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Abstract
Manufacturing systems are becoming more sophisticated and expensive, particularly with the development of the intelligent
industry. The complexity of the architecture and concept of Smart Manufacturing (SM) makes it vulnerable to several faults
and failures that impact the entire behavior of the manufacturing system. It is crucial to find and detect any potential anomalies
and faults as soon as possible because of the low tolerance for performance deterioration, productivity decline, and safety
issues. To overcome these issues, a variety of approaches exist in the literature. However, the multitude of techniques make
it difficult to choose the appropriate method in relation to a given context. This paper proposes a new architecture for a
conceptual model of intelligent fault diagnosis and self-healing for smart manufacturing systems. Based on this architecture,
a review method for the different approaches, sub-approaches and methods used to develop a Fault Detection and Diagnosis
(FDD) and Self-Healing-Fault-Tolerant (SH-FT) strategy dedicated to smart manufacturing is defined. Moreover, this paper
reviews and analyzes more than 256 scientific articles on fault diagnosis and self-healing approaches and their applications
in SM in the last decade. Finally, promising research directions in the field of resilient smart manufacturing are highlighted.
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Introduction

Smart Manufacturing (SM) is still faced with several
demands, such as the quick response to faults on the shop
floor, inventory balancing while aiming for customized out-
put, and flexible adjustment of operating schedules according
to the product and shop floor state, which are difficult to sat-
isfy simultaneously (Jeon et al., 2016; Tao et al., 2018;Wang
et al., 2018). SM is becoming incredibly complex. It brings
together different advanced technologies such as Internet of
Things (IoT), Artificial Intelligence (AI), robots, machin-
ery, cells, conveyors, newand innovative sensors, electronics,
and Programmable Logic Controllers (PLC) (Angelopoulos
et al., 2020; Cheng et al., 2018; Kang et al., 2016; Kusiak,
2018; Machado et al., 2020; Mittal et al., 2018; Qi & Tao,
2018; Radziwon et al., 2014; Tao et al., 2019). Therefore,
SM is an interconnected and interoperable system which
includes hardware and software components. Consequently,
large losses in terms of time, cost, and production rejects due
to the accumulation of faults can interrupt and even abruptly
stop the entire production cycle. Indeed, SM systems require
innovative solutions to improve the quality of the production
process while reducing the cost (Cioffi et al., 2020; Davis
et al., 2012; Machado et al., 2020; Zheng et al., 2018).

SM systems often consist of several layers that are
interconnected and in communication with each other.
These layers are: (1) the physical layer, which consists
of manufacturing facilities such as robots, machines, cut-
ting tools, sensors, and actuators; (2) the communication
layer, which includes Machine-to-Machine (M2M) commu-
nication, Wireless Sensor and Actuator Networks (WSAN),
Wireless Sensor Network (WSN), and Wireless Body Area
Network (WBAN); and (3) the application layer, which
includes the end user and the control center for monitoring
(Jeon et al., 2016; Kim et al., 2019; Zheng et al., 2018).

The complex architecture and concept of SM make its
supervision andmonitoring challenging. In addition, the vul-
nerability of SM tomany types of faults impacts the behavior
of the entire manufacturing system. It can also affect the
resilience and sustainable aspects of the manufacturing sys-
temby increasing themachine run time, energy consumption,
maintenance cost, and lifespan of the equipment (hard and
software), aswell as the technical, financial, and environmen-
tal waste (Cioffi et al., 2020). To deal with these problems,
different advanced approaches, such as Fault Detection and
Diagnosis (FDD), Self-Healing and Fault-Tolerant (SH-FT)
strategies, and smartmethods, exist in the literature thatmake
it possible to improve the manufacturing operation by incor-
porating aspects of resilience and robustness.

Related work

FDD approach

One of the approaches to overcoming the challenges of SM
is the well-known FDD. FDD methods are made up of fun-
damental steps that correspond to crucial components of
efficient monitoring systems. Generally, these methods are
based on three steps. The first step is fault detection, which
is the process of determining the occurrence of faults and
the time of their occurrence in the system. The next step
is fault isolation. The purpose of fault isolation is to pin-
point the source of the fault, which means extracting some
information about the fault, such as its type and location.
The third step is fault identification. Its objective to deter-
mine the magnitude (size) and estimated time behavior of
the fault (Gao et al., 2015; Tidriri et al., 2016). Due to poten-
tial faults that can lead to serious troubles and failures in the
manufacturing process, it becomes essential to create FDD
techniques that are more resilient to normal system distur-
bances and responsive to various faults (Skliros et al., 2019).
As a result, there has been a lot of emphasis in recent literature
on developing new FDD techniques and their applications in
variousfields. Several reviewpapers in thefield of fault detec-
tion and diagnosis were published recently. (Babaei et al.,
2018) gave an overview of fault diagnosis approaches that
are used to address faults in electric ship power systems.
(Park et al., 2020) investigated recent research and develop-
ment in FDD approaches for process monitoring in Industry
4.0. (Abid et al., 2021) provided an overview of the evolution
of FDD techniques. The review discussed both conventional
model-based and signal processing-based FDD methodolo-
gies, with special emphasis on AI-based FDD techniques.
(Ahmad & Mohd-Mokhta, 2022) presented an overview of
recent model-based fault diagnosis methods for linear time-
invariant systems.

SH-FT approach

In addition to FDD techniques, other approaches based on
self-healing techniques exist, with the purpose of improv-
ing the yield and performance of SM systems. Self-healing
refers to the ability of a manufacturing process to detect
system abnormalities and make the necessary adjustments
to return to normal operation without the need for external
intervention (Ghosh et al., 2007). Self-healing systems are
emerging as a viable solution to the increasing complex-
ity of system management requirements in manufacturing.
These systems attempt to classify and analyze sensory data in
order to autonomously detect and mitigate faults. As a result,
little interaction between the systems and human administra-
tors is required, minimizing operational costs and enhancing
current fault mitigation techniques (Schneider et al., 2015).
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Without human intervention, a self-healing manufacturing
technique may proactively monitor and identify a potential
variance from its standard parameters, validate it with a high
level of confidence, and restore regular operations (Qin &
Lu, 2021). Such systems leverage a diverse set of methodolo-
gies to autonomously detect and recover from faults. Several
methods for self-healing systems have been recently inves-
tigated in the literature, such as dual modular redundancy,
triple modular redundancy, embryonic hardware, and an arti-
ficial hormone system, as specifically stated by (Rajput &
Sikka, 2021). Nevertheless, these methods are based on a
general framework and do not focus on the fundamental level
of the self-healing approach based on the automatic control
framework. (Abbaspour et al., 2020) reviewed the causes of
faults and failures along with the most recent innovations
in control systems. They also investigated Fault Detection
and Isolation (FDI) methods and active fault-tolerant control
approaches. Some survey papers (Benosman, 2010; Fourlas
& Karras, 2021; Gao et al., 2015; Shraim et al., 2018) have
reviewed the development of fault-tolerant control and stud-
ied their advantages. A review of fault-tolerant control of
AC/DC microgrids was performed by (Ortiz et al., 2020).
(Yu et al., 2022) discussed the most recent advancements
in fault-tolerant cooperative control of multiple unmanned
aerial vehicles.

Predictive maintenance and smart methods

The incorporation of a smart aspect into the manufactur-
ing process involves some approaches. This smart technique
is usually based on the algorithmic advances in Predictive
Maintenance (PdM) and AI approaches (Yan et al., 2017).
It has been recently applied in industries for handling the
health status of industrial equipment. PdM is essential for
sustainable SM. AI techniques have emerged as a promis-
ing tool in PdM applications for SM (Cinar et al., 2020).
However, selecting the proper AI algorithms, data types, and
data size for SM is still extremely challenging. Indeed, inap-
propriate selection of predictive maintenance techniques,
datasets, and data size may cause major losses and make
maintenance scheduling infeasible. Nevertheless, the liter-
ature has highlighted a range of approaches based on the
development of a control framework and proposes the con-
cept of preventative maintenance (Calabrese et al., 2021;
Canizo et al., 2017; Chen et al., 2021a, 2021b; Cheng et al.,
2020; Cohen et al., 2019; Hosamo et al., 2022; Huynh et al.,
2019; Khorsheed & Beyca, 2021; Kiangala & Wang, 2020;
Nguyen &Medjaher, 2019; Shcherbakov & Sai, 2022; Zonta
et al., 2020). (Zonta et al., 2020) carried out a system-
atic review of predictive maintenance in Industry 4.0 and
addressed its constraints and difficulties. (Li et al., 2017)
investigated fault diagnosis and prognosis in machine cen-
ters using data mining techniques to develop a systematic

method and acquire knowledge for predictivemaintenance in
Industry 4.0. (Bousdekis et al., 2019) reviewed and analyzed
the literature on decision-making in PdM in the framework
of SM. Intelligent techniques are used to develop a predic-
tivemaintenancemodel for sustainablemanufacturing (Abidi
et al., 2022). (Ayvaz & Alpay, 2021) developed a predic-
tive maintenance strategy for production lines based on a
machine learning approach. The findings demonstrated that
the predictive maintenance system was capable of detect-
ing warning signs of potential failures and preventing certain
unplanned pauses in production. (Phan et al., 2022) under-
took a systematic study of machine learning techniques for
condition monitoring and predictive maintenance in manu-
facturing. (Yu et al., 2020) developed a big data ecosystem
for fault detection and diagnosis in preventive maintenance,
using actual industrial big data directly collected fromworld-
wide manufacturing plants. The proposed system has been
operating for several years in a cooperative company’s real-
time industrial production system, and it sets off an alarm
several days before the defect occurs. (Divya et al., 2022)
reviewed fault detectionmethods for predictivemaintenance.
(Richardson et al., 2021) explained how the one-class sup-
port vector machine algorithm and low data rate internet
of things may be used to achieve fault detection in data-
driven predictive maintenance in remote and rural areas.
(Ciaburro, 2022) reviewed machine fault detection based on
machine learning algorithms. The study investigated vari-
ous approaches to identify the most frequent mechanical
failures, together with the most popular machine learning
techniques. (Taqvi et al., 2021) provided a succinct overview
of supervised and unsupervised data-drivenmethods for fault
detection and diagnosis in chemical processes. (Singh et al.,
2023) presented a review of AI application in fault diagno-
sis of rotating machines such as gear, induction motor and
bearings. (Zhang et al., 2021) suggested employing transfer
learningmethod for life predictionbyutilizingdeep represen-
tation regularization. (Zhang et al., 2023a, 2023b) proposed
a blockchain-based, decentralized, federated transfer learn-
ingmethodology for collaborativemachinery fault diagnosis.
The results showed the effectiveness of this methodology
in data privacy-preserving collaborative fault diagnosis of
multiple users. (Li, 2023) developed a deep learning-based
remaining useful life prediction method for sensor malfunc-
tion. Experimental results showed that the proposed method
was appropriate to real industrial applications.

Limitations of the previous works andmain
contributions

The literature review shows that 70% (see Fig. 1a) of the stud-
ied papers focus on the description or comparison of FDD
approaches. For example, (Ahmad & Mohd-Mokhta, 2022)
investigatedmodel-based fault detectionmethods (parameter
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Fig. 1 Percentage of papers published between 2010 and 2022 that are reviewed in this paper and those available on Scopus

estimation, parity space and observer-basedmethods) for LTI
systems. The remaining 30% of publications are devoted to
SH-FTmethods. One of the most recent review papers in this
field, published in 2020, surveys active fault-tolerant control
systems (Abbaspour et al., 2020).

We found 773 research papers on Scopus published
between 2010 and 2022 (see Fig. 1b) that deal on FDD
and SH-FT, with a focus on smart manufacturing and their
applications. The ratio of FDD to SH-FT papers available
on Scopus is more or less the same as the ratio of FDD to
SH-FT studies reviewed in this paper (see Fig. 1). In details,
we reviewed and analyzed 163 research papers in the field of
FDD, which includes topics such as BB (55%), WB (35%),
and signal processing (10%), as described in Fig. 2a. In con-
trast to the self-healing approach, we investigated only 69
research papers that discuss the manufacturing context and
its applications. As described in Fig. 2b, the highest percent-
age (60%) of the research papers focus on the framework
method; 23% and 17% of the papers focus on active and
passive FTC, respectively.

The current paper lays particular emphasis on FDD and
SH-FT approaches for SM applications. The first initiative is
to give a bird’s eye view of such approaches. Moreover, this
paper provides a qualitative benchmark for the FDD steps
(detection, isolation, and identification) by considering fault
types and SM applications.

To achieve inclusive understanding, this paper answers the
following Research Questions (RQ)

• RQ 1: How can FDD and SH-FT approaches be integrated
in the same concept for SM?

• RQ 2: What are the popular taxonomies for faults in SM?
• RQ 3: What are the most used FDD methods in SM appli-
cations?

• RQ4:What are the benefits and drawbacks of eachmethod
of FDD?

• RQ 5: What are the most used SH-FT methods in SM
applications?

• RQ 6: What are the advantages and disadvantages of each
method of SH-FT?

• RQ 7: What are the promising research directions?

The evaluation of review papers in the fields of FDD and
SH-FT for SM allows the exposition of the following lim-
itations, which are considered and overcome in the current
review. This adds value to this paper and distinguishes it from
previous review papers.

• The lack of models that bring together FDD and SH-FT
for resilient smart manufacturing.

• The previous studies do not review conventional and
unconventional FDD approaches from the perspective of
both FDDand SH-FT.However, few review papers present
some methods on FDD approaches. For example, (Abid
et al., 2021) reviews data-based models and some com-
bined WB and BB models, called hybrid methods.

• Most of the previous research papers on SH are oriented
towards PdM methods based on the framework of passive
redundancy of equipment for smart manufacturing appli-
cation.

These limitations motivate us to propose a new architec-
ture of a conceptual model in order to define an infrastructure
that is capable of integrating the most used advanced tech-
niques of FDD and SH-FT for intelligent and resilient
manufacturing. In this context, this paper provides a frame-
work to compare existing solutions and highlights promising
research directions in this area for better guidance on future
related research. Table 1 illustrates the distinct merits of this
work compared with recent related review/survey papers in
the literature.
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Fig. 2 The percentage of investigated FDD methods (163 studied papers) and SH-FT (69 studied papers)

It is rare to find previous review papers on SM. In addition,
few of the review papers try to classify faults in manufactur-
ing. Some review papers mainly explain the FDD approach,
whereas other publications cover fault-tolerant control meth-
ods. Furthermore,most of the existing studies donot integrate
self-healing and fault diagnosis techniques, which would
have taken into account the autonomy of the monitoring sys-
tem.

