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Abstract
Optimization along the chain processing-structure-properties-performance is one of the core objectives in data-drivenmaterials
science. In this sense, processes are supposed to manufacture workpieces with targeted material microstructures. These
microstructures are defined by the material properties of interest and identifying them is a question of materials design.
In the present paper, we addresse this issue and introduce a generic multi-task learning-based optimization approach. The
approach enables the identification of sets of highly diverse microstructures for given desired properties and corresponding
tolerances. Basically, the approach consists of an optimization algorithm that interacts with a machine learning model that
combines multi-task learning with siamese neural networks. The resulting model (1) relates microstructures and properties,
(2) estimates the likelihood of a microstructure of being producible, and (3) performs a distance preserving microstructure
feature extraction in order to generate a lower dimensional latent feature space to enable efficient optimization. The proposed
approach is applied on a crystallographic texture optimization problem for rolled steel sheets given desired properties.
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Introduction

Motivation

The demand for more and more specific and individually
designed products with certain performance requirements
has become a driving force in the world of manufactur-
ing. For this reason, the optimization along the causal chain
processing-structure-properties-performance (Olson, 1997)
became a fast growing research topic in the field of integrated
computational materials engineering (ICME) (Panchal et al.,
2013). Nowadays, such optimization problems can be solved
efficiently with the help of machine learning techniques
(Ramprasad et al., 2017). On this background, in a previ-
ous work, we investigated the use of reinforcement learning
for finding optimal processing routes in a simulated metal
forming process aiming to produce microstructures with
targeted crystallographic textures (Dornheim et al., 2021).
To bridge the remaining gap between microstructures and
desired properties, we focus in this work on solvingmaterials
design problems. These are to identify appropriate material
microstructures or microstructural features (e.g. the crystal-
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lographic texture) for given desired properties. It is thereby
of particular importance to identify sets of near-optimal and
preferably diverse microstructures in order to guarantee a
robust design (McDowell, 2007).

Paper structure

In the following we summarize the related work and point
out the contribution of this paper to the actual research. In
“Methods” section, first, we describe the siamese multi-task
learning and optimization approach. Then, we introduce the
fundamentals in materials modeling that are needed for the
purpose of this work. After that, in “Results” section, the
results are shown when applying the approach to a texture
optimization problem for steel sheets (in particular, we fit the
material model to DC04 steel). In “Discussion” section, the
presented results are discussed. Finally, in “Summary and
Outlook” section, we summarize our findings and give an
outlook on further research.

Related work

A generic approach to solve materials design problems is the
microstructure sensitive design (MSD) approach introduced
in Adams et al. (2001). Following Fullwood et al. (2010),
MSD can be described by seven steps. First, the properties
of interest as well as candidate materials have to be defined.
After that, a suitable microstructure definition is applied for
these materials yielding a microstructure design space. On
this basis, relevant homogenization relations are identified
and applied over the whole design space. The resulting prop-
erty closure can be used to select desired properties, which
are then mapped back to the microstructure design space
in order to identify optimal microstructures. The last step
of MSD aims to determine processes and processing routes
needed to produce the identified microstructure.

The works by Adams et al. (2001) and Kalidindi et al.
(2004) instantiate the MSD approach for texture optimiza-
tion. The first one describes how optimal crystallographic
textures can be identified in order to improve the deforma-
tion behavior of a compliant beam. In the latter, a similar
approach is shown to optimize the crystallographic texture
for the design of an orthotropic plate. The core of both
approaches lies in the usage of a lower dimensional spec-
tral representation of the orientation distribution, cf. Bunge
(2013). For more complex microstructure representations,
like two-point correlations, feature extraction methods can
be applied to reduce the dimensionality. Methods that are
used in the context of materials design are principal compo-
nent analysis (PCA) (Paulson et al., 2017; Gupta et al., 2015)
andmultidimensional scaling (Jung et al., 2019) for example.
A general review of dimensionality reduction techniques can
be found in Van Der Maaten et al. (2009).

Besides the MSD approach, also machine learning-based
approaches for crystallographic texture optimization exist.
Liu et al. (2015) and Paul et al. (2019) describe itera-
tive sampling approaches that interact with crystal plasticity
simulations aiming to identify crystallographic textures for
given desired properties. Therefore, an initial set of texture-
property tuples (crystallographic textures and corresponding
macroscopic properties) is generated. Via supervised learn-
ing, significant features of the parameterized orientation
distribution (and in Liu et al. (2015) also significant regions)
are identified that yield optimal or near-optimal solutions.
Based on the identified features and regions, new texture-
property data points are sampled in order to get closer to the
optima.

Another approach for identifying optimal textures is
described in Kuroda and Ikawa (2004). Therein, a real-coded
genetic algorithm (Goldberg, 1991) is described that interacts
with a crystal plasticitymodel in order to find optimal combi-
nations of typical rolling texture components of face-centered
cubic metal (Cu, Brass, S, Cube and Goss) for given desired
properties. The algorithm starts with an initial set of textures
consisting of different fractions of these components. The
set of textures evolves iteratively by combining them using
operators such as mutation, crossover and selection (Herrera
et al., 1998).

Recent works (i.e., Jung et al. (2020) and Kamijyo et al.
(2022)) useBayesian optimization formicrostructure design.
In Kamijyo et al. (2022), a deep neural network is used
for the estimation of mechanical properties. On this basis,
Bayesian optimization is used to determine optimal volume
fractions of texture components of aluminum (cf. Kuroda
and Ikawa (2004)) for a desired formability. For designing
complex microstructure models, in Jung et al. (2020), the
use of the latent space of a convolutional autoencoder as a
low dimensional design space is proposed.Within this design
space, Bayesian optimization is adopted to search for opti-
mal dual phase microstructures for given desired properties
(i.e, tensile strength).

Predicting dual phasemicrostructure properties using con-
volutional neural networks (CNN) is also used in Mann
and Kalidindi (2022), however, to explore the properties
space defined by the material stiffness. The CNN architec-
ture was developed for approximating the highly non-linear
microstructure–property linkage, while using also two-point
spatial correlation functions of the microstructure as input.

