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Abstract
Cutting tool condition is crucial in metal cutting. In-process tool failures significantly influences the surface roughness, 
power consumption, and process endurance. Industries are interested in supervisory systems that anticipate the health of 
the tool. A methodology that utilizes the information to predict problems and to avoid failures must be embraced. In recent 
years, several machine learning-based predictive modelling strategies for estimating tool wear have been emerged. How-
ever, due to intricate tool wear mechanisms, doing so with limited datasets confronts difficulties under varying operating 
conditions. This article proposes the use of transfer learning technology to detect tool wear, especially flank wear under 
distinct cutting environments (dry, flood, MQL and cryogenic). In this study, the state of the cutting tool was determined 
using the pre-trained networks like AlexNet, VGG-16, ResNet, MobileNet, and Inception-V3. The best-performing net-
work was recommended for tool condition monitoring, considering the effects of hyperparameters such as batch size, 
learning rate, solver, and train-test split ratio. In light of this, the recommended methodology may prove to be highly 
helpful for classifying and suggesting the suitable cutting conditions, especially under limited data situation. The transfer 
learning model with Inception-V3 is extremely useful for intelligent machining applications.
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Introduction

Metal cutting is a significant production operation that con-
sumes a huge amount of energy during the machining of 
varied materials (Demirsöz & Boy, 2022). Because of their 
greater level of mechanical properties, Ni-based alloys pres-
ent machinability issues during the cutting process (Yurt-
kuran, 2021). The concern about tool failure, tool life, and 
machinability has sparked a great deal of scientific interest, 
the majority of which has been dedicated towards conven-
tional machining processes (Waydande et al., 2016).

Traditionally, several oil-based (mineral) coolants were 
utilized to curtail the cutter wear. Under traditional cool-
ing, these cutting fluids provided longer tool life, well-con-
trolled tolerances, and flatness (Çakır Şencan et al., 2021). 
Dry cutting, on the other hand, creates high temperatures at 
the tool-material contact, resulting in fast Tool wear (TW). 
At elevated heat, tools are specifically sensitive to adhe-
sion, resulting in poor job finish and tool failure (Pekşen 
& Kalyon, 2021). Due to their poor processing parameters, 
several researchers are interested in the sustainable machin-
ing of superalloys. The use of MQL is a viable technique 
for providing the lubricating effect at interface (Gupta et al., 
2023) and also helps in achieving the outstanding surface 
smoothness. Race et al., (2021) investigated that prior to 
cutting tests, Tool wear efficacy while utilizing Minimum 
quantity lubrication (MQL) was checked using typical tribo-
logical high-frequency reciprocating testing. When machin-
ing using dry and MQL coolants against standard flood 
coolant, perfection in surface condition and cutter wear 
were recorded with MQL. Measured test findings demon-
strate that MQL has a substantial impact on the surface; it 
chiefs to a significant lessening in tool wear and increases 
the machining precision of the machined product (Duc et 
al., 2021).

Cryogenic (cryo) gas, such as nitrogen and carbon diox-
ide (CO2), are used as the coolant in cryogenic machining, 
a new emerging technology (Krolczyk et al., 2019). Cryo 
CO2 has also been favored because it leaves no hazard-
ous residue. In addition, cryo CO2 has an excellent chill-
ing capability that can lengthen tool life when working with 
refractory materials (Kim et al. 2016). When machining 
Ni alloy with CO2, abrasion and attrition mechanisms are 
decreased, which results in significantly much less flank 
wear than with traditional flooding (Khan & Ahmed, 2008). 
As a result, appropriate control of these factors is critical. 
In a production environment, data-driven intelligent manu-
facturing can be used for the cutting process. Optimization 
of cutting parameters used varied techniques such as Grey 
and Topsis analysis (Gok, 2015), Taguchi (Gok et al., 2013; 
Harun YAKA, Halil DEMİR 2017), and so on were used by 

researchers to find the optimal cutting variables but can be 
used for limited data.

Monitoring the machining processes gives you intuition 
through expressive, analytical, or prophetic analytics and 
helps you make smart decisions (Balazinski et al., 2002). 
The impact of in-process-created flaws is undetectable by 
numerical and analytical models available in the literature. 
Real-time data is utilized in realistic models to capture the 
process variables (Jemielniak, 2019). It is categorized into 
online/indirect and offline/direct categories. The Direct 
approach includes vision-based methods that use computer 
vision techniques, scanning electron microscopy, and so on. 
This is often used to investigate defects of an unpredictable 
defects. The indirect technique, on the other hand, entails 
the collecting of information via a variety of sensors and 
transducers, such as cutting forces, sound emissions, vibra-
tion, etc. (Abhishek Dhananjay Patange and Jegadeesh-
waran 2021). Tool fault monitoring (TFM) is crucial in 
machining monitoring and decision-making (Benkedjouh et 
al., 2015; Madhusudana et al., 2017), which includes TW 
detection and forecasting. The flank wear (Vb) that a cutting 
tool experience is often the most noticeable form of degra-
dation that it undergoes in contrast to adhesion and abrasion.

