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Abstract
Future manufacturing systems will have to become more intelligent to be able to guarantee a constantly high quality of
products while simultaneously reducing labor-intensive quality-assurance tasks to address the shortage in workforce. In this
work, we study the application of neural networks to the field of powder metallurgy and more specifically the production of
green parts as part of a typical sintering process. More specifically, we explore the usage of neural-network-based predictions
in closed-loop control. We train neural networks based on a series of produced workpieces, and use these networks in closed-
loop production to predict quality characteristics like weight and dimensions of the workpiece in real-time. Based on these
predictions an adaptive trajectory planner adjusts then trajectory key points and with this the final piston trajectories to bring
and keep quality characteristics of workpieces within tolerance. We finally compare the control performance of this neural
network-based approach with a pure sensor-based approach. Results indicate that both approaches are able to bring and keep
quality characteristics within their tolerance limits, but that the neural network-based approach outperforms the sensor-based
approach in the transient phase, whereas in steady state the neural network needed to be updated from time to time to reach the
same high performance as the sensor-based approach. Since updating needs to be performed only from time to time, required
expensive sensors can be shared among multiple machines and thus, costs can be reduced. At the same time the superior
prediction performance of the neural-network-based approach in transient phases can be exploited to accelerate setting up
times for new workpieces. Future work will target the automation of the recording of the training dataset, the exploration of
further machine learning methods as well as the integration of additional sensor data to further improve predictions.
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Introduction

Sintered workpieces made out of iron-based metal pow-
der are characterized by a wide range of shapes, high-
dimensional accuracy up to IT10, and high surface quality
with energy-efficient and cost-effective production in large
quantities (Beiss, 2013; Schatt et al., 2007; Klocke, 2015;
van der Haven et al., 2022; Kumar et al., 2021; Krok and
Wu, 2017; Evans and De Jonghe, 2016; Wilson et al., 2019;
Manivannan et al., 2021; O’Flynn and Corbin, 2019). The
needed compaction pressure is provided by press machines
consisting of several independent punch levels able to follow
predefined trajectories. To guarantee the same constant qual-
ity of producedworkpieces over a long period of time, regular
quality checks and manual trajectory adjustments are needed
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to account for changing operating conditions due to e.g. vary-
ing temperature, humidity, stroke rate, or powder quality.
Also the first setup of the machine requires manual mea-
surements and iterative adjustments of trajectory key points.
These adjustments, however, are very labour-intensive since
automation of them is still in its infancy.

On the other hand, machine learning techniques have
gained significant popularity over the last few years and are
being applied in different fields of manufacturing (Liu et al.,
2023), such as final product prediction (Wang et al., 2017),
condition monitoring (Yu Pimenov et al., 2022), and process
planning (Li et al., 2022). Since their data-driven approach
allows for the development of real-time capablemodels, even
in the absence of physical equations (Qin et al., 2023) or
when related physical models show less accuracy, they can
be applied effectively in real systems (Koutsoupakis et al.,
2023).

For example, several papers address the application of
machine learning techniques to the fabrication ofmetalwork-
pieces. In Satterlee et al. (2022), for example, the authors
investigated the ability to classify porosities from cross-
sectional images of 3D-printed metal parts by comparing
the classification performance of 6 machine learning meth-
ods. The problem of crack evolution in structures has been
treated by a predictor based on a neural network in Long et al.
(2021). In Lou et al. (2019) again, six types of machine learn-
ing algorithms were used to predict the best rawmaterial that
optimizes tensile strength and brittleness (which are related
to the powder compactability)when adopting core/shell tech-
niques. Finally, when compacting iron powder inMalik et al.
(2022), a neural network algorithm was adopted to predict
the surface roughness from the compaction pressure, com-
position, and sintering temperature.

Challenges and contributions

While machine learning models have been successfully used
in the literature to gain valuable insight into processes or to
make predictions, these predictions often remained theoret-
ical or were limited to post-process analyses (Sivasankaran
et al., 2011; Massimo et al., 2023) and were not effectively
used to directly and immediately influence the manufactur-
ing process. This represents a significant research gap as
using predictive models to trigger online adaptations has a
strong potential to enhance process stability, reduce man-
ual interventions, and improve overall efficiency and quality,
especially in cases where real-time capable physical mod-
els that reflect reality with sufficient accuracy cannot be
obtained. Thus, while existing research has laid the foun-
dation by demonstrating that machine learning algorithms
can successfully predict various variables in a manufacturing
context, there remains a clear need for further investigations
on how these predictions can be integrated into automation

systems to enable automatic adjustments. In this paper which
builds upon our previous work (Ganthaler et al., 2023), we
aim to fill this gap by demonstrating how predictions gener-
ated by machine learning algorithms can be effectively used
for online adjustment of trajectory key points to bring and
keep quality characteristics within tolerances, thus advanc-
ing the state of the art in sintered part production.

In doing so, we follow the workflow sketched in Fig. 1.
After having instrumented the press with proper sensors,
we record a training dataset which is subsequently used for
training the neural network models. Next, these models are
implemented on the press allowing to obtain online predic-
tions of the quality characteristics mass and dimensions.
We further foresee an algorithm that updates the network
models offline based on information obtained from recent
workpieces if environmental conditions change and esti-
mates become inaccurate. Finally, the obtained predictions
are used to adapt trajectory key-points to bring and keep
the quality characteristics within pre-defined tolerances. To
assess the estimation and control performance, we compare
the introduced system experimentally to a classical sensor-
based baseline following an experimental design that allows
to study transient as well as steady-state performance.

The paper is structured as follows: In Sect. “Materials
and methods” a description of the machine and the studied
workpieces is provided, as well as the quality characteris-
tic estimators are described. The applied specialties for the
sensor-based and neural-network-based implementations are
reported in Sect. “Implementation”. The achieved estimation
aswell as control performance are presented and discussed in
Sect. “Results”. Finally, the paper concludes in Sect. “Con-
clusion”.

