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Abstract
Intelligent manufacturing applications and agent-based implementations are scientifically investigated due to the enormous
potential of industrial process optimization. The most widespread data-driven approach is the use of experimental history
under test conditions for training, followed by execution of the trained model. Since factors, such as tool wear, affect the
process, the experimental history has to be compiled extensively. In addition, individual machine noise implies that the models
are not easily transferable to other (theoretically identical) machines. In contrast, a continual learning system should have
the capacity to adapt (slightly) to a changing environment, e.g., another machine under different working conditions. Since
this adaptation can potentially have a negative impact on process quality, especially in industry, safe optimization methods
are required. In this article, we present a significant step towards self-optimizing machines in industry, by introducing a
novel method for efficient safe contextual optimization and continuously trading-off between exploration and exploitation.
Furthermore, an appropriate data discard strategy and local approximation techniques enable continual optimization. The
approach is implemented as generic software module for an industrial edge control device. We apply this module to a steel
straightening machine as an example, enabling it to adapt safely to changing environments.

Keywords Safe optimization · Intelligent manufacturing · Automation · Self-learning · Continual learning

Introduction

Reaching the vision of Industry 4.0 can be interpreted as
a two step revolution (Rauch, 2020): First, technology-
driven innovations enabling data processing, and second,
data- and algorithm-driven innovations. While the first point
becomes more and more concrete, the second point remains
a broad research field. The combination has the potential to
enable the vision of self-optimizing machines (Möhring et
al., 2020; Iwanek et al., 2018; Permin et al., 2016) adapting
to uncontrollable variables (Kim et al., 2018), e.g. measured
thickness of material or environmental temperature. Accord-
ingly, intelligent manufacturing applications (Azizi, 2019)
and agent-based implementations (Zhong et al., 2017) are
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scientifically investigated due to their enormous potential to
improve efficiency. As manufacturing complexity grows, it
becomes increasingly challenging to tune process parameters
with traditional methods to achieve the best process quality,
e.g. minimal actual/target deviation, optimal product qual-
ity or minimal operating time. For this reason, methods of
machine learning (ML) are increasingly investigated even in
the conservative automation sector (Weichert et al., 2019;
Zeiser et al., 2021) to contribute to industrial visions of the
future (Zuehlke, 2010).

The currently most widespread approach to training aML
model for process optimization uses experimental history
under test conditions, followed by execution of the trained
model. Here, evolutionary techniques (e.g. genetic algo-
rithms) or artificial neural networks (ANNs) (Azizi, 2020)
can be used. For example, an optimizing control system uses
ANNs trained beforehand to self-adjust cutting parameters
like feed rate (Park & Tran, 2014). Thus, actors operate fol-
lowing a system behavior function based on real-time sensor
data to ensure the best possible operating result (Qu et al.,
2019). Since these optimal parameters depend, among other

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02087-3&domain=pdf
http://orcid.org/0000-0003-0459-5956
http://orcid.org/0000-0003-2216-7808


886 Journal of Intelligent Manufacturing (2024) 35:885–903

factors, on tool wear, the experimental history has to be com-
piled extensively to include allwear conditions. Furthermore,
individual machine noise can mean that the models are not
easily transferable to othermachines identical in construction
and only work on the test machine. Besides this disadvan-
tage, one important aspect is the deployment of agents in
control architecture (Ghafoorpoor Yazdi et al., 2018), which
might become necessary as soon as a previously unconsid-
ered variable in the environment changes.

In general, control variables can be process parameters
which are either adapted before the process, or during the
process depending on the environmental behavior. While the
latter describes a full reinforcement learning task (Geram-
ifard et al., 2013), we focus on the former case, which is
an associative search task aiming to solve so-called contex-
tual bandit problems. This focus is justified by the fact that
most tasks within production processes are on the one hand
recurring and on the other hand divided into several sub-
tasks. Due to the online model adaption under consideration
of historical decisions, solving contextual bandit problems
has even potential to avoid catastrophic forgetting (Bounef-
fouf & Rish, 2019) and enable so-called continual, life-long
or permanent learning. These are the most common classes
of learning algorithms for self-adaptive systems (Gheibi et
al., 2021).

Since self-optimization of a process is not supposed to
have a negative impact on the quality of this process, stan-
dard learning methods are not applicable. In contrast to
just focusing on minimizing the required number of real-
world experiments (Maier et al., 2020), an optimization with
constraints (Rattunde et al., 2021) is more appropriate for
industrial standards. Such safe learningmethods become par-
ticularly relevant for real-world interacting applications of
machines (Chatzilygeroudis et al., 2018). Even if safe learn-
ing approaches receive increasing attention (Garcıa & Fer-
nández, 2015), the safe optimization of manufacturing-like
tasks is still a rather unexplored research topic with predom-
inantly high cycle times. Due to their computational cost,
current safe optimization approaches focus mainly on black-
box problems, which are expensive to execute (Sergeyev
et al., 2020). Another problem is the strict application-
orientation of current solutions, e.g. hybrid solutions (Azizi,
2020). In the extreme case, even a rule-based adaption can be
regarded as a primary intelligence level (Vargas et al., 2016),
whichmight even be based on application-engineering exclu-
sively. To take a significant step towards self-optimizing
machines, it is essential that approaches are generic and do
not require significant modifications to adapt them to other
applications.

Therefore, we present a novel method for efficient safe
optimization of contextual bandit-problems in this article.
Our approach can be adjusted by the hyper-parameter setup
to be applied to different applications, which makes it less

Fig. 1 A straightening machine for saw blades works the steel via
adjustable process parameters in order to perform processing in the
least possible time. The optimal parameters depend on the working
conditions, e.g. steel characteristics, target shape and environmental
temperature

application-oriented than former industrial process opti-
mization approaches. We modify the contextual Bayesian
optimization so that safety requirements are met and real-
time capability is satisfied by using local approximations
and intelligent forgetting strategies that increase efficiency.
Thesemodifications lead to thefirst safe optimizationmethod
for continual use with balancing exploration-exploitation.
Furthermore, a generic software module is implemented for
the use within industrial edge control and applied to real-
world manufacturing machines in order to enable the safe
self-optimization to changing environments and realize the
vision of self-learning plants to a certain extent. We applied
the module to a real-world industrial machine, see Fig. 1, and
evaluated our approach.

Related work

As achieving the vision of self-optimizing machines is an
interdisciplinary endeavor, the related work is wide-ranging
and will be divided into three subsections, each of which will
be enriched by the presented work.

Data driven process optimization in industrial control

Although the real-time execution of an ANN in industrial
control was implemented early on Parrot and Venayag-
amoorthy (2008), this is intended exclusively for executing a
previously trained model and not for enabling self-learning
machines with continual optimization of the process quality.
Such optimization problem formulations, on the other hand,
can be addressed by reinforcement learning (RL) approaches.
While semi-automated approaches require the operator to
approve proposed improvements (Kirschner et al., 2019), the
vision of self-optimization is supposed to be fully automatic.
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This can be achieved in industrial systems for state-of-the-art
RL algorithms (Gulde et al., 2019; De Blasi et al., 2021) or
with safety-constrained optimization (Rattunde et al., 2021).
Here, the decisions are automatically communicated on-
demand between the two devices: The control unit providing
the real-time capable system to fulfill the industrial require-
ments and a computer providing theML framework to enable
iterative learning. Instead of exchangingdecisions, amessage
broker communication between the two software systems can
be established to exchange thewholemodel to be executed on
the controller (Schmidt et al., 2020). Furthermore, simple RL
algorithms using discrete state-action-space and their frame-
work can also be implemented directly within the control
code (Demirkıran et al., 2020; Schwung et al., 2017; Hameed
& Schwung, 2020). However, especially if this is intended
for more complex algorithms (Schwung et al., 2018), the
approach is time-consuming or even unfeasible, depending
on the control system (Nian et al., 2020).