Direct digital image processing-based techniques have 
been extensively employed in prior research to track tool 
faults and breakage due to their reliability and low cost. 
Because of the geometry of cutting, the unpredictability 
of the wear nature, and the lack of knowledge about how 
wear can alter the measured signals, indirect approaches are 
exceedingly difficult to design and implement. Additionally, 
there are some limitations to the use of these approaches, 
and the cost of the sensors are still very expensive (Sor-
tino, 2003). Modern manufacturing and process monitor-
ing systems have undergone a full transformation, thanks 
to machine learning (ML). Artificial neural network (ANN) 
(Ross et al., 2022), hidden Markov model (HMM) (Li & 
Liu, 2019), support vector machine (SVM) (Lu et al., 2013), 
and other techniques were specifically used in feature iden-
tification of TW monitoring and prediction. A method for 
using machine vision during cutting to predict the escalating 
tool flank side wear was presented by (Dutta et al., 2016). 
They developed a technique to extract information on feed 
marks and waviness from the machined surface using dis-
tinct approaches. The decision-making approach of SVM 
has been applied to accurately describe the tool state. Li & 
An (2016) established a novel micro-vision system for TW 
monitoring, which is a crucial facet of intelligent manufac-
turing. To reach each section of TW, an adaptive version of 
the Markov Random Field (MRF) technique was designed. 
According to the findings, automatic focusing and segmen-
tation of the TW area by region are likely to improve preci-
sion and resilience, in addition to enabling the collecting 
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of TW images in real-time. Although monitoring and pre-
dicting tool wear had seen significant progress, the methods 
employed above for doing so had major flaws. In order to 
monitor and predict TW using typical ML techniques, fea-
tures must first be extracted. The particular extraction of 
features and method selection had a significant impact on 
how well various ML approaches performed. Deep belief 
networks (DBN),Convolutional neural networks (CNN), 
and other deep learning (DL) models have been developed 
in the last ten years as solutions to these issues. DL could 
address the aforementioned problems, as it related to a class 
of ML approaches in which several layers of data processing 
steps in hierarchical architectures were used for pattern cat-
egorization and prediction (Wang et al., 2021). In order to 
forecast surface unevenness and precise energy usage dur-
ing 5-axis milling, Serin et al., (2017) used DMLP neural 
networks. To identify TW conditions Ou et al., (2021) pro-
jected an online sequential learning by means of a stacked 
denoising autoencoder to take out abstract characteristics. 
Cao et al., (2019) created a 2D CNN for TW monitoring. 
The input (i/p) parameters of the CNN comprised of a high 
signal-to-noise ratio for vibration signals. For the TW esti-
mate, Aghazadeh et al., (2018) utilized a CNN with a mixed 
feature extraction strategy to estimate the volume of TW. 
This method employed wavelet time-frequency transforma-
tion and spectrum subtraction methods. The raw i/p data 
were converted into a CNN model by Martínez-Arellano 
et al., (2019) who developed the model using time series 
photography. An LSTM network was developed by Sun 
et al., (2020) to forecast several flank wear metrics based 
on raw data. Bidirectional LSTM networks were used by 
Zhao et al., (2017) to monitor the fault in milling tools after 
machining.

However, to avoid overfitting and achieve higher predic-
tion accuracy, a huge portion of annotated data is needed 
to train the DL model. Unfortunately, obtaining adequate 
tagged data is high-priced and time-consuming, and owing 
to the difficulty of real engineering situations, even for the 
wear forecasting model with the similar tool under diverse 
working conditions is not universal. As a result, the transfer 
learning (TL) method has find its importance in recent years 
as a hotbed of research where the issue of target predic-
tion in the presence of inadequate data sets is explored. To 
encourage learning in the established domain (i.e., source 
domain), many labelled samples might be used (i.e., target 
domain) (Wang et al., 2022). Learning a discriminant model 
to lessen the disparity in distribution amid two domains is 
essential for TL. By reweighting the source domain sam-
ples, the conventional TL method merges the samples from 
the source and the target domain into a single feature space 
(Naveen Venkatesh et al., 2022).

