the three tradi-
tional classifiers (RF, SVM and k-NN). The classification results in
each cell from top to bottom are for RF (CNN-3), SVM (CNN-3) and
k-NN (CNN-3). All values are in %

The idea of using a similar TF-1 architecture between
supervised and self-supervised learning (TF-2) was to allow
a fair comparison of the two techniques. The online network
generates a representation of B × 32 (B is the batch size)
as images are fed sequentially and get transformed as they
pass through the encoder based on the Transformer backbone
( fTθ ), projector (gT θ ), and predictor (qTθ ). For the case of the

target network, the size of the output representation is similar
to the online network. However, it is to be noted that images
are fed sequentially only through an encoder ( fT ξ ) and pro-
jector (gT ξ ) in the target network. Though the dimensions
of the encoder and projector are similar across the online
and target network, their weight (θ �� ξ ) are dissimilar. As
mentioned in previous sections, the dataset was partitioned
randomly into three subsets: 60% for training, 10% for val-
idation, and 30% for testing. The ground truth information
was intentionally withheld from the training and validation
datasets to enable self-supervised learning. However, the
ground truths were retained for the test dataset to evaluate
the trainedmodel’s predictive performance. During the train-
ing process for TF-2, similar to CNN-2 training, each batch
involved two sets of random transformations computed from
the same training set. These transformations included hori-
zontal flipping, vertical flipping, and random rotation within
the range of 0° to 180°. Each transformation was applied
with a probability score of 0.5 to prevent any biasing. The
main training objective was to minimize the MSE distance
between the representations generated by the encoder and
decoder networks for the same image subjected to the two
different transformations. The MSE loss, serving as a sim-
ilarity metric, was used for back-propagation to update the
weights of the online network (T θ). In contrast, the target
network’s (Tξ ) weights were updated periodically using an
exponential moving average based on the online network’s
weights, as denoted by Eq. (1) with a decay parameter (τ �
0.999). A 5% dropout was applied between each epoch for
both networks to avoid overfitting. The model was trained
for 100 epochs on a GPU (NVidia RTXTitan, NVidia, USA).
Table 10 presents the specific parameters utilized during the
training process. TF-2 involved 0.94 million adjusted param-
eters (combining the target and online network).

Figure 15a illustrates the training curves of the TF-2
model, representing the loss values, which essentially mea-
sure the distance between the online network and the target
network over the course of 100 training epochs. The pro-
gressive decrease in loss values, followed by saturation after
approximately 20 epochs, indicates that TF-2 has effectively
learned to decode the distributions encoded in transformed
images. Moreover, the validation loss closely resembles the
training loss, indicating that the model generalizes well to
similar distributions. To further assess the effectiveness of
the trained TF-2 models, lower-dimensional representations
obtained from the projector (gT θ ) were visualized using t-
SNE with a perplexity value of 20. Figure 15b displays a 3D
visualization of these representations, showcasing distinct
clusters corresponding to the four different build grades. The
clustering on the test dataset demonstrates that the models
have learned to effectively separate themselves from other
distributions by learning the distributions associated with
each specific type. Additionally, the distributions produced
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Fig. 14 Proposed TF-2 architecture for self-supervised computation of lower-dimensional representation (Color figure online)

by individual nodes of the projector (gT θ ) were computed
on the test dataset for visualization, as shown in Fig. 16.
It was observed that the representations from each node of
the projector (gT θ ) for the four categories exhibited distinct
overlaps between P1 and P2, indicating the feasibility of
self-supervised learning without labels for process monitor-
ing, which was the primary objective of this study. It should
be noted that there were overlaps between P3 and P4 among
them.

To carry out supervised classification among the cate-
gories, a down-sampled dataset consisting of feature maps
was obtained by truncating the trained online network (TF-
3) to the projector (gT θ ). This down-sampled dataset was
then split into training and testing sets at a ratio of 70:30.
Three traditional classifiers, namely RF, SVM, and k-NN ,
were employed for supervised classification. The training
parameters for these classifierswere determined using empir-
ical guidelines outlined in Table 8, and their performance
was evaluated based on prediction accuracy. It is important
to note that future research endeavors will focus on refining
these training parameters, considering additional factors such
as training time and prediction accuracy. Table 11 presents

Table 10 Training parameters for self-supervised training of TF-2
model

Training parameters TF-2

Type of analysis Lower-dimensional
representation

Solver used ‘AdamW’

Learning rate 0.001

Epochs 100

Batch size 100

Dropout 5%

Similarity metric Mean Squared Error (MSE)

Shuffle Every-epoch

Training/Validation set 60%/10% (Unlabeled)

Testing set 30% (Labelled)

Trainable weights 0.94 Million (Online and target
network combined)

the classification outcomes from the three classifiers as a
confusion matrix. TF-3 achieved an average classification
accuracy of 97.2% on the test set across all three classifiers.
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The observed misclassifications were indeed more prevalent
in scenarios denoted as P3 and P4, as evidenced by the data
presented in Figs. 15b and 16. These scenarios are positioned
in close proximity to each other in terms of process dynam-
ics, as further supported by our comprehensive tomography
data and microstructure analysis. This proximity and sim-
ilarity in process dynamics contributed to the challenges in
accurately distinguishing these scenarios,whichwere the pri-
mary sources of the observed misclassifications. Among the
three trained classifiers, RF and k-NN exhibited higher pre-
dictability than the others.