While the majority of efforts focuses on incorporating an
ML framework into process control, it is not addressed how
safety guarantees in an industrial environment are ensured.
For instance, RLmethods usually learn through errors, which
cannot be tolerated in an industrial setting. In addition, we
also contribute to the integration of an ML framework by
using the capabilities of new control units to make com-
munication highly efficient, secure and flexible to multiple
solution architectures. This novel concept can be used in the
future on a single edge device or distributed.

Safe Bayesian optimization

Three types of safe optimization can be defined. First, aiming
for a safe optimum and allow unsafe evaluations while learn-
ing (Gelbart et al., 2014; Hernández-Lobato et al., 2016).
Second, so-called conservative methods (Wu et al., 2016;
Kazerouni et al., 2017; Jagerman et al., 2020) define safety
as an improvement of the cumulative reward and also allow
unsafe evaluations. Third, each action should not violate
specific constraints of the environment. For most industrial
self-optimization settings, only the third type of safety defi-
nition is suitable as the production should constantly provide
satisfactory, near-optimal performance under a high level
of safety conditions. Thus, the second field of related work
addresses the algorithmic state-of-the-art regarding the pre-
vention of fatal outcome during the optimization.

Stochastic approaches have proved their worth by the pos-
sibility of guaranteeing safety during learning (Sui et al.,
2015; Sergeyev et al., 2020; Liu et al., 2019; Turchetta et al.,
2019), e.g. based on particle swarm optimization (Duiven-
voorden et al., 2017). This certainty is particularly important
for industrial applications (Akametalu et al., 2014; Fisac et
al., 2018). For example, the intelligent policy search for a
physical system with minimized risk of catastrophic fail-

ure (Polymenakos et al., 2019) and the safe exploration of
the system behavior (Liu et al., 2019) are current research
topics usingGaussian processmodeling. Thesemethods con-
centrate mainly on safely solving a problem once, without
focus on the computational cost, due to their experimen-
tal construction. While high-dimensional problems can be
safely solved using subspace techniques (Kirschner et al.,
2019; De Blasi et al., 2021), the growing number and dimen-
sionality of data points raise a computational challenge for
continual optimization. Furthermore, the involvement of con-
text to the optimization is only possible to a very limited
extent, which also severely restricts usability (Fiducioso et
al., 2019; De Blasi, 2019; Berkenkamp et al., 2021).

In contrast to related work, we intend to continuously
delete less informative data so that safe continual optimiza-
tion can be enabled in a real-time capable way. Furthermore,
we extend the state-of-the-art safe optimization concept
to include high-dimensional context, which allows self-
learning systems to safely adapt to environmental variables.

Efficient Gaussian process regression

The underlying Gaussian process (GP) surrogate model of
Bayesian optimization leads to cubic complexityO(N 3)with
N data points, which complicates its use for larger amount of
data (Liu et al., 2020). As a reduced calculation time enables
applications for real-time ML (Boedecker et al., 2014; Bui
et al., 2017), it is the focus of several works using differ-
ent approaches, e.g. by approximating the covariance matrix
(Williams& Seeger, 2001). State-of-the-art approaches opti-
mally choose the M � N most important data points for
regression, which is referred to as sparse models. These can
be separated into two classes. The first one is subset-based
and leads, in the simplest case, to a randomsubset ofM points
to reduce regression complexity to O(M3) (Quiñonero-
Candela & Rasmussen, 2005). Further approaches are a
gradual deletion of old data (Oba et al., 2001; Csató &
Opper, 2002), and a selection based on Kullback-Leibler
divergence (Seeger et al., 2003) or entropy (Herbrich et al.,
2003). Another strategy is a local approximation of the full
GP close to the desired prediction, e.g., by moving neighbor-
hoods (Cressie, 1990). Here, the selection of neighborhoods
strongly affects prediction accuracy (RENARD&YANCEY,
1984). While, in the past, a neighborhood size of up to
30 points was common (Chilès & Desassis, 2018), mov-
ing neighborhood approaches have become less common as
technical advances have made regressions with significantly
more points possible. The renaissance of such approaches in
recent years is rooted in the relevance ofBayesian online opti-
mization for real-world applications, e.g., by incrementally
updating the corresponding neighborhood sets (Gramacy &
Apley, 2015; Gramacy, 2016). Here, whenever a distance
threshold is reached, a new local model is created and the
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predictions of the models are combined via a weighted dis-
tance (Nguyen-Tuong et al., 2009). In contrast to these subset
methods, the class of inducing point methods of sparse mod-
els aims to obtain M calculated support points with the
maximum of information representing the regression. The
selection of these points strongly affects accuracy (Titsias,
2009;Hensman et al., 2013). Here, the regression complexity
isO(NM2) and for both sparse model classes the prediction
complexity is reduced to O(M2) (Snelson & Ghahramani,
2006; Titsias, 2009). In this way, modeling with a fixed num-
ber of M points allows the use of sparse models for continual
online learning with streaming data (Bui et al., 2017, 2018)
as the computational complexity can be well estimated.

While the efficient prediction at a particular point is
well studied, safe Bayesian optimization methods do not
only require a single, but multiple predictions at different
points, the so-called candidates. To the best of the authors’
knowledge, an efficient safe Bayesian optimization by using
Gaussian process approximations has not yet been presented.
This gap is addressed within this work by combining several
concepts mentioned in this section and justifying their appli-
cability.

Scientific gap and own contributions

The continuity and the real-time capability of safe Bayesian
optimization is insufficiently investigated for the applica-
tion in industrial environments. From an algorithmic point of
view, we contribute to the state-of-art by combining multiple
methodologies for the first efficient, safe contextual Bayesian
optimization, which can be applied for continual learning.
This is enabled by an appropriate data discard strategy, the
use of local approximation techniques, and an ongoing trade-
off between exploration and exploitation. Furthermore, to
our best knowledge, this work provides the first Python-
based ML framework integrated in an industrial control for
safe process optimization. Based on our novel concept, an
application is implemented and installed on a state-of-the-
art control unit. This device is used for intelligent process
optimization for the first time. In addition, we aim for a
generic design, which makes it possible to apply the concept
for several industrial machines with different optimization
goals.We validate this by presenting a real-world application
enabling self-optimizing saw blade straightening machines
all over the world. All these contributions are consistent with
the target vision of self-optimizing machines in smart facto-
ries.

Background andmethods

First, the mathematical problem to be solved with safe con-
textual optimization is defined. Next, this section covers the

fundamentals of Gaussian process regression (GPR), which
describes the distribution of random variables over space
in our case and can be used for Bayesian optimization. In
contrast to other methods, Bayesian methods, due to their
probabilistic nature, have the advantage of providing not only
the prediction but also an estimate of uncertainty. More pre-
cisely, this estimate can be exploited for state-of-the-art safe
optimization methods, which are introduced in this section
as well.