A further convolutional approach is described in Tan et
al. (2020), in which a deep convolutional generative adver-
sarial network (DCGAN) and a CNN is proposed for the
design of materials. Therein, the CNN links the micostruc-
tures to its properties and acts as a surrogate model, whereas
the DCGAN generates design candidates for a desired com-
pliance tensor.
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Summarized, for the solution of microstructure design
problems, a linkage from properties to microstructures is
required. Such a linkage is often achieved by genetic or opti-
mization algorithms that interact with numerical simulations.
However, as these algorithms generally need a lot of func-
tion evaluations, it is not reasonable to apply them to complex
numerical simulations directly. Instead, the performance can
be increased by using numerically simpler surrogate mod-
els, see for example (Simpson et al., 2001). Typically, these
are supervised learning models that learn the input–output
relations of the numerical simulation under consideration.

To run optimization algorithms in combinationwith super-
vised learning models it is necessary to limit the region
in which they operate to the region, which is covered by
the training data. One way to achieve this is by training
unsupervised learning models on the input data, as it is
done in Jung et al. (2019) for example using support vec-
tor machines (SVM). From a machine learning perspective
such an approach can be seen as anomaly detection.Anomaly
detection aims to separate data that is characteristically dif-
ferent from the known data of the sample data set, which has
been used for training. An extensive overview of anomaly
detection methods is given in Chandola et al. (2009). More-
over, Ruff et al. (2021) and Chalapathy and Chawla (2019)
gives an overview on recent deep learning-based approaches
for anomaly detection, from which we want to point out
neural network-based autoencoders (Hinton & Salakhutdi-
nov, 2006), which fit especially well into multi-task learning
(MTL) (Caruana, 1997) schemes other than SVMs.

Autoencoder approaches assume that features of a data
set can be mapped into a lower dimensional latent feature
space, in which the known data points differ substantially
from unknown data points. By backmapping into the original
space, anomalies can be identified by evaluating the recon-
struction error, see for example Sakurada andYairi (2014). In
Sakurada and Yairi (2014) it is also shown that autoencoder
networks are able to detect subtle anomalies, which cannot be
detected by linear methods like PCA. Furthermore, autoen-
coder networks require less complex computations compared
to a nonlinear kernel-based PCA.

Recent developments in anomalie detection include deep
learning approaches, like the deep support vector data
description method (Deep SVDD) (Ruff et al., 2018). Deep
SVDD is an unsupervised anomaly detection method, which
is inspired by kernel-based one-class classification and mini-
mumvolume estimation, and can be traced back to traditional
methods, which are One-Class SVM (Schölkopf et al., 2001)
and SVDD (Tax and Duin, 2004). In contrast to autoencoder
approaches, Deep SVDD is based on an anomaly detection
objective, rather than relying on the reconstruction error. By
using Deep SVDD, a neural network is trained while mini-
mizing the volumeof a hypersphere that encloses the network
representations of the data. By minimizing the objective,

Deep SVDD aims to find a preferably small data-enclosing
hypersphere and learns to extract the common factors of vari-
ation of the data distribution. The aim of the approach is that
representations of the normal data lie inside the hypersphere,
while anomalous data points lie outside the hypersphere.
Thereby, anomalies can be detected based on their distance
to the centroid of the hypersphere.

An extension of Deep SVDD is given by the method
Improved AutoEncoder for Anomaly Detection (IAEAD)
(Cheng et al., 2021) by combining Deep SVDDwith autoen-
coders. The autoencoder is used for the embedding of the
features and to preserve the local structure of the data gen-
erating distribution, whereas Deep SVDD detects anomalies
in the feature space. This is achieved by adding the Deep
SVDD loss as a regularization term to the original autoen-
coder optimization objective (i.e. the minimization of the
reconstruction error). However, instead of using the recon-
struction error, IAEAD uses the distance to the centroid in
feature space for anomaly detection like the original Deep
SVDD approach.

Another recently developed approach uses an autoencoder
at the example of learning image data by minimizing the
reconstruction error (defined as the loss function) (Kwon
et al., 2020). The trained model is used for anomaly detec-
tion by evaluating the gradients of the reconstruction error
with respect to the neural network weights. Gradients are
generated through backpropagation to train neural networks
by minimizing designed loss functions (Rumelhart et al.,
1986). While feeding new input data into to the neural net-
work, the gradients originating from normal data cause only
slight changes with respect to the neural network weights,
whereas the gradients from anomalous data cause more dras-
tic changes. Thus, anomalies can be detected by measuring
howmuch of the input data does not correspond to the learned
information of the network in terms of the gradients.

Summary of related work and contribution

Optimizing the crystallographic texture of sheet metal has
been studied in various publications. So far, classic opti-
mization approaches exist, that operate on well-estabilished
crystallographic texture representations from the field of
materials science (i.e. using texture components or a spec-
tral decomposition). In addition, machine learning-based
approaches have been developed in order to efficiently guide
optimization algorithms to promising regions in texture
space.

Regarding microstructure optimization in general, the
usage of machine learning models has become popular dur-
ing the last years. Often supervised learning models are used
to learn and replace time-consuming numerical simulations
for propertiy prediction. Furthermore, unsupervised learn-
ing models (often PCA) are used reduce the dimensionality
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of complex microstructure representations. In the field of
machine learning, however, more sophisticated approaches
exist, such as nonlinear methods for feature extraction and
MTL approaches that combine different learning tasks into
one model with the advantage of having a universal latent
feature space.

For the processing of optimal microstructures (which is
the next step in the processing-structure-properties chain), it
is advantageous to identify not only one optimal microstruc-
ture for given desired properties, but a set of nearly opti-
mal microstructures that is as diverse as possible. Such
approaches are, however, lacking in literature. A further
important requirement for optimal processing not much
addressed in microstructure optimization approaches is to
consider the producibility of identified microstructures.

Therefore, in the present paper, we introduce a generic
MTL-based optimization approach to efficiently identify sets
of microstructures, which are highly diverse and guaranteed
to be producible by a dedicated manufacturing process. The
approach is based on an optimization algorithm interacting
with a machine learning model that combines MTL with
siamese neural networks (Bromley et al., 1993). In contrast
to Liu et al. (2015), Paul et al. (2019) and also to Kuroda
and Ikawa (2004), in our approach, a surrogate model is set
up in order to replace the numerical simulation, which maps
microstructures to properties. The microstructure–property
mapping can be executed efficiently by means of the surro-
gate model within the optimization procedure.

In order to increase the efficiency of the optimization
approach, the microstructure representation is transformed
into a lower dimensional latent feature space by a non-linear
data-driven encoder. The encoder in turn provides the input
signal for three attached learning tasks of theMTL-approach.
The first learning task maps the features to properties (surro-
gate model). To address the issue of producibility, we include
a second learning task, which estimates the validity of a
microstructure in the sense of being producible (being part
of the region enclosed by the underlying data set). The third
learning task is the decoder for the microstructure represen-
tation.