The TL uses TW pictures taken after machining to recog-
nize and classify TW in the absence of experimental obser-
vations. The evaluation of the TW classification using deep 
learning algorithms has not received considerable attention 
in past findings, according to a thorough examination of the 
related literature. As far as we are aware, TL has not yet been 
applied to measuring TW while milling with distinct cool-
ing environments. The study included 24 trials to explore 
the effects of i/p process parameters for reducing flank wear 
(Vb). The authors suggested augmentation to get over the 
problem of Vb pictures not being easily available in indus-
trial applications and to build a strong ML model that har-
vests high forecasting accuracy. Comparative and in-depth 
analyses have been accomplished with five TL models and 
four classifiers to assess the efficacy of the proposed meth-
odology (class A-D). To identify Vb pictures when Nimonic 
80 A is machined, the results from all models may be relied 
upon to be accurate enough. According to the authors, the 
method established will be very beneficial for manufactur-
ing applications. The objective of this work is to speed up 
the automation and estimation in various production sys-
tems when there is a lack of data.

Materials and methods

Experimental setup

To analyse the behaviour of the tool wear, experiments were 
performed using Nimonic 80 A of dimensions of 100 mm x 
100 mm x 10 mm and distinct coolants (Dry, Flood, MQL, 
and cryo). The YCM-EV1020A milling machine was uti-
lized for doing the experiments, which has a top speed of 
8100 rpm. For the investigation, PVD-TiAlN-coated inserts 
with a4 micron coating thickness was used. The TiAlN layer 
tries to deflect the temperature away from the tool and the 
workpiece, sending it back into the chip where it originated. 
Because it has greater ductility, it is an excellent option for 
interrupted cuts. The key advantages are increase in produc-
tion levels achieved at higher feed-speed combinations as 
well as the prolongation of tool life in situations involving 
high heat. The coated insert was attached to a TaeguTec 
tool holder type BAP 300R C12-12-130-1T. For all the tri-
als under cryo and MQL condition, a 45º nozzle angle and 
30  mm nozzle distance was maintained. The experimen-
tal arrangement for the study is represented in Fig. 1. The 
machining parameters were chosen in accordance with the 
manufacturer’s specifications and results from earlier inves-
tigations, as shown in Table 1. Figure 2 presents the pro-
posed technique of the current investigation in the form of 
a flowchart.
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investigation, the value of the mean roughness was utilised 
because its acceptance in industrial settings is above 50%. 
The SE-3500 roughness tester was employed to quantify 
the roughness of the machined surface under distinct envi-
ronmental conditions. The instrument was calibrated with 
slip gauges before each test to ensure that the results were 
accurate.

Deep learning models

Deep learning is a subfield of ML that gives computers the 
capacity to understand in terms of a hierarchy of concepts 
and learn from experience. DL techniques are quickly devel-
oping; some of them have progressed to become specialised 

Measurement of tool wear values

After every trial, the insert was removed to evaluate the 
flank side wear. To assess the level of cutter wear, a video 
measurement device has been employed (make: Hexagon).  
The measured Vb pictures were presented in Fig. 3. In this 

Table 1  Machining parameters adopted in current work
Trial No. Feed rate, f mm/

rev
Cutting speed, Vc 
m/min

Cutting 
envi-
ronment

1 0.06 45 Dry
2 0.08 60 Flood
3 - 75 MQL
4 - - CO2

Fig. 1  Experimental methodology 
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labeled training examples that match the pattern of the test-
ing data, DL performs best. However, it can be prohibitively 
expensive, time-consuming, or otherwise infeasible to col-
lect adequate training data in many scenarios. Knowledge 
transfer between domains is a viable DL strategy for deal-
ing with the aforementioned problem. In TL, the model will 
not be trained from scratch instead it will utilize the fea-
tures from the previously trained model. Pre-trained CNN 
models are typically trained on vast datasets that serve as a 
common standard in the field of computer vision. Weights 
derived from the models can be applied to other computer 
vision applications. With the ImagNet dataset, CNN models 
like AlexNet, VGGNet, ResNet, MobileNet, and Inception 
were trained before they were used. The ImageNet is a large 
database with more than 20,000 categories and 14 million 
images. So, these models that have already been trained can 
also be used to train a new range of data with the knowl-
edge of how to classify. Improving model generalisation is 
a difficult ML task. Fewer data leads to overfitting and poor 
generalizability. Employing TL prevents overfitting. Due to 
restricted datasets, AlexNet, VGG 16, ResNet, MobileNet, 
and Inception-V3 models were used to train the machining 
datasets. After training and testing, a superior prediction 
model was picked.