Problem statement

The goal of industrial self-optimization is to find the optimal
parameterization for the current situation leading to the best
possible process quality. This optimization is constrained to
fulfill the requirements: on the one hand, the parameter range
is restricted, and on the other hand, the re-parameterization
must not lead to prohibited conditions. In the following, we
call acting in compliance with these constraints safe acting.
In the following, an unknown process quality function f (x)
should be optimized, which can be controlled via the param-
eterization x ∈ X Dx . A minimum tolerable process quality
fmin should always be ensured, leading to the following for-
mulation for M optimization iterations:

max
x∈X Dx

f (x) s.t. f (xi ) ≥ fmin ∀i = 1, 2, .., M . (1)

Since f (x) is unknown,we have to assume a non-linear func-
tion. A further assumption is that the objective function has
to be a member of a reproducing kernel Hilbert space within
the limitations of the optimization space. By having bounded
norm in this space, the smoothness to the kernel can be mea-
sured so that Gaussian process regression can be applied
(Turchetta et al., 2019). Moreover, Lipschitz continuity is
assumed for the objective function, so that further informa-
tion can be obtained by appropriately careful exploration
based on previous experiments. Without this assumption,
even small steps caused by sensor noise could lead to large
deviations, making safe exploration impossible.

Equation (1) presupposes that a problem always occurs
under the same conditions. More realistically, one experi-
ment is similar to another only to a limited extent because,
e.g., manufacturing dimensions or environmental variables
such as humidity or temperature vary. These variables cannot
be directly controlled by the system and can be interpreted
as environmental prerequisites for the next experiment. The
environment is numerically described by a context z ∈ ZDz ,
leading to a more complex optimization problem formula-
tion:

max
x∈X Dx

f (x, zi ) s.t. f (xi , zi ) ≥ fmin ∀i = 1, 2, .., M . (2)
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In the special case where the context remains the same over
M iterations, (2) is equivalent to (1). However, in real appli-
cations, it is unlikely if not impossible to perform exactly
the same experiment under the same conditions, such as in
foundry manufacturing processes. Mathematically, the goal
of this work is to solve the problem (2) in high-dimensional
spaces to enable self-learning machines in industry.

Gaussian process regression

First, a regression model is required to approximate the
system behavior after each optimization iteration. By exper-
imentally sampling points from an unknown function f (x),
one obtains a set f (x) = [ f (x1), .., f (xN )] with a finite
number N . InBayesian theory, this set is assumed to be drawn
from a jointly Gaussian distribution, which can be deter-
mined with a sufficiently large N (Rasmussen & Williams,
2006):

f (x) ∼ N (m(x),�(x, x)) . (3)

This joint distribution is a distribution of Gaussian process
(GP) and can be used to regress f (x) to predict a function
output for arbitrary x . Such a GP is obtained bymultiple gen-
erated sample functions, each fitting the sampling points x.
However, real-world systems lead to rather noisy measure-
ment points, so-called observations y = f (x)+N (0, σnoise).
In contrast to other regression methods, a GP returns no sin-
gle prediction values f ∗(x), but a mean and variance of the
Gaussian normal distribution for each x :

f ∗(x) ∼ GP(m(x), k(x, x ′)), (4)

with the average value over the generated sample functions
m(x) and the kernel or covariance function k(x, x ′). In the
following, radial basis function (RBF) kernels will be used
to regress the system behavior. They can be characterized
as universal kernels (Micchelli et al., 2006), being able to
model all continuous functions under conditionswith optimal
hyper-parameters.

Bayesian optimization

Based on the regression of f (x), themost promising parame-
terization for the next iteration should be selected aiming for
its optimum following (1). Bayesian optimization (Mockus,
2012; Shahriari et al., 2015) methods determinate such query
points to optimize an unknown objective function by itera-
tive sampling from it. After each iteration, the GP regression
is updated and provides a prediction for variance σ 2(x) and
mean value μ(x). By this prediction, a so-called acquisition
function, e.g. upper confidence bound (UCB), indicates how

informative a sampling of the objective function at an arbi-
trary x would be. The next query points can be determined
by maximizing the acquisition function:

ui (x) = μi (x) + βσi (x), (5)

xi+1 = argmax
x∈X Dx

ui (x). (6)

for iteration i . The parameterβ scales the confidence interval,
while larger values increase the importance of exploration. To
handle the restriction of (1), the parameter gets an additional
meaning, which is explained in the following.

Safe Bayesian optimization

For industrial usage, an online optimization is required to ful-
fill given standards to ensure pre-defined safety restrictions.
Here, safe Bayesian optimization (Sui et al., 2015) aims to
find the optimum of an unknown objective function while
guaranteeing this fulfillment based on the regression model.
Commonly, the restriction is represented by a threshold fmin,
which limits the optimization space X Dx to a so-called safe
set S = {x ∈ X Dx | f (x) ≥ fmin}. In this way, safe optimiza-
tion is only partly global, as the global optimum might not
be reachable depending on the initial observation. Since the
objective function f (x) is unknown, the true safe set S can
only be estimated, for example by using the lower confidence
interval (Berkenkamp et al., 2016),

li (x) = μi (x) − βσi (x), (7)

Ŝi = {x ∈ X Dx |li (x) ≥ fmin}. (8)

SafeUCB is known to be greedy and less exploration-driven.
To improve the exploration-exploitation balancing, SafeOpt
(Berkenkamp et al., 2016) distinguishes between promis-
ing maximizers Mi (points with increased probability of
being the global maximum) and expanders Ei (points with
increased probability to expand the safe set):

Mi = {x ∈ Ŝi |ui (x) ≥ max
x ′∈X Dx

li (x
′)}, (9)

Ei = {x ∈ Ŝi |li (x) < fmin + γ }, (10)

where parameter γ is a small positive value. To ensure a
trade-off between finding the maximal objective value and
minimizing the uncertainty, SafeOpt selects within the union
of both calculated sets:

xi+1 = argmax
x∈Ei∪Mi

(ui (x) − li (x)). (11)
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Multi-pronged safe Bayesian optimization

To solve (6) for higher Dx, a sampling in grid-discretization
cannot be fulfilled in reasonable computing time for firm real-
time applications on edge devices. A subset ofX Dx has to be
selected, which in the best case does not lead to any disadvan-
tage compared to full sampling. Therefore, SafeMixedBO
(DeBlasi et al., 2021) combines a random line sub-spacewith
origin at the current best observation for exploitation and an
ellipsoidal sub-space at random origin for exploration. Based
on this sampling sub-space combination and the adapted
idea of StageOpt (Sui et al., 2018), which separates explo-
ration and exploitation phase, a continual trade-off between
exploration and exploitation in high-dimensional space can
be enabled with the correct setup. This is required, because
SafeOpt is overly exploration-driven, whereas SafeUCB is
excessively exploitation-driven (Sui et al., 2018). StageOpt
proposes a condition for the transition from exploration to
exploitation. The transition condition of StageOpt can be a
fixed and user-defined time step, or whenever the expander
uncertainty is below an user-defined threshold ε. In the first
stage, only the set of potential expanders E is calculated and
used for acquisition. After the transition, a greedy method
like SafeUCB is used for the entire safe region of the explo-
ration stage. Although it is unlikely, further exploration of
the safe region may occur during the exploitation phase. We
present our detailed setup for contextual application in the
self-adaptive balancing part of the next chapter.