As learning takes place simultaneously for the encoder
and the attached tasks, it is ensured that the lower dimen-
sional feature space is optimal for all tasks. In addition, we
enforce the latent feature space to preserve microstructure
distances by employing a siamese neural network and mul-
tidimensional scaling. On this basis, we force the optimizer
to find a diverse set of optimal microstructures in the latent
feature space.

Fig. 1 General concept of the MTL-based optimization approach to
solve materials design problems

Methods

Materials design via siamesemulti-task learning
(SMTL) and optimization

General concept

First of all, we present the general concept of our MTL-
based optimization approach. The approach can be applied
to general materials design problems and starts by defining
the desired properties and corresponding tolerances. This
in turn defines a target region, for which the approach is
supposed to identify a diverse set of microstructures. The
approach is schematically depicted in Fig. 1 and summa-
rized in Table 1. It basically consists of three components:
optimizer, microstructure–property mapping (m-p-m) and
validity-prediction (v-p). The optimizer generates candidate
microstructures that minimize the combined costs, which
result from evaluations based on the m-p-m and v-p com-
ponents.

The m-p-m component assigns properties to a candidate
microstructure. The deviation of the assigned properties to
the target region determines the cost. In general, the m-p-
m component can be realized by a numerical simulation.
However, since numerical simulations are computationally
expensive, a surrogate model is used instead. The surrogate
model is realized by a regression model that learns the rela-
tions from a priori generated microstructure–property data.

The v-p component is realized by an anomaly detec-
tion method which determines the validity of a candidate
microstructure by comparing it to the set of valid microstruc-
tures. The concept of the anomaly detection is illustrated in
Fig. 2. The v-p component returns a value that can be seen
as an estimate of a candidate microstructure being an ele-
ment of the microstructure set under consideration. This is
for example the set, which can be produced by a dedicated
process (e.g. rolling). The value returned by the v-p compo-
nent defines the validity cost and is supposed to drive the
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Table 1 Summary of important
symbols used throughout this
study

Notation Description

Variables

x ∈ R
K Microstructure representation

x′ ∈ R
K Reconstructed microstructure

p ∈ R
N True properties from the dataset

p̂ ∈ R
N Predicted properties by the reggression network

z ∈ R
M Low dimensional latent feature

z′ ∈ R
M Reconstructed low dimensional latent feature

s ∈ R
S Low dimensional latent feature in validity network

f(g) Orientation distribution function

b Orientation histogram

χ2(b1, b2) Chi-Squared distance between two orientation histograms

T (i) Cauchy stress of ith crystal

F Deformation gradient

L Velocity gradient

E00,E45,E90 Young’s modulus in 0, 45 and 90 degree to rolling direction

r00, r45, r90 R-value in 0, 45 and 90 degree to rolling direction

Functions

m-p-m Microstructure–property mapping

v-p Validity-prediction

fenc(x, θenc) Encoder network

fregr(z, θ regr) Regression network

frecon(z, θ recon) Reconstruction network

fvalid(z, θvalid) Validity network

θenc Weight values for the encoder network

θ regr Weight values for the regression network

θ recon Weight values for the reconstruction network

θvalid Weight values for the validity network

Fig. 2 Schematic illustration of the structure space s1, s2 including the
valid region and unknown microstructures

optimizer solution to a valid microstructure region. Besides,
such a microstructure region can alternatively be identified
by a further optimization loop that interacts with a numerical
simulation of the dedicated process, which, however, suffers
from high computational costs.

The two components m-p-m and v-p can be realized by
training two separate machine learning models. However,
when the training procedures are isolated from each other, the
models are not able to mutually access information already
learned by the other model. Therefore, we combine the two
components as tasks into one MTL model (Caruana, 1997).
Both tasks have a common backbone (the feature extraction
part of a network) and different heads (feature processing
part of a network) operating on the backbone output. The
backbone output vectors form the so-called latent feature
space.

The proposed MTL approach furthermore uses the back-
bone as an encoder network of an autoencoder, where the
decoder is also attached to the latent feature space with the
purpose to reconstruct the input pattern of the backbone. This
is achieved by adding the reconstruction of the microstruc-
tures from the latent feature space as a third task. In theMTL
approach, all the three tasks are represented by a single neural
network-based model. The neural weights of the model are
trained simultaneously based on a combined loss function.

123



1892 Journal of Intelligent Manufacturing (2024) 35:1887–1903

After training theMTLmodel, the optimizer can operate very
efficiently in the lower dimensional latent feature space.

However, it has some limitations, which are mentioned in
the following. Since our concept is based on a data-driven
modeling (machine learning) and optimization approach, an
adequate data set is required. The described components
which are learned within the concept are approximations of
the numerical simulations and are accordingly not equally
exact. The model quality of the components depends on the
size and quality of the underlying data set. Therefore, the
application of an efficient sampling strategy for exploring the
microstructure and property space can be suitable (Morand
et al., 2022). However, under the assumption of low model
errors, the components can be efficiently used as surrogate
models in the application of the concept (except for extrap-
olation).

The remainder of this section presents the optimization
approach and theMTLapproach in detail, aswell as an exten-
sion based on siamese neural networks (Bromley et al., 1993)
to enforce the representation of microstructures in the latent
feature space to preserve the microstructure distances in the
original representation space.

Multi-task learning (MTL)

The MTL model, as shown in Fig. 3, is trained on pairs of
microstructures and corresponding properties (x, p). The
input microstructures are transformed into latent features z.
The individual outputs of the connected tasks are the esti-
mated properties p̂, the reconstructed microstructure x′ and
the reconstructed latent features z′. In the following,we intro-
duce the information processing scheme of the MTL model
in detail.

The processing scheme starts with an encoder net-
work which extracts significant features by mapping the
microstructure space x ∈ R

K into a lower dimensional latent
feature space z ∈ R

M via the learned function

z = fenc(x, θenc), (1)

in which the encoder network is parameterized by its weight
values θenc. All three previously described tasks are attached
to the encoder in the form of feedforward neural net-
works. Besides, the encoder can be easily adapted to higher
dimensional microstructure representing data types, like
images (EBSD or micrograph images) or three dimensional
microstructure data by using convolutional neural networks
(see Krizhevsky et al. (2012)). The latter is used in Cecen et
al. (2018) in the materials sciences domain for example.