in specific fields. The most extensively used DL techniques 
include LSTM, CNN, and Recurrent neural networks 
(RNN), etc. One of the most well-known DL methods is 
CNN. This is used for image processing, it has convolu-
tional, pooling, and fully connected layers. CNN training 
has two stages: feed-forward and back-propagation. The 
most common CNN architectures are GoogLeNet (Ashraf 
et al., 2020), VGGNet (Muhammad et al., 2018), AlexNet 
(Mahdianpari et al., 2018) and ResNet (Wei et al., 2022) 
and MobileNet (Howard et al., 2017). There have been 
many works reported regarding tool condition monitoring 
with various DL models, as is evident from the literature 
review (Table 2). However, there is no work encountered 
on the machinability of Nimonic 80 A under varied envi-
ronmental conditions (dry, flood, MQL CO2) using different 
algorithms, which represents an important gap in the field of 
sustainable manufacturing.

Transfer learning

Typical deep learning models have proved quite effective and 
have also been extensively found in various practical appli-
cations (Zhang et al., 2020), but they still have some limits 
for specific real-world settings. When there are numerous 

Fig. 2  Workflow of the process 
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AlexNet

Figure 4 demonstrates that AlexNet is comprised of a total 
of eight layers, with five convolutional layers and three 
fully-connected layers. It operates on the same fundamen-
tals as CNN, but it covers a far more extensive network. 
By employing ReLU as the activation function of CNN, 
AlexNet can circumvent the issue of the gradient gradu-
ally disappearing as the network becomes more complex. 

Table 2  Pioneered work in the area of DL models
Author, year Investigation Algorithms 

Used
Condition

Kumar et al., 
(2021)

Tool wear based 
on machined 
surface images

CNN and SVM No coolant, 
Turning

Wu et al., 
(2019)

Tool wear ToolWearnet,
VGGNet-16

No coolant, 
Face milling

Martínez-
Arellano et 
al., (2019)

Tool wear using 
time series 
imaging

CNN No coolant, 
Face milling

Bergs et al., 
(2020)

Tool type clas-
sification and 
tool wear

CNN, U-Net No coolant, 
Ball end Mill, 
End mill with 
corner radius, 
Insert and drill,

Marei et al., 
(2021)

Cutting tool 
health

CNN, Transfer 
learning model- 
ResNet-18

No coolant, 
End milling

Molitor et al., 
(2022)

Tool wear MobileNet and 
self-created 
CNN

No coolant, 
Blanking

(Vakharia et 
al., 2022)

Surface 
Morphology

DenseNet, 
AlexNet, KNN 
and MNB

wire electri-
cal discharge 
machining

Fig. 4  AlexNet Architecture

 

Fig. 3  Flank wear pictures under diverse speed-
feed combo and cutting environments
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ResNet

Learning is rendered unimportant at the initial stages of 
the backpropagation step due to the deep neural network’s 
high training error and the declining gradient. These are the 
primary challenges presented by the deep neural network. 
The ResNet architecture overcomes the problem of vanish-
ing gradients by employing additive identity transforma-
tions and a deep residual module, as shown in Fig. 6. Each 
stacked layer fits a residual mapping rather than a desired 
underlying mapping since the residual module uses a direct 
link amid the i/p and o/p. This is the case because of the 
nature of the residual mapping. The optimization process on 
the residual map is visibly a lot simpler when compared to 
the unreferenced version of the original map.

MobileNet

MobileNet v1 makes use of depth-wise separable convo-
lutions, which breaks down into a depth-wise and a point-
wise convolution (1 × 1 convolution), as seen in Fig. 7. To 
be more specific, the conventional convolution process 
involves applying each kernel to all of the input channels. In 
contrast to this, depth-wise convolution applies each kernel 

Dropout is a method that AlexNet employs during train-
ing to avoid overfitting by randomly ignoring some of the 
network’s neurons. This dropout method is utilized almost 
exclusively in the most recent few fully-connected layers. A 
stochastic gradient descent optimization function is imple-
mented within the model.

