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Abstract
The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed
fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity
during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which
is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present
a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework
consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing
workflow generates samples from thermogram feature data by including feature information frommultiple subsequent layers.
Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom
convolutional neural network model is used for classification. The model is trained and tested on a dataset from thermographic
in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing
parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves
an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of
(700 × 700 × 50) µm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample
labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model
prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the
actual sample porosity.

Keywords Laser Powder Bed Fusion (PBF-LB/M, L-PBF) · Selective Laser Melting (SLM) · SWIR thermography · Online
monitoring · Flaw detection · Machine learning · Convolutional neural networks (CNN)

Abbreviations

BO Bayesian optimization
CNN Convolutional neural network
EI Expected improvement
FN False negative
FP False positive
FPGA Field programmable gate array
GPU Graphics processing unit
ML Machine learning
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MPA Melt pool area
MPE Melt pool eccentricity
MPL Melt pool length
MPP Melt pool perimeter
MPT Melt pool temperature
MPW Melt pool width
NDT Non-destructive testing
NIR Near infrared
PBF-LB/M (also L-PBF) Laser powder bed fusion
PI Probability of improvement
ReLu Rectified Linear Unit
RUS Random under-sampling
SGD Stochastic gradient descent
SLM Selective laser melting
SMOTE Synthetic minority oversampling

technique
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SWIR Short-wave infrared
TN True negative
TOT Time over threshold
TP True positive
UCB Upper confidence band
VED Volumetric energy density
XCT X-ray micro computed tomogra-

phy

Introduction

In-situ monitoring of metal-based additive manufacturing
technologies such as laser powder bed fusion (PBF-LB/M,
also L-PBF or selective laser melting) has drawn the inter-
est of the scientific community and industry in recent years
(Grasso et al., 2021). In-situ sensors offer the possibility to
detect defects or irregularities during manufacturing, e.g.,
surface roughness, porosity, cracking, and delamination. The
thereby provided quality control is especially important in
safety critical applications as for example in the aerospace
industry (McCann et al., 2021). One of the main types of
irregularities inherent to PBF-LB/M components is porosity
which was found to greatly affect the mechanical perfor-
mance of a product (Yadollahi et al., 2015). For the detection
of porosity, multiple different non-destructive testing (NDT)
techniques were applied in recent years, such as acous-
tic emission (Zhang et al., 2020), X-ray Micro Computed
Tomography (XCT) (Fritsch et al., 2021) and eddy current
testing (Ehlers et al., 2020). However, the thermal history of
the manufactured component provides valuable information
which are not covered by these methods. The thermal history
can be correlated with the quality of the resulting compo-
nent, since areas of localized thermal variations had been
reported to result in a high probability for the formation of
porosity (Lough et al., 2022). Thermography as a radiometric
NDT technique captures the local surface radiosity with high
temporal and spatial resolution. By monitoring the layer-
wisemanufacturing, thermography canbeused to reconstruct
the thermal history of the built component. It had been
reported that thermogram features (e.g., melt pool geome-
try and cooling behavior) could be correlated to unstable
process conditions which result in the formation of poros-
ity (Oster et al., 2021). Extracting valid information from
thermograms concerning the local build quality requires the
analysis of large amounts of complex 2D datasets. In recent
studies, Machine Learning (ML) algorithms were introduced
to fulfil the task of porosity or void prediction from thermo-
grams (Gaikwad et al., 2022; Krabusch et al., 2020; Lough
et al., 2020; Mohr et al., 2020; Smoqi et al., 2022).

In terms of void formation mechanisms in PBF-LB/M,
Snow et al. (2020) identified three different characteristic
void categories: Lack-of-fusion, gas porosity, and melt pool

instabilities. Lack-of-fusion voids generally have an irreg-
ular shape and can result from incomplete melting of the
feedstock powder. Incomplete melting can be caused by
insufficient laser power or increased scan velocity (Bayat
et al., 2019) or poorly set hatching parameters such as
hatch spacing or layer thickness (Aboulkhair et al., 2014).
The formation mechanism of gas porosity voids, which are
characterized by small, spherical shapes, is still in debate.
Cunningham et al. (2017) reported that inert gas trapped
within the feedstock powder is one possible formation factor.
If high laser powers and low scan velocities are used for expo-
sure, the PBF-LB/M process transitions from conduction to
keyholemode (Guo et al., 2019),wheremelt pool instabilities
can appear (Snow et al., 2020). In keyhole mode, the vapor-
ization of metal during excessive energy input exerts a recoil
pressure onto the melt pool surface. As a result, a slim cavity
denoted as keyhole is formed (Rai et al., 2007) in which the
laser absorption is increased (Trapp et al., 2017). In unsta-
ble keyhole conditions, the oscillating keyhole can collapse
temporarily, and its lower end is pinched off. Depending on
the oscillation mode, the emerged gas bubbles can escape
the keyhole and form a keyhole void (Ren et al., 2023). The
resulting voids have a spherical shape and are mostly located
at the lower end of the melt pool (Hojjatzadeh et al., 2020).

UsingML to predict porosity or single voids from thermo-
gram feature data is challenging due to a number of aspects:
Firstly, features that are related to the thermal history (e.g.,
the melt pool geometry or cooling rates) need to be evalu-
ated in terms of their benefit to increase the performance of
prediction models. In addition, the thermogram data (from
which features are extracted) is not sufficiently studied in
terms of necessary quality of resolution and temperature cal-
ibration. In recent studies, different monitoring setups were
discussed utilizing various thermal spectral ranges (e.g., vis-
ible (Gobert et al., 2018; Snow et al., 2021)), near infrared
(NIR) (Gaikwad et al., 2022; Hooper, 2018), short-wave
infrared (SWIR) (Lough et al., 2020; Oster et al., 2021)
or mid-wave infrared spectrum (Mohr et al., 2020; Raplee
et al., 2020)). Furthermore, different positional camera set-
tings were applied (on-axis and off-axis). These settings
differ strongly in acquisition frequency, spatial resolution,
and detectable temperature range. Secondly, the prediction
of porosity or single voids requires the registration of the ther-
mogram feature data and the associated reference data which
is often provided byXCT (Ulbricht et al., 2021). Post-process
part deformation and imaging errors are challenging aspects
and can result in inferior registration quality. Poorly regis-
tered datasets might lead to low performance of prediction
models (Oster et al., 2022). Thirdly, due to the layer-wise
nature of PBF-LB/M processes, the complexity of the pre-
diction task is increased by effects of re-melting of material
(“healing”) of previously emerged voids by the laser expo-
sure of subsequent powder layers (Ulbricht et al., 2021).
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Despite these challenges, multiple studies were recently
published studying model-based prediction of irregularities
from in-situmonitoring data. The use of high-resolution digi-
tal cameras is a commonmethod tomonitor the distributionof
powder layers and specimen surfaces pre- and post-exposure
(Aminzadeh & Kurfess, 2018; Gobert et al., 2018; Snow
et al., 2021; Xiao et al., 2020). This approach is benefi-
cial to detect irregularities in the powder distribution and in
the solidified component surface after the printing process.
However, the presentedmethods are not able to acquire infor-
mation of the thermal history of the manufacturing process
since the laser exposure is not monitored.