Materials andmethods

The press

The press machine used in experiments is a hydraulic pow-
der press with three lower-level punches, respectively Lower
Level 1 (LL1), Lower Lever 2 (LL2), and Lower Level 3
(LL3), one core-rod (pin, CR), a fixed die, and two upper-
level punches, respectively Top-ram (TR), and Upper Level
2 (UL2). Each level is actuated by hydraulic cylinders and
can therefore move independently. The main cylinder of the
top-ram can apply a maximum force of 700kN and has two
rapid traverse cylinders installed, allowing to move faster
in free space. The first upper level is fixed on the top-ram.
The second upper level is also mounted on the top-ram but
has an additional actuator and can therefore move relatively
to the top-ram. The tool-mounting mechanism is conically
designed so that the pistons from levels below canmove inde-
pendently (see (1) in Fig. 2). Besides the pistons, an electrical
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Fig. 1 Adopted workflow

servo motor is mounted and connected to the press moving
the feeding shoe from its initial position towards the cavity.
Additionally, there is a pick-and-place system, consisting of
a gripper with three degrees of freedom (x-z-rotation) and an
action (grasping). This gripper takes the produced green-part
after being ejected from the press and places it on a scale.
From there the workpiece is placed on a belt on which end
a laser triangulation system measures the workpiece dimen-
sions before it is finally loaded on a palletizer. The powder
press is equipped with force sensing systems for each punch
level and gauges for measuring the cylinder movement. The
resolution of the position sensors is 1µm, while the one of the
force sensing system is below 15N. All sensors are directly
connected to dedicated interface boards of the main PLC of
the powder press. The main PLC uses a sampling rate of
2kHz to read out the sensors, run the low-level closed loop
controllers, and send new set values to the valves actuating
the hydraulic pistons. Furthermore, a graphical user inter-
face is running on the main PLC, but with a much lower
sampling rate. The set-up is further equipped with a scale
with a resolution of 1mg and a repeatability of 2mg as well
as a laser triangulation system with a linearity of ±0.006%
and a repeatability of 0.4µm. The lattermeasures the geomet-
rical dimensions of each produced workpiece using a laser

beam. Both measuring systems use their own dedicated sub
PLCs. The communication between the main PLC and the
sub PLCs is based on TCP/IP.

Geometry of the workpieces and quality
characteristics

Workpiece 1

Thefirstworkpiece studied in the context of thiswork is a hol-
lowcylinderwith a total height of 8.97mmandaflangeheight
of 2.99mm. Beside a die, two lower punch levels, a core rod,
and one upper punch level are necessary for production. The
quality characteristics considered for this workpiece are its
mass as well as the length 1 and length 2, as shown in Fig. 3.
Lower and upper control limits (LC,UC) and lower and upper
tolerance limits (LT, UT) for this workpiece are detailed in
Table 1.

Workpiece 2

The second research workpiece, as shown in Fig. 4, is
a multi-layer workpiece with three lower-levels and two
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Fig. 2 Setup of the production process: (1) press machine (2) weight scale (3) conveyor belt (4) laser triangulation system (5) pick-and-place
system

Fig. 3 First research workpiece

Table 1 Tolerance limits for first research workpiece

QC LT LC SET UC UT

Mass [g] 16.2 16.25 16.4 16.55 16.6

Length 1 [mm] 8.92 8.9325 8.97 9.0075 9.02

Length 2 [mm] 2.94 2.9525 2.99 3.0275 3.04

upper-levels. The quality characteristics considered for this
workpiece are its mass as well as the lengths 1 to 4 as shown
in Fig. 4. Setpoint values as well as lower and upper control

limits (LC, UC) and lower and upper tolerance limits (LT,
UT) for this workpiece are detailed in Table 2.

Phases of production

The green-part production can be divided into the following
four main phases as shown in Fig. 5. During the filling phase,
the filler moves from its initial position towards the cavity,
which is formedby the lower-levels and the rigid die.Byover-
passing the cavity, the cavity gets filled with metal powder.
To increase filling quality in terms of homogeneous filling
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Fig. 4 Second research
workpiece

Table 2 Tolerance limits for second research workpiece

QC LT LC SET UC UT

Mass [g] 16.1 16.15 16.3 16.45 16.5

Length 1 [mm] 8.92 8.9325 8.97 9.0075 9.02

Length 2 [mm] 6.68 6.6925 6.73 6.7675 6.78

Length 3 [mm] 4.44 4.4525 4.49 4.5275 4.54

Length 4 [mm] 2.2 2.2125 2.25 2.2875 2.3

density distribution, the filler can be commanded to perform
wiggles with defined amplitude and frequency. Please note
that the first green phase shows the end of the filling process
of the current workpiece as well as the return of the filler
to its start position, whereby the last green phase shows the
initial filling phase of the next workpiece. The filling pro-
cess ends and the compaction phase starts when the top-ram
reaches the surface of the powder, which is marked in Fig. 5
by a horizontal line around an angular value of 0.55 s. Dur-
ing the compaction phase, all levels move towards each other
till they reach the press position at 0.75 s. At this position,
high-pressure loads are applied to the powder deforming it
plastically. The compaction phase is followed by the ejection
phase. During this phase, all lower levels move upwards, so
that the produced green part can be grasped and transported
by a robotic arm in the removal phase.

Quality characteristics estimation

Workpiece 1

Three neural networks were used as models for the estima-
tion of selected quality characteristics such that each model
had only one quality characteristic as output. We decided for
multiple neural networks instead of a single one since from
a practical implementation and maintenance point of view,
it is desirable to define a single fixed-size network struc-
ture that generalizes over multiple types of workpieces. This
allows one network to be implemented in the press software
instead of customized ones that need to be adjusted every

time a new workpiece is added. Further, this way the time for
offline training could be reduced and the estimation accuracy
increased. Each model considered one hidden layer with 300
neurons and 18 features as input. In order to extract these
features, the actual positions of the levels and forces mea-
sured during the compaction phase, were divided into three
parts of equal size. Extracted position and force values are
then averaged over each part to obtain the final features used
as input to the neural network models.

Training of Neural Networks The data obtained during an
experimental run was used for offline training of the neural
network models. A dataset consisting of 1673 samples cov-
ering the three selected quality characteristics was used as
training dataset. For obtaining this training dataset, the press
parameterswere changedmanually to enforce situationswith
different initial conditions. But since at increased workpiece
mass, a further decrease of dimensions can lead to high densi-
ties resulting in a high risk of damaging the compaction tool,
only few workpieces with increased weight were produced.

For mass, values between 16.00 to 16.80 g were defined
as the minimum and maximum admissible outputs of the
neural network. For length 1, these values were defined to
be 8.85 and 9.09 mm, whereas they were chosen to be 2.87
and 3.11 mm for length 2. These ranges were chosen based
on values observed during a first rough settlement performed
manually by skilled workers.