VGGNet

In the course of the competition, the VGG-VD group pre-
sented a total of six deep CNNs; however, only two of these 
CNNs, namely VGG16 and VGG19, were able to achieve 
the desired results. The VGG-16 and VGG-19 have 13 and 
16 convolutional layers, and 3 fully connected layers each, 
respectively. Both of these versions have three completely 
connected layers. Both of these networks make use of a 
stack of small convolutional filters with dimensions of 3 × 3 
and a stride of 1, which is then followed by many non-lin-
earity layers, as shown in Fig. 5. This contributes to learn 
features that are more complex while also increasing the 
depth of the network. The remarkable outcomes of the VGG 
experiment demonstrated that the extent of the network is a 
critical component in achieving a high level of classification 
accuracy.

Fig. 6  ResNet Architecture

 

Fig. 5  VGGNet Architecture

 

1 3

763



Journal of Intelligent Manufacturing (2024) 35:757–775

Inception-V3

The Inception-V3 architecture (Fig.  8) and TL have both 
been applied in this work. Due to the remarkable perfor-
mance that these network structures have on a range of tiny 

to only one channel of the i/p data and then uses 1 × 1 convo-
lution to combine the results of the depth-wise convolution.

Fig. 8  Architecture of Inception-
V3 in Transfer Learning
 

Fig. 7  MobileNet Architecture 
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initialized from the pretrained model. With the training pic-
tures utilized in the current investigation, it performs better 
as a result.

Results and discussions

Machining parameters on flank wear

Flank wear is created by friction amid the tool’s flank side 
and the milled workpiece surface, resulting in the loss of the 
sharp end. As a result, Vb has an impact on tool geometry 
and surface qualities (Maruda et al., 2018). In practice, Vb 
is commonly utilized as the TW criteria. For dry cutting, 
the wear varies from, 0.215–0.261  mm, for flood condi-
tion the wear varies from 0.158-0.0.185 mm, for MQL, Vb 
varies from 0.121 to 0.145 mm and for cryo, it was 0.056–
0.074 mm. At a Vc of 75 m/min, and a f of 0.08 mm/rev, 
the Vb formed were, 0.261 mm, 0.185 mm, 0.145 mm, and 
0.074 mm for dry, flood, MQL and cryo, respectively. Cryo 
condition decreases the Vb by 71% over dry cutting, 60% 
over flood cooling and 48% over the MQL approach. Cryo 
cooling at the cutting region reduces the Vb drastically by 
lessening the cutting temperature (Ramoni et al., 2021). An 
increase in Vb was displayed as a reason for the increase 
in feed (Ciftci et al., 2004). It is very clear from previous 
studies, a rise in feed increases the wear at the flank side 
(Çakıroğlu, 2021). This is because, the cutter advances in 
a faster way, which is the reason. Cutting speed during the 
metal cutting is proportional to feed. 

To check the linearity of the data in this investigation 
and to separate the classes, few well-known ML regression 
approaches like Ridge regression (Ye et al., 2014), Ran-
dom Forest (Methkal et al., 2022) and J48 (Madhusudana 
et al., 2018) prediction models were used. ML is frequently 
used in a variety of disciplines to resolve challenging issues 
that are not easily addressed using conventional methods 
(Bustillo et al., 2018). The actual Vb and the prediction val-
ues of distinct ML algorithms were presented in Fig. 9. The 
Ridge regression produced R2 of 97.10%, Random Forest 
with 98.05% (R2) and decision tree with 99.3% (R2). From 
the approaches employed, it is clear that the data are linear 
and close with one another (actual and predicted). Based on 
the results, the classes were segmented according to various 
environmental strategies.

Dry condition-class A

Class A was defined as the range of wear between 0.2 and 
0.3 mm. When Nimonic 80 A was machined without any 
coolant, the produced heat amid too-work material contact 
directly attacks the flank side and increases the wear. In this, 

datasets, studies have become interested in network struc-
tures that are centered on Inception-V3 and integrate with 
TL. Dong et al., (2020) successfully classified five repre-
sentative snakes with excellent precision, and the catego-
rization of the German Traffic Sign Recognition Standard 
was adopted by Lin et al., (2019). Xia et al., (2017) obtained 
accurate results for the classification of florals from the 
Oxford-102 and Oxford-i7 floral datasets.

Comparison of inception-V3 with other models

The technique suggested in this research uses Inception-V3 
model that was previously trained on ImageNet as a founda-
tion dataset and is now being used to learn (or transfer) fea-
tures to be trained on a new dataset. Compared to alternative 
architectures like AlexNet, ResNet, VGG, and MobileNet, 
Inception based Networks like Inception-V3 has been dem-
onstrated to be further computationally intensive, both in 
terms of the number of features generated by the network 
and the financial cost sustained.