Other studies report the integrationofNIRandSWIRcam-
eras into 3D printers to monitor the build process. In a study
byKrabusch et al. (2020), an optical tomography camerawas
mounted on top of the 3D printer off-axis to the laser path to
acquire images during the build job. The images were ana-
lyzed by a convolutional neural network (CNN) architecture
which included long short-term memory layers. The CNN
was used to predict porosity cluster-wise in AlSi10Mg com-
ponents. They achieved an f1-Score of 0.753 for a binary
classification using subsequent layers as input data. Mohr
et al. (2020) studied the use of a mid-wave infrared camera
and optical tomography to detect voids in a PBF-LB/M/316L
component. They achieved a maximum overlap of 71.4%
with voids in the reference XCT data by analyzing the time
over threshold (TOT) feature extracted from thermograms.
Lough et al. (2022) extractedmaximum thermogram temper-
ature and TOT features from SWIR thermograms, and gener-
ated probability maps for porosity using Bayesian statistics.
Binarized and registered XCT data was used as ground truth.
The following area under curve values were achieved for
porosity prediction in the bulkmaterial of a PBF-LB/M/304L
part: 0.88 for maximum temperature features and 0.94 for
TOT above 1500 K. Smoqi et al. (2022) used an off-axis dual
wavelength imaging pyrometer to acquire melt pool images
from the manufacturing of a PBF-LB/M component. The
authors extracted four different thermogram features (melt
pool length, mean ejecta spread, mean ejecta temperature,
and the distribution of the melt pool temperature). They used
these features as input for standard machine learning mod-
els (e.g., K-nearest neighbor) and a CNN architecture. The
extracted featureswere labelled per component section based
on the void type and porosity level. This information was
determined by XCT, optical microscopy and scanning elec-
tronmicroscopy. They achieved amaximum f1-Score of 0.97.
Gaikwad et al. (2022) performed two tasks using standard
machine learning algorithms (e.g., support vector machines)
and deep neural networks: The identification of systematic
laser focus drifts, and the classification into different levels of
porosity. They used two high speedNIR cameras operating at
wavelengths of 700 µm and 950 µm, respectively (see also

Hooper (2018)). The data of cylindric PBF-LB/M compo-
nents was labeled per layer with regard to the porosity level
and pore type which was identified by optical microscopy.
They achieved an f1-Score of 0.97 for the second classifi-
cation task with a CNN architecture operating on raw melt
pool images. Ren et al. (2023) used thermal cameras (NIR,
SWIR) tomonitor themelt pool of Ti-6Al-4V single tracks at
high frequencies (50 to 200 kHz). Full-field x-ray images of
the single-trackmeltingwere acquired during laser exposure.
The authors extracted the average keyhole emission intensity
and applied wavelet analysis on the 1D time series data. The
resulting scalogramswere fed into a CNN for the binary clas-
sification of “Pore” or “Non-pore”. They achieved the highest
possible prediction results (accuracy, recall, and precision
of 1). Furthermore, they conducted proof-of-concept single-
track bare plate experiments using a commercial 3D printer.

The achieved results of the studies mentioned above
demonstrated the potential of thermographic in-situ moni-
toring for porosity prediction. The reviewed studies could
be classified into feature-based approaches or raw data
approaches which use entire images. We identified three
studies where the datasets were labeled per layer or per large
component section (Aminzadeh & Kurfess, 2018; Gaikwad
et al., 2022; Smoqi et al., 2022). Thereby, the prediction task
was strongly simplified since stochastic variances in the local
void distribution (Gaikwad et al., 2022) are not addressed.
However, the knowledge of the local void distribution is of
great importance to predict the service life of a component.
Furthermore, many current models insufficiently incorporate
the physical background of complex PBF-LB/M phenomena
such as keyhole pore formation and closing of voids by
re-melting of solidified layers. Additionally, the impact of
data pre-processing (e.g., how the ML samples are defined
from thermograms and labeled from reference data) on the
model performance needs to be examined more precisely.
In terms of the evaluation of model performance, there is
a lack of information about the spatial accuracy in which
voids can be predicted.

In this study, we present a novel framework for the predic-
tion of keyhole porosity in small sub-volumes (“clusters”)
based on thermogram features. The framework (Fig. 1)
involves a data pre-processing workflow and a custom
CNN model architecture. During data pre-processing,
feature information from subsequent manufacturing layers
is included into the samples. Thereby, we aim to enable
the prediction of keyhole porosity. To test this hypothesis,
the developed framework is applied on a dataset from
the manufacturing of an AISI 316L component. During
manufacturing, keyhole porosity formation was forced by
increasing the Volumetric Energy Density (VED) in specific
component sections. The dataset contains registered thermo-
gram feature and XCT data and was reported in a previously
published work (Oster et al., 2022). The prediction task is
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Fig. 1 Illustration of framework
for the cluster-wise prediction of
local porosity

(a) (b)

Fig. 2 Component design inspired by a study by Gobert et al. (2018) as
computer-aided design (a) and after manufacturing (b). The specimen
was manufactured from AISI 316L stainless steel. The outer staircase
and the landmarks positioned on the specimen top were utilized for reg-
istration purposes (Oster et al., 2022). In the green component section

increased VED was utilized to force the formation of keyhole pores
(nominal VED of 65.45 J/mm.3). The part was built upon a dummy
cylinder to prevent cutting losses. Adapted from Oster et al. (2022) and
Oster et al. (2021)

based on binary labels (“porous” and “non-porous”). We
show that the model is able to predict porosity above 0.1%
with high probability (accuracy of 0.95 and f1-Score of
0.86) for a cluster dimension of (700 × 700 x 50) µm3.
Furthermore, we study the impact of pre-processing param-
eters (porosity threshold for labeling of samples, cluster
dimension and number of considered subsequent layers)
on the model’s performance. The results show that these
pre-processing parameters can affect the model’s prediction
ability detrimentally if poorly set. Furthermore, we analyze
the performance of the model with regard to the local void
distribution. We show that the model is sensitive to local
changes in the porosity level although it is trained only on
binary samples (“porous” and “non-porous” classes).

Materials andmethods

Experimental setup and specimen design

A commercial PBF-LB/M machine (SLM 280 HL, SLM
Solutions Group AG, Lübeck, Germany) was used to pro-
duce a cylindric specimen (Fig. 2) from AISI 316L stainless
steel feedstock powder. In this work, the inner cylinder of
the component was observed. The cylinder consisted of 240

layers (layer thickness of 50 µm). The cylinder was built
using the optimal machine parameters for this material pro-
vided by the machine manufacturer. The resulting nominal
VED was 65.45 J/mm3. At three distinct build heights (see
green markings in Fig. 2a) the VED was increased in steps
of 25% by reducing the scan speed to force the formation of
keyhole pores. Further information concerning the powder
specifications, the hatch strategy and the build process
parametrization can be found in a previously published work
(Oster et al., 2021).

A SWIR camera (Goldeye CL-033 TEC1, Allied Vision
Technologies GmbH, Stadtroda, Germany) was used tomon-
itor the manufacturing process. The camera was mounted
outside of the build chamber and monitored the build plate
off-axis the laser path. An image size of (90 × 90) pix2 was
chosen for data acquisition and the pixel size was determined
to approx. 105 µm. The camera acquired thermograms at an
acquisition frequency of 3600 Hz. For further information,
refer as well to Oster et al. (2021).

Feature extraction

A single-point calibration strategy was used for the thermal
calibration of the thermograms (Scheuschner et al., 2019).
Physically interpretable features were extracted from the
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Table 1 List of extracted melt pool-dependent and time-dependent features from calibrated thermograms

Feature name Unit Abbreviation Description Usage for monitoring

Melt pool area pix2 MPA Count of pixels associated to melt pool
(liquid phase)

Changes in melt pool dimension and
shape

Melt pool length pix MPL Major axis of elliptical fit of melt pool
shape

Melt pool width pix MPW Minor axis of elliptical fit of melt pool
shape

Melt pool eccentricity – MPE Ratio of MPW to MPL

Melt pool perimeter pix MPP Perimeter of melt pool pixels via
8-connectivity

Melt pool mean
temperature

K MPTmean Averaged temperatures of melt pool
pixels

Changes in melt pool temperature
distribution

Melt pool maximum
temperature

K MPTmax Average of three hottest melt pool pixels

Time over threshold of
1200 K

ms TOT1200K Time period in which the temperature of
a single pixel exceeds threshold
temperature (calculated once per layer)

Cooling behavior above lower end of
camera sensitivity

Time over threshold of
1680 K

ms TOT1680K Cooling behavior above solidification
temperature (approx. 1660 K)

Time over threshold of
2400 K

ms TOT2400K Cooling behavior above upper end of
camera sensitivity

thermograms to reduce the size of the input data of the ML
model. Two classes of features were extracted: Melt pool-
dependent features and time-dependent temperature features.
The extracted features and their purpose in terms of in-situ
monitoring are specified in Table 1. A detailed description of
the feature extraction is given in Oster et al. (2021).