Workpiece 2

The chosen quality characteristics for the second workpiece
are the mass, and four lengths. In analogy to workpiece 1,
also for workpiece 2, neural networks were trained for each
quality characteristic. Thus, in total fiveneural networkswere
used as black-box models to estimate the five quality charac-
teristics. Each neural network considered one output and 30
features as input. Similarly to workpiece 1, the compaction
section was divided into three parts and themean of positions
and forces for each of these parts was then used as input fea-
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Fig. 5 The press cycle

Table 3 Input features of the
Neural Networks

Input Feature

1 Mean applied force by top-ram over first third of compaction phase

2 Mean applied force by top-ram over second third of compaction phase

3 Mean applied force by top-ram over last third of compaction phase

4 Mean top-ram position over first third of compaction phase

5 Mean top-ram position over second third of compaction phase

6 Mean top-ram position over last third of compaction phase

7 Mean applied force by UL2 over first third of compaction phase

8 Mean applied force by UL2 over second third of compaction phase

9 Mean applied force by UL2 over last third of compaction phase

10 Mean UL2 position over first third of compaction phase

11 Mean UL2 position over second third of compaction phase

12 Mean UL2 position over last third of compaction phase

13 Mean applied force by LL1 over first third of compaction phase

14 Mean applied force by LL1 over second third of compaction phase

15 Mean applied force by Ll1 over last third of compaction phase

16 Mean LL1 position over first third of compaction phase

17 Mean LL1 position over second third of compaction phase

18 Mean LL1 position over last third of compaction phase

19 Mean applied force by LL2 over first third of compaction phase

20 Mean applied force by LL2 over second third of compaction phase

21 Mean applied force by LL2 over last third of compaction phase

22 Mean LL2 position over first third of compaction phase

23 Mean LL2 position over second third of compaction phase

24 Mean LL2 position over last third of compaction phase

25 Mean applied force by LL3 over first third of compaction phase

26 Mean applied force by LL3 over second third of compaction phase

27 Mean applied force by LL3 over last third of compaction phase

28 Mean LL3 position over first third of compaction phase

29 Mean LL3 position over second third of compaction phase

30 Mean LL3 position over last third of compaction phase
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Table 4 Parameters of neural networks

Parameter Value

Percentage of training data 70

Percentage of validating data 15

Percentage of test data 15

Number of hidden layers 1

Number of neurons in the hidden layer 300

Estimation error goal 10−8

Maximum number of validation failures 20

Maximum number of epochs 1000

ture of the neural networks.More precisely, the input features
for workpiece 2 are listed in Table 3.

Training of Neural Networks In order to train the neural
networks, a dedicated dataset was captured that consists of
2417 samples. Again for obtaining this training dataset and to
cover different initial conditions, the press parameters were
changed manually.

For mass, values between 15.90 to 16.80 g were defined
as the minimum and maximum admissible outputs of the
neural network. For length 1, these values were defined to
be 8.80 and 9.15 mm, whereas they were 6.50 and 6.95 mm
for length 2, 4.35 and 4.64 mm for length 3, and 2.12 and
2.45 mm for length 4. The adopted parameters for defining
the neural networks as well as training and validation data
for both workpieces are shown in Table 4. The architecture
of the Neural Networks for both workpieces is depicted in
Fig. 6.

The computational times required for offline training of
different networks on a PC equipped with a Core i9-10900E
2.8GHz CPU and 32GB of RAM are given in Table 5. When
training five neural networks simultaneously in parallel, the
maximum computation time amounts to 1085.9 s (needed for
training network of mass).

Updating of neural networks

Since over time, production conditionsmay change, themod-
els originally trained under a specific condition may not
maintain the same high accuracy over long time periods. To
address this issue, it is necessary to update the networks from
time to time using more recently produced workpieces. To
determine whether an update is required, after producing a
certain number of workpieces, the accuracy of the model
can be checked. If the produced workpieces are found to be
still within tolerance, the new online-captured dataset can be
merged with the old one andmodels can be re-trained offline.
This way, the accuracy of the estimations can be increased.
If the produced workpieces are not anymore within tolerance

it is more advisable to only use the online dataset to re-train
the neural networks to avoid to rely on very outdated data.

When the training is completed, the accuracy of the new
model can be tested on an additional to-be-recorded test
dataset. Only if the predictions of the new models are better
than the old ones, the weights and biases of the old models
are replaced by the new ones. The update process involving
the recording of online and test datasets is explained in Fig. 7.
The mentioned algorithm to update the models is described
in detail in Algorithm 1.

Algorithm 1: Online update algorithm.
Data: old neural network’s weights and biases
p: number of produced workpieces for update
if number of produced workpieces == p then

if the performance of the offline neural network is not
desirable then

new dataset = online dataset
end
else

new dataset = online dataset + offline dataset
end
Split online dataset into 80% for training and 20% for
validation
Train neural network
Test performance of neural network based on test set
if the performance of the test set is better than offline neural
network then

old weights = new weights
old biases = new biases

end
else

Continue with the offline neural network
end

end

Trajectory key-point adaptation

The implemented trajectory key-point adaptation scheme is
shown in Fig. 8. To keep the quality characteristics mass
and dimensions within tolerances the realized adaptation
law modifies key points of the piston trajectories, which
are related to the filling and press positions. Experiments
were conducted with the aim of investigating the control
performance of the introduced adaptive trajectory planner.
As controlling all quality characteristics simultaneously may
lead to high risks of destroying the punches, the following
control sequences were adopted for each workpiece:

• Workpiece 1: Mass - Length 1 - Length 2
• Workpiece 2: Mass - Length 1 - Length 2 - Length 3 -
Length 4

For all workpieces first the mass was brought into its tol-
erance limits and then the different lengths followed in a

123



Journal of Intelligent Manufacturing

Fig. 6 The neural network architecture for workpiece 1 and workpiece 2

Table 5 Time required for offline training

Network Time(sec)

Network with only one output for Mass 1085.920130

Network with only one output for Length1 488.337047

Network with only one output for Length2 467.165505

Network with only one output for Length3 424.296867

Network with only one output for Length4 353.167252

cascaded order. Only once a specific estimated/measured
dimension reached its predefined interval, the next quality
characteristic was brought into tolerance.

Bringingmass into tolerance

When aiming for adjusting the mass of the workpiece, the
height of the filling cavity or alternatively the filling density
ρ f can be changed. The new commanded filling density can
be calculated with the rule of three as follows, assuming the
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Fig. 7 The update process

Fig. 8 Closed-loop control scheme

same final volume:

ρ f ,new = ρ f ,old · mdes

mold
. (1)

To realize this new filling density, the volume of the cavity
during the filling process is changed by the machine, which
can be achieved by adjusting the filling positions, while the
cross section remains the same due to the contour of the rigid
die.

Hereby, filling density and filling height are linked with
each other by the filling factor (FF), which can be calculated
as follows:

FF = h f

hdes
= ρdes

ρ f
, (2)

where h f stands for the filling height, hdes for the final height
of the workpiece and ρdes for the desired mean density of the

final workpiece. An increased/decreased filling height results
in an increased or decreased amount of powder that falls into
the cavity. If the press positions remain unchanged, then the
volume of the final workpiece remains the same, and thus,
inevitably the mass and density of the workpiece increases
or decreases accordingly.