To train the MTL model, a loss function that combines all
the three tasks is needed. This is achieved by a function that
cumulates the loss terms of the three tasksLregr (regression
loss), Lrecon (reconstruction loss) and Lvalid (validity loss),

Fig. 3 MTL architecture

and weights them usingWregr,Wrecon andWvalid to allow for
prioritization. The total loss function is defined as

LMTL = WregrLregr + WreconLrecon

+WvalidLvalid + λR(θ),
(2)

where R(θ) is a regularization term that is used to prevent
overfitting with the hyperparameter λ defining the strength
of the regularization (also known as weight decay, see
Krogh and Hertz (1991) and Hinton (1987)). Each of the
feedforward neural networks is parameterized by the respec-
tive weight values θenc, θ regr, θ recon and θvalid, which are
adjusted simultaneously during training and altogether form
the weight vector θ . In the following we introduce the three
individual loss terms.

1. The forward mapping of the latent feature vector z to the
properties vector p̂ ∈ R

N is represented by the learned
function

p̂ = fregr(z, θ regr) = fregr( fenc(x, θenc), θ regr). (3)

The regression loss is given by the mean squared error
between the predicted properties p̂ and the true properties
p:

Lregr( p, p̂) = 1

N

N∑

i=1

(pi − p̂i )
2, (4)

where N denotes the number of properties.
2. The decoder network, which is responsible for the recon-

struction, transforms the latent feature vectors z back to
the original microstructure space:

x′ = frecon(z, θ recon) = frecon( fenc(x, θenc), θ recon).

(5)

The reconstruction loss is defined on the basis of a
distance measure between two microstructural feature
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vectors dist(x, x′):

Lrecon(x, x′) = dist(x, x′). (6)

Thedistancemeasure betweendependson themicrostruc-
ture representation and has to be chosen appropriately.

3. On the basis of the latent feature space, an extra autoen-
coder network is set up transforming z ∈ R

M into an
even lower-dimensional feature sub-space s ∈ R

S with
S < M and transforming back to z′ ∈ R

M via

z′ = fvalid(z, θvalid) = fvalid( fenc(x, θenc), θvalid). (7)

The validity loss is defined by the mean squared error
between z and z′:

Lvalid(z, z′) = 1

M

M∑

i=1

(zi − zi
′)2. (8)

Distance preserving feature extraction using siamese
neural networks

The above described MTL approach is used in combination
with an optimizer that searches for candidate microstructures
with desired properties in the latent feature space. However,
our approach aims to identify a diverse set of microstruc-
tures with high diversity. For the diversity quantification a
distance measure in the latent feature space is required. The
MTL approach as defined above, is not able to preserve the
distances of the original space in the latent feature space. In
order to construct a distance preserving latent feature space,
the MTL model is embedded in a siamese neural network
(Bromley et al., 1993; Chicco, 2021), which we describe
next.

Siamese neural networks consist of two identical net-
works, which share weights in the encoder part, see Fig. 4.
Both networks embed different microstructures xL and xR
as zL and zR in the latent feature space which is finally
processed by two identical MTL networks. The distance
preservation is enforced by defining a distance preservation
lossLpres that minimizes the difference between the distance
of two different input microstructures in the original space
dist(xL , xR) and the corresponding distance in the latent fea-
ture space dist(zL , zR), with xL �= xR (Utkin et al., 2017):

Lpres = (dist(xL , xR) − dist(zL , zR))2, (9)

while dist(xL , xR) and dist(zL , zR) are not necessarily the
same distance measures. Applying such loss terms leads
to multi dimensional scaling, see Kruskal (1964) and Cox
and Cox (2008). Using the distance preservation loss Lpres,
the MTL loss function, defined in Eq.2, is extended by the

Fig. 4 Architecture of the SMTL approach. The dotted line between
the encoders EL and ER indicates shared weights

weighted preservation loss WpresLpres to

LSMTL = WregrLregr + WreconLrecon

+ WvalidLvalid + WpresLpres

+ λR(θ).

(10)

The SMTL approach delivers a function which can map
a microstructure representation in the latent feature space on
properties. Now, an optimizer can operate on a lower dimen-
sional feature space to find microstructures with desired
properties. The SMTL framework also allows to reconstruct
the original represenation ofmicrostructures, to asses the dis-
tances between them and to validate them in the latent feature
space.

Microstructure optimizer

Themicrostructure optimizationwith respect to desired prop-
erties uses the distance preserving SMTL frameworkwith the
tasks microstructure–property mapping, validity-prediction
and reconstruction. The optimization minimizes a loss func-
tion, which consists of the cost terms Cprop, Cvalid and Cdivers

and the corresponding weights Vprop, Vvalid and Vdivers:

F = VpropCprop + VvalidCvalid + Vdivers(1 + Cdivers). (11)

Cprop, Cvalid and Cdivers denote the property, validity and
diversity cost terms, respectively. While the property cost
term drives the candidate microstructures to lie inside a spec-
ified target properties region, the validity cost aims that the
optimizer operates inside the region of valid microstructures
and the diversity cost ensures that candidate microstructures
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differ from each other. To minimize the loss function we use
genetic algorithms, which generate a population set of P can-
didate microstructures z̃∗ in the latent feature space in every
iteration. The three cost terms are described in more detail
in the following.

1. The property cost is defined by the mean squared error
between the desired properties and the predicted proper-
ties from the SMTL regression model:

Cprop = 1

N

N∑

i=1

(C̃prop,i )
2. (12)

If one of the predicted properties lies inside the target
region, the cost C̃prop,i equals 0.Otherwise, C̃prop,i equals
the minimum squared distance from the predicted prop-
erties to the target region borders.

2. The validity prediction is used to asses whether an iden-
tified candidate microstructure is likely to be represented
by the sample data set. The validity cost is defined by

Cvalid = max(A − ξvalid, 0), (13)

inwhich ξvalid is a threshold to define themaximum toler-
ated reconstruction error for valid textures andA denotes
the anomaly score

A = 1

M

M∑

i=1

(z∗i − z∗′
i )2. (14)

3. The diversity cost is based on the sum of the distances
between the candidate microstructure z∗ in the latent
feature space and every other microstructure in the pop-
ulation:

Cdivers = −
P∑

i=1

dist(z∗i , z∗), (15)

in which for dist(z∗i , z∗) the same distance measure has
to be used as for the latent feature vectors in Eq.9.