Image registration

The registration procedure of thermogram feature data and
XCT data was presented in a previously published study
(Oster et al., 2022). The purpose of registration is the
accurate spatial alignment of thermogram feature data and
XCT reference data. An erroneous registration may result in
decreased void prediction performance since feature infor-
mation and associated voids are spatially disjoined. The
registration methodology is presented in Fig. 3. Further-
more, the approximated spatial uncertainty produced by the
registration procedure is given in Table 2. For additional
information, e.g., concerning XCT machine setup and data
reconstruction, the interested reader is referred to Oster et al.
(2022).

Data pre-processing

The data pre-processing workflow was used to generate data
samples from the registered feature and XCT datasets for the
training of the classifier. The pre-processing workflow con-
tained two major steps: The resampling of the fine-resolved

Table 2 Lateral geometric registration uncertainty measured in regis-
tered datasets

Error type Minimum error
value in µm

Maximum error
value in µm

Lateral translation
error

27 ± 13 64 ± 27

Lateral scaling error 19 ± 8 55 ± 23

The error was determined per component section (compare Fig. 2).
Here, the minimum and maximum values with the respective standard
deviations are given for a translation transformation function (Oster
et al., 2022)

datasets to coarser resolved sub-volumes (“clusters”), and
the generation of sample matricesM as model input by using
thermogram feature information of subsequent layers.

Resampling to clusters

During registration (see Fig. 3), the thermogram fea-
ture datasets were up-sampled to the XCT voxel size of
(10 × 10 x 10) µm3 using linear interpolation. Despite this
fine voxel resolution, the feature data incorporated multiple
sources of spatial uncertainty: Firstly, the original pixel res-
olution of the SWIR camera was determined to 105 µm/pix.
Secondly, the melt pool travelled a distance in the range of
110 to 200µmbetween two frames (this value depends on the
static hatch distance and the chosen scan velocity). Thirdly,
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Fig. 3 Flow chart of the registration process of XCT data and thermographic feature data

a)

b)

c)

Fig. 4 Data pre-processing for the generation of samples. a Resampling
of thermogram feature data to larger clusters with an edge length w and
a height of 50 µm. Shown here is a 2D feature slice extracted from the
MPA dataset. bResampling of XCT dataset to larger clusters. The label
L is calculated based on the porosity threshold Pthresh (see “Sample

construction”). c Construction of feature matrix M using mean values
of feature cluster. The row position in M corresponds to the vertical
distance to the cluster whose label shall be predicted. For each label L,
a peculiar matrix M is constructed and utilized as input to produce the
prediction L*

after the registration process, wemeasured a lateral displace-
ment of up to (64 ± 27) µm and scaling difference of up to
(55 ± 23) µm between the datasets (Table 2). To study the
influence of spatial uncertainty on the porosity prediction, we
down-sampled feature and XCT datasets to coarser resolved
cuboid-shaped clusters (Fig. 4a and b). We varied the cluster
edge length w from 100 to 1000 µm with steps of 100 µm.
The cluster height was set to the layer thickness of 50 µm

to simplify interpretation. During down-sampling, all voxel
values inside of a newly created feature cluster were aver-
aged. Thereby, discrete 1D sample values were acquired and
spatially assigned to the cluster center point. In the following,
the mean value of an arbitrary feature cluster of a feature i is
denoted as Fi. Only clusters that were entirely located inside
of the component bulk were regarded as valid.
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Fig. 5 Schematical keyhole pore formation with height difference dH
between the part surface and forming keyhole pores at the bottom of
the melt pool

Sample construction

In this study, the cluster-wise porosity prediction was per-
formed as binary classification, so clusters were labeled
either as “non-porous” or “porous”. In the following, we
denote the cluster whose label shall be predicted as “target
cluster”. A cluster label L was calculated based on the binary
XCT voxels within a cluster:

L �
⎧
⎨

⎩

1(“porous”); i f Nvox , 0
Nvox

> Pthresh

0 (“non-porous”); i f Nvox , 0
Nvox

≤ Pthresh
(1)

In the given equation, Pthresh corresponds to the porosity
threshold. Furthermore, Nvox,0 corresponds to the number of
cluster voxels with a digital value of 0 and Nvox is equivalent
to the total number of cluster voxels. The ratio of Nvox,0

and Nvox is defined as the mean porosity of a single cluster.
We note that Eq. 1 considers also single cluster voxels with
a digital value of 0, since no strict definition of voids was
implemented.

Since the majority of voids in the observed component
were keyhole pores, we included the physics of keyhole pore
formation (Fig. 5) into the sample construction (Fig. 4c).
Keyhole pores form predominantly at the bottom of the melt
pool (Hojjatzadeh et al., 2020). Since the melt pool can have
a depth ofmultiple layer thicknesses for standard PBF-LB/M
parameters (Mohr et al., 2020), a height difference dH can
exist between the production surface and the emerged pore.
However, the SWIR camera only captures the production sur-
face radiosity. As a result, the emerged pore and its associated
thermogram features can be equally disjoined by the vertical
distance dH in their respective dataset location. Therefore,
we postulate that the prediction of keyhole pores demands

the inclusion of feature information from subsequent layers
with similar lateral position as the pore.

Hence, we constructed a thermogram feature matrix M
(Fig. 4c) using feature clusters of N subsequent layers as
model input.M represents the local thermal history of a small
vertical region of interest above the target cluster. The idea of
usingM is to enable themodel to recognize the complex key-
hole pore formation mechanism and further effects such as
remelting of pores. Each entry inM is a floating number and
can be interpreted to correspond to a single layer above the
target cluster due to the fixed height of 50 µm (see “Feature
Extraction”).

For each target cluster in the component, a peculiar matrix
M was constructed, and a label L was defined based on
Eq. (1). The last N component layers were disregarded for
sample construction since the sampling method included
N + 1 specimen layers to generate a sample. In the case
of the last N layers, data from outside the component bulk
would be used.

Proposed predictionmodel

For the porosity prediction based on thermogram features, a
custom 1D-CNN classifier was designed. In contrast to stan-
dard ML algorithms, CNNs combine feature engineering (or
feature extraction) and classification (Baumgartl et al., 2020;
Westphal&Seitz, 2021). Even though extensive feature engi-
neering was already performed during pre-processing, the
use of 1D filter kernels offers the possibility to detect pat-
terns inside the feature vectors of M. Thereby, the classifier
is enabled to learn thermal patterns from the exposure of sub-
sequent layers that are assumably connected to keyhole pore
formation or healing effects (Ulbricht et al., 2021).