The high accuracy achieved by the self-supervised fea-
ture extractors of both the DL architectures provides strong
encouragement for its utilization as a strategy for monitor-
ing the L-DED process. Notably, no significant downside
was observed when comparing the classification accuracy
between supervised and self-supervised learning. While the
self-supervised learning accuracy was slightly lower, the
authors believe optimizing the transformation techniques
during the training procedure could enhance themodel’s self-
learning capability, particularly across overlapping classes.
Furthermore, the self-supervised trained models hold the
potential for refinement on a smaller sample of annotated data
for other challenging downstream tasks. This implies that the
model, which has learned meaningful representations from
the self-supervised learning phase, can be further fine-tuned
or adapted using a smaller set of labelled data specific to the
target task. This approach leverages the benefits of both self-
supervised learning, which requires only unlabeled data, and
supervised learning, which benefits from labelled data. By
refining the self-supervised learning process, such as by opti-
mizing transformation techniques and exploring advanced
trainingmethodologies, it is expected that themodel’s perfor-
mance across different classes and challenging scenarios can
be further improved. This optimization can lead to enhanced
self-learning capabilities and better generalization on over-
lapping classes, ultimately boosting the overall performance
of the self-supervised monitoring strategy. The classifiers
chosen for this study, namely RF, SVM, and k-NN, were
selected to explore diverse classification paradigms. Random
Forest exemplifies rule-based approaches, SVM represents
kernel-based methods, and k-NN represents distance-based
techniques. It’s essential to emphasize that the objective was
not to advocate for these particular algorithms solely but to
evaluate how various techniques perform when applied to
computed representations from CNN-2 and TF-2. Ensemble
techniques could also be used as an alternative for simi-
lar classification tasks (Bustillo et al., 2018). In the CNN-2
model, the feature extraction process took approximately
6 ms, while for TF-2, it was around 9 ms due to its larger
size. Subsequently, applying ML classifiers to the latent rep-
resentation for decision-making took an additional 5 ms. It’s
important to note that the meltpool co-axial imaging system

operates at a frame rate of 30 frames/s, with each frame being
acquired in roughly 33 ms. The decision-making pipeline
is faster than the time required for each frame acquisition,
making our system nearly real-time. However, it’s essen-
tial to acknowledge that any change in the acquisition rate
could introduce latency, potentially necessitating hardware
improvements to handle higher acquisition rates.

While the primary focus in this work is on classifica-
tion using traditional classifiers, it’s worth noting that these
acquired representations also have broader potential. They
can be effectively applied to subsequent tasks, improving
adaptability and performance in L-DEDmonitoring and con-
trol. Furthermore, there is room for future research, which
could involve exploring transfer learning for more general-
ization. In this context, the CNN-2 and TF-2 models could
serve as adaptable base models, supplemented with new
fully connected layers to achieve specific monitoring objec-
tives on newer data spaces. Nevertheless, it’s important to
clarify that this exceeds the current scope of our study.
In L-DED, process control is indispensable for upholding
ideal properties and specifications apart from process mon-
itoring. This research is focused on continuous monitoring
and sensor integration to detect process faults. Corrective
actions can be initiated once deviations from the ideal pro-
cess space are identified through ML models discussed in
this work. These actions encompass adjusting parameters
such as laser power, powder flow rate, and scan speed to
guarantee accurate layer-by-layer material deposition, pro-
ducing high-quality components while minimizing defects
(González-Barrio et al., 2022; Pérez-Ruiz et al., 2023). Mon-
itoring is the initial step, but following it with well-defined
process control strategies that adjust process parameters
when deviations arise is crucial.

Conclusion

This research developed a self-supervised deep learning
framework to enable real-timemonitoring of the L-DEDpro-
cess by imaging the emissions from the process zone. The
experimental setup involved the utilization of a laser with a
wavelength of 1068 nm and Cp-Ti grade 1 powder charac-
terized by particle sizes ranging from 45 to 106 μm. These
materials were employed to manufacture 15 mm × 15 mm
cubes representing four different build grades on a Ti6Al4V
Grade 1 base plate. Among the four grades investigated in
this work, one grade (P1) corresponds to LoF pores, a defec-
tive regime as it has high porosity. At the same time, the other
three (P2, P3, and P4) are still in the conduction regime but
have varying porosity levels, density andmicrostructure. The
emissions from the process zone, corresponding to four dif-
ferent build grades, were co-axially captured using a CCD
color camera in the visible spectral range to train theCNNand
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Fig. 15 Inference plots after model training a Learning curves illustrat-
ing model training progress: evaluating performance and convergence

of the TF-2 model and b Visualization of lower-dimensional represen-
tations of process zone images for four build grades, computed using
t-SNE on the encodings of the TF-2 model (Color figure online)

Table 11 Confusion matrix depicting the comparative performance of
the three traditional classifiers (RF, SVM and k-NN)