Main contributions of this paper

This paper aims to explain and understand the different
approaches, sub-approaches and methods that could be used
to develop an FDD and SH-FT strategy in smart manufactur-
ing. It strives to fill the gaps in previous reviews by answering
the RQs already mentioned:

• This paper proposes a novel conceptual model that
brings together FDD and SF-FT for smart manufacturing.
(Response to RQ 1).

• It introduces and classifies taxonomies of faults based on
time behavior, faulty location on supervised process (actu-
ator, system, sensor), and the mathematical relationships
of faults with the studied system (additive, multiplicative).
(Response to RQ 2).

• It reviews and discusses the most used FDD approaches
based on the physical models, data-driven approaches,
and signal processing. A comparative study between these
methodologies is carried out to highlight their advantages
and disadvantages. (Response to RQ 3 & RQ 4).

• It reviews the self-healing approach, with emphasis on the
most recent achievements of SH-FT control systems in
SM, in order to highlight their benefits and describe the
best for manufacturing applications. (Response to RQ 5 &
RQ 6).

• It analyzes the existing reviews of FDD and SH-FT in the
literature and promotes an orientation for future research

that could be the key for resilient and smartmanufacturing.
(Response to RQ 7).

Reviewingmethodology

This section provides the reviewing methodology used in
this paper. We analyzed and interpreted about 256 relevant
research in the literature published between 2010 and 2022,
using a classification scheme that included keywords and
key characteristics cluster (Fig. 3). A bibliometric analysis
of FDD and SH-FT in smart manufacturing was conducted
to organize the data from the Web of Science core col-
lection database using VOSviewer software (van Eck &
Waltman, 2010). The VOSveiwer software was used to dis-
close the thematic content of the research papers based on
keyword identification. The keywords included by authors
whichoccurredmore than10 times in theWebofScience core
database from 2010 to 2022 were exported into a Research
InformationSystems (RIS) format and used in the final analy-
sis. The initial search identified 4702 keywords, 130 ofwhich
met the threshold. Keyword combinations were employed
to provide a wide view of research trends in FDD and SH-
FT in SM applications. Figure 3 illustrates the bibliometric
analysis for author-supplied keywords; the size of nodes rep-
resents the frequency of recurrence. Connections between
nodes describe their co-occurrence in the same article. When
there is a short distance between two keywords, the keywords
co-occur more frequently.

To answer the research questions, we mainly used Web of
Science categories such as the Journal of Intelligent Manu-
facturing, the International Journal ofAdvancedManufactur-
ing Technology, Mechanical Systems and Signal Processing,
Production Planning and Control, Processes MDPI, Reli-
ability Engineering and System Safety, IEEE Transactions
on Control Systems Technology, Sensors and Actuators A:
Physical, etc.
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Fig. 3 Bibliometric analysis of author-supplied keywords

The search was narrowed to the following keywords and
titles that contain these keywords: fault detection, fault diag-
nosis, smart manufacturing, fault-tolerant control, conven-
tional and unconventional approaches, data-driven model,
active control, passive control, PCA for smart manufactur-
ing, CNN in industrial process, parameter estimation, state
estimation, and signal processing in manufacturing.

The inclusion criteria of the reviewed method were as
follows (Fig. 4):

1. Articles published between 2010 and 2022 in English
language documents.

2. Search on published papers on fault classifications in SM.
3. Search on survey, review and published papers on FDD

in SM.
4. Search on survey, review and published papers on SH-FT

in SM.

In this paper, we present and explain the SM concept and
review papers related to the complexity of SM, which is
composed of different layers and sub-systems (IoT, M2M,
WSAN, WBAN, etc.). We then divide the reviewing method
into three main parts. The first part involves research in
general about faults in SM. We classify faults according to
SM layers, and there are sub-sections on fault classification
based on time behavior, fault locations in the process, and

fault equations. The second part is concerned with the FDD
approach. Relevant research articles are carefully reviewed
and analyzed, while appraising their applications in SM.
There is an appropriate classification of the FDD approach
based on physical models, data-driven models, and signal
processing. Moreover, a comparison of different techniques
highlights their advantages and disadvantages and provides
a qualitative benchmark for the FDD steps (detection, isola-
tion, and identification). The last part investigates and reviews
the SH-FT approach in SM under the general framework
and FTC methodologies. Subsequently, it focuses on FTC
approaches in SM, classifying (active and passive FTC) and
comparing them. In the end, we conclude and highlight some
promising directions for future work.

This paper is organized as highlighted in Fig. 5. Section 1
introduces the study, with a sub-section on related works and
their limitations and the main contributions of the current
study. InSection 2, a novel conceptualmodel of FDDandSH-
FT is proposed. Section 3 presents fault classifications in SM
(based on time behavior, fault locations and fault equations in
the supervised system). In Sect. 4, the most used fault diag-
nosis approaches are reviewed and discussed, with a special
focus on their development, advantages and disadvantages
in SM. Section 5 presents and critiques the state of the art in
self-healing and fault-tolerant approaches, highlighting their
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Fig. 4 Descriptive schema of the review method

advantages and disadvantages. Section 6 concludes the study
and proposes some directions for future work.

Proposed conceptual model of FDD and SH-FT for SM

Amodel often describes the proper operations of a manufac-
turing system without faults or failures. Different research
studies integrate diagnostic approaches and methods into the
modeling of a supervised system, taking the nominal condi-
tions or just simple additive and/or multiplicative faults into
consideration. This considerably limits the efficiency and
usefulness of real applications, especially for smartmanufac-
turing and complex operations. Themain principal challenge
in smart manufacturing concerns not only the different types
of faults but also the nature of the faults, their occurrence
time (online or offline), and the combinations (multi-faults
in serial or parallel or both). These assumptions show the
difficulty in developing a smart manufacturing model, taking
into account the different layers and sub-systems. It is against

this backdrop that we propose a novel conceptual model of
FDD and SH-FT for smart manufacturing to overcome these
difficulties.

The proposed architecture makes it possible to conceptu-
alize the flow of data between different layers of SM as well
as the interaction between its interconnected sub-systems in
order to ensure advanced monitoring based on multi-fault
diagnosis and self-healing (see Fig. 6).

In Fig. 6, a control system in a supervised process (block
1) is made up of three parts: the process, the sensors and
the actuators. The smart fault diagnosis (block 2) can be
described in three steps: fault detection, isolation and identi-
fication. In the first step, the objective of this block is to detect
faults in the different SM layers. These faults may be related
to the sensors, actuators or even processes of the different
heterogeneous and interconnected systems constituting the
supervised manufacturing system. In the second step (fault
isolation), the smart fault diagnosis block receives the differ-
ent residual signals estimated according to the fault detection
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Fig. 5 Diagrammatic outlook of the organization of the paper

Fig. 6 Conceptual block model of smart fault diagnosis and self-healing for smart manufacturing systems
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result. Subsequently, a fault matrix relating to the number of
sensors and actuators and the type of the considered fault
is generated. The signature of this matrix provides relative
information on the type of the defective sensor or actuator
or on the faulty process. The third step is fault identification,
which usesAImethods to process the data. Diagnostic proce-
dures generally rely on some data collection options to obtain
real-time information and data induced by any faults. This
information could (block3) be associatedwith different prop-
erties of the fault, like its type, nature, time of occurrence,
origin, etc. As shown in the data collection block (block 3),
the first option is based on the data directly measured from
the sensors. The second option relies on the diagnosed sig-
nals computed from the physical model, if it exists. The third
option relies on real-time data saved in the cloud. The self-
healing and fault-tolerant approach (block 4) preserves the
stability and optimal operation of the supervised system even
with the existence of faults. This can be realized by active
and passive methods. A new concept is proposed to main-
tain and recover a faulty system by reconfiguration of the
controller and/or the model without external intervention.
The proposed conceptual model has a significant positive
impact on robust and resilient manufacturing, improving the
response time and minimizing potential faults in the man-
ufacturing process. This reduces the maintenance cost and
time.

Fault classifications in SM

Several attempts have been made in the literature to classify
faults in SM. These faults can be classified into: hardware
faults, which mainly affect the physical layer of the SM
model; networking and communication faults, which are
observed in the communication layer and involve incompat-
ibility of protocols between different applications, such as
due to non-recoverable data and packet sending; and soft-
ware faults, which can affect all layers of SM and include,
for example, bit-flips (error in data source), failure during
subroutine execution, run-time failure, and malfunction of
some parts of the software (Abbas & Zhang, 2021; Abid

et al., 2021; Kim et al., 2019). The literature review shows
other criteria for fault classification. The classification could
be based on the time behavior of the studied fault or on the
location of the fault in the supervised process (actuator, sys-
tem, or sensor). The third type of fault classification is based
on the fault equation; under this classification, a fault could
be additive or multiplicative.

Fault classification based on time behavior

The principal of fault classification based on time behavior
is illustrated in Fig. 7. This figure shows mainly three kinds
of faults: abrupt, intermittent, and incipient (ramp) faults. An
abrupt fault can be defined as a sudden failure of the element
(total or partial disconnection), i.e., a stepwise change. An
abrupt fault has more serious consequences and can lead to
damage in the machine or system that cannot be resolved
unless there is effective repair or replacement of the faulty
component. Abrupt faults are easy to detect (Heydarzadeh
& Nourani, 2016). Intermittent faults are a special case of
abrupt faults. Its symptoms appear only at certain times or
under certain operational conditions in the system (Sedighi
et al., 2013). Because of its slow evolution over time and its
gradual derivative, an incipient fault is considered the most
difficult fault to detect. Such a fault is typically described as
a drift fault (Zhou et al., 2018).

Fault classification based on fault location

Fault classification based on fault location (actuator, system,
sensor) is described in Fig. 8. Actuator faults occur as a total
or partial loss of control action. A situation whereby a ‘stuck’
actuator generates no (controllable) action despite the input
commands is considered a total actuator fault. Actuator faults
occur as a result of breakage, shortcuts, cut wirings, or the
existence of an exterior body in the actuator; rolling element
bearing faults are described as defects in the inner and outer
races and ball damage (Hagh et al., 2021; Khalil et al., 2022;
Rai & Upadhyay, 2016; Sun et al., 2022).

Fig. 7 Fault classification based on time behavior
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Fig. 8 Classification of fault
based on fault location

Sensor faults describe the difference between the mea-
sured and actual value of a system’s output variable. They are
further categorized into total and partial faults. A total sen-
sor fault generates information that is unrelated to the value
of the measured physical parameter because of, for instance,
lost contact with the surface or broken wires. A partial fault
sensor provides readings that are connected to the observed
signal in such a way that relevant data can still be extracted.
Sensor freezing, degradation of performance or loss of accu-
racy, drift, and calibration error are some common sensor
faults (Foo et al., 2013; Han et al., 2020; Jana et al., 2022;
Kommuri et al., 2016; Li et al., 2020a, 2020b; Li et al., 2016;
Liu et al., 2020; Liu & Shi, 2013; Okafor & Delaney, 2021;
Saeed et al., 2021; Ye et al., 2020).

System or process faults are those that exist in the compo-
nents of the process. The physical parameters of the process
are altered by a process fault, which leads to variations in the
usual system dynamics. Examples include leakage in tanks,
cracks, and breakages in gearbox systems. All faults that
cannot be classified as actuator or sensors faults are defined
as system faults. The most typical causes of these faults are
structural defects, such aswear and tear and component aging
(Amin et al., 2018; Melo et al., 2022; Xu et al., 2022).

Fault classification based on fault equation
in the supervised process

A fault may also be classified as additive (Block 1, Fig. 9)
or multiplicative (Block 2, Fig. 9) based on the fault equa-
tion. Additive faults are unknown signals that could add to
the input or output of the system and generate changes in the
system’s output independent of the known input. Generally,
sensor and actuator faults are considered as additive faults,
whereas changes in process parameters are described as mul-
tiplicative faults (Hao et al., 2014; Li et al., 2018; Rotondo
et al., 2016; Talebi & Khorasani, 2013; Yang et al., 2021;
Zhang & Basseville, 2014; Zhang et al., 2019).

Fault detection and diagnosis approaches

In recent decades, Fault Detection and Diagnosis (FDD)
has attracted significant attention in automation control, and
systems with faults can lead to irreparable damage. FDD
approaches are addressed inmany areas, especially those that
require critical security vigilance where no level of tolerance
is acceptable. Different fields of applications can be cited

Fig. 9 Additive and multiplicative faults
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such as industrial applications (Aguilera et al., 2022; Jiang
&Yin, 2018; Jiang et al., 2018; Liang et al., 2018; Liu, 2020;
Nor et al., 2017; Oliveira et al., 2017; Schubert et al., 2011;
Sidhom et al., 2021; Tao et al., 2020; Yin et al., 2014; Zhou
et al., 2022), energy applications (Elmasry & Wadi, 2022;
Gopakumar et al., 2018; Kamga Sagoun., 2021; Kurukuru
et al., 2020; Lin et al., 2020; Mansouri et al., 2021; Reddy &
Raju, 2020; Sidhom et al., 2016), chemical industries (Fazai
et al., 2019; Harinarayan& Shalinie, 2022; Jiang et al., 2013;
Ng & Srinivasan, 2010; Nor et al., 2020; Taqvi et al., 2021)
and biomedical sciences (Badri et al., 2016, 2017; Chihi &
Benrejeb, 2018; Dhaou Olfa, 2016).

Research on FDD show that fault detection and diag-
nosis approaches are mainly classified into three based on
physical model, based on data or based on signal process-
ing (see Fig. 10). The physical model-based and data-driven
approaches are each classified into quantitative and quali-
tative methods. Here, we classify FDD approaches mainly
according to the most used methods in SM applications.

Fault diagnosis based on physical models

This FDD approach is also known as the White-Box (WB)
method. The main challenge of this approach is the devel-
opment of a mathematical model that accurately represents
the studied process, considering the many reconfigurations
involved in the manufacturing process or the complexity
of the considered phenomena. Although physical models
can effectively reproduce the behavior of the real system,
their complexities cause some difficulty during the practical
implementation FDD techniques based on physical models.