Bringing heights into tolerance

The height of the workpiece can be controlled by changing
the offset of eachpiston in press position. To reduce the height
of the workpiece, the relative distance between the upper and
lower pistons in press position has to be reduced. A positive
delta at press position leads to an increased movement of the
lower level and a reduced movement of the top-ram, while a
negative delta to an increased vertical movement of the top-
ram and a decreased vertical movement of the lower level.
To change the press position, the controller has to read out
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first the actual press position of the active pistons, excluding
the core-rod. To keep the press-neutral zone and with this the
area with minimal density at half the workpiece height, the
applied pressure loads from both sides should be similar in
magnitude. Thus, the top-ram and the lower level are changed
according to a predefined ratio as follows:

xLL,new = xLL,act − k �h, (3)

xT R,new = xT R,act + (1− k)�h, (4)

where xi,new stands for the new press position, xi,act for
the actual set press position, and �h for the error between
desired and measured workpiece height. The weighted
height-deviation �h is added to the actual press-position
of the upper-level and subtracted from the press-position of
the lower-level pistons. The parameter k defines the share
between lower and upper pistons.

Implementation

The press is controlled by a standard PLC, while for test-
ing purposes the software module with the neural network
models and the adaptation law is running on an external PC.
Hereby, the neural network model was implemented in Mat-
lab/Simulink and a proprietary Simulink block provided by
the PLC supplier was used to communicate with the press.
In future, these models though would also need to be embed-
ded into the PLC programme of the press. The sensor-based
controller is implemented in Python and a Python-wrapper is
used to establish the connection with the press PLC. Further,
the following specialties apply for the individual implemen-
tations:

Sensor-based controller: A Python script controlling the
workpiece quality characteristics reads all relevant data from
the press. Each produced workpiece gets removed from the
press, placed on a scale and then placed on a conveyor-belt
before it passes the triangulation sensor. It takes seven work-
pieces or about 11 s (when producing at stroke rate 35) until
the producedworkpiece getsmeasured by the laser triangula-
tion system (see Fig. 2). Therefore each qualitymeasurement
is saved in a ring-buffer and its median is used to control the
different quality characteristics. Taking this and some safety
margin into consideration, we decided to write every nine
strokes newdata to the press. To avoid sendingmeasurements
that may be considered outliers or wrong data, the measured
height and mass are compared to the desired values with a
pre-defined offset value.

Black-box model-based controller: The black-box models
are implemented in MATLAB/Simulink using a Neural Net-
work trained on a set of offline recorded data to estimate the

mass and height of every producedworkpiece. To assure sim-
ilar conditions as for the sensor-based controller, also every
ninth stroke new data is sent to the press.

The Neural Network is designed in a way that it can
be updated online. Therefore, crucial production data is
stored continuously in a .mat-file, which can then be used
to train the new neural network. The new generated biases
and weights for the network are then used to update the adap-
tation law. The updating process can be activated at any time
and requires about 120 strokes for determining the new net-
work parameters.

Results

In this section we first analyze the model estimation per-
formance of the Neural Networks compared to the baseline
based on sensors by starting from four initial conditions.
Next, the control performance of sensor-based and model-
based approaches are compared.

Estimation performance

Workpiece 1

Aiming at evaluating the neural network models, a dedicated
dataset recorded in open-loopwith stroke rate 35 strokes/min
was used. The dataset contains in total 872 samples. We
changed the press parameters manually to cover a large set
of values of the quality characteristics. Figure 9 shows the
measured and estimated values of the quality characteris-
tics (mass, length 1, and length 2) and Table 6 presents the
estimation performance in terms of correlation, mean esti-
mation error, standard deviation, and the root mean squared
estimation-error (RMSE).

The neural network model of the first workpiece shows
overall very good estimation performance predicting the
three quality characteristics with an RMSE smaller than
0.04g for the mass and 0.02mm for the lengths 1 and 2.
The observed mean estimation errors are 2.1 × 10−4 g for
the mass, −0.0073mm and −0.004mm for lengths 1 and 2.
In terms of correlations, the estimator reaches high correla-
tions: 0.9714 for the mass, 0.98 and 0.976 for lengths 1 and
2, and thus, estimated values very well fit the shape of the
measured quality characteristics.

Workpiece 2

Again, to evaluate the neural network estimators for the sec-
ondworkpiece, a dataset of 506 produced itemswas recorded
in open-loop with 35 strokes/min. A large range of values
of quality characteristics was covered by changing the press
parametersmanually. Figure 10 shows themeasured and esti-
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Fig. 9 Estimation performance of neural network model for a series of workpieces 1

Table 6 Averaged estimation
performance of the neural
network model for workpiece 1

QC Estimation performance (First workpiece)

Mean error (μ) Std. deviation (σ ) Correlation (R) Estimation RMSE

Mass 2.1e−4g 0.0385 g 0.9714 0.0385 g

Length 1 −0.0073 mm 0.0114 mm 0.9800 0.0135 mm

Length 2 −0.0040 mm 0.0088 mm 0.9760 0.0097 mm

mated values of the quality characteristics (mass, lengths 1
to 4) and Table 7 presents the model performances in terms
of correlation, mean estimation error, standard deviation, and
the root mean squared estimation-error (RMSE).

The neural networkmodel of the second workpiece shows
overall very good estimation performance predicting the five
quality characteristics with an RMSE smaller than 0.05g
for the mass and 0.02mm for the lengths. The observed
mean estimation errors are−0.0019g for themass, 0.001mm
0.0012mm, −0.0012mm, and −4.3× 10−5 mm for lengths
1 to 4 respectively. In terms of correlations, the estima-
tor reaches high correlations: 0.9692 for the mass, 0.9828,
0.9717, 0.9585, and 0.9547 for lengths 1 to 4 respectively,
and thus, the estimated values very good fit the shape of the
measured quality characteristics.

Updating of neural networks

In Fig. 11, the proposed updating algorithm is applied to
workpiece 1 in an experiment with initial conditions starting
above tolerance for mass and both lengths. The first update
is applied after producing 370 workpieces where jumps can
be seen in the measurements and estimations. Although the
accuracies of the estimations increase for all three quality
characteristics, another update is applied at sample 516 to
improve the estimation of both lengths, which also decreases
the mass estimation error.