Classification [Accuracy (%)] Ground truth

P1 P2 P3 P4

P1 100 0 0 0

100 0 0 0

100 0 0 0

P2 0 100 0 0

0 100 0 0

0 100 0 0

P3 0 0 97 3

0 0 98 2

0 0 98 2

P4 0 0 7 93

0 0 9 91

0 0 7 93

The bold, Normal and italics are used to seperate three methodologies
as is consistent throughout the document
Table displays the classification results obtained with the three tradi-
tional classifiers (RF, SVM and k-NN). The classification results in
each cell from top to bottom are for RF (TF-3), SVM (TF-3) and k-NN
(TF-3). All values are in %

Transformer networks. The objective of the self-supervised
learning approach was to enable the CNN and Transformer
model to extract a compact and condensed representation of
the process zone images, effectively reducing their dimen-
sionalitywithout relying on explicit ground-truth knowledge.
TrainingCNNandTransformer networks in a self-supervised
manner was expected to extract meaningful features from the

process zone images, facilitating the differentiation between
the different build grades. The following observations can be
drawn from the training performance of the two models:

• The proposed self-supervised learning approach was eval-
uated for robustness with a CNN-1 and TF-1 that had been
supervisedly trained and could categorize the four qual-
ity categories with good accuracy. The architectures of
the CNNs and Transformers trained in a supervised and
self-supervised manner were kept the same for a fair com-
parison.

• CNN-2 and TF-2, trained in a self-supervised manner, effi-
ciently clustered process zone images for the four quality
grades based on lower-dimensional representations. This
underscores their vital role in our research. Self-supervised
learning streamlined training, reduced reliance on labelled
data, and empowered the models to extract meaningful
insights from the data, ultimately enhancing the L-DED
process’s quality assessment and monitoring capabilities.

• The performance of the two models trained self-
supervisedly was evaluated by training traditional clas-
sifiers such as RF, SVM, and k-NN supervisedly on
lower-dimensional representation computed on process
zone images using CNN-3 and TF-3. The prediction accu-
racy of all the classifiers was above≈ 97%, indicating that
the networks have learnt the representations corresponding
to the quality grades without knowing the ground truth.

• The accuracy of the self-supervised frameworks opens
up the opportunity of fine-tuning these models for other
specific down-streaming tasks, such as segmentation and
process control, apart from monitoring.
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Fig. 16 Distribution analysis of lower-dimensional representations computed using TF-3 on four grades of process zone images from the projector
(gT θ ) (Color figure online)
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The primary goal of this study has been to explore self-
supervised learning within the context of co-axial images,
focusing on representation learning for classifying process
zone imageswith different dynamics.However, further inves-
tigation to achieve a more profound understanding of the
model and enhance its explainability is pending, and this
will be a part of our future work. This contribution presents a
monitoring approach based on 3-channel images (i.e., RGB)
that captures morphological information at a lower frame
rate of 30 frames/s. However, examining the composition
of melt pools and plumes using multispectral imagery at a
higher frame rate would aid in realizing a comprehensive
monitoring system and is a continuation of this work. Fur-
thermore, the L-DED technique has tremendous promise in
printing functionally graded parts where different powder
compositions are alloyed and modified in situ. Monitoring
such multi-material AM printing is one of the work’s follow-
ing directions.

Acknowledgements The authors would like to thank Dr. Patrik Hoff-
mann for his input on the original version of the manuscript.

Funding Open Access funding provided by Lib4RI – Library for the
Research Instituteswithin theETHDomain:Eawag,Empa, PSI&WSL.

Data availability The datasets and source code utilized in this study are
readily available and can be accessed through the repositories hosted at
https://c4science.ch/diffusion/12521/.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under aCreativeCommonsAttri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abe, N., Tanigawa, D., Tsukamoto, M., Hayashi, Y., Yamazaki, H.,
Tatsumi, Y., & Yoneyama, M. (2013). Dynamic observation of
formation process in laser cladding using high speed video camera.
In International congress on applications of lasers and electro-
optics, 2013. https://doi.org/10.2351/1.5062915

Afouras, T., Asano, Y. M., Fagan, F., Vedaldi, A., & Metze, F. (2022).
Self-supervised object detection from audio–visual correspon-
dence. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022. https://doi.org/10.48550/ar
Xiv.2104.06401

Bartkowiak, K. (2010). Direct laser deposition process within spectro-
graphic analysis in situ. Physics Procedia, 5, 623–629. https://doi.
org/10.1016/j.phpro.2010.08.090

Bi, G., Gasser, A., Wissenbach, K., Drenker, A., & Poprawe, R.
(2006a). Identification and qualification of temperature signal for
monitoring and control in laser cladding. Optics and Lasers in
Engineering, 44(12), 1348–1359. https://doi.org/10.1016/j.optlas
eng.2006.01.009

Bi,G., Gasser, A.,Wissenbach,K., Drenker, A.,&Poprawe, R. (2006b).
Investigation on the direct lasermetallic powder deposition process
via temperature measurement. Applied Surface Science, 253(3),
1411–1416. https://doi.org/10.1016/j.apsusc.2006.02.025

Bi, G., Schürmann, B., Gasser, A., Wissenbach, K., & Poprawe, R.
(2007). Development and qualification of a novel laser-cladding
head with integrated sensors. International Journal of Machine
Tools and Manufacture, 47(3–4), 555–561. https://doi.org/10.
1016/j.ijmachtools.2006.05.010

Bond, L. J., Koester, L. W., & Taheri, H. (2019). NDE in-process for
metal parts fabricated using powder based additive manufacturing.
In Smart structures and NDE for energy systems and Industry 4.0,
2019.