BayesianOptimization (BO)was used to design themodel
architecture and to optimize important hyperparameters. BO
is an iterative optimization technique which approximates
an unknown function (e.g., a ML model) by a surrogate
model and makes decisions about the choice of parameters
(e.g., model hyperparameters) to maximize a function out-
put (Snoek et al., 2012). For each iteration, the choice of
the next hyperparameter set is made by an acquisition func-
tion. As acquisition function, Expected Improvement (EI),
the Probability of Improvement (PI) or Upper Confidence
Band (UCB) can be used. In this study, we chose gaussian
processes as surrogatemodel due to their reported descriptive
power and analytic traceability (Klein et al., 2017; Williams
& Rasmussen, 2006). As acquisition function, we chose EI
since it was found to show improved results in comparison
to PI (Snoek et al., 2012) and, in contrast to UCB, did not
require its own hyperparameter tuning. A basic model archi-
tecture and a limited range of hyperparameters (Table 3)were
chosen based on preliminary tests to limit the computational
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Table 3 Hyperparameter space for Bayesian Optimization of the CNN
architecture

Hyperparameter Type Parameter space

Number of
convolutional layers

Discrete [1, 2, 3, 4]

Number of filters in
convolutional layers

Discrete [16, 32, 64, 128, 256,
512, 1024, 2056]

Kernel size Discrete [2, 3, 4, 5]

Pooling size Discrete [2, 3, 4, 5]

Number of dense layers Discrete [1, 2, 3, 4, 5]

Number of neurons in
fully connected layers

Discrete [16, 32, 64, 128, 256,
512, 1024, 2056]

Activation function Discrete [Sigmoid, ReLu, tanh]

Optimizer Discrete [Adam, SGD]

Learning rate Continuous [10–6, 10–2]

cost of the model optimization. The basic model architecture
consisted of the following elements:

1. Block of one or more convolutional layers
2. Maximum pooling layer
3. Flatten layer
4. Block of one or more fully connected layers
5. Fully connected single output neuronwith a sigmoid acti-

vation function

We chose the f1-Score as target to be maximized during
BO. The f1-Score is defined in the following chapter.

Two optimization runs were performed to obtain the final
model architecture and hyperparameter setup. After the first
run (40 random guesses, 40 optimization runs), significant
trends could be derived for certain hyperparameters. There-
fore, for the second run, these hyperparameters were fixated
to decrease the complexity of the optimization problem: Ker-
nel size and pooling size were set to 2, while Rectified Linear
Unit (ReLu) was chosen as activation function and Adam
(Kingma & Ba, 2015) as optimizer. From the second run (5

random guesses, 15 optimization runs), an optimized hyper-
parameter setup was derived which is shown in Fig. 6. A
learning rate of 1.26·10–4 was used. The model had approx-
imately 3.83·106 trainable weights and biases and was used
for the experiments in chapter 3.

Training procedure andmodel evaluation

75% of samples from of the entire dataset were used for
training and 25% for testing. The size of the dataset varied
depending on the chosen cluster edge length w from 4972
samples (w � 1000 µm) to 836,426 samples (w � 100 µm).
The dataset was split randomly. A subset of 0.2·75% � 15%
of the training data was dedicated for the model validation
during training.We used early stopping as a callback method
and restored the best weights. This was performed since
partial overfitting was observed during training, resulting
in diverging binary cross-entropy losses. Accuracy, recall,
precision, and f1-Score were calculated to test the model’s
performance. These scores are defined by the following equa-
tions:

Accuracy � T P + T N

T P + FP + FN + T N
(2)

Precision � T P

T P + FP
(3)

Recall � T P

T P + FN
(4)

f 1 − Score � 2 · Recall · Precision
Recall + Precision

(5)

Here, TP corresponds to the true positives (correctly
identified “porous” clusters), FP to the false positives (“non-
porous” clusters that are falsely identified as “porous”),FN to
the false negatives (“porous” clusters that are falsely identi-
fied as “non-porous”) and TN to the true negatives (correctly
identified “non-porous” clusters). While the accuracy mon-
itors the total number of correct predictions, the remaining
scores concentrate on the prediction of “porous” samples. In

Fig. 6 Model architecture
derived from hyperparameter
tuning by BO. The number of
filters/neurons is given by the
number in the block center. The
layer dimension represents the
number of incorporated
thermogram features and is given
by the number below the block
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Fig. 7 Modeling procedure. The
application of sampling
approaches such as Random
Oversampling (RUS) or the
Synthetic Minority
Oversampling Technique
(SMOTE) is optional and is
described in the appendix

Data samples
(100%)

Modeling samples
(75 %)

Testing samples
(25 %)

Training
(60 %)

Validation
(15 %)

Modeling
process

Model
evaluation

Application of
RUS or SMOTE

Performance
scores

Table 4 Statistical analysis of average melt pool and time dependent features per component section including the corresponding standard deviation

Component sections 1 2 3 4 5 6

VED in J/mm3 65.45 81.84 65.45 98.21 65.45 114.58

Mean porosity in % 0.015 0.024 0.042 0.268 0.306 1.59

MPA in pix 61.9 ± 17.6 68.7 ± 19.8 60.8 ± 17.3 77.6 ± 23.2 61.6 ± 17.3 88.6 ± 26.9

MPL in pix 16.3 ± 5.2 17.9 ± 5.8 16 ± 5.2 19.2 ± 6.1 16.3 ± 5.2 20.7 ± 6.5

MPW in pix 5.5 ± 0.9 5.7 ± 0.9 5.5 ± 1 5.9 ± 1.1 5.5 ± 1 6.1 ± 1.1

MPE [−] 0.86 ± 0.17 0.87 ± 0.16 0.86 ± 0.17 0.88 ± 0.16 0.86 ± 0.17 0.88 ± 0.16

MPP in pix 35.5 ± 10.3 38.6 ± 11.2 35.1 ± 10.2 41.3 ± 11.8 35.6 ± 10.2 44.4 ± 12.4

MPTmean in K 1817 ± 281 1805 ± 280 1816 ± 283 1813 ± 281 1817 ± 283 1820 ± 277

MPTmax in K 2199 ± 357 2188 ± 355 2192 ± 358 2239 ± 363 2202 ± 360 2281 ± 366

TOT1200K in ms 62.2 ± 9.8 93.6 ± 15.7 59.9 ± 8.4 130.5 ± 23.6 59.1 ± 8.7 164.2 ± 34.2

TOT1680K in ms 8.6 ± 1.5 11.8 ± 2.7 8.4 ± 1.5 16.2 ± 4.6 8.5 ± 1.5 21.5 ± 7.1

TOT2400K in ms 0.13 ± 0.11 0.13 ± 0.13 0.11 ± 0.1 0.33 ± 0.26 0.13 ± 0.11 0.59 ± 0.39

the context of porosity prediction for PBF-LB/Mparts, undis-
covered “porous” clusters could represent a serious risk to
component safety. Therefore, the recall is especially impor-
tant to monitor since it includes FN samples. In comparison,
the precision monitors “false alarms” by including FP. The
f1-Score depicts the harmonic mean of precision and recall.

Each model was trained five-fold using the ShuffleSplit
method of the python package scikit-learn (Buitinck et al.,
2013) and the performance results were averaged. Thereby,
possible model inconsistencies were eliminated that may
result from the random splitting into test and training subsets.
TensorFlow (Abadi et al., 2016)was used for the construction
of the model architecture and further modeling procedure.
The training was performed on a Nvidia Geforce RTX3090
GPU with computational times ranging from 40 to 150 s.
This computational time was dependent on the number of
samples and the chosen batch size. The entire data training
procedure is visualized in Fig. 7.

Results and discussion

Statistical evaluation of thermogram feature
and porosity interaction

A first statistical evaluation of the extracted thermogram fea-
tures was performed to fundamentally assess the complexity

of porosity prediction, and to examine the necessity of ML
in this matter.

In Table 4, the mean thermogram feature values and the
corresponding standard deviations are given regarding the
different component sections. Furthermore, the VED and the
averaged section porosity are listed. The results show that
most melt pool-based features and all time-dependent fea-
tures are sensitive to changes in VED. Additionally, they
seem to be indicators for global changes in porosity. MPE
and MPTmean are exceptions that remain nearly constant for
changing VED.