The Inception-V3 levels are depicted in Fig. 8. As pre-
sented in the architecture, the Inception-V3 model has three 
distinct forms of modules. Convolutional and pooling lay-
ers run parallel in each Inception module. To lessen the 
number of learning parameters, the Inception modules use 
brief convolutional layers like 3 × 3, 1 × 3, 3 × 1, and 1 × 1 
layers. While the picture size in the dataset was 224 × 224, 
Inception-V3 i/p size is 299 × 299 pixels. When developing 
and testing Inception-V3, the photos have not been resized 
to 299 × 299 pixels. Due to the fact that this only altered 
the dimensions of the feature maps created by the technique 
and not the number of channels, the outcome was suffi-
cient. The feature map ended up with 55 dimensions and 
2,048 channels following the application of the Inception 
modules and convolutional layers. Then, at the end of the 
Inception modules,  three entirely linked layers are added 
to exploit the pre-trained model and change the parameters 
for our specific purpose. In the last step, a softmax layer 
was added as a classifier that produces probabilities for each 
class. The projected class was chosen based on whatever 
class had the highest likelihood. The original Inception-V3 
network created 1,000 classes, however, it has been limited 
to four classes now: Dry, Flood, MQL, and Cryo. There-
fore, the last layer’s output channel count was reduced 
from 1,000 to 4. Dropout with a 50% rate was employed 
throughout the training phase. A common method to prevent 
over-fitting is a dropout, which randomly discards some 
i/p’s to a layer. New machining pictures have been used to 
improve the TensorFlow pre-trained model. It is contained 
in the TensorFlow-Slim image classification package and 
was trained using the ImageNet dataset. Since ImageNet 
has over 14,000,000 pictures, the parameters have been 
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range for Class C is from 0.05 to 0.1 mm. From Fig. 9, it is 
very clear that the wear was very much reduced in compari-
son to the cutting strategies used in this study. The period of 
time that was required to finish the cut was approximately 
13–15 s.

Machining parameters on surface morphology

Machining was carried out at a depth of 1 mm; after machin-
ing with distinct variables, a small portion was cut and taken 
out with a help of wire EDM from the machined specimen. 
This was done to examine the machined surface. VMD was 
used to take pictures after milling. To check the Vb against 
surface quality, the highest speed-combo was taken from 
this investigation i.e., Vc = 75 m/min and f = 0.08 mm/rev. 
The milling experiments were accomplished with distinct 
environmental conditions. Figure 10 presented the 2D and 
3D surface profiles of milled surfaces under distinct envi-
ronmental conditions. Under a dry-cutting environment, 
a rough surface was produced as a reason of the high TW 
(Nimel Sworna Ross and Ganesh 2019), which was dis-
cussed in Sect. 3.1. High peaks and valleys were seen under a 
dry-cutting environment. The Vb generated was in the range 
of 0.2–0.3 mm. The 2D roughness profile also represents the 
variations. The profile revealed that the machined surfaces 
have surface flaws like micro gaps or scratches. Flood con-
dition has a positive impact on flank wear. It reduces the 

class blunt edge was found. Milling is an intermittent cut-
ting, the time taken to complete a slot was around 21–23 s 
with the distinct speed-feed combinations.

Flood condition-class B

Flood cooling environment curtails the wear on the flank 
side somehow by providing cooling and lubrication (C/L). 
The range of class B was between 0.15 and 0.2 mm. In this 
class, the TW is reduced and it increases the life of the tool. 
With a specific combination of speed and feed, the amount 
of time needed to finish a slot was approximately 17–19 s.

MQL condition-class C

MQL environment provides C/L to the cutting area which 
helps to reduce the amount of wear that occurs on the flank 
area. Class C had a range that was anywhere between 0.1 
and 0.15 mm. As a result of participating in this class, there 
is less TW to flood and dry-cutting condition. The amount 
of time necessary to complete a slot was around 15–16 s.

CO2 condition-class D

The cooling effect was provided to the cutting region by the 
cryo CO2 cutting strategy that helps to limit the wear on the 
flank region related to all other cutting strategies. The wear 

Fig. 9  Actual and prediction with 
distinct ML techniques
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Relationship of flank wear and surface morphology

The plots of Ra as a function of the Vb were shown in Fig. 11 
(a-d). The graphs demonstrate that no consistent and stable 
roughness value was established during machining; yet, as 
the Vb advanced, an increase in roughness value was seen. 
These numbers also suggest that the quality of the surface 
was significantly impacted by worn land. Under all cutting 
situations, the same was evident.