Bustillo, A., Urbikain, G., Perez, J. M., Pereira, O. M., & de Lacalle,
L. N. L. (2018). Smart optimization of a friction-drilling process
based on boosting ensembles. Journal of Manufacturing Systems,
48, 108–121. https://doi.org/10.1016/j.jmsy.2018.06.004

Chen, L., Yao, X., Tan, C., He, W., Su, J., Weng, F., . . ., Moon, S. K.
(2023). In situ crack and keyhole pore detection in laser directed
energy deposition through acoustic signal and deep learning.Addi-
tive Manufacturing, 69, 103547. https://doi.org/10.1016/j.addma.
2023.103547

Devesse, W., De Baere, D., Hinderdael, M., & Guillaume, P. (2016).
Hardware-in-the-loop control of additivemanufacturing processes
using temperature feedback. Journal of Laser Applications, 28(2),
022302. https://doi.org/10.2351/1.4943911

Ding, Y., Warton, J., & Kovacevic, R. (2016). Development of sensing
and control system for robotized laser-based direct metal addi-
tion system. Additive Manufacturing, 10, 24–35. https://doi.org/
10.1016/j.addma.2016.01.002

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., . . ., Gelly, S. (2020). An image is worth 16 × 16
words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929. https://doi.org/10.48550/arXiv.2010.11929

Doubenskaia,M., Bertrand, P., & Smurov, I. (2004). Optical monitoring
of Nd:YAG laser cladding. Thin Solid Films, 453, 477–485. https://
doi.org/10.1016/j.tsf.2003.11.184

Dutta, B., Palaniswamy, S., Choi, J., Song, L., & Mazumder, J. (2011).
Direct metal deposition. Advanced Materials and Processes, 33.
https://api.semanticscholar.org/CorpusID:100065561

Ertveldt, J., Guillaume, P., & Helsen, J. (2020). MiCLAD as a plat-
form for real-time monitoring and machine learning in laser metal
deposition. Procedia CIRP, 94, 456–461. https://doi.org/10.1016/
j.procir.2020.09.164

Esfahani, M. N., Bappy, M. M., Bian, L., & Tian, W. (2022). In
situ layer-wise certification for direct laser deposition processes
based on thermal image series analysis. Journal of Manufacturing
Processes, 75, 895–902. https://doi.org/10.1016/j.jmapro.2021.12
.041

Felix, S., RayMajumder, S., Mathews, H. K., Lexa,M., Lipsa, G., Ping,
X., . . ., Spears, T. (2022). In situ process quality monitoring and
defect detection for direct metal laser melting. Scientific Reports,
12(1), 1–8. https://doi.org/10.1038/s41598-022-12381-4

Gaja, H., & Liou, F. (2018). Defect classification of laser metal depo-
sition using logistic regression and artificial neural networks for
pattern recognition. The International Journal of Advanced Manu-
facturing Technology, 94(1), 315–326. https://doi.org/10.1007/s0
0170-017-0878-9

123

https://c4science.ch/diffusion/12521/
http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/
https://doi.org/10.2351/1.5062915
https://doi.org/10.48550/arXiv.2104.06401
https://doi.org/10.1016/j.phpro.2010.08.090
https://doi.org/10.1016/j.optlaseng.2006.01.009
https://doi.org/10.1016/j.apsusc.2006.02.025
https://doi.org/10.1016/j.ijmachtools.2006.05.010
https://doi.org/10.1016/j.jmsy.2018.06.004
https://doi.org/10.1016/j.addma.2023.103547
https://doi.org/10.2351/1.4943911
https://doi.org/10.1016/j.addma.2016.01.002
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1016/j.tsf.2003.11.184
https://api.semanticscholar.org/CorpusID:100065561
https://doi.org/10.1016/j.procir.2020.09.164
https://doi.org/10.1016/j.jmapro.2021.12.041
https://doi.org/10.1038/s41598-022-12381-4
https://doi.org/10.1007/s00170-017-0878-9


Journal of Intelligent Manufacturing

Gharbi, M., Peyre, P., Gorny, C., Carin, M., Morville, S., Le Masson,
P., . . ., Fabbro, R. (2013). Influence of various process conditions
on surface finishes induced by the direct metal deposition laser
technique on a Ti–6Al–4V alloy. Journal of Materials Process-
ing Technology, 213(5), 791–800. https://doi.org/10.1016/j.jmatpr
otec.2012.11.015

González-Barrio, H., Calleja-Ochoa, A., De Lacalle, L. N. L., &
Lamikiz, A. (2022). Hybrid manufacturing of complex compo-
nents: Full methodology including laser metal deposition (LMD)
module development, cladding geometry estimation and case
study validation. Mechanical Systems and Signal Processing, 179,
109337. https://doi.org/10.1016/j.ymssp.2022.109337