Furthermore, we calculated the correlation coefficients for
the feature cluster values and the porosity labels that were
constructed in "Data pre-processing" section. This analysis
was carried out to evaluate if a linear correlation is present
between porosity and features on a local component scale.
The correlation coefficient is given by the following equation
(Kamath, 2016):

Corr(X , Y ) � Cov(X , Y )

σXσY
(6)

Cov describes the covariance of inputsX andY, and σX , σY
correspond to the respective standard deviation. Corr(X,Y) is
ameasure of the linear relationship between two populations.
For the calculation ofCorr(X,Y), we chose the following pre-
processing parameters based on the results of preliminary

123



1696 Journal of Intelligent Manufacturing (2024) 35:1687–1706

Fig. 8 Correlation coefficients between labels and features determined for three different sets of cluster dimensions. The extracted thermographic
features are given on the abscissa and the voxel position above the label is shown on the ordinate

tests: The porosity threshold Pthresh (see Eq. 1) was set to
0.1% and we included 9 subsequent layers for the sample
construction. Since the influence of the cluster dimension
on the prediction performance was unknown, we calculated
Corr(X,Y) for cluster edge lengths w of 100 µm, 500 µm

and 1000 µm for a first assessment. The results are shown in
Fig. 8.

Low correlation coefficients in the range of −0.37 to
0.15 were determined for small cluster dimensions of
(100 × 100 x 50) µm3. The melt pool-dependent features
were correlated more strongly with the porosity labels than
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the time-dependent features, but with entirely negative coef-
ficients. This is surprising since it is expected that melt pool
size and temperature increase in areas of increased porosity,
as was shown in the results listed in Table 4. Furthermore, we
observed little differences in correlation between subsequent
layers.

For larger cluster dimensions of (500 × 500 x 50) µm3

and (1000× 1000 x 50)µm3, we observed larger and mostly
positive correlation coefficients in the range of -0.16 to 0.73.
Especially the TOT features showed increased coefficients
with values up to 0.73 (Fig. 8c). In comparison, the coeffi-
cients for MPE and MPTmean were small and ranged from
-0.16 to 0.08 (Fig. 8b and c).

These observed variations in correlation indicate that spe-
cific features (such as TOT) are more significant indicators
then others (MPE, MPTmean) for the void formation. The
results reveal a further important trend: The coefficients from
higher subsequent layers tend to correlate stronger with the
target cluster label (“porous” or “non-porous”) than those of
lower layers. This indicates that features from subsequent
layers contain crucial information related to void formation.
However, only small deviations are observed between coeffi-
cients of two subsequent layers. Furthermore, for both larger
cluster dimensions, we observed a high degree of similarity
in the correlation coefficient values and their distribution.

In the following, we summarize themain findings of chap-
ter 3.1:

1. A large variety of features from different subsequent
layers have weak to moderate (−0.17 to 0.73) linear
correlation with the porosity label. This meets the set
expectations that the complex stochastic nature of void
formation is hard to capture with a simple, linear model
due to highly dynamic melt pool properties (Gaikwad
et al., 2022). Therefore, the use of a multivariate nonlin-
ear ML model is necessary for the prediction of porosity
labels. The correlation coefficients indicate that specific
featuresmight have a larger impact than others. Nonethe-
less, all extracted thermogram features are used as input
for the model. Thereby, no potentially important feature
information is disregarded. A detailed investigation of
the feature influence on the prediction ability is out of the
scope of this study and will be tackled in future work.

2. The results show that the correlation coefficients are sen-
sitive to changes of pre-processing parameters such as
the cluster dimension. Furthermore, we found increas-
ing correlation coefficients for increasing numbers of
included subsequent layers. From these observations, we
conclude that pre-processing parameters have a serious
impact on the prediction performance. Additional results
concerning the impact of pre-processing parameters on
the prediction performance are shown in the upcoming
chapters.
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Fig. 9 Model performance depending on the set porosity threshold
and imbalance ratio between both classes for a cluster dimension of
(700 × 700 x 50) µm3 and nine included subsequent layers

Influence of porosity threshold on prediction
performance

In the following, we present our study on the influence of
the porosity threshold on the prediction performance. The
porosity threshold was used to label the data samples into
“porous” or “non-porous” and, therefore, affected the intrin-
sic composition of the dataset. We trained models for eleven
thresholds Pthresh ranging from values of 0% to 1%. We kept
the cluster dimensions of (700× 700× 50)µm3 constant and
chose the number of considered voxels of subsequent layers
to N � 9. The constant pre-processing parameters were set
based on preliminary tests to keep the computational effort
within reasonable limits. Under these conditions, the dataset
consisted of 11,752 samples. Furthermore, we monitored the
ratio of “porous” to “non-porous” clusters to describe the
class imbalance in the dataset since its influence on the pre-
diction performancewas unknown. The results are visualized
in Fig. 9.

The results showed that the model performances fluc-
tuated for changing Pthresh values. A threshold of 0.1%
produced the highest f1-Score (~ 0.86) and high accuracy
(~ 0.95). For 0%and from0.2% to 1%, the f1-Scoredecreased
below 0.8. We observed that the precision score was mostly
higher (at maximum 0.89) than the f1-Score, while equal val-
ues were achieved for Pthresh values of 0.1% and 0.8%. For
0.2%, 0.9% and 1%, the precision values were decreased in
comparison to the f1-Score. For the recall score, we found
reverse behavior with approximately equal differences to f1-
Scores when compared to the precision score. Generally, the
accuracy score remained at a high level above 0.86 regardless
of the threshold. Furthermore, the imbalance ratio decreased
from 0.48 to 0.06 for increasing Pthresh values. A large drop
is present for threshold values between 0 and 0.1%.

For varying Pthresh values, the accuracy remained high
above 0.86. This observation wasmade for all experiments in
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this study (see “Influence of cluster dimension on prediction
performance” and “Influence of inclusion of subsequent lay-
ers on prediction performance”). It can be concluded that the
accuracy as a performance score has very limited capability
to give reasonable information about themodel performance.
The low significance of accuracy for imbalanced datasets is
a known issue in the machine learning community (Chawla,
2005). Therefore, further interpretations are mainly based on
recall, precision and f1-Score.

The increased performance scores for Pthresh � 0.1% are
especially outstanding in the scope of the studied porosity
thresholds. A possible explanation is that Pthresh � 0.1%
separates the induced porosity (keyhole voids) in compo-
nent sections of increased VED from the inherent porosity
in component sections of nominal VED. Thereby, the data
samples are split into classes whose void formation mecha-
nisms are physically different. This might not be the case for
a randomly chosen threshold. The drop in imbalance ratio
between Pthresh � 0% and 0.1% supports this explanation
approach: It shows that the number of “porous” clusters is
significantly increased for Pthresh � 0% in comparison to
Pthresh � 0.1%. This outstanding rise indicates that clusters
are labelled as “porous” that contain inherent porosity from
component sections of nominal VED. If Pthresh � 0% is set,
all clusters are labeled as “porous” that contain already one
or more XCT voxel with a binarized grey level of 0. This
would include small voids or potential errors from the XCT
data binarization which might be difficult to be predicted by
the model.

The results indicate that the porosity threshold as a pre-
processing parameter should be set carefully since it can
influence model performance detrimentally. Since we aim to
predict small porosity valueswith high probability, a porosity
threshold of 0.1% is identified as optimum for this study.

The intrinsic dataset imbalance of majority (“non-
porous”) and minority (“porous”) classes (Fig. 9) can be
detrimental for the model performance. Class imbalance is
a known challenge in ML classification tasks (Han et al.,
2005). Therefore, we performed additional experiments for
datasets that were adjusted by two different sampling meth-
ods, Random Undersampling (RUS) and Synthetic Minority
Oversampling Technique (SMOTE). The results showed that
the sampling methods provided no performance improve-
ment in comparison to original dataset (see appendix “Study
on influence of class imbalance”). Therefore, the applica-
tion of sampling methods was not regarded for the following
experiments.