This is due to their high dependence on several environmen-
tal, physical, and mathematical assumptions (Enciso et al.,
2021; Wu et al., 2022; Zhao & Shen, 2019). FDD approach
based on the physical model includes two sub-categories:
quantitative and qualitative methods (Sun et al., 2019).

Physical model-based quantitative methods

Parity space

The parity space method allows the parity (coherence) veri-
fication of a process with measurements from sensors and
known inputs (control signal). A parity space consists of
residuals determined by evaluating the analytical redundancy
relations between the input and output signals of the real sys-
tem. These residues are highly sensitive to defects. So, the
presence of any incoherence necessarily indicates the pres-
ence of faults. This method facilitates data analysis for fault
isolation. It is well known and applied to linear dynamic
systems (Blesa et al., 2016; Wu et al., 2022; Zhong et al.,
2015, 2018, 2021, 2022). (Tolouei et al., 2017) presented a
method for sensor fault detection based on a nonlinear parity
technique that could be applied to pH neutralization systems.
This method can quickly and precisely determine the time of
fault occurrence, as well as efficiently identify and isolate the
sensor fault on the pH channel. The conceptual model of this
method is generally quite advanced, and simulation is mainly
used to verify it. Despite these applications, the parity space
is poorly suited to nonlinear models, non-additive faults and
multiplicative faults (Enciso et al., 2021).

Fig. 10 Classifications of FDD approaches
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State estimation

Another quantitativemethod exists for the FDDmodel-based
approach, which is the state estimation method. It is the
most popular method and offers simple calculation while
being robust to measurement noise; furthermore, it is appli-
cable to linear and nonlinear systems (Chadli et al., 2017;
Mann &Hwang, 2013; Tornil-Sin et al., 2012; Zhao & Shen,
2019). The basic idea of such a method is to use an observer,
a filter, or estimators to estimate system states from mea-
surements. For linear systems with deterministic states, the
observation problem was introduced in the 1960s by Luen-
berger (Goncalves et al., 2019). On the other hand, for a
stochastic or random system, the Kalman filter is the most
adequate (Qian et al., 2017). For nonlinear systems, the state
estimation problem or the observation problem remains an
active field of research. As a result, multiple solutions exit
in the literature, and they are classified based on the system
class. The fault diagnostic issue in nonlinear systems with
multiple incipient faults in sensors was examined by (Wu
et al., 2017), who suggested a new FDD technique based on
sliding-mode observers and total measurable residual fault
information. They divided the original system into two sub-
systems, one with sensor faults and the other with actuator
faults, using a state and output transformation technique. (Pil-
tan&Kim, 2018) presented a newobserver based on the FDD
approach according to a variable structure of a feedback lin-
earization observer, in order to improve the robustness of the
traditional feedback linearization observer method as well
as the fault diagnosis performance in rotating machinery. To
identify and diagnose actuator and sensor faults in nonlin-
ear chemical processes, (Emanuel Bernardi, 2020) developed
two types of observers based on the linear parameter vari-
able technique. (Pignati et al., 2017) developed real-time
fault detection and faulted line identification functionality
using the concurrent computation of synchro phasor-based
state estimators. The suggested method successfully iden-
tified the faulted line regardless of the neutral connection,
fault type, fault impedance, or fault position along the line.
The method is based on the state estimate, which does not
automatically depend on the nature of the loads or genera-
tors. Therefore, the presence of distributed generation does
not affect the accuracy of fault location. (He et al., 2013)
presented least-squares FDD for networked sensing systems
using a direct state estimation method. Any real physical
system is exposed to unavoidable disturbances, the most
common being measurement noise. These disturbances are
translated by a change in the system model, just like defects.
Among the drawbacks of this method is the need for an accu-
rate and complete physical model and its poor adaptation to

complex processes (He et al., 2013; Sidhom., 2017; Xu et al.,
2017).

Parameter estimation

The parameter estimation method makes it possible to esti-
mate the parameters rather than the state. It introduces an
identification technique based on a system’s model and its
input–output signals. Usually, the effect of faults may well
show up in the parameters of a system. Actual process
parameters can then be estimatedmultiple times using online
parameter identification methods (Sidhom et al., 2021). The
estimated parameters are then compared to those of the nom-
inal model. Any substantial difference indicates a fault. Such
a method is often used in the automotive industry because
it is suitable for identifying multiplicative faults affecting
the parameters, but it has a high number of variables. It
also requires a permanent excitation of the physical system,
which is not always obvious for systems operating in sta-
tionary mode. The disadvantage of parameter estimation lies
in the definition of the relationship between mathematical
and physical parameters, which is not always invertible. This
makes it difficult to use for complex installations due to the
large number of variables involved. According to (Gao et al.,
2015), only the model’s structure need be known because it
is presumed that faults will reflect in the system parameters.
The fundamental tenet of the detection approach is to deter-
mine the parameters of the actual process online and compare
them with the original observations (reference parameters)
under healthy settings. If the model parameters have an
explicit mapping with the physical coefficients, the parame-
ter estimation-based fault diagnosis techniques are relatively
simple (Chi et al., 2022). (Tran & Fowler, 2020) proposed a
parameter estimation method combined with recursive least
squares for sensor fault diagnosis in lithium-ion batteries
in electrical vehicles. (Duan & Zivanovic, 2016) used the
parameter estimation method for fault detection in an induc-
tion motor stator. (Ugwiri et al., 2022) proposed a parameter
estimation algorithm for fault detection and classification in
centrifugal pumps. (Liao et al., 2021) developed injection
molding machine parameter estimation.

Physical model-based qualitative methods

Fuzzy logic

The fuzzy approach involves building a ‘fuzzy inference
system’ that can imitate the decision-making of a human
operator based on verbal rules that translate the operator’s
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knowledge of a given process. This technique allows an
approximation of the behavior of a complex system with
rules that have no clear semantic meaning (Abbas & Zhang,
2021; Adhikari et al., 2016). Fuzzy interface systems have
the capacity to map nonlinear functions, indicating a connec-
tion between inputs (symptoms) and outputs (failure modes)
by using fuzzy rules from “if condition, then conclusion”. A
fuzzy interface system usually consists of four components
which are the fuzzifier, the interface system, the rule base and
the defuzzifier (Djelloul et al., 2018). Some research papers
have studied the application of fuzzy logic to fault diagno-
sis. (Safarinejadian et al., 2015) proposed a fault detection
method based on interval type-2 fuzzy sets for nonlinear sys-
tems. The results showed the effectiveness of the proposed
method. In (Adhikari et al., 2016) presented a fuzzy logic
approach for online fault detection and classification of trans-
mission lines. The results demonstrated that the proposed
approach was capable of rapid fault type classification and
right-tripping action, making it suitable for use in real-time
applications. (Nasiri & Khosravani, 2019) presented fuzzy
case-based reasoning for fault detection in injectionmolding.
The results showed the accuracy of the proposedmethod. (Qu
et al., 2020) suggested employing non-singleton fuzzy logic
with extended linguistic concepts and rules to detect faults in
wind turbines. The findings of the experiment demonstrated
that the suggested method might successfully identify early
faults in wind turbines and provide more details about fault
severities. (Nasser et al., 2021) developed a method for intel-
ligently diagnosing and locating faults in analog electronic
circuits by using a fuzzy logic classifier. The test results for
the proposed approach indicated that it had an average of
98% F-score accuracy in diagnosing a faulty component in
the circuit.

Fault diagnosis based on data

This approach is also called the ‘Black-Box’ (BB) or ‘empir-
ical’ method. It is based on data that describes the behavior
of the supervised system, which constitutes an efficient
alternative (Brito et al., 2022), where the necessary pro-
cess information can be directly extracted from enormous
amounts of recorded process data (Cerone, 2017). Fault
diagnosis based on data depends mainly on the quantity
and quality of the data. It also requires a high computing
time in the training step (Chen et al., 2021a, 2021b; Huang
et al., 2022; Kou et al., 2020; Sinitsin et al., 2022; Wang
et al., 2020a, 2020b; Wang et al., 2021a, 2021b). Indeed, the
data-based approach has received huge attention in diverse
manufacturing applications and has been widely applied to
complex industrial process diagnosis and monitoring.

Methods related to this approach are also divided into
qualitative and quantitative methods.

Data-driven quantitative methods

Principle component analysis (PCA)

Principle Component Analysis (PCA) is one of the various
multivariate statistical FDD approaches that have been used
in complex industrial processes to detect unidentified abnor-
malities occurring during the operations (Harmouche et al.,
2015; Ahmed, 2012). PCA aims to reduce the dimensions
of the original dataset by projecting it onto a lower dimen-
sional space while keeping a large number of connected
variables (core elements) and maintaining as much variation
as exists in the dataset (Herve Abdi, 2010; Miljković, 2011).
To identify open circuit faults in modular multilevel convert-
ers, (Houchati et al., 2018) employed the PCA technique and
a sliding mode observer. As a result of this research, PCA
has excelled among sliding mode observers in terms of fault
detection speed, regardless of the fault location. According
to (Du et al., 2022), more than 80% of all aviation system
failures were caused by sensor faults. The authors introduced
division-based sensor fault diagnosis techniques in the flying
status and used PCA to create a diagnostic model for each
situation. The findings of the experiment indicated that the
used method could successfully enhance quick identification
of single fault sensors. One disadvantage of this method is
that it only works with linear systems. As a result, model-
ing a nonlinear system using PCA as a linear solution may
decrease the fault diagnosis efficiency. To avoid this draw-
back, an extension of the basic PCA, called kernel PCA, was
proposed by (Navi et al., 2015). This PCA version suggests a
K principal component analysis. The authors tested the sen-
sors of an underwater vehicle. Results indicated that, when
compared to PCA, the KPCA method could generate warn-
ing signals more effectively and was more sensitive to faults.
(Sun et al., 2021) proposed an adaptive fault detection and
root cause analysis schema for complex industrial processes
using moving window KPCA and information geometric
causal interface. The results showed the proposed scheme
able to reduce the faulty alarms and missed detection rates
and locating causes of faults.

Besides the PCA method, AI-based methods are can
solve issues related to complex and non-linear processes. For
example, (Gravanis et al., 2022) proposed anFDDframework
for non-linear industrial process empoweredbydynamicneu-
ral networks. They evaluated the proposed approach for 18
different faults. The simulation findings showed that this
methodology performs better than current solutions for the
majority of those faults. (Peng et al., 2022) provided s system-
atic review of approaches based on data for fault diagnosis
and early warning. (Angelopoulos et al., 2020) reviewed
machine learning solutions for faults in Industry 4.0. For
high-noise industrial environment, (Lyu et al., 2022) pro-
posed a new method for smart bearing fault diagnosis based
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on a residual building unit, soft thresholding and a global
context for motors. (Li et al., 2022) proposed an intelligent
fault diagnosis technique using deep learning for bearings
under unbalanced data conditions.

Convolutional neural network (CNN)

Convolutional Neural Network (CNN) has been used in bear-
ing fault diagnosis (Chen et al., 2021a, 2021b; Eren et al.,
2019; Liu et al., 2019; Pan et al., 2018; Peng et al., 2019; Peng
et al., 2020; Sinitsin et al., 2022; Wang et al., 2020a, 2020b;
Wang et al., 2021a, 2021b; Zhao et al., 2020; Zhong et al.,
2019). (Kouet al., 2020) developed amulti-dimensional, end-
to-end CNN model for fault diagnosis in rotating devices
in high-speed train bogies. (Huang et al., 2022) proposed a
new fault diagnosis method based on a combination of CNN
and long short-term memory network for complex systems.
It was proven that the predictive accuracy and noise sensi-
tivity of fault diagnosis could significantly increase when
the proposed method was applied to the Tennessee East-
man chemical process. (Jin et al., 2021) developed a fault
diagnosis method based on CNN for rotating machines to
recognize fault types quickly and precisely and increase the
efficiency of fault diagnosis. Two mechanical datasets were
used in the experiments to test the efficacy of the suggested
method.Themethodmatched excellent existingones in terms
of accuracy, achieving about 100% accuracy for data used
with typical signals, while maintaining good performance
under various dynamic loading. (Hsu & Liu, 2021) proposed
a multi-time convolutional neural network model for fault
diagnosis in semiconductor manufacturing. The experimen-
tal results shows that the suggestedmethod effectively detects
the faults comparingwith othermultivariate time seriesmeth-
ods. (Zhang et al., 2023a, 2023b) described a new method
based on sample reliability assessment and improved CNN.
The findings demonstrate the designed method can reduce
the negative impact of issues during the training time includ-
ing imbalanced sample, overfitting and class imbalance.
Thereby, the performance of fault diagnosis is improved.

Artificial neural network (ANN)

Artificial Neural Network (ANN) is considered an effective
technique for the detection of faults, particularly incipient
faults (Castresana et al., 2022; Rahman et al., 2019; Soto
et al., 2019; Zakaria et al., 2012). A new technique developed
by (Jayamaha et al., 2019) is based on ANN and a wavelet
multiresolution analysis approach for quick fault detection
and isolation in DC microgrids without de-energizing the
existing network. The outcomes showed the effectiveness
of the proposed scheme in terms of quick and accurate
fault localization as well as fast and reliable fault detection.

(Zhakov et al., 2020) appliedANNfor fault detection onover-
head hoist transport systems for semiconductors. The result
showed that ANN offered precise real-time fault detection,
enabling a needs-based, resource-saving, and effective main-
tenance process for robust overhead hoist transport systems
and, consequently, constant semiconductor manufacturing.
Few research works on hybrid methods under certain condi-
tions, for instance (Capriglione et al., 2018), have proposed
a hybrid method combining NARX with ANN. This method
is applied to the rear suspension stroke sensor in motorcy-
cle design. The effectiveness of the scheme lies in its ability
to identify various fault types, such as un-calibration faults,
which are caused by slight variations in the input/output sen-
sor curve, and hold faults, which are caused by the breaking
of the potentiometer cursor, open circuit, and short circuit.
All the resultswere obtained through experimental tests. (Lee
et al., 2022) proposed an ANN, correlation and fitness value-
based feature selection and multi-resolution analysis-based
fault-detection system for malfunctioning induction motors.