Safe contextual Bayesian optimization

In the conventional form of Bayesian optimization, it is
assumed that all variables are adjustable for the upcom-
ing experiment. However, this is not the case in many
real applications due to external influences. These vari-
ables are referred to as context, which include, for example,
environmental variables. Accordingly, standard Bayesian
optimization can be redefined as solving a problem with
a constant context. Since the context has an influence on
the objective, one can define an infinite number of sub-
problems and optimize each of them separately. However,
this is generally infeasible, especially with continuous con-
text dimensions. Assuming that two similar contexts have
more in common than a more distant context, the context
can be included in the GP regression as additional dimen-
sions. In this way, an external variable is considered as a
fixed coordinate for the next experiment, which is given for
each iteration and cannot be optimized, but affects the objec-
tive. This extension of Bayesian optimization to contextual
Bayesian optimization (Krause & Ong, 2011) allows opti-
mization of complex systems with environmental context.
By multiplying the kernel functions of the context and the
action space, we assume that an objective is dependent on

these variables and there are no other variable influences that
change the system behavior:

k(x, z, x ′, z′) = k(x, x ′) · k(z, z′). (12)

In this way, whenever one context is very close to former
context, the predictedμi (x, zi ) and σi (x, zi ) are close to this
observation and lead to a similar acquisition function.

The contextual Bayesian optimization can also perform a
safe optimization through the appropriate adaptation of the
GPR and the acquisition sampling (Fiducioso et al., 2019;
De Blasi, 2019; Berkenkamp et al., 2021). For example,
the SafeUCB contextual optimization determines its most
promising candidate in the following way:

xi+1 = argmax
x∈Ŝi

ui (x, zi ). (13)

This extension of contextual Bayesian optimization to
include safe optimization concepts leads to corresponding
changes with respect to the search space, since it may differ
at each iteration due to the given context. This makes (2) the-
oretically solvable. However, it proves to be difficult to apply
in practice, since the contextual changes from the next exper-
iment to the previous ones would have to be minor so that the
estimated safe set Ŝi can always determine at least one safe
candidate. As soon as a context is present that is significantly
different from those observed so far, the estimation will pro-
vide Ŝi = Ø and safe optimization will be interrupted. To
circumvent this phenomenon, the optimization is trained in
advance or regulated on the basis of predefined rules.

Default policy

Commonly, a safe initial set is provided to enable non-
contextual safe optimization. In contrast to contextual opti-
mization, this requirement can be fulfilled in the simplest
case by a single prior experiment. However, if an arbitrary
context is set for each experiment, at least one safe parame-
terization must be possible for this context. In this sequence,
at least a certain number of experimentswould have to be per-
formed in advance, depending on the GP hyper-parameters
and the limits of the system. This is on the one hand costly
for the operator and on the other hand contrary to the vision
of self-learning systems, but it is also applied in some stud-
ies (Berkenkamp et al., 2021). A more elegant way, which
is in harmony with the automation, is the setup of a default
policy h(zi ) providing a parameterization depending on the
context leading to acceptable process performance (DeBlasi,
2019; Fiducioso et al., 2019). Even if this initially sounds like
a strong assumption, it is in fact frequently encountered in
everyday industrial practice anyway (Jagerman et al., 2020).
Mostly, process parameters are set in a rule-based fashion or
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even rigidly, so that minimum standards are met, but with-
out exploiting the full potential in terms of process quality.
Accordingly, in terms of safe optimization, approaches have
been proposed that use a safe standard policy instead of just
prior data:

xi+1 =
{
h(zi ) if Ŝi = Ø

according to selected acquisition function else.

(14)

For commissioning, for example, the machines are delivered
with standard parameter sets that “roughly fit” according to
experience and the machine design.

Self-adapting safe Bayesian optimization

Thepresented safeBayesianoptimization approaches require
an appropriate hyper-parameter setup of GPR. If this param-
eterization is insufficient, safe optimization is inefficient too
or even unsafe. In order to reduce the effort involved and the
demands on the prior understanding of the problem, self-
adapting safe Bayesian optimization (SASBO) (De Blasi
& Gepperth, 2020) iteratively scales the observations and
uses a constrained optimization of the hyper-parameters. In
this way, it requires easy-to-choose initial hyper-parameters.
SASBO is less data-efficient than a comparable optimiza-
tion with the ideal hyper-parameters because of the required
hyper-parameter optimization. Due to the industrial appli-
cation area, we will use SASBO with the multi-pronged
approach based on the existing default policy. In this way,
our approach is easy to apply and no effort is needed until
the actual optimization should affect the process.

Efficient safe contextual Bayesian
optimization

Based on the methodology of the last chapter, (2) can the-
oretically be solved for applications in industry. However,
the computational effort is in practice a problem leading
to a strong limitation of possible applications. Therefore,
in the following, the safe contextual Bayesian optimization
is enabled for continual optimization, which is achieved by
improving the computational performance of the prediction.
Therefore, we first present iterative local approximation and
combine it with sparse GP regression based on a presented
forgetting strategy. In addition, the balance between explo-
ration and exploitation is addressed by adopting an adaptive
approach to iteratively decide whether further exploration
might be appropriate in the given context.

As SASBO is applied, the interactive normalization of
the observations lead to a fixation of β = 3 and γ = 0.1. It
should be emphasized that some required assumptions for the
application of the approximation methods are only possible
under this normalization.

Iterative local Gaussian process regression

The computational effort of full GPR can restrict the applica-
tion field of complex problems with high-dimensional action
space based on the amount of included data points. This
is especially true for contextual optimization, since it con-
tains a large number of related problems and not just a single
one. Thus, if the number of points required for a GPR iter-
ation can be reduced and the optimization is nevertheless
safe, the field of application becomes less limited. This is
the motivation behind the following series of thoughts. The-
ses statements are only true for GPR using a non-periodic
and non-linear kernel function. While, in a grid-search opti-
mization, all points can carry relevant information for the
upcoming iteration step, this is not the case for sub-space
methods. Since the relevance of a point for a certain predic-
tion depends on its distance, one can say that points above
a certain distance are irrelevant for this prediction if signifi-
cantly closer points are present.Whenever the total number of
data points exceeds ni , we iteratively define a local neighbor-
hood with distance 3� around the prediction sub-space. For
GP regression with RBF kernel, this approximation can be
justified for a safe optimization by the fact that any safety-
critical deviation can be converted into a deviation that is
affecting performance only (see appendix for proof). How-
ever, this holds only when iterative normalization (De Blasi
& Gepperth, 2020) is applied. The resulting prediction simi-
larity of full and local Gaussian process (LGP) regression is
illustrated in Fig. 2. In this example, only around 2% of the
global data are used for the local GPR, leading to practically
identical predictions of the current context.

Theorigin of the sub-spacedefinition for sampling inhigh-
dimensional space is chosen iteratively close to the current
context. For this purpose, the distance from the context is
increased in steps of 0.1� until a sufficient number of points is
contained in a hypersphere around this context. Then, the best
observation is chosen as origin for the exploitation sub-space
and a random observation as origin for the exploration sub-
space. In Fig. 3, the local neighborhoods of the two used sub-
space definitions are illustrated separately.A larger sub-space
definition leads to a larger neighborhood and, accordingly, a
more complex GPR, in extreme cases to the full GPR.