Influence of cluster dimension on prediction
performance

As already pointed out in “Statistical evaluation of ther-
mogram feature and porosity interaction”, the impact of

Fig. 10 Influence of cluster dimension on model performance for a
porosity threshold of 0.1% and considered voxels from N � 9 sub-
sequent layers

the cluster dimension on the prediction performance of the
classifier is of interest. In order to study this impact, we
trained models using ten datasets with different cluster edge
lengthsw. The edge lengths ranged from of 100µm (836426
samples) to 1000 µm (4972 samples). The cluster height
remained constant at 50 µm (corresponding to the layer
thickness). Thereby, each cluster corresponded to a single
subsequent layer. For the experiment, Pthresh was set to 0.1%
and N � 9 subsequent layers were included to build the sam-
ple matrix M.

The results (Fig. 10) showed that the precision, recall and
f1-Scores increased with increasing w for w ≥ 200 µm. A
plateau was reached for approx. w ≈ 700 µm. The highest
performance scores were observed at a cluster dimension of
(1000× 1000 x 50)µm3. Forw equals 100µm and 200µm,
the model showed decreased performance scores of 0.65 or
below.

Especially the low recall scores (< 0.51) emphasize the
limited capability of predicting porosity for small cluster
dimension with w ≤ 200 µm. Possible reasons for the
low prediction performance at small cluster dimensions are
the different causes of spatial uncertainty within the ther-
mogram feature data (see chapter 3.1). Firstly, the camera
parametrization and the resulting spatial resolution may lead
to a decrease of the porosity prediction scores. The available
data points for the construction of 3D feature datasets are lim-
ited due to the spatial resolution of approx. 105 µm/pix and
the melt pool travelling distance between frames of 110 µm
to 200 µm (see “Resampling to clusters”). This data “spar-
sity” may affect the performance of the model especially at
lower cluster dimensions.

Secondly, the registration uncertainties may be a detri-
mental factor. We calculated maximum uncertainties of
64 ± 27 µm for lateral dislocation and 55 ± 23 µm for
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Fig. 11 Influence of considered number of subsequent layers on model
performance for a porosity threshold of 0.1% and a target voxel size of
(700 × 700 x 50) µm3

lateral scaling (Table 1). Especially for small cluster dimen-
sions, the registration uncertainties could lead to insufficient
alignment between thermogram feature and XCT clusters.
Thereby, the model would be trained on spatially disjointed
sampleswhich could result in a lowability to predict porosity.

The results indicate that the cluster dimension needs to be
increased until the influence of the spatial data uncertainties
on model performance becomes neglectable.

Influence of inclusion of subsequent layers
on prediction performance

The inclusion of subsequent layers for the construction of M
is of interest since it might enable the model to recognize
complex effects such as re-melting of material and keyhole
pore formation. Therefore, the number of included subse-
quent layers N is expected to be significant for the porosity
prediction (see “Statistical evaluation of thermogram feature
and porosity interaction”). We trained models for varying
N in the range of 1 to 9 which resulted in input vector
dimensions ranging from [2,1] to [10,1]. A minimum vector
dimension of [2,1]wasmandatory to perform the convolution
since the kernel size was set to 2 (see chapter 2.5).Pthresh was
kept constant at 0.1% and the cluster dimension was chosen
to (700 × 700 x 50) µm3 (11,752 samples).

The results (Fig. 11) showed that the prediction perfor-
mance increased with an increasing N . For N � 7, a plateau
was reached. Although the recall score was constantly lower
than the f1-Score, both were surpassed by the precision.

The resulting performance scores indicate that the inclu-
sion of subsequent layers improves the prediction perfor-
mance. This assertion is supported by the physics of the
keyhole void formation: As stated beforehand, the melt
pool penetrates multiple layers of powder and solid mate-
rial causing a height difference dH between pore location

Section 1
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Section 2
(VED + 25 %)

Section 3
(nominal VED)

Section 4
(VED + 50 %)
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(VED + 75 %)

Section 5
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Fig. 12 Visualization of the void distribution of the XCT data. Compo-
nent sections of applied increased VED are highlighted. The equivalent
void diameter is indicated by the color and corresponds to the diameter
of a sphere with similar volume. The component sections are indicated
by the dashed lines. Pores belonging to the contour scan are blanked
out for increased visibility

and the location of the thermal information. Depending on
the applied VED, the depth of the melt pool varies (Mohr
et al., 2020), and therefore, also the location of the cor-
responding thermal information may vary in the sample
matrix M. In Oster et al. (2022), we approximated the melt
pool depth of the PBF-LB/M process to vary in a range of
213 ± 19 µm and 471 ± 54 which corresponds to 4 to 9 lay-
ers. The results shown in Fig. 11 indicate that a mean melt
pool depth of approximately 350 to 450µmwaspresentwhen
voids emerged. This assumption is based on the observation
that the largest number of “porous” clusters were identified
correctly if N exceeded seven layers.

The results indicate that the best model performance is
achieved if the added heights of the included subsequent
layers exceed the maximum melt pool depth during man-
ufacturing.

Evaluation of local model performance

In this chapter, we evaluate the model performance by com-
ponent section since the void formation was controlled by
section-wise changes of the VED. Thereby, the model’s
capability of porosity prediction for varying void distri-
butions and sizes is studied. Therefore, we visualized the
void distribution in the component bulk of the XCT data
(Fig. 12). Furthermore, we trained models with the optimal
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Table 5 Performance scores per component section averaged from five independent training and testing cycles

Component section Number of “non-porous”
clusters

Number of
“porous” clusters

Mean porosity of
“porous” clusters
in %

Accuracy Recall Precision f1-Score

1 3794 166 0.22 ± 0.13 0.956 0.084 0.368 0.137

2 1239 89 0.23 ± 0.13 0.923 0.056 0.227 0.09

3 3379 365 0.41 ± 0.29 0.959 0.923 0.731 0.816

4 589 710 0.49 ± 0.38 0.854 0.977 0.799 0.879

5 3340 613 1.42 ± 0.81 0.989 0.951 0.983 0.967

6 0 397 1.51 ± 0.85 1.0 1.0 1.0 1.0

Entire sample 11,341 2340 0.84 ± 0.78 0.955 0.867 0.853 0.86

pre-processing parameters identified in the previous chap-
ters. Pthresh was set to 0.1%, the cluster dimension was set
to (700 × 700 x 50) µm3 and N � 9 subsequent layers were
considered (resulting in 11,752 samples). Five differentmod-
els were independently trained using the ShuffleSplit method
basedon the entire component dataset. Eachmodelwas tested
on six subsets, each corresponding to a specific component
section (see Fig. 2).We calculated themean accuracy, recall,
precision, and f1-Scores from all five independent models
(Table 5).

The void distribution in the component bulk (Fig. 12)
showed that voids occurred not only in the component sec-
tions of increased VED but also in the upper parts of the
subjacent component sections. This distribution results from
the explained formation mechanism of keyhole pores (see
Fig. 5). Furthermore, only few voids were located in the
upper 40% of layers in component sections 2, 4 and 6. There-
fore, especially component sections 3 to 6 contained both
“porous” and “non-porous” clusters. In component sections 1
and 2, a similar observationwasmade.However, the numbers
of voids were significantly lower in these sections. Further-
more, the equivalent void diameter showed that the void size
increased with increasing VED.

The results showed that small performance scores (pre-
cision, recall and f1-Score below 0.368) were achieved in
component sections 1 and 2 (Table 5). Possible reasons for
this might be the low number of “porous” clusters with low
mean porosity of (0.22 ± 0.13) % and (0.23 ± 0.13) %,
respectively. This indicates that the model was trained on
few samples with porosity values in the vicinity to Pthresh �
0.1%. In comparison, “porous” clusters from component sec-
tions 3 to 6 show higher mean porosity values in this regard.
This indicates that the porosity prediction is challenging if
“porous” target clusters appear sparsely and have a mean
porosity close to Pthresh.