This work aims to predict the surface quality with the 
help of Vb. With the help of distinct speed-feed combo and 
cutting environments, the examinations were tried. The 
2D roughness values were considered because it is widely 
accepted. The tests were repeated three times and each time 
the values were taken in three distinct places. The Ra ranges 
from 1.6 to 2.0 μm for the dry cutting environment; for the 
flood condition, the range was 1.2–1.6 μm; for MQL and 
cryo cutting environments, the ranges were 0.8–1.2  μm 
and 0.6–0.8  μm, respectively. The Vb condition has been 
categorized into four classes (dry, flood, MQL and cryo). 
The most important problem with utilizing CNN-based 
DL applications is the insufficient dataset in size. The data 

Vb to some extent and decreases the height of peaks and 
valleys in a dry-cutting environment. The roughness profile 
(2D) displays low height variation as shown in the picture 
under the flood-cutting strategy. The reason behind this was 
the lubrication behaviour of water-soluble mineral-based 
coolant. Good lubrication and cooling effect under MQL 
condition, decline the friction and diminishes the wear on 
the flank side (Maruda et al., 2016, 2021). The reduced Vb 
increases the surface quality, and the range of wear for this 
cutting strategy was 0.1–0.15 mm. The 2D profile decreased 
drastically as a reason for the formation of a thin layer on 
the contact area under the MQL cutting strategy. Low peaks 
and valleys were seen under MQL condition, it is drastically 
reduced when compared to flood and dry-cutting strategies. 
Then comes the cryo condition, which produces better sur-
face traits by lowering the peaks and valleys. The 2D pro-
files show less deviation in relation to dry, flood and MQL 
cutting strategies. The minus degree CO2 gas was the reason 
for reduced Vb which in turn created a good surface finish. 
The maximum Ra produced was 1.95 μm, 1.57 μm, 1.19 μm 
and 0.75 μm, under dry, flood, MQL and cryo cutting condi-
tions, respectively. Similarly, the Sa values produced were 
1.02 μm, 0.91 μm 0.78 μm and 0.64 μm.

Fig. 10  Surface profiles at a Vc of 75 m/min and f of 0.08 mm/rev under (a) dry, (b) flood (c) MQL and (d) cryo
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pictures and yielded a total of 3836 pictures which is needed 
for feeding into the machine learning models. Further, it has 
been divided into a 75:25 ratio, where 75% of the data has 
been utilized for training and the rest for validation and test-
ing. Thus, a total of 2868 pictures were utilized for training, 
775 pictures for validation and 193 were used for testing.

Various DL models, such as AlexNet, VGG-16, ResNet, 
MobileNet, and Inception-V3, were investigated. The per-
formance of a machine learning model can be measured 
using distinct metrics like Accuracy, Recall, Precision, and 
F1-Score using a confusion matrix. This helps to calculate 
the number of incorrect and correct predictions by each 
class. From the confusion matrix, measures like True Posi-
tives (tpos), True Negatives( tneg ), False Positives(tneg) and 
False Negatives( fneg ) are calculated. Thereby Accuracy, 
Recall, Precision, and F1-Score are evaluated using Eqs. 1–
4 respectively.

	
Accuracy =

tpos + tneg
tpos + tneg + fpos + fneg

� (1)

augmentation technology can be efficiently increasing the 
number of datasets (Molitor et al., 2022), and some tra-
ditional image data augmentation methods, such as flip, 
rotation, shearing, contrast, etc. Data augmentation was 
employed to solve the problem which has insufficient data. 
The augmented pictures of the current investigation are pre-
sented in Fig. 12.

Classification of tool wear conditions

In this study, 24 trials have been carried out, and an ini-
tial set of pictures were collected of four different condi-
tions such as dry, flood, MQL, and cryo during machining. 
Hence, it is to design a machine learning model to classify 
a given i/p picture into one out of four classes. Thus, the 
inception-V3 model has been adopted and modified to clas-
sify the given i/p pictures into four different classes, namely, 
dry, flood, MQL, and cryo. To design an efficient model with 
generalizability, an adequate number of pictures is required, 
and the pictures collected during experimentation are insuf-
ficient. Thus, to improve the number of pictures for train-
ing, augmentation has been performed on the experimental 

Fig. 11  (a-d). Effect of flank wear on surface roughness with (a) dry, (b) flood (c) MQL and (d) cryo
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The recall is a metric for how many actual, pertinent results 
were ultimately returned. When the cost of false negatives 
is significant, a model’s recall becomes extremely impor-
tant. The recall is also known as sensitivity. In general, the 
harmonic mean of precision and recall is the F1 Score. A 
model’s high F1 Score indicates that there are fewer false 
positives and false negatives.

	
precision =

tpos
tpos + fpos

� (2)

	
Recall =

tpos
tpos + fneg

� (3)

	
F1Score = 2× Precision× Recall

Precision+ Recall
� (4)

Fig. 12  Generated pictures with 
augmentation
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conditions. The effectiveness of the proposed approach with 
the Inception-V3 model is compared with the other methods 
such as AlexNet, VGG-16, ResNet, and MobileNet.