Gonzalez-Val, C., Pallas, A., Panadeiro, V., & Rodriguez, A. (2020).
A convolutional approach to quality monitoring for laser manu-
facturing. Journal of Intelligent Manufacturing, 31(3), 789–795.
https://doi.org/10.1007/s10845-019-01495-8

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya,
E., . . ., Gheshlaghi Azar,M. (2020). Bootstrap your own latent—A
new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33, 21271–21284. https://doi.
org/10.48550/arXiv.2006.07733

Haley, J. C., Schoenung, J. M., & Lavernia, E. J. (2018). Observations
of particle-melt pool impact events in directed energy deposition.
Additive Manufacturing, 22, 368–374. https://doi.org/10.1016/j.ad
dma.2018.04.028

Hauser, T., Breese, P. P., Kamps, T., Heinze, C., Volpp, J., & Kaplan,
A. F. (2020). Material transitions within multi-material laser
deposited intermetallic iron aluminides. Additive Manufacturing,
34, 101242. https://doi.org/10.1016/j.addma.2020.101242

Hauser, T., Reisch, R. T., Kamps, T., Kaplan, A. F., & Volpp, J. (2022).
Acoustic emissions in directed energy deposition processes. The
International Journal of Advanced Manufacturing Technology,
119(5), 3517–3532. https://doi.org/10.1007/s00170-021-08598-8

Hendrycks, D., Mazeika, M., Kadavath, S., & Song, D. (2019). Using
self-supervised learning can improve model robustness and uncer-
tainty. InAdvances in Neural Information Processing Systems (Vol.
32). https://doi.org/10.5555/3454287.3455690

Hu,D.,&Kovacevic,R. (2003). Sensing,modeling and control for laser-
based additive manufacturing. International Journal of Machine
Tools and Manufacture, 43(1), 51–60. https://doi.org/10.1016/S0
890-6955(02)00163-3

Hua, T., Jing, C., Xin, L., Fengying, Z.,&Weidong,H. (2008). Research
on molten pool temperature in the process of laser rapid forming.
Journal of Materials Processing Technology, 198(1–3), 454–462.
https://doi.org/10.1016/j.jmatprotec.2007.06.090

Iravani-Tabrizipour, M., & Toyserkani, E. (2007). An image-based fea-
ture tracking algorithm for real-time measurement of clad height.
Machine Vision and Applications, 18(6), 343–354. https://doi.org/
10.1007/s00138-006-0066-7

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., & Makedon, F.
(2020). A survey on contrastive self-supervised learning. Tech-
nologies, 9(1), 2. https://doi.org/10.3390/technologies9010002

Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A.,
& Bian, L. (2018a). Porosity prediction: Supervised-learning of
thermal history for direct laser deposition. Journal of Manufac-
turing Systems, 47, 69–82. https://doi.org/10.1016/j.jmsy.2018.04
.001

Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Maru-
fuzzaman, M., & Bian, L. (2019). In situ monitoring of melt
pool images for porosity prediction in directed energy deposition
processes. IISE Transactions, 51(5), 437–455. https://doi.org/10.
1080/24725854.2017.1417656

Khanzadeh, M., Tian, W., Yadollahi, A., Doude, H. R., Tschopp, M. A.,
& Bian, L. (2018b). Dual process monitoring of metal-based addi-
tive manufacturing using tensor decomposition of thermal image

streams. Additive Manufacturing, 23, 443–456. https://doi.org/10.
1016/j.addma.2018.08.014

Kim, H., Cong, W., Zhang, H.-C., & Liu, Z. (2017). Laser engineered
net shaping of nickel-based superalloy Inconel 718 powders onto
AISI 4140 alloy steel substrates: Interface bond and fracture failure
mechanism. Materials, 10(4), 341. https://doi.org/10.3390/ma10
040341

Koester, L. W., Taheri, H., Bigelow, T. A., Bond, L. J., & Faierson, E.
J. (2018). In situ acoustic signature monitoring in additive manu-
facturing processes. AIP Conference Proceedings. https://doi.org/
10.1063/1.5031503

Lednev, V., Tretyakov, R., Sdvizhenskii, P., Grishin, M. Y., Asyutin,
R., & Pershin, S. (2018). Laser induced breakdown spectroscopy
for in situ multielemental analysis during additive manufacturing
process. Journal of Physics: Conference Series. https://doi.org/10.
1088/1742-6596/1109/1/012050

Lee, H., Heogh, W., Yang, J., Yoon, J., Park, J., Ji, S., & Lee, H. (2022).
Deep learning for in situ powder stream fault detection in directed
energy deposition process. Journal of Manufacturing Systems, 62,
575–587. https://doi.org/10.1016/j.jmsy.2022.01.013

Lei, J. B.,Wang, Z.,&Wang,Y. S. (2012).Measurement on temperature
distribution of metal powder stream in laser fabricating. Applied
Mechanics and Materials. https://doi.org/10.4028/www.scientific.
net/AMM.101-102.994