Materials science fundamentals

Representation of crystallographic texture

Crystallographic texture is typically described by the orien-
tation distribution function, which is defined by

f (g)dg = dV

V
, (16)

for an orientation g (a point in SO(3)) and the volume V (g)
in SO(3). The orientation distribution function f (g) often

underlies specific symmetry conditions, for which various
regions in SO(3) are equivalent. Therefore, depending on
the symmetries, orientations can be mapped into an ele-
mentary region of SO(3), the so-called fundamental zone.
The orientation distribution function on the basis of the
orientations mapped into the fundamental zone is indistin-
guishable from the original orientation distribution function.
Rolling textures, for example, underlie a cubic crystal and
an orthorhombic sample symmetry, for which 96 elementary
regions exist (Hansen et al., 1978).

A popular way to represent the orientation distribution
function is by approximating it via generalized spheri-
cal harmonic functions (Bunge, 2013). Yet, as there is
no straightforward way to measure the distance between
two orientation distribution functions in terms of general-
ized spherical harmonics, we make use of the orientation
histogram-based texture descriptor, which is introduced in
Dornheim et al. (2021). Therefore, the cubic fundamental
zone is discretized into a set O of J nearly uniform dis-
tributed orientations o j . For each individual orientation g in
a set of orientations G, a weight vector wg is constructed via
a soft-assignment approach

wg =
{

Φ(g,o j )∑
oi∈Nl Φ(g,oi )

, if o j ∈ Nl

0, else
, (17)

where Nl is the set of l nearest neighbor orientations of g in
terms of the orientation distance Φ. The orientation distance
between two orientations g and o is defined by

Φ = minΦ(g, o). (18)

where g and o is from the set of all equivalent orientations of
g and o in terms of cubic crystal symmetry. The orientation
distance measure in SO(3) is defined as

Φ(qg, qo) = min(||qg − qo||, ||qg + qo||), (19)

where qg and qo are the quaternion representations of the
orientations g and o (Huynh, 2009).

On this basis, the weight vector for the orientation his-
togram b can be calculated by a volume average of theweight
vectors of the individual orientations

b = 1

V

J∑

j=1

V (o j )wo j . (20)

The distance between two orientation distribution functions
can be measured via any kind of histogram-based distance
measure, such as the Chi-Squared distance (Pele and Wer-
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Table 2 Definition of the fibers of bcc rolling textures following Kocks
et al. (1998)

Fiber Location

α From {001}<110> to {111}<110>, parallel to RD

γ From {111}<110> to {111}<112>, parallel to ND

η From {001}<100> to {011}<100>, parallel to RD

ε From {001}<110> to {111}<112>, parallel to TD

β From {112}<110> to {11 11 8}<4 4 11 >

man, 2010)

χ2(b(1), b(2)) =
J∑

j=1

(b(1)
j − b(2)

j )2

b(1)
j + b(2)

j

. (21)

The set of nearly uniform distributed orientations O , needed
for the histogram-based texture descriptor, can be generated
using the algorithm described in Quey et al. (2018), which
is implemented in the software neper (Quey et al., 2011).
For the purpose of this study, we sample 512 nearly uniform
distributed orientations over the cubic fundamental zone and
chose a soft assignment of l = 3.

Crystallographic texture of steel sheets

After rolling body centered cubic (bcc) materials, typically
so-called fiber textures are formed. Following (Ray et al.,
1994), these textures are composed of the five fibers α, γ ,
η, ε, and β, which are defined in detail in Table2. Among
these fibers, the α and γ fiber are most prominent (Kocks
et al., 1998), whereas the presence of the β fiber is only
reported from theoretical predictions (Von Schlippenbach et
al., 1986). To give an idea on how the fibers affect forming
properties, we refer to Ray et al. (1994). Therein, it is found
out that the γ fiber causes good deep drawability and the α

fiber has a contrary effect.
In order to generate a data base of (artificial) rolling tex-

tures, in this work, a 25-parameter model is used, as it is
proposed in Delannay et al. (1999) to describe steel sheet
textures. The model is based on textures that are composed
of the fibers α, γ , and η. As the η-fiber is not always present
in steel sheet textures, we limit ourselves to textures that con-
sist of an α and γ fiber. Therefore, 6 of the 25 parameters
can be neglected.

The texture model describes the orientation distribution
function as a set of weighted Gaussian distributions placed
along thefibers. Themodel parameters Di are listed inTable3
and define the standard deviations and the mean values of
the distributions based on the fiber thickness and the shifts
from their ideal positions. Furthermore, the model parame-
ters define the weights of the distributions among each other

based on the probability given by the orientation distribution
function, what we will can fiber intensity in the following.

To construct the set of Gaussian distributions, the seven
base distributions from Table3 are placed at their ideal
positions with respect to the shifts. Between these seven dis-
tributions, further distributions are placed with a distance of
about 3◦ to each other, leading to overall 41 Gaussians. Their
weights wi and the values for the standard deviation σi and
mean value μi are interpolated linearly based on the val-
ues of the two neighboring base distributions. This yields a
set of Gaussian distributionsN1(μ1, σ1), ...,N41(μ41, σ41).
The orientation distribution function f (g) is defined by the
normalized sum of this set:

f (g) = 1∑
i wi

n∑

i=1

wiNi (μi , σi ). (22)

Based on this definition, discrete orientations can be sam-
pled. In the following, we denote the set of orientations asG.
As f (g) is defined in the cubic-orthorhombic fundamental
zone, it is necessary to add the equivalent orientations regard-
ing the orthorhombic sample symmetry to the set of discrete
orientations. This is done by applying rotation operations gs
on each orientation gi in G

gequivi = gs gi . (23)

The rotation operations gs for orthorhombic sample symme-
try can be found in Hansen et al. (1978).

Material model

The sheetmetal propertieswhichwe focus on in this study are
the Young’s moduli and the r-values at 0, 45 and 90 degree to
rolling direction. In this study, the properties are calculated by
applying uniaxial tension on a crystal plasticity-based mate-
rial model. As time efficiency is essential for the generation
of data, a material model of Taylor-type is implemented, as
it is described in Dornheim et al. (2021).