Support vector machine (SVM)

Support Vector Machine (SVM) is a well-known machine
learning classification method based on a small number of
samples of information. It is used in many sectors such as
mechanical fault diagnosis, face recognition, biomedicine,
brain-computer interfaces, and financial applications (Gupta
et al., 2019; Li et al., 2020a, 2020b; Morra et al., 2010; Pour-
saeidi&Kundakcioglu, 2014; ShiHong, 2011; Tanveer et al.,
2021; Widodo &Yang, 2007; Zheng et al., 2017; Zhou et al.,
2010). (Widodo & Yang, 2007) reviewed and summarized
the development of SVM for monitoring and fault diagno-
sis. For wind turbine transmission systems, a new diagnosis
technique based on manifold learning and Shannon wavelet
SVM support was proposed by (Tang et al., 2014). The effec-
tiveness of the suggested method was demonstrated through
the implementation of fault diagnosis in the gearbox of a
wind turbine. The proposed method, which achieved up to
92% accuracy, showed greater accuracy than existing meth-
ods. (Zheng et al., 2017) proposed a new method of FDD for
rolling bearing based on compositemulti-scale fuzzy entropy
and ensemble SVM. In fact, the composite multi-scale fuzzy
entropy was used to examine the complexity of rolling bear-
ing vibration signals and extract hidden (unknown) nonlinear
features from the vibration signals. An ensemble SVM-based
multi-classifier was developed for the purpose of effectively
classifying fault features. This method successfully differ-
entiated between various bearing fault types and the degree
of severity. (Lin, 2021) proposed a medium Gaussian SVM
approach for application machine learning to mortar bear-
ing fault diagnosis. The findings demonstrated that, under
situations of varying crack-size and load, the medium Gaus-
sian SVM approach enhanced the reliability and accuracy of
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motor bearing defect prediction, detection, and identification.
According to experimental findings, the medium Gaussian
SVM intelligent diagnosis approach showed a 96% accuracy
rate when using nine features of motor bearings, which is
superior to the 89.6%and93.6%accuracy rates of thefine and
coarse Gaussian SVMs respectively. (Huerta-Rosales et al.,
2021) used an approach based on statistical time features
and SVM to diagnose a transformer in various short-circuited
turns conditions, obtaining an accuracy of 96.82% for such an
application. (Tanveer et al., 2022) highlighted the benefits of
the SVMmethod,which uses the structural riskminimization
principle to improve generalization and lower training phase
error. Since it is created for binary-class classification, many
SVMs must be integrated in a certain way to provide multi-
class classification. SVM learning requires a lot of time for a
huge volume of data, while some approximation approaches
are employed to speed up the computing time. This reduces
the classification performance.

Data-driven qualitative methods

Expert systems

The expert system is a computer program that simulates
the decision-making of a human expert. Compared with
traditional programs, expert systems are designed to han-
dle and solve complex problems by using knowledge to
reason like experts rather than by following a developer’s
instructions. Classically, expert systems consist of four com-
ponents: knowledge acquisition system, knowledge base,
inference engine andman–machine interface (Li et al., 2013).
(Venkatasubramanian et al., 2003) highlighted some advan-
tages of designing expert systems, such as the ease of design,
the ability to reason (make a decision) under uncertainty, and
the ability to provide explanations for the solutions provided.
However, expert systems have limitations, as they are dif-
ficult to update and have very specific applications. Some
research articles have investigated the application of expert
systems to fault diagnosis. One such fault diagnosis sys-
tem was developed for wind turbines by using confidence
production rules and an expert system self-learning method
(Deng et al., 2017). (Al-Jonid et al., 2018) proposed a fault
diagnosis expert system for semiconductor manufacturing
equipment using a Bayesian network. The results proved
the accuracy of the used method. (Wang, 2018) designed
a fault diagnosis model of mechanical equipment fault fea-
tures of a vibration system based on an expert system using
Abaqus software. The results demonstrated that the system
successfully increased the capability of fault diagnosis of the
vibration system of mechanical equipment. (Berredjem &
Benidir, 2018) proposed a fuzzy expert system for bearing

fault diagnosis byusing improved range overlaps and the sim-
ilarity method. The result showed the efficiency and validity
of the proposed method. (Xu et al., 2020) presented a belief
rule-based expert system for fault diagnosis of marine diesel
engines. The proposed system was applied to abnormal wear
detection in a marine diesel engine. The performance of the
proposed method was compared with other models (ANN,
SVM, and binary logistic regression models), with fivefold
cross-validation, and the result demonstrated that the pro-
posed expert system outperformed the compared methods in
terms of stability, accuracy and the effectiveness of concur-
rent fault detection.

Fault trees

Fault tree analysis identifies the potential causes of faults or
failures in a system by analyzing the suspicious components
and their related failuremodes thatmayhave caused the issue.
Fault tree analysis is a common tool in reliability and risk
management that can support decision-making in complex
systems (Jimenez-Roa, 2022). When an error occurs, engi-
neers carefully investigate all data during the operation to
perform fault diagnosis (Lee et al., 2005). Fault tree analysis
generally consists of four steps as follows: system definition,
fault tree creation, qualitative evaluation, and quantitative
evaluation. It provides a computational method for combin-
ing logic to investigate the faults in a system. Moreover, it is
considered an interesting method because it allows the use
of AND, OR, and XOR logic nodes rather than the predom-
inantly OR node shown in digraphs. This reduces erroneous
solutions and provides a better representation of the system.
However, the main issue with fault trees is that they are prone
to errors at various points in the development phase (Venkata-
subramanian et al., 2003). With the intelligent industry, the
availability of inspection and monitoring data is increasing,
making techniques for extracting knowledge from large data
sets relevant. (Gao et al., 2018) presented a fault diagno-
sis system based on fault tree for electric vehicle charging
devices. The results showed that fault tree analysis could
identify the fault location. Fault tree analysis for network
fault diagnosis was employed to assist network maintenance
managers in identifying faults with maximum probability
and improving the effectiveness of network fault diagnosis
(Wang, 2022).

Fault diagnosis based on signal processing

The primary elements of FDD are symptoms, which are rep-
resented by signals or observers connected to the faults. The
residual, which represents the deviation of a certain system
characteristic from its fault-free status, is awidely used symp-
tom. Thus, if the residual is not zero, the system is alerted
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to faults (Okada et al., 2021). Most residuals are produced
by signal analysis-based approaches, which are created by
comparing amplitudes in the frequency spectrum, in signal
amplitudes in the time domain, and from statistical informa-
tion (Brkovic et al., 2017; Fan et al., 2018; Heydarzadeh &
Nourani, 2016). The Wavelet Transform (WT) technique is
the most used FDD based on signal processing approach.

Wavelet transform (WT)

WT is an analytic technique for time-varying or non-
stationary signals which uses a scaling concept to describe
spectral decomposition (Bouzida et al., 2011). (Chen et al.,
2016a, 2016b) reviewed aWTmethod, which is based on the
inner product, for fault diagnosis in rotating machines and
proposed a new WT methodology for use in the decomposi-
tion of the sensor signals in a process. Wavelet transforms
are traditionally classified as Discrete Wavelet Transform
(DWT), ContinuousWavelet Transform (CWT) andWavelet
Packet Transform (WPT) (Li & Chen, 2014). Therefore, all
wavelet techniques are limited by the choice of the wavelet
basis used in the applications, which has a direct impact on
fault detection accuracy, particularly in weak fault diagno-
sis (Chen et al., 2016a, 2016b). The advantages of WT are
described in (Chen et al., 2016a, 2016b), including its enor-
mous power in condition monitoring and fault detection of
mechanical equipment due to its ability to perform multi-
resolution analysis. This is helpful in finding weak problem
features in noisy data. (Saravanan & Ramachandran, 2010)
investigated the use of DWT for feature extraction and ANN
for classification in gearbox fault diagnosis. (Anwarsha &
Babu, 2022) reviewed and summarized aWTmethod, called
the tunable q-factor wavelet transform, in rolling element
bearings. Depending on the q-factor number, this method can
divide any vibration signal into low q-factor, high q-factor,
and residual components. This method can be applied to
rolling element bearing fault diagnosis for feature extraction,
signal denoising, and automatic defect detection. A hybrid
method based on CNN and DWT was developed for fault
diagnosis of power cables (Wang et al., 2022). The test results
demonstrated that the describedmethod had outstanding per-
formance in terms of recognition accuracy, achieving 97.5%,
and rapidly identified the fault status of power cables. (Han
et al., 2022) proposed a hybrid solution defined by a dual tree
complexWPT and time-shiftedmulti-scale range entropy for
fault diagnosis of rolling bearing. The results showed high
effectiveness in the determination of different fault types in
different bearings. The method was also able to pre-screen
healthy bearings and improve the accuracy of identifying the
types of bearing faults. A combination of flexible analytical
WT and fuzzy entropy approaches for fault diagnosis of bear-
ings was proposed by (Malhotra et al., 2021) Experiments

showed that this method had advantages in fault identifica-
tion and bearing severity.

Differentiator design

(Sidhom et al., 2018) presented a new method based on
robust differentiator design. It is important to emphasize
that all measured signals from a physical process repre-
sent useful information. This information is represented by
a low-frequency signal compared to noise. Useless informa-
tion includes disturbances and noises. The noises can have
different sources of origin, such as electrical, thermal, dig-
ital, etc. The obvious presence of noise in the signal to be
derived is one of the main sources of difficulty in the design
of differentiation algorithms. For example, the well-known
method based on a finite difference presents an exact differ-
entiation in the absence of noise. However, the quality of the
signal derivative is greatly degraded in the presence of noise.
The definition of an ideal differentiator based on such a lin-
ear approach over a frequency band of the considered signal
assumes that the frequency range of the noise must be known
a priori. Therefore, it is possible to place a low-pass filter to
remove the high frequency characteristics of the noise. This
solution can provide satisfactory results in terms of noise
reduction. On the other hand, the presence of a phase shift is
inevitable, which is a particularly disadvantageous effect for
the dynamic system. However, when no or minimal infor-
mation about the dynamics of the signal/noise is known, an
alternative approach based on the sliding mode technique
can be used. A novel FD approach based on a higher-order
sliding mode technique was proposed (Sidhom et al., 2018).
This approach is defined by a new slidingmode differentiator
schema compared to the classic one (Pisano & Usai, 2011).
The aim of this new version is to overcome the problem
of setting parameters while improving precision and robust-
ness with respect to noise. By including a proper low-pass
filter, such an improvement aids in achieving the best com-
promise between the phase shift and the error. Against this
backdrop, a first-order Dynamic Gain Robust Differentiator
(DGRD) has been proposed for a 3 phase, 9-cell cascaded H-
bridge for open-circuit fault detection (Sidhom et al., 2018).
The proposed method calculates the first derivative of the
current to quickly identify the amplified faults using a new
scheme of sliding mode differentiator. Given that the pro-
posed algorithm is very robust to noise, this then makes it
possible to differentiate the measured signals by only ampli-
fying the impact of the faults. Such a proposition can help in
the detection of micro faults in some processes in real-time.
To evaluate the overall efficiency of this method, it is nec-
essary to validate the proposed algorithm with other kinds
of systems and consider other levels of measurement noise
(Sidhom et al., 2018).
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Discussion and comparison of FDD
approaches

Previous research studies indicate that FDD in manufactur-
ing systems does not take multiple faults into account while
considering the problemof interconnection and interpretabil-
ity (Liang et al., 2018; Oliveira et al., 2017; Schubert et al.,
2011). Despite the complexity of industrial processes, most
of the proposed approaches in the literature are based on
linear representations with simple additive or multiplicative
faults. They are based on the modeling of the supervised sys-
tems without fault integration (Chadli et al., 2017; Piltan &
Kim, 2018; Zhao & Shen, 2019).

In this section, we compare the three main FDD classes
(Table 2), highlighting the advantages and disadvantages as
well as the applications of each method. Moreover, we pro-
vide a qualitative benchmark regarding the different steps of
the FDD approach (detection, isolation, and identification)
according to the fault types. As described in Table 2, both
state estimation andANNare effectivemethods for the detec-
tion and diagnosis of additive, multiplicative, and incipient
faults, while PCA is an effective method for the detection
and identification of abrupt faults in linear systems. Fault
tree is effective for the localization of abrupt and intermittent
faults, whereas DD is a powerful method for the detection
of abrupt, intermittent and incipient faults. The rest of the
methods demonstrate their effectiveness in the detection and
isolation of various faults.

Self-healing systems and fault-tolerant approaches

SM systems are vulnerable to many kinds of hardware
and software faults. These defects can be amplified by
closed-loop control systems, and faults can develop into
malfunctions of the loop. Self-healing approaches can main-
tain efficient behavior of the supervised system, even with
faults. Self-healing has its origin in fault-tolerant and self-
stabilizing systems research (Psaier & Dustdar, 2011).
Fault-tolerant systems handle transient failures andmask per-
manent failures in order to return to a valid state (Luo et al.,
2022). Self-stabilizing systems are considered a non-fault
masking approach for fault-tolerant systems (Altisen et al.,
2021). From the perspective of the process control frame-
work, Self-Healing and Fault-Tolerant (SH-FT) approaches
are categorized into two kinds of methods: passive and active
Fig. (11).

Passive fault-tolerant control

Passive SH-FTmethods consist in the development of robust
control techniques. For such a method, the list of potential
malfunctions is assumed to be known a priori as basic design

Fig. 11 Categories of self-healing and fault-tolerant approaches

defects and is considered in the design phase of the con-
trol system. The key role of the robust control technique is
to guarantee the insensitivity of the closed-loop system to
some known sets of faults. In such cases, no online fault
information systems are used. Thus, the term “passive” indi-
cates that no additional action is taken by the control system
in response to the malfunction. In other words, the controller
handles defects passively. This method is based on the sim-
ple idea that faults represent disturbances that the control law
must consider from its initial design. Figure 12 describes a
schema of passive FTC system. To begin with a reference
signal which represents a desired output applied to a super-
vised system which composed mainly of 3 blocks. Actuator
is a component of machine responsible to convert an input
signal, that received from FTC passive block, into physi-
cal action. A system could be represented by a physical or
behavior model of the studied process. A sensor is defined
as a device that measure the physical properties such as tem-
perature, pressure, humidity, acceleration, etc. and convert
them into electrical or digital signals. The red signs repre-
sent the different kind of faults that could affect the actuator,
system, sensor. The green arrow demonstrates the feedback
signal from sensor to comparator in order to calculate the
error between the actual output and the reference signal. The
FTC passive block is a controller which designed for normal
conditions and predefined faults that affect the supervised
system. FTC passive able to take actions offline in response
to faults.