Li, X., Siahpour, S., Lee, J., Wang, Y., & Shi, J. (2020). Deep learning-
based intelligent process monitoring of directed energy deposition
in additive manufacturing with thermal images. Procedia Manu-
facturing, 48, 643–649. https://doi.org/10.1016/j.promfg.2020.05
.093

Lison, M., Devesse, W., de Baere, D., Hinderdael, M., & Guillaume,
P. (2019). Hyperspectral and thermal temperature estimation dur-
ing laser cladding. Journal of Laser Applications, 31(2), 022313.
https://doi.org/10.2351/1.5096129

Liu, M., Kumar, A., Bukkapatnam, S., & Kuttolamadom, M. (2021a).
A review of the anomalies in directed energy deposition (DED)
Processes & Potential Solutions—Part quality & defects. Pro-
cedia Manufacturing, 53, 507–518. https://doi.org/10.1016/j.pr
omfg.2021.06.093

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J.
(2021b). Self-supervised learning:Generative or contrastive. IEEE
Transactions on Knowledge and Data Engineering. https://doi.org/
10.48550/arXiv.2006.08218

Mazumder, J. (2015). Design for metallic additive manufacturing
machine with capability for “Certify as You Build.” Procedia
CIRP, 36, 187–192. https://doi.org/10.1016/j.procir.2015.01.009

Meriaudeau, F., & Truchetet, F. (1996). Control and optimization of the
laser cladding process usingmatrix cameras and image processing.
Journal of Laser Applications, 8(6), 317–324. https://doi.org/10.
2351/1.4745438

Mitash, C., Bekris, K. E., & Boularias, A. (2017). A self-supervised
learning system for object detection using physics simulation and
multi-view pose estimation. In 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS), 2017. https://doi.
org/10.48550/arXiv.1703.03347

Montazeri, M., Nassar, A. R., Stutzman, C. B., & Rao, P. (2019). Het-
erogeneous sensor-based condition monitoring in directed energy
deposition. Additive Manufacturing, 30, 100916. https://doi.org/
10.1016/j.addma.2019.100916

Nassar, A., Starr, B., & Reutzel, E. (2015). Process monitoring
of directed-energy deposition of Inconel-718 via plume imag-
ing. In 2014 International solid freeform fabrication sympo-
sium, 2015. https://pure.psu.edu/en/publications/process-monito
ring-of-directed-energy-deposition-of-inconel-718-v

Pandiyan, V., Cui, D., Le-Quang, T., Deshpande, P., Wasmer, K., &
Shevchik, S. (2022a). In situ quality monitoring in direct energy
deposition process using co-axial process zone imaging and deep

123

https://doi.org/10.1016/j.jmatprotec.2012.11.015
https://doi.org/10.1016/j.ymssp.2022.109337
https://doi.org/10.1007/s10845-019-01495-8
https://doi.org/10.48550/arXiv.2006.07733
https://doi.org/10.1016/j.addma.2018.04.028
https://doi.org/10.1016/j.addma.2020.101242
https://doi.org/10.1007/s00170-021-08598-8
https://doi.org/10.5555/3454287.3455690
https://doi.org/10.1016/S0890-6955(02)00163-3
https://doi.org/10.1016/j.jmatprotec.2007.06.090
https://doi.org/10.1007/s00138-006-0066-7
https://doi.org/10.3390/technologies9010002
https://doi.org/10.1016/j.jmsy.2018.04.001
https://doi.org/10.1080/24725854.2017.1417656
https://doi.org/10.1016/j.addma.2018.08.014
https://doi.org/10.3390/ma10040341
https://doi.org/10.1063/1.5031503
https://doi.org/10.1088/1742-6596/1109/1/012050
https://doi.org/10.1016/j.jmsy.2022.01.013
https://doi.org/10.4028/www.scientific.net/AMM.101-102.994
https://doi.org/10.1016/j.promfg.2020.05.093
https://doi.org/10.2351/1.5096129
https://doi.org/10.1016/j.promfg.2021.06.093
https://doi.org/10.48550/arXiv.2006.08218
https://doi.org/10.1016/j.procir.2015.01.009
https://doi.org/10.2351/1.4745438
https://doi.org/10.48550/arXiv.1703.03347
https://doi.org/10.1016/j.addma.2019.100916
https://pure.psu.edu/en/publications/process-monitoring-of-directed-energy-deposition-of-inconel-718-v


Journal of Intelligent Manufacturing

contrastive learning. Journal of Manufacturing Processes, 81,
1064–1075. https://doi.org/10.1016/j.jmapro.2022.07.033

Pandiyan, V., Cui, D., Parrilli, A., Deshpande, P., Masinelli, G.,
Shevchik, S., & Wasmer, K. (2022b). Monitoring of direct energy
deposition process using manifold learning and co-axial melt pool
imaging. Manufacturing Letters, 33, 776–785. https://doi.org/10.
1016/j.mfglet.2022.07.096

Pandiyan, V., Masinelli, G., Claire, N., Le-Quang, T., Hamidi-Nasab,
M., de Formanoir, C., . . ., Logé, R. (2022). Deep learning-based
monitoring of laser powder bed fusion process on variable time-
scales using heterogeneous sensing and operando X-ray radiog-
raphy guidance. Additive Manufacturing, 58, 103007. https://doi.
org/10.1016/j.addma.2022.103007