Weuse the iterative localGPR to reduce the amount of data
points per iteration. However, for continual application the
amount of points is required to be limited, which is addressed
in the following.
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Fig. 2 Exemplary GP regression for a specific context: On the left is the full GP regression and on the right is the iterative local GP regression
relevant to the current context of interest. The relevant areas are zoomed in vertically. For the actual prediction, see lower plots, practically no
difference is visible

Fig. 3 Exemplary local neighborhood definition for GP regression: A
two dimensional action space is sampled with a different sub-spaces
on the plane defined by the current context z1. On the left side, the
line sub-space leads to a cylindrical area whose inner points are used

for the local regression to predict the candidate points (red). The ellip-
soidal sub-space on the right side leads to a more complex shape for the
determination of the local GP points

Sparse Gaussian process regression

In order to keep the computational effort nearly constant, we
want to keep the number of points for the GPR constant.
Methods involving inducing points are unsuitable for safe
optimization, as the safety estimate can deviate to an unac-
ceptable extent. Therefore, the iterative discarding of a point,
which is replaced by a new point with a certain similarity to
the discarded information, is the best class of sparse GPs

for safe optimization. In this way, the sparseness leads to an
overly cautious estimate of safety rather than a risky one.
The constant number of points is called the budget. Here,
we connect the budget to the iterative local neighborhood
and iteratively discard the less informative points within this
neighborhood until the budget is met. After this theoretical
insight, the question arises which method is suitable for dis-
carding data without endangering safe optimization.
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Forgetting of less informative data

To discard less informative points, there are several methods
with different levels of complexity. The easiest method is
discarding random points, or the oldest points. While these
approachesmight workwell for large amounts of points, they
are unsuitable for a rather small amount of points, as the case
considered here. In detail, discarding the oldest observation
as well as randomly discarding it is not goal-directed, since
at least one observation in each context should gradually lead
to improvement or be retained. It is therefore more reason-
able to use the Kullback–Leibler divergence (Seeger et al.,
2003) or entropy (Herbrich et al., 2003) for the comparison
of the information content of points. However, the required
computational effort excludes this due to the imposed near-
real-time requirements. In contrast, the normalized distance
(normalized by � of the GPR kernel) to all points in the local
neighborhood can be computed very efficiently. To combine
the advantages, we propose to first determine the two closest
points, and then to calculate the entropy of these points to
discard the less informative point.

The information along the context dimensions can bemore
important and should be weighted accordingly. If the budget
is chosen sufficiently large, such a weighting is nor required.
In the worst case, an insufficient budget can lead to the loss
of the entire safe set for a certain context, which accordingly
requires the reuse of the default policy.

Self-adaptive balancing

For continual optimization, a distinction must be made
between exploration and exploitation in order to achieve
the optimum in the long term. As the time step transition
condition of StageOpt is not appropriate for contextual opti-
mization, the selection of ε is required. This parameter is not
intuitive to choose for an unknown objective with unknown
scaling. However, since we scale iteratively, we can calcu-
late εi based on the previously estimated uncertainty of the
selected expanders or maximizers and the current neighbor-
hood:

vi = ui (xi+1) − li (xi+1), (15)

εi =

⎧⎪⎨
⎪⎩
0 if size( j) ≤ J

μv[ j] + 3σv[ j] else if σv[ j] ≤ 0.2

Qv[ j](0.4) else.

(16)

Here, j is a vector of indices indicating which points are
within the current neighborhood and J is the amount of min-
imum exploration experiments per neighborhood (we chose
20%of the budget). First, a good initial exploration is ensured
by ε1..J = 0 near to each context. Afterwards, the growing
v with elements vi is used to check whether the uncertain-

ties near the current context are stable or unstable. If they
are stable, we compute an εi that is significantly larger than
the previous candidate uncertainties. In this way, we prefer
expanders to maximizers only when the exploration is likely
to be very informative. If the uncertainties are unstable near
the current context, εi is computed as the quantile of the
uncertainty vector. Too large values for the quantile lead to
being greedy, while too small values prioritize exploration.
We found that a quantile of 40 percent is a good compro-
mise. Similar to StageOpt, points are considered only if their
estimated uncertainty is above the threshold εi and thus indi-
cates a potentially informative observation. Whenever the
candidate uncertainty is too low, SafeUCB (13) is applied to
determine the next candidate:

xi+1 =
{
acc. to (11) if maxx∈Ei∪Mi (ui (x) − li (x)) ≥ εi

acc. to (13) else.

(17)

In contrast to the original idea of StageOpt, we allow a
return to the exploration phase,which is essentially necessary
because of the contextual setup of the optimization problem.

Implementation for self-learningmachines

Since industrial control technology is highly regulated, a
software module like an ML framework cannot be straight-
forwardly integrated into traditional control concepts. There-
fore, these barriers shall be addressed in our work by a novel
control concept and the development of a software module
suitable for the purpose of self-learning machines.

Industrial control platform

As we aim to provide a generic tool for a wide range of
applications, it is important that the modules can run on
a stand-alone control unit, or via high-performance com-
munication together with another network device. Bosch
Rexroth’s ctrlX CORE provides many of the capabilities for
simplified industrial ML (De Blasi & Engels, 2020) and, in
particular, provides an open platform with a shared memory
concept for inter-process communication that allows differ-
ent software modules to fully interact with each other. In the
following, we present this edge device as the used ecosys-
tem of our work. The data-driven decisions of a learning
framework can be provided on-demand via a message broker
service (Albrecht et al., 2019), enabling modules to sub-
scribe to or provide information. The access path is stored
within the control unit, which can be accessed by previously
allowed network devices (Albrecht et al., 2019). By address-
ing the same node, the modules can obtain the access path,
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Fig. 4 The ctrlX CORE
architecture is open and enables
our RTI app (red highlighted) to
provide a machine learning
framework interaction with the
system

which could even point to data on a different device. The used
single board computer runs with an ultra-lightweight operat-
ing system (Ubuntu Core), enabling the container principle
by using the package manager Snap from Canonical. Thus,
installed programs run in isolated and immutable environ-
ments. The underlying system and other programs can only
interact via the provided interfaces. The respective modules
can be updated without the risk of affecting the stability of
the system. A process scheduling allows the prioritization of
different tasks. For example, the real-time automation pro-
gram is prioritized and cannot be interrupted by the optional
software. Furthermore, it runs on isolated CPU cores and is
specially secured. Since the control unit canhost aweb server,
the interface can be accessed with a standard web browser
without installing additional software. In Fig. 4 the used soft-
ware architecture is illustrated providing information about
the communication.