Passive FTC uses robust control techniques with respect
to parametric uncertainties and external disturbances, which
are the defaults (H∞ control, adaptive control, sliding mode
control, etc.) (Chen et al., 2022; Sidhom et al., 2016, 2022;
Stefanovski, 2018; Cerone, 2017).

For time-invariant linear systems, (Amin &Mahmood-ul-
Hasan, 2021) introduced a passive FTC system based on a
Proportional-Integral (PI) controller with a high-gain feed-
back system for air fuel ratio control systems of internal
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Fig. 12 Fault-tolerant passive control schema

combustion gasoline engines. Its effectiveness was evalu-
ated by introducing noise in the sensor measurements. Using
MATLAB (Simulink) for simulation showed the robustness
of the system to faults in normal and noisy sensor conditions.
Probabilistic reliability calculationswere done for themodel.
Other passive methods are available for linear systems, such
as the H2 and H∞ robust control techniques (Sidhom et al.,
2016; Cerone, 2017). This type of controller (H2 and H∞)
ensures the system’s stability and performswell in the face of
disturbances/defects in the external environment. The quan-
tification of robustness is done via the mathematical H2 and
H∞ norms of the Hilbert space. In fact, the H2 norms mini-
mize the transmission of disturbances/faults to the controlled
output. The optimal gain H2 is obtained by solving Riccatti’s
equations or a convex optimization problem formed by Lin-
ear Matrix Inequalities (LMIs). On the other hand, the H∞
norm corresponds to the maximum value of the largest of
the singular values of the transfer between the system out-
put/input over all the frequencies; that is, it corresponds to
the maximum gain of the frequency response.

Various passive actuator FTC techniques have been devel-
oped for different classes of nonlinear systems (Jin & He,
2017; Nasiri et al., 2019; Tao, 2014). For a class of multi-
input, multi-output nonlinear systems with uncertainties,
(Nasiri et al., 2019) introduced passive actuator FTCby using
adaptive sliding mode control. Such a controller is based on
two layers: an adaptive layer and a robust layer. The robust
layer is defined by the sliding mode technique, which is
robust to the disturbances or the unknown dynamics satisfy-
ing the matching condition. Therefore, there are faults at the
process input or output that can be considered disturbances
by the control block. In this case, the robust layer can ensure
the operation of the closed-loop system by taking these faults
into account. The only necessary information is knowledge
of the upper bounds of these faults so that the controller will
correctly consider them. In return, the adaptive layer makes
it possible to compensate for the process faults that result
from modification to the system parameters.

There are various research works on the adaptive scheme
of controllers. For instance, (Kordestani et al., 2018) devel-
oped an adaptive form of passive FTC for an industrial steam
turbine by using an adaptive PCA-based inverse neural net-
work control strategy. (Guezmil et al., 2019) investigated
passive fault-tolerant control for inductionmachines by using
the sliding mode method. The experimental results showed
that the induction machine was continually operating even
though inter-turn short circuits faults existed.

Active fault-tolerant control

In contrast, the active FTC method responds to faults by
reconfiguring the online control law to sustain the stabil-
ity and effectiveness of the system’s nominal values. Active
FTC is designed to meet the control objectives with mini-
mal system performance degradation, either by utilizing a
pre-calculated control law or by synthesizing and updating
a control strategy online. The main objectives of active FTC
are to preserve the stability of the system and, in the case
of system defects, to maintain an acceptable level of perfor-
mance by acting online on the control system in real time.
This is achieved by using the various information collected
about the defects from the FDD block for actuator, sensor, or
system type, as described in Fig. 13. The term “active” indi-
cates that the corrective action under consideration is steadily
adapting the control of the system according to the faults
that may occur in the process. Therefore, active FTC strate-
gies usually respond to real-time fault diagnosis systems in
order to provide the most recent information on the status
of the system being monitored. This method allows for the
most precise information on any fault, including the inten-
sity, time of appearance, type andmagnitude (Yu et al., 2022;
Zhao et al., 2022).

The aims of fault-tolerant active control design are sum-
marized in the following points: first, to develop an effective
fault detection and diagnosis system (the FDD block) that
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Fig. 13 Fault-tolerant active control schema

provides fault information in short time with low uncertain-
ties; secondly, to effectively reconfigure the existing control
scheme in order to ensure system stability and achieve
acceptable closed-loop system performance; and lastly, to
reconfigure the control smoothly and minimize potential
transient switches.

As illustrated in Fig. 13, the active FTC consists of gen-
erally supervised process (actuator, system, sensor) blocks
which make suspectable to various faults (red color), FDI
block, configuration mechanism block and controller con-
figuration block. FDI block provides information online to
the controller about the faults may affect the supervised sys-
tem. The main role of FDI is to detect and isolate the faults.
Configurationmechanism block is responsible to reconfigure
the supervised system parameters to compensate the faults.
Different approaches exists in the literature used in active
FTCdesign such as switching-based active FTC, hierarchical
structure active FTC, safe parking active FTC and Analytical
feedback compensation active FTC (Abbaspour et al., 2020).
The controller (controller configuration block) is designed
to make the necessary adjustment in real time in case of
existing faults or any disturbances in the supervised system.
These last three units (FDI, configuration mechanism, con-
troller configuration) blocks must work in harmony to ensure
successful completion of the control tasks. The green arrow
demonstrates the feedback signal from sensor to comparator
in order to calculate the error between the actual output and
the reference signal.

In general, there are three active control tolerance steps.
The first step is defect accommodation, which considers
defects of small amplitude. The new control law is only an
adaptation (online) of the parameters of the old regulator. The

second step is system reconfiguration, which is used when
accommodation of defects is not effective. It is characterized
by the modification of the structure of the system to com-
pensate for defects. The third step is reconstruction, which
corresponds to the synthesis of a new control law, with new
structures and parameters (Mekki et al., 2015; B.Wang et al.,
2020a, 2020b).

Defect-tolerant active control has a major disadvantage:
it has limited time to act and adapt the new order law.
(Shen et al., 2019) designed an active fault-tolerant con-
trol system for spacecraft attitude maneuvers that focuses
on actuator faults. Simulation results demonstrated the suc-
cess of the proposed method. Based on adaptive sliding
mode control and recurrent neural networks, (B. Wang et al.,
2020a, 2020b) proposed an active fault-tolerant control tech-
nique for a quadrotor helicopter that protects against actuator
faults andmodel uncertaintieswhile directly taking fault esti-
mate errors into account. Through actual experiments using
a quadrotor helicopter exposed to actuator faults and model
uncertainties, the usefulness of this active FTC technique
was confirmed. (B. Wang et al., 2021a, 2021b) developed
a new neural network based on fault-tolerant active con-
trol for fractional time-delayed systems. The experimental
results highlighted the robustness and reliability of the pro-
posed approach for nonlinear systems. (Mrazgua et al., 2019)
proposed a fuzzy H∞ fault-tolerant control (FTC) prob-
lem for T-S fuzzy model-based active suspension systems
with actuator faults. (Han et al., 2021) introduced an active,
physical, and realizable fault-tolerant controller based on a
reduced order observer for vehicle suspension in discrete
time domain. (Zhu et al., 2020) explained active fault-tolerant
control and fault estimation for discrete time systems in
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finite frequency domain. (Hagh et al., 2021) presented an
active fault-tolerant control (FTC) technique for robotic
manipulators that are vulnerable to actuator faults. A simu-
lated two-degree-of-freedom robotic manipulator subjected
to various fault scenarios was used to evaluate the effec-
tiveness of the suggested approach. (Bensalem et al., 2021)
employed a fuzzy controller of speed sensor faults to design
an active fault-tolerant control for 5-phase Permanent Mag-
net Synchronous Motors (PMSM). Experimental tests were
performed in terms of the measured and estimated speed
responses on the 5-phase PMSM drive. Simulation results
demonstrated that the proposed method could achieve 5-
phase PMSM continuous operation even in the event of a
speed sensor fault.

Discussion and comparison of FTC
approaches

Table 3 compares the two main SH-FT approaches while
highlighting their advantages, disadvantages and applica-
tions. Offering our analytical view on previous works, we
emphasize that the methods are adaptive, robust, and ensure
the stability of a supervised system when faced with certain
faults and disturbances in the external environment. How-
ever, the majority of the proposed methods in the literature
focus on actuator faults and system disturbances, and there is
no general methodological framework, including FFD, fault-
tolerant, and self-healing methods, specific to manufacturing
systems. We suggest that future studies should consider the
internal and external behavior of studied systems as well as
the different types of faults that may have a serious effect on
such systems, such as sensor and random faults.

Conclusion

We have summarized and explained different FDD and SH-
FT concepts and approaches for SM applications. This paper
proposes a novel conceptual model of FDD and SH-FT for
smart manufacturing. Moreover, it presents the advantages
and disadvantages of each approach and highlights promising
research directions.

From our analyses and interpretation of 256 papers, we
arrive at the following conclusions:

Concerning fault combinations and taxonomies, the litera-
ture review shows thatmost of the studies consider abrupt and
intermittent faults, whereas a few studies focus on incipient
fault, which is the most frequently occurring fault during the
manufacturing process. Incipient faults are generally related
to the degradation of the equipment, which slowly evolves
over time (e.g.,motor degradation, electric cable degradation,
etc.). In addition, this review paper shows that multi-faults
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have not been extensively investigated by previous studies,
although they are strongly observed in SM due to the inter-
connection and interpretability problems of multi-systems
that constitute the smart manufacturing system. One promis-
ing research direction in this regard is the development of
multi-fault diagnosis methods for SM multi-systems. These
methods should respond effectively to various multi-faults
during operation in real time.

For the FDD approaches in SM, selecting an appropriate
one gives rise to a dilemma. In this context, the main ques-
tion is: What is the best FDD approach to adopt, one based
on equations and physical laws (White Box models) or one
based on the data (Black Box models)? Here, a promising
research direction could be to develop hybrid approaches
that combine physical and data-driven models. However, the
optimal solution depends mainly on various conditions and
hypotheses related to the studied system, its industrial envi-
ronment, and to the interconnection between the different
sub-systems that constitute the SM system.

Self-healing and fault-tolerant control is not a common
research field in smart manufacturing. Only about 30% of
the reviewed papers focus on SH-FT applications in SM.
Here, we emphasize the value of fault-tolerant control as a
replacement for framework-based techniques that require a
significant number of components to resolve a defect. We
suggest that future studies should focus on the develop-
ment of new self-healing methods for smart and resilient
manufacturing. SH-FT approaches are mainly based on the
readjustment of the model, controller, and sensors of a super-
vised system without any external intervention.

Declarations

Conflict of interest The authors declare that this manuscript is original,
has not been published before, and is not currently being considered for
publication elsewhere.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abbas, M., & Zhang, D. J. (2021). A smart fault detection approach
for PV modules using adaptive neuro-fuzzy inference frame-
work. Energy Reports, 7, 2962–2975. https://doi.org/10.1016/j.
egyr.2021.04.059

Abbaspour, A., Mokhtari, S., Sargolzaei, A., & Yen, K. K. (2020). A
survey on active fault-tolerant control systems. Electronics, 9(9),
24–1513. https://doi.org/10.3390/electronics9091513

Abid, A., Khan, M. T., & Iqbal, J. (2021). A review on fault detection
and diagnosis techniques: Basics and beyond. Artificial Intelli-
gence Review, 54(5), 3639–3664. https://doi.org/10.1007/s10462-
020-09934-2

Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive
maintenance planning for industry 4.0 using machine learning for
sustainable manufacturing. Sustainability, 14(6), 3387. https://doi.
org/10.3390/su14063387

Adhikari, S., Sinha, N., & Dorendrajit, T. (2016). Fuzzy logic based
on-line fault detection and classification in transmission line.
Springerplus, 5, 14. https://doi.org/10.1186/s40064-016-2669-4

Aguilera, J. J.,Meesenburg,W.,Ommen,T.,Markussen,W.B., Poulsen,
J. L., Zuehlsdorf, B.,&Elmegaard,B. (2022).A reviewof common
faults in large-scale heat pumps. Renewable & Sustainable Energy
Reviews, 168, 17. https://doi.org/10.1016/j.rser.2022.112826

Ahmad, M., & Mohd-Mokhta, R. (2022). A survey on model-based
fault detection techniques for linear time-invariant systems with
numerical analysis. Pertanika Journal of Science and Technology,
30(1), 53–78. https://doi.org/10.47836/pjst.30.1.04

Ahmed, M., Baqqar, M., Gu, F. & Ball, A. D. (2012). Fault detec-
tion and diagnosis using principal component analysis of vibration
data from a reciprocating compressor [Proceeding Conference].
Proceeding of 2012 UKACC International conference on control.
https://doi.org/10.1109/CONTROL.2012.6334674

Al-Jonid, K., Kozlov, A., & Baryshev, N. (2018). Design of an
expert system for the prediction and comprehensive diagnosis
of CNC machining fault [Proceedings Paper]. Proceeding of the
2018 International conference on modern trends in manufacturing
technologies and equipment. https://doi.org/10.1051/matecconf/
201822401091

Altisen, K., Devismes, S., Durand, A., Johnen, C., Petit, F., & Acm.
(2021). Self-stabilizing systems in spite of high dynamics [Pro-
ceedings Paper]. Proceedings of the 22nd International Conference
on distributed computing and networking, 156–165. https://doi.
org/10.1145/3427796.3427838

Amin, A. A., & Mahmood-ul-Hasan, K. (2021). Robust passive fault
tolerant control for air fuel ratio control of internal combustion
gasoline engine for sensor and actuator faults. IETE Journal of
Research. https://doi.org/10.1080/03772063.2021.1906767

Amin, M. T., Imtiaz, S., & Khan, F. (2018). Process system fault detec-
tion and diagnosis using a hybrid technique.Chemical Engineering
Science, 189, 191–211. https://doi.org/10.1016/j.ces.2018.05.045

Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P.,
Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2020). Tack-
ling faults in the Industry 4.0 era-A survey of machine-learning
solutions and key aspects. Sensors, 20(1), 34. https://doi.org/10.
3390/s20010109