The Taylor-type material model is based on the volume
averaged stress of a set of n crystals (Kalidindi et al., 1992):

T = 1

V

n∑

i=1

T (i)V (i). (24)

In the above equation, T denotes the Cauchy stress tensor,
which can be derived by the stress tensor in the intermediate
configuration, given by

T∗ = 1

2
C : (FT

e · Fe − I), (25)
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Table 3 Definition of the
parameters Di of the texture
model, cf. Delannay et al.
(1999)

Ideal pos. Intens. Std ϕ2 Std ϕ1 Shift ϕ1 Shift φ Shift ϕ2

a1 0, 0, 45 D1 D7 D7 0 0 0

a2 0, 30, 45 D2 D8 D13 0 D15 0

a3 0, 55, 45 D3 D9 D9 0 D16 0

a4 0, 70, 45 D4 D10 D10 0 D17 0

a5 0, 90, 45 D4 D10 D10 0 0 0

g2 15, 55, 45 D5 D11 D11 D14 0 0

g3 30, 55, 45 D6 D12 D12 0 D18 D19

The ideal position is given in Bunge Euler angles [◦]

with the second order identity tensor I and the fourth order
elastic stiffness tensor C. The elastic constants C11, C12 and
C44 are set to 218.37, 131.13 and 105.34 GPa, respectively
(Eghtesad and Knezevic, 2020). Fe is the elastic part of the
deformation gradient F and can be calculated by a multi-
plicative decomposition

F = Fe · Fp. (26)

The intermediate stress tensor can be converted into Cauchy
stress using the relation

T∗ = F−1
e · (det(Fe) T ) · F−�

e . (27)

To describe the evolution of the plastic deformation, the plas-
tic part of the velocity gradient Lp is considered by

Lp = Ḟp · F−1
p , (28)

and the flow rule (Rice, 1971)

Lp =
∑

η

γ̇ (η)m(η) ⊗ n(η), (29)

where γ̇ (η) denotes the shear rates on the active slip sys-
tems η, defined by the slip plane normal n(η) and the slip
direction m(η). For bcc materials, the slip system families in
terms of the Miller index are {110}<111>, {112}<111>,
and {123}<111>, while the latter is neglected due to sim-
plicity.

The shear rates are defined by a phenomenological power-
law (Asaro & Needleman, 1985):

γ̇ (η) = γ̇0

∣∣∣∣∣
τ (η)

r (η)

∣∣∣∣∣

1/m

sign(τ (η)), (30)

where r (η) is the slip system resistance, γ̇0 the reference shear
rate and m the shear rate sensitivity. Here, γ̇0 and m are set
to 0.001 sec−1 and 0.0125, respectively (Pagenkopf et al.,
2016). Following Schmid’s law, the resolved shear stress on

slip system τ (η) is given by

τ (η) = ((FT
e · Fe) · T∗) : (m(η) ⊗ n(η)), (31)

and the evolution of the slip system resistance is defined by

ṙ (η) = dτ̂ (η)

dΓ

∑

ξ

qηξ |γ̇ (ξ)|. (32)

The matrix qηξ describes the ratio between self and latent
hardening. It consists of diagonal elements equal to 1.0 and
off-diagonal elements q1 and q2, cf. Baiker et al. (2014).
Both, q1 and q2, are set to 1.4 (Asaro and Needleman, 1985).
Further, the hardening behavior is realized by an extended
Voce-type model (Tome et al., 1984):

τ̂ (η) = τ0 + (τ1 + ϑ1Γ )(1 − e−Γ ϑ0/τ1). (33)

The material dependent parameters are calibrated to DC04
steel1 and are τ0 = 94.9 MPa, τ1 = 50 MPa, ϑ0 = 258 MPa
and ϑ1 = 32.8 MPa (Pagenkopf, 2019). The accumulated
plastic shear is defined by

Γ =
∫ t

0

∑

η

∣∣∣γ̇ (η)
∣∣∣ dt . (34)

Although material parameters for DC04 steel are used in this
study, it is to remark that the described Taylor-type crys-
tal plasticity model and the texture generation approach can
be applied to any kind of metallic material with bcc crystal
structure.

Results

Texture-property data set

For training, 50000 sets of 2000 discrete orientations are sam-
pled via Latin hypercube design (McKay et al., 1979), based

1 Experiments performed at IUL Dortmund during DFG project Grad-
uate School 1483 (Pagenkopf, 2019).
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Table 4 Parameter ranges for Di

Intensity D1 D2 D3 D4 D5 D6

Min 1/6 1/6 1/6 0 1/6 1/6

Max 1/3 2/3 2/3 1/3 1 1

Std D7 D8 D9 D10 D11 D12 D13

Min 5/3 5/3 5/3 5/3 5/3 5/3 5/3

Max 45/3 35/3 35/3 30/3 30/3 30/3 35/3

Shift D14 D15 D16 D17 D18 D19

Min −5 −10 −10 −5 −10 −10

Max 10 10 5 10 10 10

Fig. 5 ϕ2 = 45◦ section of the orientation distribution function to
visualize the γ -fiber of the colled rolled DC04 steel texture

on Eq.22. In order to have an independent test set, further
10000 sets are generated randomly. The ranges inside which
the parameters of the texture model vary are adjusted manu-
ally such that typical bcc rolling textures found in literature
Das (2017), Hölscher et al. (1991), Inagaki and Suda (1972),
Kestens and Pirgazi (2016), Klinkenberg et al. (1992), Kocks
et al. (1998), and Pagenkopf et al. (2016) are covered. The
parameter ranges are listed in Table 4. In addition, to evaluate
the anomaly detection, a set of artificial textures is needed,
which slightly differ from the generated rolling textures. For
this purpose, 10000 anomalies are generated by shifting the
α-fiber (i.e. the ideal position of a1, a2, a4 and a5) about 20
degrees in ϕ1-direction.

Moreover, we validate the texture-property mapping and
the validity-prediction on experimental data. For this pur-
pose, an experimentally measured texture of cold rolled
DC04 steel from Schreijäg (2012) is used. Based on this
measurement, an orientation distribution function is approx-
imated via the MATLAB toolbox mtex (Bachmann et al.,
2010), rotated into its symmetry axis assuming orthorhom-
bic sample symmetry and mirrored. To visualize the α- and
γ -fiber of the orientation distribution, an intersection plot of
the Euler space at ϕ2 = 45◦ is depicted in Fig. 5.