The experimental outcomes of different measures are 
given in Fig. 16. In this, the experimental outcomes of the 
proposed Inception-V3 method are compared with the other 
experimental models such as AlexNet, VGG-16, ResNet, 
MobileNet for various conditions such as Dry, Flood, MQL, 
and Cryo. Figure 16 (a) shows the accuracy of all the experi-
mental models with different machining conditions. In the 
examination, the accuracy of the proposed Inception-V3 
method achieves better performance in all four conditions 
with an overall accuracy of 99.4%. The precision values of 
different models are shown in Fig. 16 (b), and the Incep-
tion-V3 model has the highest precision value of 99% when 
compared to all other models. Figure 16 (c) shows the recall 

Comparison of prediction results with AlexNet, VGG-
16,ResNet, MobileNet, and Inception-V3

In this section, the evaluation parameters, such as accu-
racy, recall, Precision, and F1-Score for classifying TW on 
different conditions during machining are analyzed. The 
augmented data pictures were given for training to differ-
ent models like AlexNet, VGG-16, ResNet, MobileNet, 
and Inception-V3 and the predicted results were taken for 
analysis. Figures 13 and 14 presented the accuracy and loss 
concerning epochs. A summary of prediction results with 
selected architectures are represented in the form of con-
fusion matrix in Fig. 15. The confusion matrix depicts the 
various instances in which the classifier is perplexed when 
making predictions (Kothuru et al., 2019). The values in 
the diagonal are correctly predicted values with different 

Fig. 13  Accuracy of training and 
validation with distinct models 
(a) AlexNet, (b) VGG-16, (c) 
ResNet, (d) MobileNet, and (e) 
Inception-V3
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MobileNet. A total of 3836 images were taken into account, 
of which 2868 images were utilized to train the ML models 
and 193 images to test them. Following is a list of observa-
tions made using the suggested methodology:

	● VMD was employed to take pictures of Vb under dis-
tinct environmental conditions. Cryo condition shows 
the lowest wear value and dry with the highest. The TW 
at the cutting insert is the reason of poor lubrication and 
cooling at the cutting area.

	● Surface finish analysis explained that the quality surface 
was produced under cryo condition due to less flank side 
wear. The ranges of surface quality produced under dif-
ferent classes of flank wear were proposed. From the 
study, it was proved that the TW has a direct influence 
on surface waviness.

values of all the models under distinct environmental condi-
tions and shows that the Inception-V3 performs well among 
all the other models with 99.8%. Figure 16 (d) shows the 
comparison results of F1-Score, the proposed Inception-V3 
outperforms with 98.9%. Thus, the overall performance of 
the model is higher with the Inception-V3 model.

Conclusion

Tool wear is a constant focus of research in industrial appli-
cations. Furthermore, predicting the flank wear of the tool 
over diverse environmental conditions with a limited num-
ber of pictures is a difficult task. In this paper, Inception-V3 
for TL has been adopted as it performs well when compared 
with other models such as AlexNet, VGG-16, ResNet, and 

Fig. 14  Loss of training and 
validation with distinct models 
(a) AlexNet, (b) VGG-16, (c) 
ResNet, (d) MobileNet, and (e) 
Inception-V3
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with 93.6%, 94.03%, 95.1% and 94.2% accuracies, 
respectively.

	● The transfer learning model with Inception-V3 architec-
tures takes augmented pictures is not reported in the lit-
erature and is extremely useful for intelligent machining 
applications.
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	● The effectiveness of the proposed TL using Inception-
V3 model to predict TW in machining is analyzed with 
distinct performance measures like accuracy, Recall, 
precision, and F1 -Score, which achieves 99.4%, 99.8%, 
99%, and 98.9% respectively.

	● A comparison of results shows that the Inception-V3 is 
the best suitable transfer learning model to predict the 
TW pictures with 99.4% accuracy, where the other mod-
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Fig. 15  Prediction Results as 
Confusion Matrix for distinct 
models
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