Control performance

Next, we compare the control performance of the neural-
network-based and sensor-based approach without consider-
ingupdating the neural networkmodels.As control sequence,
the sequences indicated in Section 2.4 were adopted.
Further, the following four different initial conditions were
adopted, whereby each condition was repeated ten times:

• i.T.: both quality characteristics (mass and lengths)
started within the predefined tolerance intervals

• b.T.: both quality characteristics started below tolerance
• a.T.: both quality characteristics started above tolerance
• c.T.: mass started below the tolerance limit and lengths
above the tolerance limit

Please note that the case of mass starting above tolerance and
lengths belowwas not considered, as at increasingworkpiece
mass further decreasing lengths can lead to high densities
resulting in a high risk of damaging the compaction tools.
To evaluate the control performance the following quality
measures were adopted:

Transient settling phase (Number ofwriting processes #W):
The controllers are tested with different initial conditions.
To compare their capability to bring the quality characteris-
tics within their predefined intervals, the number of writing
operations #W required to bring the respective quality char-
acteristics within their control limits is used.
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Fig. 10 Estimation performance of neural network model for a series of workpieces 2

Table 7 Averaged estimation
performance of the neural
network model for workpiece 2

QC Model performance (Second workpiece)

Mean error (μ) Std. deviation (σ ) Correlation (R) Estimation RMSE

Mass −0.0019 g 0.0408 g 0.9692 0.0408 g

Length 1 0.0010 mm 0.0156 mm 0.9828 0.0156 mm

Length 2 0.0012 mm 0.0164 mm 0.9717 0.0164 mm

Length 3 −0.0012 mm 0.0135 mm 0.9585 0.0135 mm

Length 4 −4.3e−5mm 0.0102 mm 0.9547 0.0102 mm

Steady-state phase (Root-mean-squared error (RMSE):
The steady-state error has been determined by evaluating
the root mean squared error considering the error between
setpoint and measured quality characteristics over the last 30
produced workpieces.

Workpiece 1

Figure 12 shows examples of measured mass, length 1,
and length 2 of workpiece 1 resulting for the sensor-based
approach, while Fig. 13 depicts them for the neural-network-
based approach.

As can be seen, the quality characteristics take differently
long till they enter the tolerance band and then fluctu-
ate around their set points. Thus, average values obtained
for each condition are used for comparison of the control
approaches and are reported in Table 8 in terms of number
of writing processes #W for the settling performance and the
RMSE for the steady-state performance. We also report the
average over all conditions for the RMSE , while we omit
reporting the average over all conditions for settling due to

the large differences in values obtained for the different con-
ditions.

As can be seen, in terms of settling, the neural-network-
based control descriptively shows better performance for all
the quality characteristics and all initial conditions. In terms
of steady-state RMSE though, in general the sensors-based
controller shows better performance.

Results of a statistical t-test performed on this data are
reported in Table 9. Means as well as 95% confidence inter-
vals are shown in Figs. 14 and 15. Concerning the RMSE in
steady-state, the t-test performed on data averaged over all
experiments showed significant differences at a significance
level of 5% for all the quality characteristics with a sig-
nificantly better performance of the sensor-based approach
compared to the neural-network-based approach. In terms of
settling performance, the different initial conditions had to
be analyzed individually since averaging over all of them
would have resulted in no significant results due to the
large differences in the obtained values between conditions.
When analyzing the initial conditions individually, the t-tests
indicate that the neural-network-based approach leads to a
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Fig. 11 Measured mass and lengths as well as estimation errors for workpiece 1 when using the proposed update algorithm

Fig. 12 Time-series of quality characteristics of workpiece 1 for control based on sensor measurements

significantly better control performance than the sensors-
based approach when considering lengths. In terms of mass
though, no significant difference could be found for all initial
conditions.

Workpiece 2

In Figs. 16 and 17 examples ofmeasured values of the quality
characteristics mass, and lengths 1 to 4 of the second work-
piece are shown for each of the initial conditions and for
sensor-based as well as neural-network-based approach.

All the quality characteristics converge and stabilize
within their tolerance limits. Table 10 summarizes the

observed control performance in terms of settling perfor-
mance and steady-state performance. As can be observed,
in terms of settling, the neural-network-based approach
descriptively shows better performance for all the quality
characteristics and all initial conditions, except for length
4 in the below tolerance initial condition. Also in terms
of steady-state performance, in general the neural-network-
based approach shows better performance for all quality
characteristics except for mass.

Table 11 reports the results of the statistical analysis per-
formed based on the aforementionedmeasurements. Figs. 18
and 19 show the means and the confidence intervals of
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Fig. 13 Time-series of quality characteristics of workpiece 1 for control based on neural network predictions

Table 8 Control performance of sensor-based and NN-based control for workpiece 1

Initial condition Approach N Settling (#W) Steady-state (RMSE)

Mass Length 1 Length 2 Mass Length 1 Length 2

Within Sensors 10 0.0399 0.0154 0.0116

Neural network 10 0.0591 0.0191 0.0126

Below Sensors 10 1 3.9 5.8 0.0421 0.0142 0.0086

Neural network 10 1 1.2 3.5 0.0505 0.0216 0.0170

Above Sensors 10 1.1 3.9 6.5 0.0362 0.0110 0.0070

Neural network 10 1 1.1 1 0.0476 0.0231 0.0122

Crossed Sensors 10 1.4 10.3 10.6 0.0482 0.0174 0.0110

Neural network 10 1 4.6 2.8 0.0385 0.0292 0.0166

All conditions Sensors 40 0.0416 0.0145 0.0095

Neural network 40 0.0489 0.0232 0.0146

the quality measures, settling (#W) as well as steady-state
(RMSE) performance for all quality characteristics.

Again, the settling performance for the different initial
conditions had to be analyzed individually since averaging
over all of them would have resulted in no significant dif-
ferences due to the large differences in the obtained values
between conditions. When analyzing the initial conditions
individually though, significant results could be obtained at
a 5% significance level for several of the lengths 1 to 4.
Overall, the analysis indicates that the neural-network-based
approach leads to a significantly better control performance
for lengths when settling than the sensor-based approach. In
terms of mass, no significant difference could be found for
all initial conditions.

Concerning the steady-state performance, the t-test per-
formed on the data averaged over all experiments showed
significant differences at a significance level of 5% for all
the quality characteristics. In terms of mass, the t-test indi-
cated significantly better performance of the sensor-based
approach compared to the neural-network-based approach.

In terms of lengths 1 to 4, the t-test showed opposite
results with a significantly better performance of the neural-
network-based approach compared to the sensor-based approach.

Discussion

Overall, both approaches were found to be able to bring
and keep quality characteristics within their tolerance lim-
its. However, they were found to achieve this with different
performances. In terms of control performance in steady-
state, the sensor-based approachwas found to outperform the
neural-network-based approach when controlling the quality
characteristics of the first workpiece. This indicates that the
neural network was not able to keep up with the high accu-
racy of the measurement system when estimating lengths,
which then compromised the control performance. The same
effect was not found for the second workpiece. This can be
explained by the fact that the achieved estimation perfor-
mance of the neural network differs significantly between
the two workpieces as can be observed in Table 12. While
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Fig. 14 Settling (means and 95
% confidence intervals) for
different initial conditions for
workpiece 1