For the generated textures in the training and test set, the
corresponding Young’s moduli and R-values in 0, 45, and 90
degree to rolling direction are determined using the Taylor-
type crystal plasticity model described in “Material model”
section. Both quantities, Young’s modulus and especially R-
values, are highly affected by the crystallographic texture,

Fig. 6 One twin part of the SMTL model with the annotation of the
dimension size of the layers. Fc denotes fully-connected layers and
tanh denotes hyperbolic tangent activation function

Table 5 Used hyperparamters

Hyperparameter Value

Optimizer Adam (Kingma and Ba, 2015)

Learning rate 0.001

Weight decay 1e-6

Batch size 256

which is why these are chosen exemplary for the purpose of
this study.

Validation of SMTL

In this study, the individual tasks of the SMTL model are
realized via feedforward neural networks with tanh activa-
tion functions to obtain features between −1 and +1 in the
latent feature space. The SMTLmodel is implemented based
on the Python TensorFlowAPI (Abadi et al., 2015). The base
network of the siamese architecture is illustrated in Fig. 6.
The Glorot Normal method (Glorot & Bengio, 2010) is used
for weight initialization. In order to adjust the hyperparam-
eters, a random search method (Bergstra & Bengio, 2012) is
applied using 5-fold cross-validation.

The best model configuration that was found is shown
in Table5. We use the Chi-Squared distance introduced in
Eq.21 as distancemeasure in the input space. In the latent fea-
ture space, we use the sum of squared errors (SSE) between
two vectors z1 and z2 as distance measure

SSE(z1, z2) =
M∑

i=1

(z1,i − z2,i )2. (35)

The SMTL model is trained for 200 epochs, while the best
intermediate result of the test set is retained, which can be
interpreted as early stopping (Prechelt, 1998). Before the
model training is executed, the loss terms are scaled to val-
ues between 0 and 1 in order to make them comparable. The
following weights for the scaled loss terms were based on
hyper parameter optimization:Wregr = 0.05,Wrecon = 0.05,
Wvalid = 0.05 and Wpres = 0.85.
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Table 6 Results for varying
numbers of latent features (LF)
of the texture-property mapping
and the distance preservation
applied to the artificially
generated textures and
experimentally measured texture

LF Artificial textures Experimental texture
Regr. MAEE Regr. MAEr Pres. R2 Regr. MAEE Regr. MAEr

20 153 0.03 98.2 596 0.04

18 183 0.03 98.0 773 0.11

16 162 0.03 97.8 907 0.05

14 193 0.03 97.0 1282 0.07

12 215 0.04 95.4 1468 0.13

10 238 0.05 92.2 1463 0.13

8 335 0.06 85.7 1575 0.17

6 390 0.07 72.4 1554 0.15

4 664 0.10 34.2 2768 0.12

Regr.(ession error) MAEE is given in [MPa], Regr.(ession error) MAEr in [-] and Pres.(erve quality) R2 in
[%]

The results for the texture-property mapping and the
distance preservation are shown in Table6, in which the
regression errorsMAEE andMAEr denote themean absolute
error between the true and predicted Young’s moduli and r-
values depending on the dimension of the latent feature space
z. The quality of the distance preservation is measured by the
coefficient of determination R2, between the distances of two
input textures and their corresponding latent feature vectors

R2(χ2(xL , xR), SSE(zL , zR)). (36)

It is shown that texture-property mappings with an adequate
prediction quality can be achieved by extensively reduc-
ing the dimensionality of the latent feature space. However,
regarding the distance preservation quality, a lower bound
of at least 10 latent features can be identified, below which
the distance preservation is unsatisfactory. Additionally, the
texture-property mapping is evaluated on the experimen-
tally measured texture and the corresponding properties. The
results are listed in Table6. It can be seen that a satisfac-
tory prediction quality (Regr. MAEE ≤ 1000 MPa and Regr.
MAEr ≤ 0.1) can only be achieved for at least 16 latent
features.

On the basis of this 16-dimensional feature space, the
validity-prediction is evaluated. The anomaly scores for the
textures in the test set and for the artificially generated anoma-
lies are shown in Fig. 7. It can be seen, that the anomalies can
be separated in a sufficient manner from the textures in the
test set.

Rolling texture identification

To validate the texture identification, we define two target
regions in property space, see Fig. 8. The first one is defined
by the properties of the experimentally measured texture,
which lies in a sparsely populated region and is labeled as
Target Region 1. As a consequence of its location in the

Fig. 7 Histograms of the anomaly scores for the data from the test set
and the set of artificially generated anomalies. The anomaly scores are
based on the model that uses 16 latent features

sparsely populated region, the anomaly score of this texture
is 0.0099 and lies in the transition zone shiftet towards the
generated anomalies (cf. Fig. 7). It is of interest if the opti-
mizer is generally able to find a whole set of microstructures
with properties in this region. The second target region rep-
resents a densely populated region located near the center of
the properties point cloud and is labeled as Target Region 2.
The center of each target region is listed in Table7. The tar-
get regions are defined by adding a tolerance of ±1000 MPa
to the Young’s moduli and ±0.10 to the r-values, yielding
a sufficiently small properties window from an engineering
point of view. As a baseline, we collect all data points from
the training set, that lie inside the target regions. In Target
Region 1 only two textures can be found, whereas in Target
Region 2 13 textures can be found.

To identify a diverse set of textures, we use the optimiza-
tion algorithm JADE (Zhang and Sanderson, 2009), which
is an extension of the differential evolution algorithm (Storn
and Price, 1997). Before starting the optimization via JADE,
an initial population has to be selected: Therefore, 100 tex-
tures are sampled from the test set, which are approximately
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Fig. 8 Density of the training set projected on different planes of the
property space: the Young’s modulus at a 0 vs. 90 degree and b 45 vs.
90 degree for the r-values at c 0 vs. 90 degree and d 45 vs. 90 to rolling

direction. The orange and red squares mark the projections of Target
Region 1 and Target Region 2, respectively. The green dots show the
projected samples from the training set that lie inside the target region

Table 7 Center points of the two target regions (TR)

TR E00 E45 E90 r00 r45 r90

1 223145 207148 216599 1.01 1.7 0.4

2 223000 213000 222000 1.3 2.2 2.2

The Young’s moduli E are given in MPa, the r-values r in [−]

uniformly distributed over the property space. For the cost
function, defined in Eq.11, we use the weights Vprop = 0.90,
Vvalid = 0.03 and Vdivers = 0.07 and scale Cprops and Cdivers

to values between 0 and 1 based on the selected 100 ini-
tial textures. The threshold ξvalid is set to 0.01 based on
the maximum anomaly score in the data set, cf. Fig. 7. The
optimization is performed for 300 iterations with a fixed pop-
ulation size of 100. During the optimization, all valid textures
that fulfill the target properties are collected, according to
the texture-property mapping. Based on the results from the
previous section, we use the trained SMTL model with a
16-dimensional latent feature space.