Pandiyan, V., Wróbel, R., Axel Richter, R., Leparoux, M., Leinenbach,
C., & Shevchik, S. (2023). Self-Supervised Bayesian representa-
tion learning of acoustic emissions from laser powder bed Fusion
process for in situ monitoring. Materials and Design. https://doi.
org/10.1016/j.matdes.2023.112458

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., . . ., Antiga, L. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in neural infor-
mation processing systems. https://doi.org/10.48550/arXiv.1912.
01703

Pérez-Ruiz, J., González-Barrio, H., Sanz-Calle, M., Gómez-Escudero,
G., Munoa, J., & de Lacalle, L. L. (2023). Machining stability
improvement in LPBF printed components through stiffening by
crystallographic texture control. CIRP Annals. https://doi.org/10.
1016/j.cirp.2023.03.025

Ren, W., Wen, G., Zhang, Z., & Mazumder, J. (2022). Quality mon-
itoring in additive manufacturing using emission spectroscopy
and unsupervised deep learning. Materials and Manufacturing
Processes, 37(11), 1339–1346. https://doi.org/10.1080/10426914.
2021.1906891

Ribeiro, K. S. B., Núñez, H. H. L., Venter, G. S., Doude, H. R., &
Coelho, R. T. (2023). A hybrid machine learning model for in-
process estimation of printing distance in laser Directed Energy
Deposition. https://doi.org/10.1007/s00170-023-11582-z

Sampson, R., Lancaster, R., Sutcliffe, M., Carswell, D., Hauser, C.,
& Barras, J. (2020). An improved methodology of melt pool
monitoring of direct energy deposition processes. Optics and
Laser Technology, 127, 106194. https://doi.org/10.1016/j.optlas
tec.2020.106194

Schmidt,M.,Huke, P.,Gerhard,C.,&Partes,K. (2021). In-line observa-
tion of laser cladding processes via atomic emission spectroscopy.
Materials, 14(16), 4401. https://doi.org/10.3390/ma14164401

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image
to ImageJ: 25 Years of image analysis. Nature Methods, 9(7),
671–675. https://doi.org/10.1038/nmeth.2089

Smurov, I., Doubenskaia,M., Grigoriev, S., &Nazarov, A. (2012). Opti-
cal monitoring in laser cladding of Ti6Al4V. Journal of Thermal
Spray Technology, 21(6), 1357–1362. https://doi.org/10.1007/s1
1666-012-9808-4

Song, L., Bagavath-Singh, V., Dutta, B., &Mazumder, J. (2012a). Con-
trol of melt pool temperature and deposition height during direct
metal deposition process. The International Journal of Advanced
Manufacturing Technology, 58(1), 247–256. https://doi.org/10.
1007/s00170-011-3395-2

Song, L., Huang, W., Han, X., & Mazumder, J. (2016). Real-time
composition monitoring using support vector regression of laser-
induced plasma for laser additive manufacturing. IEEE Transac-
tions on Industrial Electronics, 64(1), 633–642. https://doi.org/10.
1109/TIE.2016.2608318

Song, L., & Mazumder, J. (2011). Real time Cr measurement using
optical emission spectroscopy during direct metal deposition pro-
cess. IEEE Sensors Journal, 12(5), 958–964. https://doi.org/10.
1109/JSEN.2011.2162316

Song, L., Wang, C., & Mazumder, J. (2012). Identification of phase
transformation using optical emission spectroscopy for direct
metal deposition process. In High power laser materials process-
ing: Lasers, beam delivery, diagnostics, and applications. https://
doi.org/10.1117/12.908264

Stutzman, C. B., Nassar, A. R., & Reutzel, E. W. (2018). Multi-sensor
investigations of optical emissions and their relations to directed
energy deposition processes and quality. Additive Manufacturing,
21, 333–339. https://doi.org/10.1016/j.addma.2018.03.017

Tian, Q., Guo, S., & Guo, Y. (2020). A physics-driven deep learning
model for process-porosity causal relationship and porosity predic-
tion with interpretability in laser metal deposition. CIRP Annals,
69(1), 205–208. https://doi.org/10.1016/j.cirp.2020.04.049

Toyserkani, E., & Khajepour, A. (2006). A mechatronics approach to
laser powder deposition process. Mechatronics, 16(10), 631–641.
https://doi.org/10.1016/j.mechatronics.2006.05.002

Tung, H.-Y., Tung, H.-W., Yumer, E., & Fragkiadaki, K. (2017). Self-
supervised learning of motion capture. In Advances in neural
information processing systems (Vol. 30). https://doi.org/10.5555/
3295222.3295276

Vandone, A., Baraldo, S., Valente, A., & Mazzucato, F. (2019).
Vision-based melt pool monitoring system setup for additive man-
ufacturing. Procedia CIRP, 81, 747–752. https://doi.org/10.1016/
j.procir.2019.03.188

Vykhtar, B., &Richter, A.M. (2021). Optical monitoring sensor system
for laser-based directed energy deposition. In Lasers in manufac-
turing conference, 2021.