Anwarsha, A., & Babu, T. N. (2022). A review on the role of tun-
able Q-factor wavelet transform in fault diagnosis of rolling
element bearings. Journal of Vibration Engineering & Technolo-
gies. https://doi.org/10.1007/s42417-022-00484-1

Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for
production lines in manufacturing: A machine learning approach
using IoT data in real-time.Expert Systems with Applications, 173,
10. https://doi.org/10.1016/j.eswa.2021.114598

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.egyr.2021.04.059
https://doi.org/10.3390/electronics9091513
https://doi.org/10.1007/s10462-020-09934-2
https://doi.org/10.3390/su14063387
https://doi.org/10.1186/s40064-016-2669-4
https://doi.org/10.1016/j.rser.2022.112826
https://doi.org/10.47836/pjst.30.1.04
https://doi.org/10.1109/CONTROL.2012.6334674
https://doi.org/10.1051/matecconf/201822401091
https://doi.org/10.1145/3427796.3427838
https://doi.org/10.1080/03772063.2021.1906767
https://doi.org/10.1016/j.ces.2018.05.045
https://doi.org/10.3390/s20010109
https://doi.org/10.1007/s42417-022-00484-1
https://doi.org/10.1016/j.eswa.2021.114598


Journal of Intelligent Manufacturing

Babaei, M., Shi, J., & Abdelwahed, S. (2018). A survey on fault
detection, isolation, and reconfiguration methods in electric ship
power systems. IEEE Access, 6, 9430–9441. https://doi.org/10.
1109/access.2018.2798505

Badri, M., Chihi, I., Sidhom, L., Abdelkrim, A., & Ieee. (2016).
Observer approach for fault detection of the handwriting process
[Proceedings Paper]. 2016 4th International Conference on Con-
trol Engineering & Information Technology (CEIT), 6. https://doi.
org/10.1109/CEIT.2016.7929091

Badri, M., Chihi, I., Sidhom, L., &Abdelkrim, A. (2017). Estimation of
actuator faults for system with unpredictable inputs [Proceedings
Paper]. 2017 InternationalConference onControl,Automation and
Diagnosis (ICCAD), 169–173. https://doi.org/10.1109/CADIAG.
2017.8075651

Benosman,M. (2010).A survey of some recent results on nonlinear fault
tolerant control. Mathematical Problems in Engineering. https://
doi.org/10.1155/2010/586169

Bensalem, Y., Abbassi, R., & Jerbi, H. (2021). Fuzzy logic based-active
fault tolerant control of speed sensor failure for five-phase PMSM.
Journal of Electrical Engineering & Technology, 16(1), 287–299.
https://doi.org/10.1007/s42835-020-00559-7

Bernardi, E., Pipino, H. A., & Adam, E. J. (2020). Full-order
Output Observer Applied to a Linear Parameter Varying Sys-
tem with Unknown Input[Proceedings Paper]. 2020 IEEE Con-
greso Bienal de Argentina (ARGENCON). https://doi.org/10.
1109/ARGENCON49523.2020.9505451

Berredjem, T., & Benidir, M. (2018). Bearing faults diagnosis using
fuzzy expert system relying on an improved range overlaps
and similarity method. Expert Systems with Applications, 108,
134–142. https://doi.org/10.1016/j.eswa.2018.04.025

Blesa, J., Puig, V., Saludes, J., & Fernandez-Canti, R. M. (2016). Set-
membership parity space approach for fault detection in linear
uncertain dynamic systems. International Journal of Adaptive
Control and Signal Processing, 30(2), 186–205. https://doi.org/
10.1002/acs.2476

Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2019).
Decision making in predictive maintenance: Literature review
and research agenda for industry 4.0. IFAC Papersonline, 52(13),
607–612. https://doi.org/10.1016/j.ifacol.2019.11.226

Bouzida, A., Touhami, O., Ibtiouen, R., Belouchrani, A., Fadel, M.,
& Rezzoug, A. (2011). Fault diagnosis in industrial induction
machines through discrete wavelet transform. IEEE Transactions
on Industrial Electronics, 58(9), 4385–4395. https://doi.org/10.
1109/tie.2010.2095391

Brito, L. C., Susto, G. A., Brito, J. N., & Duarte, M. A. V. (2022).
An explainable artificial intelligence approach for unsupervised
fault detection and diagnosis in rotating machinery. Mechanical
Systems and Signal Processing, 163, 21. https://doi.org/10.1016/j.
ymssp.2021.108105

Brkovic, A., Gajic, D., Gligorijevic, J., Savic-Gajic, I., Georgieva, O., &
Di Gennaro, S. (2017). Early fault detection and diagnosis in bear-
ings for more efficient operation of rotating machinery. Energy,
136, 63–71. https://doi.org/10.1016/j.energy.2016.08.039

Calabrese, F., Regattieri, A., Bortolini, M., Gamberi, M., & Pilati, F.
(2021). Predictive maintenance: A novel framework for a data-
driven, semi-supervised, and partially online prognostic health
management application in industries. Applied Sciences-Basel,
11(8), 28. https://doi.org/10.3390/app11083380

Canizo, M., Onieva, E., Conde, A., Charramendieta, S., & Trujillo, S.
(2017). Real-time predictive maintenance for wind turbines using
big data frameworks. IEEE International Conference on Prognos-
tics and Health Management (ICPHM), 2017, 70–77. https://doi.
org/10.1109/ICPHM.2017.7998308

Capriglione, D., Carratu, M., Pietrosanto, A., & Sommella, P. (2018).
NARXANN-based instrument fault detection inmotorcycle.Mea-
surement, 117, 304–311. https://doi.org/10.1016/j.measurement.
2017.12.026

Castresana, J., Gabina, G., Martin, L., Basterretxea, A., & Uriondo, Z.
(2022).Marine diesel engine ANNmodellingwithmultiple output
for complete engine performance map. Fuel, 319, 13. https://doi.
org/10.1016/j.fuel.2022.123873

Cerone,V.Diego,R.,&Abuabiah,M. (2017).Direct data-driven control
design through set-membership errors-in-variables identification
techniques [Conference Paper]. 2017 American Control Confer-
ence (ACC). https://doi.org/10.23919/ACC.2017.7962984

Chadli,M., Davoodi,M.,&Meskin,N. (2017). Distributed state estima-
tion, fault detection and isolation filter design for heterogeneous
multi-agent linear parameter-varying systems. IETControl Theory
and Applications, 11(2), 254–262. https://doi.org/10.1049/iet-cta.
2016.0912

Chen, J., Lim, C. P., Tan, K. H., Govindan, K., & Kumar, A.
(2021). Artificial intelligence-based human-centric decision sup-
port framework: An application to predictive maintenance in asset
management under pandemic environments. Annals of Operations
Research. https://doi.org/10.1007/s10479-021-04373-w

Chen, J. L., Li, Z. P., Pan, J., Chen, G. G., Zi, Y. Y., Yuan, J., Chen, B.
Q., & He, Z. J. (2016a). Wavelet transform based on inner product
in fault diagnosis of rotating machinery: A review. Mechanical
Systems and Signal Processing, 70–71, 1–35. https://doi.org/10.
1016/j.ymssp.2015.08.023

Chen, J. L., Pan, J., Li, Z. P., Zi, Y. Y., & Chen, X. F. (2016b). Genera-
tor bearing fault diagnosis for wind turbine via empirical wavelet
transform using measured vibration signals. Renewable Energy,
89, 80–92. https://doi.org/10.1016/j.renene.2015.12.010

Chen, L., Yan, B., Wang, H., Shao, K., Kurniawan, E., & Wang, G. Y.
(2022). Extreme-learning-machine-based robust integral terminal
sliding mode control of bicycle robot. Control Engineering Prac-
tice, 121, 10. https://doi.org/10.1016/j.conengprac.2022.105064

Chen, X. H., Zhang, B. K., & Gao, D. (2021b). Bearing fault diagnosis
base on multi-scale CNN and LSTMmodel. Journal of Intelligent
Manufacturing, 32(4), 971–987. https://doi.org/10.1007/s10845-
020-01600-2

Cheng, J. C. P., Chen, W. W., Chen, K. Y., & Wang, Q. (2020).
Data-driven predictive maintenance planning framework for MEP
components based on BIM and IoT using machine learning algo-
rithms. Automation in Construction, 112, 21. https://doi.org/10.
1016/j.autcon.2020.103087

Cheng, J. F., Chen, W. H., Tao, F., & Lin, C. L. (2018). Industrial
IoT in 5G environment towards smart manufacturing. Journal of
Industrial Information Integration, 10, 10–19. https://doi.org/10.
1016/j.jii.2018.04.001

Chi, Y. F., Dong, Y. J., Wang, Z. J., Yu, F. R., & Leung, V. C. M. (2022).
Knowledge-based fault diagnosis in industrial internet of things:
a survey. IEEE Internet of Things Journal, 9(15), 12886–12900.
https://doi.org/10.1109/jiot.2022.3163606

Chihi, I., & Benrejeb, M. (2018). Online fault detection approach of
unpredictable inputs: Application to handwriting system. Com-
plexity. https://doi.org/10.1155/2018/9789060

Ciaburro,G. (2022).Machine fault detectionmethods based onmachine
learning algorithms: A review. Mathematical Biosciences and
Engineering, 19(11), 11453–11490. https://doi.org/10.3934/mbe.
2022534

Cinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., &
Safaei, B. (2020). Machine learning in predictive maintenance
towards sustainable smart manufacturing in industry 4.0. Sustain-
ability, 12(19), 42. https://doi.org/10.3390/su12198211

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F.
(2020). Artificial intelligence andmachine learning applications in

123

https://doi.org/10.1109/access.2018.2798505
https://doi.org/10.1109/CEIT.2016.7929091
https://doi.org/10.1109/CADIAG.2017.8075651
https://doi.org/10.1155/2010/586169
https://doi.org/10.1007/s42835-020-00559-7
https://doi.org/10.1109/ARGENCON49523.2020.9505451
https://doi.org/10.1016/j.eswa.2018.04.025
https://doi.org/10.1002/acs.2476
https://doi.org/10.1016/j.ifacol.2019.11.226
https://doi.org/10.1109/tie.2010.2095391
https://doi.org/10.1016/j.ymssp.2021.108105
https://doi.org/10.1016/j.energy.2016.08.039
https://doi.org/10.3390/app11083380
https://doi.org/10.1109/ICPHM.2017.7998308
https://doi.org/10.1016/j.measurement.2017.12.026
https://doi.org/10.1016/j.fuel.2022.123873
https://doi.org/10.23919/ACC.2017.7962984
https://doi.org/10.1049/iet-cta.2016.0912
https://doi.org/10.1007/s10479-021-04373-w
https://doi.org/10.1016/j.ymssp.2015.08.023
https://doi.org/10.1016/j.renene.2015.12.010
https://doi.org/10.1016/j.conengprac.2022.105064
https://doi.org/10.1007/s10845-020-01600-2
https://doi.org/10.1016/j.autcon.2020.103087
https://doi.org/10.1016/j.jii.2018.04.001
https://doi.org/10.1109/jiot.2022.3163606
https://doi.org/10.1155/2018/9789060
https://doi.org/10.3934/mbe.2022534
https://doi.org/10.3390/su12198211


Journal of Intelligent Manufacturing

smart production: progress, trends, and directions. Sustainability,
12(2), 26. https://doi.org/10.3390/su12020492

Cohen, Y., Faccio, M., & Elaluf, A. (2019). Hierarchy of smart
awareness in assembly 4.0 systems. IFAC Papersonline., 52(13),
1508–1512. https://doi.org/10.1016/j.ifacol.2019.11.413

Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart
manufacturing, manufacturing intelligence and demand-dynamic
performance. Computers & Chemical Engineering, 47, 145–156.
https://doi.org/10.1016/j.compchemeng.2012.06.037

Deng, X. W., Gao, Q. S., Zhang, C., Hu, D., & Yang, T. (2017).
Rule - based Fault Diagnosis Expert System for Wind Turbine
[Proceedings Paper]. 2017 International Conference on Informa-
tion Science and Technology (IST), 11(9). https://doi.org/10.1051/
itmconf/20171107005

Dhaou, O., Sidhom, L., Chihi, I., & Abdelkrim, A. (2016). On the
numerical differentiation problem of noisy signal. Proceedings of
Engineering and Technology, 2016, 423–429.