The results in component sections 3 and 4 showed high
f1-Scores (> 0.816) with increased recall (> 0.923) and
decreased precision (> 0.731). An increased number of
“porous” target clusters with increased mean porosity could

be a possible reason for this result. Remarkably, the increased
recall scores indicate that the model predicts the present key-
hole pores with high probability despite the described height
difference dH between thermal information and emerged
void (see “Resampling to clusters”).

Especially in component sections 5 and 6, “porous” clus-
ters were predicted correctly with a very high probability
(> 0.951). The overwhelming number of “porous” clusters
with very high mean porosity compared to the porosity of
“non-porous” clusters might help the classifier. Similar to
component sections 3 and 4, the present keyhole pores are
predicted almost entirely correct.

Regarding the entire sample, the results showed a mean
f1-Score of 0.86 and a mean recall score of 0.867. Fur-
thermore, a mean porosity of 0.84 ± 0.78% for “porous”
clusters was found. Regarding the cluster dimension of
(700 × 700 x 50) µm3, this mean porosity corresponds to
an average void volume of approximately 5.6·103 µm3.

To better illustrate this result, the following example can
be used: In the hypothetical case where the entire volume
is referred to a single circular void, the corresponding void
diameter would be 73.3 µm. If we conservatively consider
the upper limit of the standard deviation (mean porosity of
1.62%), the resulting void volumewould be 8.7·103 µm3 and
the corresponding void diameter would be 93.2 µm, respec-
tively. This hypothetical example leads to the interpretation
that the model would detect the presence of single circular
void with a diameter of 73.3 µm (or 93.2 µm, respectively)
with a probability of 86.7% (recall). However, we note that
usually more than one void was present per cluster.

Furthermore, we closely studied the impact of differences
in local porosity on the model. Therefore, we observed a
component subsection comprised of component sections 3
and 4 since a high variance in cluster porosity was found
here (see Fig. 13). This subsection corresponded to a com-
ponent height from Z � 6.5 mm to 7.5 mm and contained
a major part of “porous” clusters of the named component
sections. Here, we recorded the raw output of the model’s
final sigmoid neuron (see Fig. 6). The output of a sigmoid
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Fig. 13 Porosity vs. raw model prediction averaged along the Z axis
from 6.5 to 7.5 mm. In this area, a major part of “porous” clusters was
located resulting from the VED increase in component sections 3, 4
and 6. The dashed line indicates the outer rim of the cylindric speci-
men. a Average porosity per target voxel. b Average output of sigmoid

neuron before the classification threshold is applied. It is shown that the
model produced increased outputs for higher porosity values especially
for the component rim

neuron produces a floating-point number between 0 and 1.
For binary classification, a threshold (from here denoted as
“classification threshold”) is applied to distinguish between
both classes. In this study, we used the standard classifica-
tion threshold of 0.5. We averaged the cluster porosity and
the sigmoid output vertically over the component height Z to
visualize a possible correlation (see Fig. 13).

The results (Fig. 13a) showed that the rim clusters had
increased porosity compared to the clusters close to the com-
ponent center. As shown in Fig. 13b), the model mostly
produced increased sigmoid outputs at these rim clusters.
In other words, the model predicted an increased probability
for the presence of voids for clusters with increased poros-
ity. This is remarkable since the model was trained using
samples that did not contain information about the actual
cluster porosity. For each sample, only the binary cluster label
(“porous” or “non-porous”) was available. Nonetheless, the
results indicate that the model is able to distinguish between
clusters of increased and decreased porosity based on the
thermogram features. This can be also seen in the specimen
center, where the model produces lower outputs near to the
classification threshold of 0.5 for porosity values closer to
Pthresh � 0.1%.

This is, to our knowledge, the first time that comparable
observations are made for in-situ monitoring of PBF-LB/M.
Based on these observations, we conclude that crucial infor-
mation about the probability of local void formation is
encoded in the thermogram feature data. Furthermore, we

postulate that a sufficiently powerful model can predict
changes in local porosity based on the thermogram feature
input.

General discussion of framework

In comparison to related irregularity prediction frameworks
(Aminzadeh & Kurfess, 2018; Gaikwad et al., 2022; Gobert
et al., 2018; Krabusch et al., 2020; Lough et al., 2022; Mohr
et al., 2020; Ren et al., 2023; Smoqi et al., 2022; Snow et al.,
2021; Xiao et al., 2020), the presented approach offers sig-
nificant advantages: Firstly, the model predicts local porosity
clusters-wise instead of predicting data that was labelled on
a large component scale such as entire layers (Aminzadeh &
Kurfess, 2018; Smoqi et al., 2022) or entire specimen (Gaik-
wad et al., 2022). A cluster-based prediction is advantageous
because it enables the detection of safety–critical poros-
ity in small-scale component regions that are subjected to
high mechanical loads during operation. Secondly, the inclu-
sion of subsequent layers into the model input significantly
increases the recognition of complex PBF-LB/M phenom-
ena such as keyhole pore formation. The advantages of this
method were already recognized by Krabusch et al., 2020.
This indicates that models for keyhole porosity prediction
which are based for example on single track data (Ren et al.,
2023) might have decreased performance if applied to real
3D printing data. Thirdly, due to the enhanced pre-processing
and feature engineering, the necessary model architecture
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remains simple especially compared to raw data approaches
(Krabusch et al., 2020; Westphal & Seitz, 2021). Therefore,
the training process is computationally cheap (training time
below 3 min on a Nvidia Geforce RTX3090 GPU) and the
model’s small layer depth (only twelve model layers) and
dimension benefit its interpretability (Samek et al., 2021).

A possible drawback in comparison to other irregularity
prediction approaches is the limited real-time capability of
the framework which is strongly dependent on the number
of included subsequent layers N . If N � 9 is assumed, a
first valid prediction result would be achieved after the expo-
sure of 10 layers. However, in recent studies, the real-time
analysis of data was identified as a crucial factor for in-situ
defect prediction (Grasso et al., 2021; McCann et al., 2021).
This demand for real-time analysis should be reconsidered
since it ignores PBF-LB/M phenomena such as re-melting
of material to close voids and the keyhole pore formation.
Due to these phenomena, the manufacturing of a layer can
significantly change the void distribution of subjacent layers.
Therefore, a void prediction in real-time based on data from a
single layer without considering subsequent layers has only
little significance in this context. However, as pointed out
by Grasso et al. (2021), it is still important to process large
amounts of data in adequate time to meet the manufacturing
speed of PBF-LB/M processes.

For the application of the framework in an industrial envi-
ronment, a suitable camera and, e.g., an FPGA device could
be used for feature extraction, data pre-processing andmodel
execution at an appropriate computational speed. Compara-
ble implementations were already shown by multiple studies
(Kwon et al., 2020; Lane & Yeung, 2020; Modaresialam
et al., 2022). Another challenging aspect for the framework
application is the hardware limitation of the used infrared
camera. To meet the PBF-LB/M dynamics, high acquisition
frequencies are necessary which limit the size of the cam-
era’s field-of-view. Thereby, the effective component surface
is reduced which can be monitored. However, a decrease of
the acquisition frequency leads to a detrimental reduction of
the available thermal process information. The camera used
in this study was restricted to a maximum field-of-view of
(9.5 × 9.5) mm2 using an acquisition frequency of 3600 Hz.
A change from off-axis to on-axis monitoring (field-of-view
changing with the laser position) could help to overcome this
issue since a smaller field-of-view could be used.