Real-time intelligence snap

To feed the hard real-time system with intelligent decisions,
interactions between theML framework and the process data
are necessary. In contrast to usual communication architec-
tures (Schwung et al., 2017, 2019; Jaensch et al., 2019;
Schmidl et al., 2020), which run the ML framework and
the process control on two different devices due to the
inflexible control unit, we can run both on a single device.
This increases data security, communication performance
and application variability, for instance. Following the con-
tainer principle, a snap was developed in the course of this
project, which is referred to as Real-Time Intelligence (RTI)
snap.We implemented the presented algorithmbased onGPy
(2012) within a Python-based framework. Furthermore, the
RTI snap provides the used shared memory for configura-
tion and data exchange over a lightweight C++ application
as provider. Thus, the learning framework can be adjusted
by each software component or simply over the web inter-

face. This not only allows the connection to user interfaces
of existing plants, but also enables the learning of differ-
ent models for several use cases on the same machine. For
the data exchange, we chose the binary buffer FlatBuffer
(Google, 2014) over the JSON data format because Flat-
Buffers are superior regarding encoding/decoding time and
memory usage. The nested objects within FlatBuffer are pre-
defined via a schema. Thus, the predefined offsets reduce the
time to access data with no parsing required. Whenever the
data exchange should be possible for a human to be easily
interpreted, the schema has to be adjusted for each use case.
Three data exchange nodes are required to enable closed-loop
learning. Before each experiment, a context is sent from any
application. TheRTI snap reacts on-demand via the subscribe
functionality on a new context at the context node by running
the learning iteration, building an action FlatBuffer based on
the context and sending the extended FlatBuffer to the action
node. Here, the application reads the decision and can run the
desired experiment. Afterwards, the required data is recorded
to calculate the performance of the experiment. The regard-
ing action FlatBuffer is extended by this data and send to the
result node. This node is in turn subscribed by the RTI snap
and used as learning feedback. Accordingly, an applicator
can also use the result node to train the model by historical
data or manually executed experiments. To avoid multiple
processing, the scheme includes an ID for each experiment.
In this way the RTI snap interacts with any snap to include an
intelligent decision if desired in firm real-time. During our
project, we let the RTI snap communicate with the real-time
operating system for process control based on Codesys, see
Fig. 5.

Interaction modes

To support a wide variety of projects, several interaction
modes are provided.
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Fig. 5 Interprocess communication between the process control and the near real-time machine learning framework on the ctrlX CORE. By using
a message queue, the concept is flexibly applicable to, for example, a command buffer

– maxaction / minaction: This mode aims to optimize
weighted action parameters while ensuring the safety
criterion. This can be any combination, for example,
that the first parameter should be maximized, the second
minimized and the remaining parameters can be chosen
arbitrarily.

– exploit: This mode runs UCB for objective maximization
problems, which can be especially helpful in situations
when a good result has already been found, but final fine-
tuning is desired.

– explore: Thismode selects amount the identified expanders
to increase system understanding. In this way the inter-
pretability of our presented approach can be valuable for
industrial applications (Liu et al., 2022). It is not to be
understood as an optimization mode.

– learn: This mode runs adaptive StageOpt as presented
in this paper. By trading off between exploration and
exploitation this mode can be used as default selection
for objective maximization problems.

– perform: This mode selects the maximum of the LCB for
objective maximization problems leading to a minimized
risk of weakly performing the experiments. When stable
process quality is highest priority, this mode is recom-
mended after optimization for daily usage.

Evaluation and application

To the authors’ knowledge, the presented approach is the first
continual safe contextual optimization method and there-
fore cannot be compared to other methods, as they would
not meet the requirements in at least one aspect (continual
usable, context involving, safe). As real-world applications
include natural perturbations appearance regarding sensor
signals and actor command results, the approach is required
to be robust. This can only be ensured if the GPR hyper-
parameters are chosen correctly. For each application, the
respective hyper-parameters of the GPR were determined

by applying SASBO (De Blasi & Gepperth, 2020). Further-
more, it is recommended that the affecting safety threshold
is not defined as the hard threshold but is set as a theoretical
threshold slightly above the the actual desired threshold. To
achieve a firm real-time capability for the real-world appli-
cation, SafeMixedBO (De Blasi et al., 2021) with D = 3
is applied as the underlying algorithm for the efficient safe
contextual Bayesian optimization approach.

Synthetic evaluation

For evaluation, the approach is applied to five test problem
functions, ten times each. These suitable test problems for
contextual safe optimization were adapted from well-known
test functions (Momin & Yang, 2013) and extended by a
contextual transformation, which in our case is a sinusoidal
oscillating addition. For details regarding the test functions,
see appendix. For each iteration, the context is randomly
drawn from an uniform distribution with values larger than
the corresponding length scale parameters. The used budget
was chosen≤ 1000dependingon the complexity of test prob-
lem. The evaluation metrics are regret-based and are adapted
to contextual problems. The cumulative regret indicates the
exploitation:

Ri =
i∑

j=1

f (x∗, zi ) − f (xi , zi ). (18)

Here, a horizontal asymptotic behaviour wouldmean an opti-
mal exploitation for each context. Furthermore, the simple
regret indicates the currently best solution:

x̂i = argmax
x∈Ŝi

(li (x, zi )), (19)

ri = f (x∗, zi ) − f (x̂i , zi ). (20)

The optimization is likely to select xi �= x̂i during explo-
ration.
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Fig. 6 Normalized regrets of synthetic evaluation test problems for contextual safe optimization

Since the budget for a high-dimensional context withwide
range should be accordingly large, and this strongly affects
the computation time, we decided to use a small range of
only 166.7% of the corresponding length scale for the four-
dimensional context of the 9-dimensional test function. In
this particular case, the local GP approach equals a full GP
approach because the same neighborhood is selected and a
total of 9000 points are discarded. For all other tests, the
global models contain between 2239 and 5244 points after
10,000 iterations.While the discarding accelerates the calcu-
lation and enables continual online learning, it does not lead
to any violation of the safety restriction. The results are illus-
trated in Fig. 6. Despite the reduction of the context range
for the highest-dimensional test function, the chosen budget
is still too small for solving this complexity with changing
context. Although no horizontal asymptotic behavior of the
cumulative regrets is achieved, in all cases an oblique asymp-
totic behavior with low slope can be found. This means that
the optimum is not permanently reached for every context,
but that the test functions were solved adequately on aver-
age. At the time the respective budget is reached and points
are started to be discarded, the subsequent optimum has not
been reached in any of the test cases. This confirms that
exploration-exploitation balancing for long-term optimiza-
tion is achieved despite discarding points.

Industrial application

Industrial applications assign a higher compliance priority
to certain aspects before deployment is appropriate. First,
optimization should not prevent a system from changing
or even being shut down, but reverse causality is possible
(Ribeiro et al., 2016). Furthermore, it is important to ensure
correct operation of the system, even if, for example, deci-
sionmaking leads to computational problems due to overload
(Amodei et al., 2016). We use a default policy, which is

applied whenever decision making took too long. As a result,
learning efficiency suffers in the worst case, but operation is
not negatively affected by turning on the learning procedure,
compared to conventional operation. Third, amisleading def-
inition of learning feedback is a threat to industrial learning,
as inadequate definitions can lead to supposedly good results
numerically because the model found an undesirable way
to determine an optimum of the feedback without satisfac-
torily solving the actual problem (Ribeiro et al., 2016). To
minimize this risk, interviews were conducted with domain
experts and several example cases (including rather unreal-
istic cases) were analyzed to derive a cost function which
received full approval by the experts.