Wang, F.,Mao,H., Zhang,D., Zhao,X.,&Shen,Y. (2008).Online study
of cracks during laser cladding process based on acoustic emission
technique and finite element analysis. Applied Surface Science,
255(5), 3267–3275. https://doi.org/10.1016/j.apsusc.2008.09.039

Wasmer, K.,Wüst,M., Cui, D.,Masinelli, G., Pandiyan, V.,&Shevchik,
S. (2023). Monitoring of functionally graded material during laser
directed energy deposition by acoustic emission and optical emis-
sion spectroscopy using artificial intelligence.Virtual and Physical
Prototyping, 18(1), e2189599. https://doi.org/10.1080/17452759.
2023.2189599

Whiting, J., Springer, A.,&Sciammarella, F. (2018). Real-time acoustic
emission monitoring of powder mass flow rate for directed energy
deposition. Additive Manufacturing, 23, 312–318. https://doi.org/
10.1016/j.addma.2018.08.015

Xia, C., Pan, Z., Polden, J., Li, H., Xu, Y., Chen, S., & Zhang, Y. (2020).
A review on wire arc additive manufacturing: Monitoring, control
and a framework of automated system. Journal of Manufacturing
Systems, 57, 31–45. https://doi.org/10.1016/j.jmsy.2020.08.008

Zhang,B., Liu, S.,&Shin,Y.C. (2019). In-Processmonitoring of poros-
ity during laser additive manufacturing process. Additive Manu-
facturing, 28, 497–505. https://doi.org/10.1016/j.addma.2019.05
.030

Zhang, Y., Shen, S., Li, H., & Hu, Y. (2022). Review of in situ and real-
time monitoring of metal additive manufacturing based on image
processing.The International Journal of Advanced Manufacturing
Technology, 123(1–2), 1–20. https://doi.org/10.1007/s00170-022-
10178-3

Zhang, Z., Liu, Z.,&Wu,D. (2020). Prediction ofmelt pool temperature
in directed energy deposition using machine learning. Additive
Manufacturing. https://doi.org/10.1016/j.addma.2020.101692

Zhang, Z., Liu, Z., & Wu, D. (2021). Prediction of melt pool tem-
perature in directed energy deposition using machine learning.
Additive Manufacturing, 37, 101692. https://doi.org/10.1016/j.ad
dma.2020.101692

Zhou, M., Bai, Y., Zhang, W., Zhao, T., & Mei, T. (2020). Look-into-
object: Self-supervised structure modeling for object recognition.
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020 (pp. 11774–11783). https://doi.org/10.
48550/arXiv.2003.14142

123

https://doi.org/10.1016/j.jmapro.2022.07.033
https://doi.org/10.1016/j.mfglet.2022.07.096
https://doi.org/10.1016/j.addma.2022.103007
https://doi.org/10.1016/j.matdes.2023.112458
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/j.cirp.2023.03.025
https://doi.org/10.1080/10426914.2021.1906891
https://doi.org/10.1007/s00170-023-11582-z
https://doi.org/10.1016/j.optlastec.2020.106194
https://doi.org/10.3390/ma14164401
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1007/s11666-012-9808-4
https://doi.org/10.1007/s00170-011-3395-2
https://doi.org/10.1109/TIE.2016.2608318
https://doi.org/10.1109/JSEN.2011.2162316
https://doi.org/10.1117/12.908264
https://doi.org/10.1016/j.addma.2018.03.017
https://doi.org/10.1016/j.cirp.2020.04.049
https://doi.org/10.1016/j.mechatronics.2006.05.002
https://doi.org/10.5555/3295222.3295276
https://doi.org/10.1016/j.procir.2019.03.188
https://doi.org/10.1016/j.apsusc.2008.09.039
https://doi.org/10.1080/17452759.2023.2189599
https://doi.org/10.1016/j.addma.2018.08.015
https://doi.org/10.1016/j.jmsy.2020.08.008
https://doi.org/10.1016/j.addma.2019.05.030
https://doi.org/10.1007/s00170-022-10178-3
https://doi.org/10.1016/j.addma.2020.101692
https://doi.org/10.1016/j.addma.2020.101692
https://doi.org/10.48550/arXiv.2003.14142


Journal of Intelligent Manufacturing

Zijue, T., Weiwei, L., Zhaorui, Y., Hao, W., & Hongchao, Z. (2019).
Study on evolution behavior of geometrical accuracy based on
dynamic characteristics ofmolten pool in laser-based direct energy
deposition. Jixie Gongcheng Xuebao Chinese Journal of Mechani-
cal Engineering, 55, 39. https://doi.org/10.3901/JME.2019.15.039

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.3901/JME.2019.15.039

	Real-time monitoring and quality assurance for laser-based directed energy deposition: integrating co-axial imaging and self-supervised deep learning framework
	Abstract
	Introduction
	Theoretical basis: bootstrap your own latent (BYOL)
	Experimental setup and methodology
	DED experimental setup
	Dataset
	Methodology

	L-DED monitoring
	Supervised learning: baseline: CNN architecture
	Supervised learning: baseline: transformer architecture

	Self-supervised learning
	Self-supervised learning: CNN architecture
	Self-supervised learning: transformer architecture

	Conclusion
	Acknowledgements
	References