Concerning the chosen model architecture, the prediction
results shown in Fig. 13 indicate that the model can detect
porosity differences from thermogram feature data. This sug-
gests that the underlying keyhole prediction can be solved
using a regression model. In this study, we decided to per-
form a simple binary classification task since the potential of
the feature data for porosity prediction was a-priori unclear.
Since the achieved results are promising but not optimal (e.g.,
f1-Score of 0.86), we expect that a regression task would lead

to reduced model performances. The use of enhanced acqui-
sition hardware or the expansion of the thermogram feature
portfolio (e.g., by spatter features) could be enabling factors
to use regression models in future works.

During manufacturing, we forced the formation of key-
hole porosity by decreasing the scan velocity and, thereby,
increasing the VED. However, unstable keyhole conditions
can be caused by multiple other manufacturing conditions.
Prominent examples are high laser power settings, spot size
drifts, or unfavorable scan strategies which result in local
overheating (Ren et al., 2023). Hence, the presented frame-
work might show reduced performances when facing unseen
data produced under these conditions. One main underlying
problem is that the described further manufacturing condi-
tions are not represented in the training data used in this
study. Due to the same reason, data from different materials
and machines could also pose a challenge to the framework.

However, as was stated by Lough et al. (2022), it is
assumed that the void formation events described in this
study are closely related to thermal events of the thermal
history. Therefore, we speculate that the presented predic-
tion framework might show comparable performance for
different keyhole void mechanisms if we expand the train-
ing datasets accordingly. In the scope of this study, the used
dataset was sufficient to emphasize the potential and the
advantages of the presented framework for keyhole poros-
ity prediction. For our future work, we aim to apply the
framework on further datasets that may include additional
manufacturing conditions, materials, and machines.

Conclusion

In this study, we presented a framework consisting of a
data pre-processing workflow and a supervised CNN archi-
tecture for the prediction of porosity in local sub-volumes
(“clusters”) from thermogram features. We used registered
thermogram features and XCT data from the manufactur-
ing of a PBF-LB/M/316L part (Oster et al., 2022) as data
basis. The pre-processing workflow included the resampling
to coarser resolved clusters and the construction of a sample
matrix including thermogram feature information of sub-
sequent layers. We labeled the data based on the mean
cluster porosity into “porous” and “non-porous”. An 1D-
CNN classifier was developed and optimized using Bayesian
Optimization. We studied the prediction performance under
the influence of the following pre-processing parameters:
The porosity threshold Pthresh, the dimension of the clusters
(by adjusting the cluster edge length w) and the number of
included subsequent layers N . Furthermore, we performed
an in-depth evaluation of the relationship between the local
porosity and the model prediction. In the following, we sum-
marize the main findings of this paper:
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1. The presented framework achieved an accuracy of 0.96,
an f1-Score of 0.86, a recall of 0.87 and a preci-
sion of 0.85 for the prediction of porosity above a
threshold of 0.1% in clusters with the dimension of
(700× 700 x 50)µm3. These results were achieved using
25% of the entire dataset for testing. Furthermore, the
model showed increased recall scores of above 0.92 in
component sections 4 to 6 that exhibit porosity from an
increase of VED (Volumetric Energy Density) of at least
50%. In terms of detectable void size, we approximated
a hypothetical detectable void diameter of 73.3 µm if a
single circular void is assumed. The achieved prediction
results are promising, but we expect further improvement
in the future, e.g., from using enhanced acquisition hard-
ware or extending the portfolio of monitored features.

2. We showed that pre-processing parameters have high
impact on the model performance. A reduction of the
cluster dimension below a size of (700 × 700 x 50) µm3

led to decreased performance scores. The spatial uncer-
tainty in the feature data (e.g., from registration errors)
might be a limiting factor when minimizing the cluster
dimension. Furthermore, the porosity threshold can influ-
ence the porosity prediction detrimentally and should
be set with care. Moreover, the consideration of feature
information from subsequent layers led to increased per-
formance scores. We showed that the model performs
best if the number of included layers is equal or larger
than the approximated melt pool depth. We postulate
that the presented pre-processing workflow enables the
model to identify complex PBF-LB/M phenomena such
as keyhole pore formation and re-melting of material
(“healing”).

3. The model was shown to be sensitive to changes in local
porosity. The results show that the raw model output
was increased for clusters with increased porosity val-
ues. This is remarkable since the model was trained on
binary data without considering the actual cluster poros-
ity. This illustrates the potential of porosity prediction
based on thermographic in-situ monitoring data and is,
to the authors’ knowledge, the first time that comparable
results are presented to the AM community.

From the findings of this study, relevant future tasks can
be derived: We aim to study the impact of single features
on the prediction performance to identify features of high
significance. Thereby, the model architecture can be further
simplified, e.g., by reducing the dimension of the convolu-
tional layers. Furthermore, the role of spatial uncertainty
inherent in the thermogram feature data needs to be stud-
ied in terms of prediction performance. Moreover, we aim to
generate a larger data base that includes different machines,
materials and different types of irregularities to increase the
model’s generalizability.
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Appendix

Study on influence of class imbalance

Dataset imbalance is a known challenge for machine learn-
ing classifiers. If one class appears rarely in the dataset in
comparison to other classes, the model can behave unde-
sirable especially when the minority class is of interest
(Han et al., 2005). Furthermore, the significance of tradi-
tional performance measures such as the accuracy score is
limited if class imbalance is present (Chawla, 2005). Com-
mon approaches to deal with class imbalance are sampling
approaches that change the intrinsic data distribution to allow
the use of standard learning systems (Torgo et al., 2013).
Prominent representatives of sampling approaches are the
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Fig. 14 Flow chart for the
creation of synthetic data
samples with the help of SMOTE

Porosity threshold in %

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

 s
co

re

0

0.1

0.2

0.3

0.4

0.5

0.6

Im
ba

la
nc

e 
ra

ti
o

SMOTE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy
Precision
Recall
f1-Score
Ratio imbalance

Fig. 15 Model performance in dependency on the chosen porosity
threshold with application of SMOTE sampling method. The perfor-
mance scores remain comparably similar for the usage of SMOTE in
comparison to the original dataset

Random Under-Sampling (RUS) technique or the Synthetic
Minority Over-sampling Technique (SMOTE). The RUS
technique decreases the number ofmajority samples to adjust
the ratio between the classes. The majority samples that are
deleted are chosen randomly (Torgo et al., 2013). SMOTE is
an over-sampling method where synthetic minority samples
are created based on the random K-nearest-neighbor method
(Chawla et al., 2002; Torgo et al., 2013). The ratio between
original samples and synthetic samples is specified by the
over-sampling rate R. The parameter k corresponds to the
number of randomly chosen neighbors. k and R are chosen
by the user. Common values for k found in literature were
ranging between 5 (Chawla et al., 2002) and 20 (Wang et al.,
2019). For a chosen sample x, the creation of synthetic sam-
ples is performed as illustrated in Fig. 14.

In the present study of porosity prediction, the number of
“porous” clusterswas lower than the number of “non-porous”
clusters. The resulting class imbalance was dependent on the
chosen cluster dimension and the porosity threshold that dif-
ferentiates between “porous” and “non-porous” samples. For
SMOTE, k was chosen equal to 10 based on preliminary tests
and a ratio of 1 between majority and minority classes was
achieved by the appropriate adjustment of R. The sampling
methods were applied on the training data as shown in Fig. 7
in the main paper.
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Fig. 16 Model performance in dependency on the chosen porosity
threshold with application of RUS sampling method. In comparison
to SMOTE and the original dataset the application of RUS result in
very high recall scores, while f1-Score and precision are significantly
lower

For the study of the influence of the sampling methods we
used the same pre-processing conditions as in “Influence of
porosity threshold on prediction performance”. The cluster
dimension was chosen to (700 × 700 x 50) µm3 and 9 sub-
sequent layers were considered for the construction of the
sample matrixM. The results for the application of SMOTE
and RUS are shown in Figs. 15 and 16, respectively.
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