As an application example, we enable self-optimization
of the straightening machine HAMMERHEAD 3000 by
the manufacturer Kohlbacher GmbH for saw blades which
are delivered all over the world, as shown in Fig. 1. The
general process of the straightening machine is explained
on https://youtu.be/LiaJlKzYnxw. Accordingly, the working
conditions vary strongly. A saw blade must be in shape and
have the right tension so that it can cut wood efficiently and
with as little wear as possible. The straightening machine
aims to perform this preparation automatically (exclusive of
the sharpening step). As the process of working the steel
is affected by conditions like steel thickness, target shape
or environmental temperature, a domain expert is usually
required to tune the optimal parameters. Here, four parame-
ters are particularly difficult to choose: The upper and lower
limits for the machining pressure with respect to the back
and the general tensioning process. In addition to commis-
sioning, which can take several days, this adjustment may
become necessary again and again even years later when, for
example, the steel supplier is changed. The target vision is
for the user to be able to insert a saw blade, which will then
be worked on automatically. While the first virgin machining
takes a long time, but does not destroy the saw blade, the nec-
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Fig. 7 The exemplary blade shape differences before and after the
straightening process illustrate the achievements during the experi-
ments. The initial states of the blades, which can be found on the left
side, have larger under- (blue) and also sometimes over-tension (red).

After the machining process, the majority of the blade areas is within
the tolerance range and the overall target quality for each blade has been
achieved

essary machining cycles are to be continuously minimized.
In this way, the system adapts to the respective environment.
In the end, the system has optimized itself and no domain
expert commissioning is necessary. Furthermore, a separate
model can be trained for each different type of saw blade.

Problem statement and setup

The optimization goal is to straighten the saw blades with the
HAMMERHEAD 3000 as fast as possible without damag-
ing the blades by choosing the best combination of the four
mentioned process parameters. This problem is to be solved
with the presented approach as an industrial application in
the course of the presented architecture. As a standard pol-
icy, a parameterization is chosen in consultation, which has
hardly any effect even on thin steel. The safety threshold is
defined by shapes of blade that can no longer be processed
by the system in a targeted manner. Before and after each
processing cycle, we measure at 14 up to 15 segments and 9
up to 11 lanes (depending on the size of the blade). For each
segment, the mean value of the difference between the target
shape and the current shape is determined and serves as one
input variable. The second input variable for the model is
the measured difference on the back of the blades. A whole
work cycle consists of three rounds in which each lane is
pressed with a calculated force (based on the difference and
the model power) to form the blade correctly. These cycles
take between 15 and 25min depending on the required inter-
mediate steps. After each cycle, the process performance is
calculated from the performed measurements and provided
to the model which chooses the action values for iterative
learning.

A saw blade counts as completed as soon as the back
tension as well as the blade tension have less than a 15%
deviation to the target shape. This can be complicated by the
fact that the processing of one criterion impacts the others,
often leading to ambiguous behaviour. For example, in the

case of an over-tensioning blade, the back is shortened by
removing the tension with pressing on the according point.
This might lead to a shorter back. If the back then has to be
lengthened again by the corresponding pressure points, this
increases the tension.

Experiments and results

To prove the generality, different saw types are used for eval-
uation. In Fig. 7, six examples of blade shapes before and
after straightening are compared. The differences between
the blade shape before the machining can vary very strongly.
While Fig. 7A and B are very similar, for example, 7C has
under-tension and Fig. 7E has strong over-tension. To take
this into account, we define a two-dimensional context where
one dimension summarizes the current overall tension, and
the second dimension is the measured back tension of the
saw blade.

We evaluated the implementation by straightening three
blade typeswith different thicknesses and lengths.The results
are summarized in Table 1. The improvement between the
first blade to the second blade is remarkable. Especially with
the type 6200x100x1.0, it is very pronounced due to the sim-
ilarity of these two blades (Fig. 7A and B). Unfortunately, no
other blades of this type were available. For the other types,
it can be seen how a very different context has an effect and
thus restricts the learning transfer between processed saw

Table 1 Required straightening cycles during learning until done cri-
teria reached

Type of blade Blade number

1st 2nd 3rd 4th 5th 6th 7th 8th

6160 × 100 × 0.9 23 10 13 11 7 4 4 4

6200 × 100 × 1.0 31 2

6500 × 120 × 1.2 45 6 13 8 11 10 2 2
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blades. However, a process optimization was achieved in all
of the three blade types, as the model was able to complete
them within a few cycles. We hypothesize that the blade
type 6160x100x0.9 is harder to optimize, due to the thin
steel, and that the parameterization to deal with the ambiva-
lent behavior is more sensitive. A correlation between blade
thickness and the required processing cycles for the initial
blade can be identified. This is logically justifiable, since the
same default policy is applied for all cases, and thicker blades
require higher pressure parameters for the desired straight-
ening. For the field application, it is therefore recommended
to query the blade thickness and to adjust the default pol-
icy accordingly. This will lead to an even quicker learning
progress.

All in all, the system was able to optimize itself and learn
different models for different types of saw blades without
incurring material costs, even without a cloud connection.
This eliminates the need for domain experts to travel to the
site and the associated time delays in production, and avail-
ability is practically on-demand.

To validate the generality in different application domains,
the snap was also applied to another machine for optimizing
industrial processes. Here, the acceleration and decelera-
tion of a large-scale Cartesian robot is safely optimized over
several days tominimize its pick-and-place timewithout slip-
pingor sliding. For this application, themaxaction interaction
mode of the snap was used.

Conclusion

As novel control architectures enable the use of learning
frameworks close to the process control, the logical next
step is intelligent process optimization. In line with the
target vision of industry 4.0, we contribute to the desired
self-optimization machines by several achievements. Safe
optimization methods are accordingly extended to opti-
mize process parameters with an environment in recurring
experimental runs but varying context, avoiding violation of
industrial regulations w.r.t. process quality. Therefore, we
introduced an appropriate data discard strategy, local approx-
imation techniques, and an ongoing exploration-exploitation
trade-off approach. After evaluating the algorithm with syn-
thetic test problems, we applied the approach to a saw
blade straightening machine and achieve convincing results.
Therefore, a snap was implemented that allows the learn-
ing framework to be executed directly in edge devices as
a software module. Since the process control is also real-
ized via a software module, communication can take place
directly, as part of the common ecosystem. The evaluation
results suggest that especially a high-dimensional context
and, accordingly, a high data budget requires computing

power. Here, fog or cloud computing, particularly in com-
bination with high-performance communication standards
(especially TSN and 5G), will broaden the application spec-
trum. Depending on the application, the optimization can
take place continuously or be triggered by the user or
even automatically by an online anomaly detection. The
latter suggestion is trivial to implement, since an expecta-
tion distribution already exists via the regression model. In
this way, an autonomous system can differ between abrupt
changes in system behavior, usual operation or optimization
need.

In summary, we have introduced a novel software tool
with a wide scope of applications and minimal setup effort
for fine-tuning many industrial processes during daily pro-
duction without additional interruption or increased failure
rate. The demonstrated workflow can be used as a basis for
further work. For example, the concept of snap communica-
tion and direct data access can be transferred to awide variety
of methods. Accordingly, the hope is that in the future, mid-
sized machine builders will have the confidence to use the
potential of ML for their very specific process optimization
by using their domain knowledge to customize the optimiza-
tion setup of our approach. In this way, the delivered systems
can operate closer to their optimum on site in the future and
are not rigidly bound to the specified default process param-
eter sets.