Target region 1

Our approach is able to find a diverse set of textures that meet
the property requirements of Target Region 1, according to
the texture-property mapping. Figure9 depicts the mutual
distances in the latent feature space between all the found
textures and between the two baseline textures. It is shown,
that the set of identified textures contains 221 diverse textures
in contrary to only two in the baseline set. In order to compare
the results to the experimentallymeasured texture, the closest
texture to the center point of Target Region 1 is depicted in
Fig. 10 as a section through the Euler space at ϕ2 = 45◦.
By comparing the two textures, it can be seen that they are
roughly the same in terms of the magnitude of the intensities
and the shape of the α- and γ -fibers. However, they also
show differences in terms of smoothness and the location of
the intensity peaks.
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Fig. 9 Histogram of pairwise SSE distances of the set of identified
textures and the baseline set for Target Region 1. The distance between
the two textures from the baseline set is indicated by the dashed line

Fig. 10 Texture that yields properties which are closest to the center of
Target Region 1. The plot shows the ϕ2 = 45◦ section of the orientation
distribution function

Fig. 11 Histogram of mutual distances of the set of identified textures
and the baseline set for Target Region 2

Target region 2

Compared to Target Region 1, an even more diverse set of
1315 textures can be identified forTarget Region 2, which can
be seen in the histogram of the mutual distances in Fig. 11.
To get an idea of the differences between the textures, two
exemplary textures are plotted in Fig. 12 as a section through
the Euler space at ϕ2 = 45◦. It can be seen that the α- and
γ -fiber of both textures differ significantly in terms of inten-
sity. However, the locations of the intensity peaks and the
thickness of the α- and γ -fiber are similar.

Fig. 12 Two exemplary textures from the set of identified textures. Both
plots show ϕ2 = 45◦ sections of the respective orientation distribution
functions

Discussion

The results presented in “Validation of SMTL” section show
that the two tasks texture-property mapping and validity-
prediction are solved by the SMTL model. To achieve a
sufficient prediction quality for both tasks in the test set as
well as for the experimentally measured texture, a minimum
dimensionality of the latent feature space is needed. Here,
also the dimensionality requirements of the siamese distance
preservation goal has to be considered. 16 latent features
were found to be sufficient for our example task regarding
the texture of cold rolled bcc steel sheets.

However, the prediction error for the experimentally mea-
sured texture is higher than for the test set using the same
latent feature space dimensionality. This can be explained by
the fact that the corresponding property is in a texture space
region with low sampling density and the model therefore is
not well supported by data. This results also in an instabil-
ity of the model quality depending on the dimensionality of
the latent feature space in this region. This instability can be
seen by studying the r-value in Table6. By choosing the latent
feature space size of 16, also the results for the experimen-
tally measured texture are satisfactory, especially keeping in
mind that the experimentally measured texture differs natu-
rally from the artificially generated data and additionally lies
in a sparsely sampled region, cf. Target Region 1 in Fig. 8.

Due to the sparsity of Target Region 1, the identification
of textures in this region is challenging. Nevertheless, the
optimization approach is able to identify a set of textures
that contains more diverse individuals compared to the two
baseline textures from the training set. Regarding the identi-
fied texture, which is closest to the experimentally measured
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texture in terms of properties, one can see that they are also
similar in terms of crystallographic texture, what basically
proofs the concept of our approach.

The most obvious difference between both textures is
smoothness. The irregular distribution of intensity peaks of
the identified texture is due to the resolution of the histogram-
based texture descriptor. Also, the orthorhombic sample
symmetry is not represented locally. However, by increasing
the resolution, these two issues can be solved. Furthermore,
a higher resolution of the descriptor decreases the descriptor
error, which reflects the deviation between the properties of
the original texture and the properties of the texture described
by the descriptor. However, the choice of resolution is a trade-
off between accuracy and descriptor complexity. Generally,
with the use of the SMTLmodel and the incorporated feature
extraction, the resolution is limited only by computational
power.

Compared to Target Region 1, the identification task for
Target Region 2 seems to be less challenging as the target
region is located in a densely sampled region. However, as
there already exists a proper set of diverse textures in the
baseline, the main challenge is to outperform the baseline
set in terms of diversity. Figure11 shows that the materi-
als design problem (the identification of multiple equivalent
microstructures/ textures) is accomplished by the optimiza-
tion approach. This is exemplary shown when comparing
two of the identified textures in Fig. 12 with each other: sim-
ilar properties can be reached by different microstructures.
The identification of such a highly diverse set of microstruc-
tures with similar properties is an important precondition
to construct robust optimizing process control algorithms,
which need to choose among multiple optimal paths leading
to desired properties.

Summary and outlook

In thiswork,we present an approach to solvematerials design
problems. The approach is based on an optimization strat-
egy that incorporates machine learning models for mapping
microstructures to properties and for assessing the validity
of input microstructures in the sense of the likeliness with
the underlying data. To model these tasks, we use a siamese
multi-task learning (SMTL) neural network model. Further-
more, we incorporate feature extraction in order to transform
input microstructures to a lower dimensional latent feature
space, in which an optimizer (identifying microstructures
with dedicated properties) can operate efficiently.

By training the SMTL model with a dedicated loss func-
tion term, we are able to preserve the distances between
microstructures in the original input space also in the latent
feature space. The distance preservation allows to directly
assess the diversity of the solution set (found by the opti-

mizer) directly in the latent feature space and therefore
enables optimizers to efficiently identify sets of diverse
microstructures. By applying the approach to crystallo-
graphic texture optimization, we show the ability to identify
diverse sets of textures that lie within given properties
bounds. Such sets of textures form the input of optimal pro-
cessing control approaches like in Dornheim et al. (2021).

In the present work, we applied our approach on data from
mean-field simulations. The next step is to apply the approach
on spatially resolved data from full-field simulations. The
proposed methods can be easily extended for this task by
modifying the encoder part of theSMTLmodel.However, the
problem arises that typically fewer data can be generated via
full-field simulations. Nevertheless, such sparse high quality
data can be used to support the modeling with lower qual-
ity data. Concepts to incorporate multi-fidelity data (Batra,
2021) in our SMTL model will be considered in the future.
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