Fig. 15 Steady-state RMSE
(means and 95 % confidence
intervals) for workpiece 1

123



Journal of Intelligent Manufacturing

Table 9 Results of statistical
analysis (t-tests) for workpiece 1

Initial Condition Variable Approach N Mean Std. error t α

Below Settling_Mass Sensors 10 1 0 – –

Neural network 10 1 0

Settling_Length 1 Sensors 10 3.9 0.875 3.008 0.013

Neural Network 10 1.2 0.200

Settling_Length 2 Sensors 10 5.8 0.757 2.299 0.034

Neural network 10 3.5 0.654

Above Settling_Mass Sensors 10 1.1 0.100 1.000 0.343

Neural network 10 1 0

Settling_Length 1 Sensors 10 3.9 0.547 5.038 0.001

Neural network 10 1.1 0.100

Settling_Length 2 Sensors 10 6.5 0.703 7.822 0.001

Neural network 10 1 0

Crossed Settling_Mass Sensors 10 1.4 0.221 1.809 0.104

Neural network 10 1 0

Settling_Length 1 Sensors 10 10.3 1.317 4.025 0.002

Neural network 10 4.6 0.521

Setlling_Length 2 Sensors 10 10.6 0.933 6.930 0.001

Neural network 10 2.8 0.629

All conditions RMSE_Mass Sensors 40 0.0416 0.0018 2.326 0.023

Neural network 40 0.0489 0.0026

RMSE_Length 1 Sensors 40 0.0145 0.0008 3.723 0.001

Neural network 40 0.0232 0.0010

RMSE_Length 2 Sensors 40 0.0095 0.0006 5.511 0.001

Neural network 40 0.0146 0.0007

Fig. 16 Time-series of quality characteristics of workpiece 2 for sensor-based approach
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Fig. 17 Time-series of quality characteristics of workpiece 2 for neural-network-based approach

Table 10 Control performance of sensor-based and NN-based control for workpiece 2

Initial condition Approach N Settling (#W) Steady-state (RMSE)

Mass Length 1 Length 2 Length 3 Length 4 Mass Length 1 Length 2 Length 3 Length 4

Within Sensors 10 0.0296 0.0076 0.0113 0.0203 0.0097

Neural network 10 0.0923 0.0110 0.0100 0.0060 0.0065

Below Sensors 10 1.8 4.2 5.2 3.5 3.3 0.0265 0.0121 0.0128 0.0099 0.0065

Neural network 10 1.1 1.8 1.9 1 4 0.0651 0.0112 0.0070 0.0072 0.0090

Above Sensors 10 1.2 3.6 3 8.9 10.3 0.0290 0.0131 0.0180 0.0140 0.0155

Neural network 10 1 1 1 1 2 0.0473 0.0085 0.0077 0.0059 0.0096

Crossed Sensors 10 1.6 8.5 10.4 12.9 8.1 0.0348 0.0139 0.0175 0.0232 0.0105

Neural network 10 1 3.9 3 2.9 4.8 0.0695 0.0096 0.0191 0.0064 0.0045

All conditions Sensors 40 0.0300 0.0117 0.0149 0.0168 0.0106

Neural network 40 0.0685 0.0101 0.0109 0.0064 0.0074

quite low estimation errors could be achieved for the second
workpiece, for the first one the estimation errors were higher.
Thus, the neural networks of the first workpiece would need
to be updated to be able to reach the accuracy of the sensor-
based approach.

What concerns the control performance in the transient
phase, the neural-network-based approach was found to out-
perform the sensor-based approach for lengths. This can be
explained by the fact that the neural-network-based approach
is able to overcome the problem with the delayed measure-
ment by the triangulation sensor and thus, can react quicker
and achieve a better control performance than the sensor-
based approach. Overall, the neural-network-based approach

turned out to be best when controlling lengths in the transient
phase.

In terms of controlling mass in the transient phase, no
significant differences could be found. This can be explained
by the fact that the measurement of the mass, unlike lengths,
is not delayedmuch; thus, estimators could not really bring an
advantage compared to the sensor-based approach. Overall,
both approaches could be equally used for controlling mass
in the transient phase.

123



Journal of Intelligent Manufacturing

Table 11 Results of statistical
analysis (t-tests) for workpiece 2

Initial Condition Variable Approach N Mean Std. error t α

Below Settling_Mass Sensors 10 1.8 0.326 2.049 0.066

Neural network 10 1.1 0.100

Settling_Length 1 Sensors 10 4.2 0.326 4.536 0.001

Neural Network 10 1.8 0.416

Settling_Length 2 Sensors 10 5.2 0.680 4.165 0.001

Neural network 10 1.9 0.407

Settling_Length 3 Sensors 10 3.5 0.373 6.708 0.001

Neural network 10 1 0

Settling_Length 4 Sensors 10 3.3 0.396 1.172 0.257

Neural network 10 4 0.447

Above Settling_Mass Sensors 10 1.200 0.133 1.500 0.168

Neural network 10 1 0

Settling_Length 1 Sensors 10 3.600 0.733 3.545 0.006

Neural network 10 1 0

Settling_Lenght 2 Sensors 10 3.000 0.365 5.477 0.001

Neural network 10 1 0

Settling_Length 3 Sensors 10 8.900 0.936 8.437 0.001

Neural network 10 1 0

Settling_Length 4 Sensors 10 10.300 1.468 5.652 0.001

Neural network 10 2 0

Crossed Settling_Mass Sensors 10 1.600 0.305 1.964 0.081

Neural network 10 1 0

Settling_Length 1 Sensors 10 8.500 1.067 3.807 0.002

Neural network 10 3.9 0.567

Settling_Length 2 Sensors 10 10.400 0.945 7.225 0.001

Neural network 10 3 0.394

Settling_Length 3 Sensors 10 12.900 1.946 5.015 0.001

Neural network 10 2.9 0.433

Settling_Length 4 Sensors 10 8.1 1.120 2.569 0.022

Neural network 10 4.8 0.629

All conditions RMSE_Mass Sensors 40 0.0299 0.0015 8.663 0.001

Neural network 40 0.0685 0.0042

RMSE_Length 1 Sensors 40 0.0117 0.0007 2.027 0.047

Neural network 40 0.0101 0.0004

RMSE_Length 2 Sensors 40 0.0149 0.0011 2.792 0.007

Neural network 40 0.0109 0.0009

RMSE_Length 3 Sensors 40 0.0168 0.0015 6.992 0.001

Neural network 40 0.0064 0.0003

RMSE_Length 4 Sensors 40 0.0105 0.0012 2.341 0.023

Neural network 40 0.0074 0.0005

Conclusion

We presented an approach that allows adjusting trajectory
key points and with this the final piston trajectories of a com-
paction press to bring and keep quality characteristics like
mass and dimensions within tolerance. The quality charac-
teristics of two multi-level workpieces were controlled in a

cascaded fashion by concentrating on one quality charac-
teristic at a time. To reduce costs for expensive sensors we
introduced neural networks for the estimation of the quality
characteristics and compared their performance to the base-
line based on sensor measurements. We finally compared the
performance of the closed-loop controllers when based on
sensor measurements and neural network predictions.
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Fig. 18 Settling (means and 95
% confidence intervals) for
different initial conditions for
workpiece 2