Limitations

The industrial application of the proposed approach and its
current implementation is limited by some factors described
in this section as well as by the stated assumptions regard-
ing the problem definition. First, all experiments used the
same kernel selection (the universal RBF kernel). The con-
cepts can be transferred to most kernels, but not all (e.g.
periodic or constant kernel). Second, the observations are
required to provide an optimum,which is significantly differ-
ent to the safety threshold. Otherwise, an unsafe exploration
could be caused (De Blasi & Gepperth, 2020). Third, the
computing power of edge controllers limits the complexity
of problems to be solved. Here, the presented approxima-
tions with forgetting enhances the computational efficiency.
Fourth, the presented Python-based framework limits the
applications to firm real-time capability. For process opti-
mization, this can be easily achieved by default policies,
which are available or can be obtained in most industrial
setups. Fifth, the data-efficiency of the presented approaches
is depends on the default policy. With our method, safe
optimization can only be recommended in industrial envi-
ronments for process control fine tuning.Most limitations are
therefore quite straightforward to circumvent through hard-
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ware or preliminary experimentation to improve the setup
conditions.
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Appendix

Justification for local GPR usage in safe optimization

The local GPR uses a subset with ni of n = ni + no points.
The no points are at least 3� apart to the coordinate to be pre-
dicted. Lets assume that the optimization is a maximization
with fmin = 1 and 1 < fmax < 5 as the data is iteratively
normalized. Furthermore, assume that local GPR is only used
when ni > 50 with RBF kernel.

We differ between performance relevant impact and safety
relevant impact of the approximation to the optimization. If
lGP(xi ) ≥ fmin > lLGP(xi ) then the approximation affects
only the performanceof the optimizationbecause Ŝi becomes
smaller. This must be accepted to take advantage of the pre-
diction acceleration by approximating. If lGP(xi ) < fmin ≤
lLGP(xi ) then the approximation is safety critical because Ŝi
would increase. This risk cannot be accepted for safe opti-
mization.

If one can prove that

lGP(xi ) < fmin ⇐⇒ lLGP(xi ) − ε < lGP(xi ) (21)

with a small constant ε, then all safety critical cases can be
transformed into performance relevant cases:

ŜLGP = {x ∈ X D|lLGP(x) − ε ≥ fmin}. (22)

In thisway, ŜLGP ⊆ ŜGP and the safe optimization usingLGP
is as safe as the standard one, but might be less effective.

Theorem Let GP be defined by (4) with zero mean, RBF
kernel and x = [x1, . . . , xn] withmin(x) > 1 andmax(x) <

5. If LGP is obtained by removing an arbitrary point xn,
which is at least 3� apart to the prediction coordinate x∗,
then (21) holds.

Proof The lower confidence bound of the prediction point x∗
is

lGP(x
∗) = μGP(x

∗) − βσGP(x
∗)

= �T∗ �−1 f̂n − β(�∗∗ − �T∗ �−1�∗)

for GP and,

lLGP(x
∗) = μLGP(x

∗) − βσLGP(x
∗)

= �T∗ �−1 f̂ni − β(�∗∗ − �T∗ �−1�∗)

for LGP. According to block form inversion (Chou &
de Queiroz, 2016), �−1 can be obtained based on �−1, as
LGPhas one point less thanGP.Hence, it is possible to obtain
μGP(x∗) and σGP(x∗) based on μLGP(x∗) and σLGP(x∗)
respectively.
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�T∗ k(x∗, xn)

] [
�−1 + 1

c�
−1knkTn �−1 − 1

c�
−1kn

− 1
ck

T
n �−1 1

c

]

×
[
f̂n−1

f̂ (xn)

]

= �T∗ �−1 f̂n−1 + kTn �−1 f̂n−1

c

[
�T∗ �−1kn − k(x∗, xn)

]
−1

c
�T∗ �−1kn f̂ (xn) + 1

c
k(x∗, xn) f̂ (xn)

where c = 1−kTn �−1kn andkTn = [k(xn, x1), k(xn, x2), ...,
k(xn, xn−1)].

Considering that μLGP(xn) = kTn �−1 f̂n−1, and kTn �−1

f̂n−1 ≈ f̂ (xn):

�T∗ �−1 f̂n ≈ �T∗ �−1 f̂n−1 + f̂ (xn)

c

[ − k(x∗, xn)
]

+1

c
k(x∗, xn) f̂ (xn).

Hence:

�T∗ �−1 f̂n ≈ �T∗ �−1 f̂n−1. (23)

In the same way, σGP(x∗) is obtained based on σLGP(x∗):

�T∗ �−1�∗

= [
�T∗ k(x∗, xn)

] [
�−1 + 1

c�
−1knkTn �−1 − 1

c�
−1kn

− 1
ck

T
n �−1 1

c

]
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×
[

�∗
k(x∗, xn)

]

= �T∗ �−1�∗ + kTn �−1�∗
c

[
�T∗ �−1kn

−k(x∗, xn)
] − k(x∗, xn)

c
�T∗ �−1kn

+ 1

c
k(x∗, xn) × k(x∗, xn)

where c = 1−kTn �−1kn and kn = [k(xn, x1), k(xn, x2), ...,
k(xn, xn−1)].

Schur complement implies that Cov(x∗, xn) = k(x∗,
xn) − �T∗ �−1kn , and Cov(x∗, xn) ≈ k(x∗, xn). Consid-
ering that kTn �−1�∗ = �T∗ �−1kn , because � is symmetric
positive semi definite matrix:

�T∗ �−1�∗ = �T∗ �−1�∗ + 1

c
k(x∗, xn) × k(x∗, xn).

(24)

Considering that �∗∗ = �∗∗, according to (23) and (24):

lGP(x
∗) = �T∗ �−1 f̂n − β(�∗∗ − �T∗ �−1�∗)

≈ �T∗ �−1 f̂n−1 − β(�∗∗ − �T∗ �−1�∗)

− β

c
k(x∗, xn) × k(x∗, xn).

If |x∗−x | ≥ 3∗�, then exp
(− (3�)2

2�2
)

< 0.011, which implies
that k(x∗, x) < 0.011. Hence:

lGP(x
∗) > lLGP(x

∗) − ε

By experiments with Schwefel test function we found
that ε � 0.1 for the applied normalization under the made
assumptions. ��

Definition of test functions

The origins of applied test functions can be found in literature
(Momin & Yang, 2013). They are modified for evaluation of
safe optimizations, which is explained in detail below. We
chose the sensitivity of the transformation in such a way that
each test function already contains higher frequent changes
in its standard form than the one that will be added. The
modified Styblinski-Tang test function is defined by

fS.-T.(x, z) = −1

2d

d∑
r=1

(x (r)4 − 16x (r)2 + 5x (r))

+ fmax − fmin

20dc

d∑
r=1

sin(
z(r)πr

10
), (25)

with fmax = 39.17 and fmin = −0.119d2 +3.452d+3.571
as safety threshold.

The modified Alpine test function is defined by

fAlpine(x, z) = 5
d∏

r=1

√
x (r) sin(x (r))

+ fmax − fmin

20dc

d∑
r=1

sin(
z(r)πr

10
), (26)

with fmax = 13.5 and fmin = 11.5 as safety threshold.
Additionally, a rather easy test problem is introduced,

which is called Sinus test function and defined by

fSinus(x, z) = sin((sin(z) + x)π + 0.5π) + 1, (27)

with fmin = 1.6 as safety threshold.
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