Ding, R. Q., Cheng, M., Jiang, L., & Hu, G. L. (2021). Active fault-
tolerant control for electro-hydraulic systems with an independent
metering valve against valve faults. IEEE Transactions on Indus-
trial Electronics, 68(8), 7221–7232. https://doi.org/10.1109/tie.
2020.3001808

Divya, D., Marath, B., & Kumar, M. B. S. (2022). Review of fault
detection techniques for predictive maintenance. Journal of Qual-
ity in Maintenance Engineering. https://doi.org/10.1108/jqme-10-
2020-0107

Djelloul, I., Sari, Z., & Latreche, K. (2018). Uncertain fault diagnosis
problem using neuro-fuzzy approach and probabilistic model for
manufacturing systems. Applied Intelligence, 48(9), 3143–3160.
https://doi.org/10.1007/s10489-017-1132-8

Du, X., Chen, J. J., Zhang, H. B., &Wang, J. Q. (2022). Fault detection
of aero-engine sensor based on inception-CNN. Aerospace, 9(5),
18. https://doi.org/10.3390/aerospace9050236

Duan, F., & Zivanovic, R. (2016). Induction motor stator fault detection
by a condition monitoring scheme based on parameter estima-
tion algorithms. Electric Power Components and Systems, 44(10),
1138–1148. https://doi.org/10.1080/15325008.2015.1089336

Elmasry, W., &Wadi, M. (2022). Detection of faults in electrical power
grids using an enhanced anomaly-based method. Arabian Journal
for Science and Engineering. https://doi.org/10.1007/s13369-022-
07030-x

Enciso, L., Noack, M., Reger, J., & Perez-Zuniga, G. (2021). Mod-
ulating function based fault diagnosis using the parity space
method. IFAC Papersonline, 54(7), 268–273. https://doi.org/10.
1016/j.ifaco1.2021.08.370

Eren, L., Ince, T., & Kiranyaz, S. (2019). A generic intelligent bearing
fault diagnosis system using compact adaptive 1D CNN classifier.
Journal of Signal Processing Systems for Signal Image and Video
Technology, 91(2), 179–189. https://doi.org/10.1007/s11265-018-
1378-3

Fan,W.,Zhou,Q., Li, J.,&Zhu,Z.K. (2018).Awavelet-based statistical
approach for monitoring and diagnosis of compound faults with
application to rolling bearings. IEEE Transactions on Automation
Science and Engineering, 15(4), 1563–1572. https://doi.org/10.
1109/tase.2017.2720177

Fazai, R., Mansouri, M., Abodayeh, K., Nounou, H., & Nounou, M.
(2019). Online reduced kernel PLS combined with GLRT for fault
detection in chemical systems. Process Safety and Environmen-
tal Protection, 128, 228–243. https://doi.org/10.1016/j.psep.2019.
05.018

Foo, G. H. B., Zhang, X. N., & Vilathgamuwa, D. M. (2013). A sensor
fault detection and isolation method in interior permanent-magnet
synchronous motor drives based on an extended kalman filter.
IEEE Transactions on Industrial Electronics, 60(8), 3485–3495.
https://doi.org/10.1109/tie.2013.2244537

Fourlas, G. K., & Karras, G. C. (2021). A survey on fault diagnosis
and fault-tolerant control methods for unmanned aerial vehicles.
Machines, 9(9), 34. https://doi.org/10.3390/machines9090197

Gao,D.X., Hou, J. J., Liang, K.,&Yang,Q. (2018). Fault diagnosis sys-
tem for electric vehicle charging devices based on fault tree anal-
ysis[Proceeding Conference]. 2018 37th Chinese Control Confer-
ence (CCC). https://doi.org/10.23919/ChiCC.2018.8482691

Gao, Z. W., Cecati, C., & Ding, S. X. (2015). A survey of fault diag-
nosis and fault-tolerant techniques-part I: Fault diagnosis with
model-based and signal-based approaches. IEEE Transactions on
Industrial Electronics, 62(6), 3757–3767. https://doi.org/10.1109/
tie.2015.2417501

Ghosh, D., Sharman, R., Rao, H. R., & Upadhyaya, S. (2007). Self-
healing systems-survey and synthesis. Decision Support Systems,
42(4), 2164–2185. https://doi.org/10.1016/j.dss.2006.06.011

Goncalves, V. M., Maia, C. A., & Hardouin, L. (2019). On Max-plus
linear dynamical system theory: The observation problem. Auto-
matica, 107, 103–111. https://doi.org/10.1016/j.automatica.2019.
05.026

Gopakumar, P., Mallikajuna, B., Reddy, M. J. B., & Mohanta, D. K.
(2018). Remotemonitoring system for real time detection and clas-
sification of transmission line faults in a power grid using PMU
measurements. Protection and Control of Modern Power Systems,
3(1), 10. https://doi.org/10.1186/s41601-018-0089-x

Gravanis, G., Dragogias, I., Papakiriakos, K., Ziogou, C., & Diaman-
taras, K. (2022). Fault detection and diagnosis for non-linear
processes empowered by dynamic neural networks. Comput-
ers & Chemical Engineering, 156, 10. https://doi.org/10.1016/j.
compchemeng.2021.107531

Guezmil, A., Berriri, H., Pusca, R., Sakly, A., Romary, R., &Mimouni,
M. F. (2019). Experimental investigation of passove fault tolerant
control for induction machine using sliding mode approach. Asian
Journal of Control, 21(1), 520–532. https://doi.org/10.1002/asjc.
1753

Gupta, D., Pratama,M.,Ma, Z. Y., Li, J., & Prasad,M. (2019). Financial
time series forecasting using twin support vector regression. Plos
One, 14(3), 27. https://doi.org/10.1371/journal.pone.0211402

Hagh, Y. S., Asl, R. M., Fekih, A., Wu, H. P., & Handroos, H. (2021).
Active fault-tolerant control design for actuator fault mitigation in
robotic manipulators. IEEE Access, 9, 47912–47929. https://doi.
org/10.1109/access.2021.3068448

Han, S. J., Liu, C. R., Lin, X. Y., Zheng, J. W., Wu, J., & Liu, C.
(2020). Dual conductive network hydrogel for a highly conduc-
tive, self-healing, anti-freezing, and non-drying strain sensor. ACS
Applied Polymer Materials, 2(2), 996–1005. https://doi.org/10.
1021/acsapm.9b01198

Han, S. Y., Zhou, J., Chen, Y. H., Zhang, Y. F., Tang, G. Y., &Wang, L.
(2021). Active fault-tolerant control for discrete vehicle active sus-
pension via reduced-order observer. IEEETransactions on Systems
Man Cybernetics-Systems, 51(11), 6701–6711. https://doi.org/10.
1109/tsmc.2020.2964607

Han, T., Gong, J. C., Yang, X. Q., & An, L. Z. (2022). Fault diagnosis
of rolling bearings using dual-tree complex wavelet packet trans-
form and time-shifted multiscale range entropy. IEEE Access, 10,
59308–59326. https://doi.org/10.1109/access.2022.3180338

Hao, H. Y., Zhang, K., Ding, S. X., Chen, Z. W., & Lei, Y. G. (2014). A
data-driven multiplicative fault diagnosis approach for automation
processes. ISA Transactions, 53(5), 1436–1445. https://doi.org/10.
1016/j.isatra.2013.12.022

Harinarayan, R. R. A., & Shalinie, S. M. (2022). XFDDC: EXplainable
fault detection diagnosis and correction framework for chemical
process systems. Process Safety and Environmental Protection,
165, 463–474. https://doi.org/10.1016/j.psep.2022.07.019

123

https://doi.org/10.3390/su12020492
https://doi.org/10.1016/j.ifacol.2019.11.413
https://doi.org/10.1016/j.compchemeng.2012.06.037
https://doi.org/10.1051/itmconf/20171107005
https://doi.org/10.1109/tie.2020.3001808
https://doi.org/10.1108/jqme-10-2020-0107
https://doi.org/10.1007/s10489-017-1132-8
https://doi.org/10.3390/aerospace9050236
https://doi.org/10.1080/15325008.2015.1089336
https://doi.org/10.1007/s13369-022-07030-x
https://doi.org/10.1016/j.ifaco1.2021.08.370
https://doi.org/10.1007/s11265-018-1378-3
https://doi.org/10.1109/tase.2017.2720177
https://doi.org/10.1016/j.psep.2019.05.018
https://doi.org/10.1109/tie.2013.2244537
https://doi.org/10.3390/machines9090197
https://doi.org/10.23919/ChiCC.2018.8482691
https://doi.org/10.1109/tie.2015.2417501
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1016/j.automatica.2019.05.026
https://doi.org/10.1186/s41601-018-0089-x
https://doi.org/10.1016/j.compchemeng.2021.107531
https://doi.org/10.1002/asjc.1753
https://doi.org/10.1371/journal.pone.0211402
https://doi.org/10.1109/access.2021.3068448
https://doi.org/10.1021/acsapm.9b01198
https://doi.org/10.1109/tsmc.2020.2964607
https://doi.org/10.1109/access.2022.3180338
https://doi.org/10.1016/j.isatra.2013.12.022
https://doi.org/10.1016/j.psep.2022.07.019


Journal of Intelligent Manufacturing

Harmouche, J., Delpha, C.,&Diallo,D. (2015). Incipient fault detection
and diagnosis based on Kullback-Leibler divergence using princi-
pal component analysis: Part II. Signal Processing, 109, 334–344.
https://doi.org/10.1016/j.sigpro.2014.06.023

He, X., Wang, Z. D., Liu, Y., & Zhou, D. H. (2013). Least-squares
fault detection and diagnosis for networked sensing systems
using a direct state estimation approach. IEEE Transactions on
Industrial Informatics, 9(3), 1670–1679. https://doi.org/10.1109/
tii.2013.2251891

Herve Abdi, L. J. W. (2010). Principal component analysis (Overview).
John Wiley & Sons, Inc.2(4): 433–459. https://doi.org/10.1002/
wics.101

Heydarzadeh, M., & Nourani, M. (2016). A two-stage fault detection
and isolation platform for industrial systems using residual eval-
uation. IEEE Transactions on Instrumentation and Measurement,
65(10), 2424–2432. https://doi.org/10.1109/tim.2016.2575179

Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D. G., & Nielsen, H.
K. (2022). A digital twin predictive maintenance framework of air
handling units based on automatic fault detection and diagnostics.
Energy and Buildings, 261, 22. https://doi.org/10.1016/j.enbuild.
2022.111988

Houchati, M., Ben-Brahim, L., Gastli, A., & Meskin, N. (2018). Fault
Detection in Modular Multilevel Converter using Principle Com-
ponentAnalysis [ProceedingsPaper]. Proceedings 2018 IEEE12th
International Conference on Compatibility, Power Electronics and
Power Engineering (Cpe-Powereng 2018), 6. https://doi.org/10.
1109/cpe.2018.8372596

Hsu, C. Y., &Liu,W. C. (2021).Multiple time-series convolutional neu-
ral network for fault detection and diagnosis and empirical study in
semiconductor manufacturing. Journal of Intelligent Manufactur-
ing, 32(3), 823–836. https://doi.org/10.1007/s10845-020-01591-0

Huang, T., Zhang, Q., Tang, X. A., Zhao, S. Y., & Lu, X. N. (2022).
A novel fault diagnosis method based on CNN and LSTM and
its application in fault diagnosis for complex systems. Artificial
Intelligence Review, 55(2), 1289–1315. https://doi.org/10.1007/
s10462-021-09993-z

Huerta-Rosales, J. R., Granados-Lieberman, D., Garcia-Perez, A.,
Camarena-Martinez, D., Amezquita-Sanchez, J. P., & Valtierra-
Rodriguez, M. (2021). Short-circuited turn fault diagnosis in
transformers by using vibration signals, statistical time features,
and support vectormachines onFPGA.Sensors, 21(11), 29. https://
doi.org/10.3390/s21113598

Huynh,K.T.,Grall,A.,&Berenguer, C. (2019).Aparametric predictive
maintenance decision-making framework considering improved
system health prognosis precision. IEEE Transactions on Relia-
bility, 68(1), 375–396. https://doi.org/10.1109/tr.2018.2829771

Jana, D., Patil, J., Herkal, S., Nagarajaiah, S., & Duenas-Osorio, L.
(2022). CNN and Convolutional Autoencoder (CAE) based real-
time sensor fault detection, localization, and correction. Mechan-
ical Systems and Signal Processing, 169, 30. https://doi.org/10.
1016/j.ymssp.2021.108723

Jayamaha, D., Lidula, N. W. A., & Rajapakse, A. D. (2019).
Wavelet-multi resolution analysis based ANN architecture for
fault detection and localization in dc microgrids. IEEE Access,
7, 145371–145384. https://doi.org/10.1109/access.2019.2945397

Jeon,B.W.,Yoon, S. C.,&Suk-Hwan, S. (2016).An architecture design
for smart manufacturing execution system. Computer-Aided
Design and Applications. https://doi.org/10.1080/16864360.2016.
1257189

Jiang, Q. C., Yan, X. F., & Zhao, W. X. (2013). Fault detection and
diagnosis in chemical processes using sensitive principal com-
ponent analysis. Industrial & Engineering Chemistry Research,
52(4), 1635–1644. https://doi.org/10.1021/ie3017016

Jiang, Y. C., & Yin, S. (2018). Recursive total principle component
regression based fault detection and its application to vehic-
ular cyber-physical systems. IEEE Transactions on Industrial

Informatics, 14(4), 1415–1423. https://doi.org/10.1109/tii.2017.
2752709

Jiang, Y. C., Yin, S., & Kaynak, O. (2018). Data-driven monitoring
and safety control of industrial cyber-physical system: Basics and
beyond. IEEE Access, 6, 47374–47384. https://doi.org/10.1109/
access.2018.2866403

Jimenez-Roa, L. A., Heskes, T., Tinga, T., & Stoelinga, M. (2022).
Automatic inference of fault treemodels viamulti-objective evolu-
tionary algorithms. IEEE Transactions on Dependable and Secure
ComputinG. https://doi.org/10.1109/TDSC.2022.3203805

Jin, T. T., Yan, C. L., Chen, C. H., Yang, Z. J., Tian, H. L., & Wang,
S. Y. (2021). Light neural network with fewer parameters based
on CNN for fault diagnosis of rotating machinery. Measurement,
181, 15. https://doi.org/10.1016/j.measurement.2021.109639

Jin, X. Z., & He, Y. G. (2017). Finite-time robust fault-tolerant con-
trol against actuator faults and saturations. IET Control Theory
and Applications, 11(4), 550–556. https://doi.org/10.1049/iet-cta.
2016.1144

Kafeel, A., Aziz, S., Awais, M., Khan,M. A., Afaq, K., Idris, S. A., Als-
hazly, H., & Mostafa, S. M. (2021). An expert system for rotating
machine fault detection using vibration signal analysis. Sensors,
21(22), 15. https://doi.org/10.3390/s21227587

Kamga Sagoun,W. E., Chihi, I., Sidhom, L., Trabelsi,M.,&Georghiou,
G. E. (2021). Comparative study on fault classifications techniques
for grid-connected PV systems. In International Conference on
Electrical Computer and Energy Technologies (ICECET).

Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J.
Y., Kim, B. H., & Noh, S. D. (2016). Smart manufacturing:
Past research, present findings, and future directions. Interna-
tional Journal of PrecisionEngineering andManufacturing-Green
Technology, 3(1), 111–128. https://doi.org/10.1007/s40684-016-
0015-5

Khalil, A., Aljanaideh, K. F., & Al Janaideh, M. (2022). Output-
only measurements for fault detection of multi-actuator systems
in motion control applications. IEEE Sensors Journal, 22(5),
4164–4174. https://doi.org/10.1109/jsen.2022.3141932

Khorsheed, R. M., & Beyca, O. F. (2021). An integrated machine learn-
ing: Utility theory framework for real-time predictivemaintenance
in pumping systems. Proceedings of the Institution of Mechanical
Engineers Part B-Journal of Engineering Manufacture, 235(5),
887–901. https://doi.org/10.1177/0954405420970517

Kiangala, K. S., & Wang, Z. H. (2020). An effective predictive main-
tenance framework for conveyor motors using dual time-series
imaging and convolutional neural network in an industry 4.0
environment. IEEE Access, 8, 121033–121049. https://doi.org/10.
1109/access.2020.3006788

Kim, T. H., Jeong, J., & Kim, Y. (2019). A Conceptual Model of
Smart Manufacturing Execution System for Rolling Stock Manu-
facturer [Proceedings Paper]. 2019 10th International Conference
onAmbient Systems,Networks andTechnologies (ICASNT2019)
/ the 2nd International Conference on Emerging Data and Industry
4.0 (ICEDI40 2019) / AffiliatedWorkshops, 151, 600–606. https://
doi.org/10.1016/j.procs.2019.04.081

Kommuri, S. K., Defoort, M., Karimi, H. R., & Veluvolu, K. C. (2016).
A robust observer-based sensor fault-tolerant control for pmsm
in electric vehicles. IEEE Transactions on Industrial Electronics,
63(12), 7671–7681. https://doi.org/10.1109/tie.2016.2590993

Kordestani, M., Salahshoor, K., Safavi, A. A., Saif, M., & Ieee. (2018).
An Adaptive Passive Fault Tolerant Control System for a Steam
Turbine Using a PCA Based Inverse Neural Network Control
Strategy [Proceedings Paper]. 2018 World Automation Congress
(WAC). https://doi.org/10.23919/WAC.2018.8430414

Kordestani, M., Salahshoor, K., Safavi, A. A., Saif, M., & Ieee. (2018).
An Adaptive Passive Fault Tolerant Control System for a Steam
Turbine Using a PCA Based Inverse Neural Network Control

123

https://doi.org/10.1016/j.sigpro.2014.06.023
https://doi.org/10.1109/tii.2013.2251891
https://doi.org/10.1002/wics.101
https://doi.org/10.1109/tim.2016.2575179
https://doi.org/10.1016/j.enbuild.2022.111988
https://doi.org/10.1109/cpe.2018.8372596
https://doi.org/10.1007/s10845-020-01591-0
https://doi.org/10.1007/s10462-021-09993-z
https://doi.org/10.3390/s21113598
https://doi.org/10.1109/tr.2018.2829771
https://doi.org/10.1016/j.ymssp.2021.108723
https://doi.org/10.1109/access.2019.2945397
https://doi.org/10.1080/16864360.2016.1257189
https://doi.org/10.1021/ie3017016
https://doi.org/10.1109/tii.2017.2752709
https://doi.org/10.1109/access.2018.2866403
https://doi.org/10.1109/TDSC.2022.3203805
https://doi.org/10.1016/j.measurement.2021.109639
https://doi.org/10.1049/iet-cta.2016.1144
https://doi.org/10.3390/s21227587
https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1109/jsen.2022.3141932
https://doi.org/10.1177/0954405420970517
https://doi.org/10.1109/access.2020.3006788
https://doi.org/10.1016/j.procs.2019.04.081
https://doi.org/10.1109/tie.2016.2590993
https://doi.org/10.23919/WAC.2018.8430414


Journal of Intelligent Manufacturing

Strategy [Proceedings Paper]. 2018 World Automation Congress
(WAC). https://doi.org/10.23919/WAC.2018.8430414

Kou, L. L., Qin, Y., Zhao, X. J., & Chen, X. A. (2020). A multi-
dimension end-to-end cnn model for rotating devices fault diag-
nosis on high-speed train bogie. IEEE Transactions on Vehicular
Technology, 69(3), 2513–2524. https://doi.org/10.1109/tvt.2019.
2955221

Kurukuru, V. S. B., Blaabjerg, F., Khan, M. A., & Haque, A. (2020). A
novel fault classification approach for photovoltaic systems. Ener-
gies, 13(2), 17. https://doi.org/10.3390/en13020308

Kusiak, A. (2018). Smart manufacturing. International Journal of
Production Research, 56(1–2), 508–517. https://doi.org/10.1080/
00207543.2017.1351644

Lamouchi, R., Amairi, M., Raissi, T., & Aoun, M. (2022). Active fault
tolerant control using zonotopic techniques for linear parameter
varying systems: Application to wind turbine system. European
Journal of Control, 67, 13. https://doi.org/10.1016/j.ejcon.2022.
100700

Lamouchi, R., Raissi, T., Amairi, M., & Aoun, M. (2022). Interval
observer-based methodology for passive fault tolerant control of
linear parameter-varying systems. Transactions of the Institute
of Measurement and Control, 44(5), 986–999. https://doi.org/10.
1177/01423312211040370

Lee, C., Alena, R. L., & Robinson, P. (2005). Migrating fault trees to
decision trees for real time fault detection on International Space
Station [Proceeding Conference]. 2005 IEEE Aerospace Confer-
ence Proceedings, Vols 1–4. https://doi.org/10.1109/AERO.2005.
1559584

Lee, C. Y., Wen, M. S., Zhuo, G. L., & Le, T. A. (2022). Applica-
tion of ANN in induction-motor fault-detection system established
with MRA and CFFS. Mathematics., 10(13), 17. https://doi.org/
10.3390/math10132250

Li, B., & Chen, X. F. (2014). Wavelet-based numerical analysis: A
review and classification. Finite Elements in Analysis and Design,
81, 14–31. https://doi.org/10.1016/j.finel.2013.11.001

Li, B., Han, T., & Kang, F. Y. (2013). Fault diagnosis expert sys-
tem of semiconductor manufacturing equipment using a Bayesian
network. International Journal of Computer Integrated Manu-
facturing, 26(12), 1161–1171. https://doi.org/10.1080/0951192x.
2013.812803

Li, D. L., Wang, Y., Wang, J. X., Wang, C., & Duan, Y. Q. (2020).
Recent advances in sensor fault diagnosis: A review. Sensors and
Actuators a-Physical., 309, 14. https://doi.org/10.1016/j.sna.2020.
111990

Li, H. Y., Gao, Y., Shi, P., & Lam, H. K. (2016). Observer-based fault
detection for nonlinear systems with sensor fault and limited com-
munication capacity. IEEE Transactions on Automatic Control,
61(9), 2745–2751. https://doi.org/10.1109/tac.2015.2503566

Li, J., Liu, Y. B., & Li, Q. J. (2022). Intelligent fault diagnosis of rolling
bearings under imbalanced data conditions using attention-based
deep learning method. Measurement, 189, 15. https://doi.org/10.
1016/j.measurement.2021.110500

Li, X. (2023). Remaining useful life prediction with partial sensor mal-
functions using deep adversarial networks. IEEE/CAA Journal
of Automatica Sinica, 10, 121–134. https://doi.org/10.1109/JAS.
2022.105935

Li, X. G., Li, Y., Zhang, Y. Z., Liu, F., & Fang, Y. (2020). Fault diagnosis
of belt conveyor based on support vector machine and grey wolf
optimization.Mathematical Problems in Engineering. https://doi.
org/10.1155/2020/1367078

Li,Y.Y.,Karimi,H.R., Zhong,M.Y.,Ding, S.X.,&Liu, S. (2018). Fault
detection for linear discrete time-varying systems with multiplica-
tive noise: The finite-horizon case. IEEE Transactions on Circuits
and Systems I-Regular Papers, 65(10), 3492–3505. https://doi.org/
10.1109/tcsi.2018.2832229

Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive main-
tenance for fault diagnosis and prognosis in machine centers:
Industry 4.0 scenario.Advances inManufacturing., 5(4), 377–387.
https://doi.org/10.1007/s40436-017-0203-8

Liang, X. H., Zuo, M. J., & Feng, Z. P. (2018). Dynamic modeling of
gearbox faults: A review.Mechanical Systems and Signal Process-
ing, 98, 852–876. https://doi.org/10.1016/j.ymssp.2017.05.024

Liao, J. F., Yuan, H. H., Song, W., Gu, J. S., & Ieee. (2021). Adap-
tive robust fault detection and control for injection machine mold
closing process with accurate parameter estimations [Proceed-
ings Paper]. 2021 IEEE International Conference onMechatronics
(ICM). https://doi.org/10.1109/icm46511.2021.9385687

Lin, S. L. (2021).Application ofmachine learning to amediumgaussian
support vector machine in the diagnosis of motor bearing faults.
Electronics. https://doi.org/10.3390/electronics10182266

Lin, Z. D., Duan, D. L., Yang, Q., Hong, X. M., Cheng, X., Yang, L. Q.,
& Cui, S. G. (2020). One-class classifier based fault detection in
distribution systems with varying penetration levels of distributed
energy resources. IEEE Access, 8, 130023–130035. https://doi.
org/10.1109/access.2020.3009385

Liu, H. Y., Wang, X., Cao, Y. X., Yang, Y. Y., Yang, Y. T., Gao, Y. F.,
Ma, Z. S., Wang, J. F., Wang, W. J., &Wu, D. C. (2020). Freezing-
tolerant, highly sensitive strain and pressure sensors assembled
from ionic conductive hydrogels with dynamic cross-links. ACS
AppliedMaterials & Interfaces, 12(22), 25334–25344. https://doi.
org/10.1021/acsami.0c06067

Liu, J. (2020). A dynamic modelling method of a rotor-roller bearing-
housing system with a localized fault including the additional
excitation zone. Journal of Sound and Vibration, 469, 18. https://
doi.org/10.1016/j.jsv.2019.115144

Liu, J. J., Zhang, M., Wang, H., Zhao, W., & Liu, Y. (2019). Sensor
fault detection and diagnosis method for AHU using 1-DCNN and
clustering analysis.Computational Intelligence andNeuroscience.
https://doi.org/10.1155/2019/5367217

Liu, M., & Shi, P. (2013). Sensor fault estimation and tolerant con-
trol for Ito stochastic systems with a descriptor sliding mode
approach. Automatica, 49(5), 1242–1250. https://doi.org/10.1016/
j.automatica.2013.01.030

Luo,W. J., Zhang,C.,& Jaimoukha, I.M. (2022). Sensor failure-tolerant
observer design with regional pole placement. IEEE Control Sys-
tems Letters, 6, 2102–2107. https://doi.org/10.1109/lcsys.2021.
3138054

Lyu, P., Zhang, K. W., Yu, W. B., Wang, B. C., & Liu, C. (2022). A
novel RSG-based intelligent bearing fault diagnosis method for
motors in high-noise industrial environment. Advanced Engineer-
ing Informatics, 52, 16. https://doi.org/10.1016/j.aei.2022.101564

Machado, C. G., Winroth, M. P., & da Silva, E. (2020). Sustain-
able manufacturing in industry 4.0: an emerging research agenda.
International Journal of Production Research, 58(5), 1462–1484.
https://doi.org/10.1080/00207543.2019.1652777

MacLeod, J., Tan, S., &Moinuddin, K. (2020). Reliability of fire (point)
detection system in office buildings in Australia-A fault tree anal-
ysis. Fire Safety Journal, 115, 11. https://doi.org/10.1016/j.firesaf.
2020.103150

Maheswari, R. U., & Umamaheswari, R. (2020). Wind turbine drive-
train expert fault detection system: multivariate empirical mode
decomposition based multi-sensor fusion with bayesian learning
classification. Intelligent Automation and Soft Computing, 26(3),
479–488. https://doi.org/10.32604/iasc.2020.013924

Malhotra, A.,Minhas, A. S., Singh, S., Zuo,M. J., Kumar, R.,&Kankar,
P. K. (2021). Bearing fault diagnosis based on flexible analyti-
cal wavelet transform and fuzzy entropy approach [Proceeding
Paper]. 2021 1st International Conference on Energy, Materials
Sciences and Mechanical Engineering (ICEMSME). Materials
Today-Proceedings, 43: 629–635. https://doi.org/10.1016/j.matpr.
2020.12.160

123

https://doi.org/10.23919/WAC.2018.8430414
https://doi.org/10.1109/tvt.2019.2955221
https://doi.org/10.3390/en13020308
https://doi.org/10.1080/00207543.2017.1351644
https://doi.org/10.1016/j.ejcon.2022.100700
https://doi.org/10.1177/01423312211040370
https://doi.org/10.1109/AERO.2005.1559584
https://doi.org/10.3390/math10132250
https://doi.org/10.1016/j.finel.2013.11.001
https://doi.org/10.1080/0951192x.2013.812803
https://doi.org/10.1016/j.sna.2020.111990
https://doi.org/10.1109/tac.2015.2503566
https://doi.org/10.1016/j.measurement.2021.110500
https://doi.org/10.1109/JAS.2022.105935
https://doi.org/10.1155/2020/1367078
https://doi.org/10.1109/tcsi.2018.2832229
https://doi.org/10.1007/s40436-017-0203-8
https://doi.org/10.1016/j.ymssp.2017.05.024
https://doi.org/10.1109/icm46511.2021.9385687
https://doi.org/10.3390/electronics10182266
https://doi.org/10.1109/access.2020.3009385
https://doi.org/10.1021/acsami.0c06067
https://doi.org/10.1016/j.jsv.2019.115144
https://doi.org/10.1155/2019/5367217
https://doi.org/10.1016/j.automatica.2013.01.030
https://doi.org/10.1109/lcsys.2021.3138054
https://doi.org/10.1016/j.aei.2022.101564
https://doi.org/10.1080/00207543.2019.1652777
https://doi.org/10.1016/j.firesaf.2020.103150
https://doi.org/10.32604/iasc.2020.013924
https://doi.org/10.1016/j.matpr.2020.12.160


Journal of Intelligent Manufacturing

Mann, G., & Hwang, I. (2013). State estimation and fault detection and
identification for constrained stochastic linear hybrid systems. IET
Control Theory and Applications, 7(1), 1–15. https://doi.org/10.
1049/iet-cta.2011.0315

Mansouri, M., Trabelsi, M., Nounou, H., & Nounou, M. (2021). Deep
learning-based fault diagnosis of photovoltaic systems: A com-
prehensive review and enhancement prospects. IEEE Access, 9,
126286–126306. https://doi.org/10.1109/access.2021.3110947

Mekki, H., Benzineb, O., Boukhetala, D., Tadjine, M., & Benbouzid,
M. (2015). Sliding mode based fault detection, reconstruction and
fault tolerant control scheme for motor systems. ISA Transactions,
57, 340–351. https://doi.org/10.1016/j.isatra.2015.02.004

Melo, A., Camara, M. M., Clavijo, N., & Pinto, J. C. (2022). Open
benchmarks for assessment of process monitoring and fault
diagnosis techniques: A review and critical analysis. Comput-
ers & Chemical Engineering, 165, 42. https://doi.org/10.1016/j.
compchemeng.2022.107964
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