Fig. 19 Steady-stat RMSE
(means and 95 % confidence
intervals) for workpiece 2
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Table 12 Comparison of the steady-state RMSE and estimation RMSE for both workpieces

Steady-state RMSE Estimation RMSE

Workpiece 1

Mass Length 1 Length 2 Mass Length 1 Length 2

0.0489 0.0232 0.0146 0.0470 0.0204 0.0122

Workpiece 2

Mass Length 1 Length 2 Length 3 Length 4 Mass Length 1 Length 2 Length 3 Length 4

0.0685 0.0101 0.0109 0.0064 0.0074 0.0652 0.0084 0.0099 0.0060 0.0073

Overall, both approaches were found to be able to bring
and keep all quality characteristics within their tolerance lim-
its. However, they were found to achieve this with different
performances. Results indicated that the neural-network-
based approach outperformed the sensor-based approach for
the transient phase, whereas the neural networks needed to
be updated from time to time in order to be able to com-
pete with the sensor-based approach in terms of predicting
the steady state. For this reason, an algorithm was presented
that runs in real-time and updates the network models. The
results showed that for the updated version of models, the
steady-state errors could be eliminated. Since updating needs
to be performed only from time to time, required sensors like
the expensive triangulation sensors can be shared among
multiple machines and thus, costs can be reduced. At the
same time the superior prediction performance of the neural-
network-based approach in transient phases can be exploited
to accelerate setting up times for new workpieces.

The presented work requires a rich database to train the
neural network models effectively. In this paper, we man-
ually changed the press settings in a random fashion and
passed them to the control law to generate a training dataset.
However, a better approach would foresee the implementa-
tion of an algorithm that automatically generates a training
dataset that adequately covers the prediction space in a safe
way. Another limitation lies in the extension of the pre-
sented method to more complex workpieces. The challenge
hereby arises from the laser triangulation sensor, as measur-
ing various dimensions becomes increasingly complex with
more intricate shapes. Another future direction, could fore-
see adding extra sensor information from temperature and
humidity sensors. This would increase the number of inputs
for the neural network models and could help improving the
accuracy of the estimations. Furthermore, in addition to neu-
ral networks, the efficacy of other advancedmachine learning
algorithms for estimating the quality characteristics could
be investigated. A comprehensive comparison of these algo-
rithms will provide valuable insights into which approach
yields the best accuracy and robustness for our specific appli-
cation. Finally, another intriguing avenue for future research

involves also exploring the combination of sensor measure-
ments and neural network estimations.

Author Contributions This work was supported by the Open Access
Publishing Fund provided by the Free University of Bozen-Bolzano.
All authors contributed to the study conception and design. Mate-
rial preparation and data collection were performed by Hoomaan
MoradiMaryamnegari, Elias Ganthaler, and Thomas Villgrattner and
its analysis byHoomaanMoradiMaryamnegari, Seif-El-Islam-Hasseni,
EliasGanthaler, andAngelika Peer. The first draft of themanuscript was
written by Hoomaan MoradiMaryamnegari and all authors commented
on the versions of the manuscript. All authors read and approved the
final manuscript.

Funding This work was supported in part by the ‘RobuSinter’ project
funded by the European Regional Development Fund (ERDF), project
No. 1113.

Data Availability The datasets generated and analysed during the cur-
rent study are not publicly available due the fact that they fall within the
items regulated by a nondisclosure agreement signed with the involved
company.

Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Beiss, P. (2013). Pulvermetallurgische Fertigungstechnik (1st ed.).
Berlin, Heidelberg: Springer Vieweg. https://doi.org/10.1007/
978-3-642-32032-3

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-32032-3
https://doi.org/10.1007/978-3-642-32032-3


Journal of Intelligent Manufacturing

Evans, J. W., & De Jonghe, L. C. (2016). Powder Compaction. In The
Production and Processing of Inorganic Materials. The Minerals,
Metals, and Materials Series (MMMS), Springer, Cham, p. 383–
401, https://doi.org/10.1007/978-3-319-48163-0_12.

Ganthaler, E., MoradiMaryamnegari, H., Villgrattner, T., et al. (2023).
Automatic trajectory adaptation for the control of quality char-
acteristics in a powder compaction process. Journal of Manufac-
turing Processes, 107, 268–279. https://doi.org/10.1016/j.jmapro.
2023.09.060

Klocke, F. (2015). Fertigungsverfahren 5 (4th ed.). Berlin, Heidelberg:
Springer Vieweg. https://doi.org/10.1007/978-3-540-69512-7

Koutsoupakis, J., Seventekidis, P., & Giagopoulos, D. (2023). Machine
learning based condition monitoring for gear transmission sys-
tems using data generated by optimalmultibody dynamicsmodels.
Mechanical Systems and Signal Processing, 190, 110130. https://
doi.org/10.1016/J.YMSSP.2023.110130

Krok, A., &Wu, C. Y. (2017). Finite element modeling of powder com-
paction.NATOScience for Peace andSecuritySeriesA:Chemistry
and Biology, vol. PartF1. Springer Verlag, p 451–462, https://doi.
org/10.1007/978-94-024-1117-1_28/COVER.

Kumar, N., Bharti, A., & Dixit, M. (2021). Powder Compaction Dies
and Compressibility of Various Materials. Powder Metallurgy
and Metal Ceramics, 60(7–8), 403–409. https://doi.org/10.1007/
S11106-021-00253-X/METRICS

Liu, J., Ye, J., Izquierdo, D. S., et al. (2023). A review of machine
learning techniques for process and performance optimization in
laser beam powder bed fusion additive manufacturing. Journal
of Intelligent Manufacturing, 34, 3249–3275. https://doi.org/10.
1007/s10845-022-02012-0

Li, C., Wu, B., Zhang, Z., et al. (2022). A novel process planning
method of 3 + 2-axis additive manufacturing for aero-engine blade
based on machine learning. Journal of Intelligent Manufacturing,
34(4), 2027–2042. https://doi.org/10.1007/S10845-021-01898-6/
FIGURES/17

Long, X. Y., Zhao, S. K., Jiang, C., et al. (2021). Deep learning-based
planar crack damage evaluation using convolutional neural net-
works. Engineering FractureMechanics, 246, 107604. https://doi.
org/10.1016/J.ENGFRACMECH.2021.107604

Lou, H., Chung, J. I., Kiang, Y. H., et al. (2019). The application
of machine learning algorithms in understanding the effect of
core/shell technique on improving powder compactability. Inter-
national Journal of Pharmaceutics, 555, 368–379. https://doi.org/
10.1016/J.IJPHARM.2018.11.039

Malik, A. R., Pani, B. B., Badjena, S. K., et al. (2022). Prediction of
powder metallurgy process parameters for ferrous based materials
by artificial neural network technique.Materials Today: Proceed-
ings, 62, 4432–4435. https://doi.org/10.1016/J.MATPR.2022.04.
905

Manivannan, S., Biswas, P., Barick, P., et al. (2021). Comparative Study
on Compaction and Sintering Behavior of Spray and Freeze Gran-
ulated Magnesium Aluminate Spinel Powder. Transactions of the
Indian Ceramic Society, 80(2), 110–117. https://doi.org/10.1080/
0371750X.2021.1887765

Massimo, D., Ganthaler, E., Buriro, A., et al. (2023). Estimation of
mass and lengths of sintered workpieces using machine learning
models. IEEE Transactions on Instrumentation andMeasurement,
72, 1–14. https://doi.org/10.1109/TIM.2023.3298413

O’Flynn, J., & Corbin, S. F. (2019). Effects of powder material and pro-
cess parameters on the roll compaction, sintering and cold rolling
of titanium sponge. Powder Metallurgy, 62(5), 307–321. https://
doi.org/10.1080/00325899.2019.1651505

Qin, Y., Liu, X., Yue, C., et al. (2023). Tool wear identification and pre-
dictionmethod based on stack sparse self-coding network. Journal
of Manufacturing Systems, 68, 72–84. https://doi.org/10.1016/J.
JMSY.2023.02.006

Satterlee, N., Torresani, E., Olevsky, E., et al. (2022). Comparison of
machine learningmethods for automatic classificationof porosities
in powder-based additive manufactured metal parts. Interna-
tional Journal of Advanced Manufacturing Technology, 120(9–
10), 6761–6776. https://doi.org/10.1007/S00170-022-09141-Z/
METRICS

Schatt, W., Wieters, K., & Kieback, B. (2007). Prüfung und Charak-
terisierung der Pulver. In Pulvermetallurgie. Springer, Berlin,
Heidelberg, p 71–110, https://doi.org/10.1007/978-3-540-68112-
0_4.

Sivasankaran, S., Sivaprasad, K., & Narayanasamy, R., et al. (2011).
Evaluation of compaction equations and prediction using adaptive
neuro-fuzzy inference system on compressibility behavior of AA
6061100−x−x wt.%TiO2 nanocomposites prepared bymechanical
alloying. Powder Technology,209(1–3), 124–137. https://doi.org/
10.1016/J.POWTEC.2011.02.020

van derHaven,D. L., Ørtoft, F.H., Naelapää,K., et al. (2022). Predictive
modelling of powder compaction for binary mixtures using the
finite element method. Powder Technology, 403, 117381. https://
doi.org/10.1016/J.POWTEC.2022.117381

Wang, C., Wang, J. H., Gu, S. S., et al. (2017). Elongation prediction of
steel-strips in annealing furnace with deep learning via improved
incremental extreme learning machine. International Journal of
Control, Automation and Systems, 15(3), 1466–1477. https://doi.
org/10.1007/S12555-015-0463-7/METRICS

Wilson, D., Roberts, R., & Blyth, J. (2019). Powder Compaction: Pro-
cess Design and Understanding (pp. 203–225). Hoboken, USA:
John Wiley & Sons Ltd. https://doi.org/10.1002/9781119600800.
ch59

Yu Pimenov, D., Bustillo, A.,Wojciechowski, S., et al. (2022). Artificial
intelligence systems for tool condition monitoring in machining:
analysis and critical review. Journal of Intelligent Manufacturing,
34(5), 2079–2121. https://doi.org/10.1007/S10845-022-01923-2

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-48163-0_12
https://doi.org/10.1016/j.jmapro.2023.09.060
https://doi.org/10.1016/j.jmapro.2023.09.060
https://doi.org/10.1007/978-3-540-69512-7
https://doi.org/10.1016/J.YMSSP.2023.110130
https://doi.org/10.1016/J.YMSSP.2023.110130
https://doi.org/10.1007/978-94-024-1117-1_28/COVER
https://doi.org/10.1007/978-94-024-1117-1_28/COVER
https://doi.org/10.1007/S11106-021-00253-X/METRICS
https://doi.org/10.1007/S11106-021-00253-X/METRICS
https://doi.org/10.1007/s10845-022-02012-0
https://doi.org/10.1007/s10845-022-02012-0
https://doi.org/10.1007/S10845-021-01898-6/FIGURES/17
https://doi.org/10.1007/S10845-021-01898-6/FIGURES/17
https://doi.org/10.1016/J.ENGFRACMECH.2021.107604
https://doi.org/10.1016/J.ENGFRACMECH.2021.107604
https://doi.org/10.1016/J.IJPHARM.2018.11.039
https://doi.org/10.1016/J.IJPHARM.2018.11.039
https://doi.org/10.1016/J.MATPR.2022.04.905
https://doi.org/10.1016/J.MATPR.2022.04.905
https://doi.org/10.1080/0371750X.2021.1887765
https://doi.org/10.1080/0371750X.2021.1887765
https://doi.org/10.1109/TIM.2023.3298413
https://doi.org/10.1080/00325899.2019.1651505
https://doi.org/10.1080/00325899.2019.1651505
https://doi.org/10.1016/J.JMSY.2023.02.006
https://doi.org/10.1016/J.JMSY.2023.02.006
https://doi.org/10.1007/S00170-022-09141-Z/METRICS
https://doi.org/10.1007/S00170-022-09141-Z/METRICS
https://doi.org/10.1007/978-3-540-68112-0_4
https://doi.org/10.1007/978-3-540-68112-0_4
https://doi.org/10.1016/J.POWTEC.2011.02.020
https://doi.org/10.1016/J.POWTEC.2011.02.020
https://doi.org/10.1016/J.POWTEC.2022.117381
https://doi.org/10.1016/J.POWTEC.2022.117381
https://doi.org/10.1007/S12555-015-0463-7/METRICS
https://doi.org/10.1007/S12555-015-0463-7/METRICS
https://doi.org/10.1002/9781119600800.ch59
https://doi.org/10.1002/9781119600800.ch59
https://doi.org/10.1007/S10845-022-01923-2

	Neural-network-based automatic trajectory adaptation for quality characteristics control in powder compaction
	Abstract
	Introduction
	Challenges and contributions

	Materials and methods
	The press
	Geometry of the workpieces and quality characteristics
	Workpiece 1
	Workpiece 2
	Phases of production

	Quality characteristics estimation
	Workpiece 1
	Workpiece 2
	Updating of neural networks

	Trajectory key-point adaptation
	Bringing mass into tolerance
	Bringing heights into tolerance


	Implementation
	Results
	Estimation performance
	Workpiece 1
	Workpiece 2
	Updating of neural networks

	Control performance
	Workpiece 1
	Workpiece 2
	Discussion


	Conclusion
	References


