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Abstract
Themanufacturer’s service to the customer is one of the critical factors inmaximizing profit. This study proposes the innovative
(Q, r) inventory policy integrated with autonomated inspection and service strategy for service-dependent demand. First, an
advanced autonomated inspection makes the product error-free. Therefore, this makes customers more satisfied and increases
profit. The proposed model decides the optimal investment for such autonomated inspection. Second, three types of services
are considered in the study: unpaid, partially paid, and fully paid services. Each type of service has a different service level and
the amount of the customer’s payment. Our model finds the optimal service strategy based on the variable conditions along
with the optimal quantity and reorder level of inventory policy. Numerical analyses are made for different service strategies,
along with a sensitivity analyses for various critical parameters. Results show that the full paid service is 84.88% beneficial
compared to the unpaid service, and the autonomated inspection policy is 5.02% beneficial compared to the traditional ones.
The increase in unit servicing costs always increases the profit of the company.

Keywords Inspection · Profit maximization · Service dependent demand · (Q, r) model
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Introduction

The main objective of companies is to maximize their profit.
One of the traditional strategies is enhancing customer sat-
isfaction via error-free products and differentiated service.
This study proposes an innovative (Q, r) inventory model
implementing such a strategy. First, autonomated inspection
is considered in manufacturing to make the product error-
free. It could eventually make more profit. Second, various
types of services are considered under service-dependent
demand. Each service has a different quality based on the
amount of customer’s payment.
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In general, defective items may be delivered to the
retailer from the manufacturing house. Managing inventory
under such imperfect items is an essential job for indus-
try managers. How much to order and when to order while
considering the possibility of defective items are important
decisions, and many relevant inventory models are studied
(Barron&Baron, 2020; Cárdenas-Barrón et al., 2014; Chang
et al., 2005). Especially, some (Q, r)models were developed
under the consideration of shortages cost (Khan et al., 2011;
Maddah et al., 2010; Manna & Chaudhuri, 2006). The short-
age cost due to the defective items affects the optimal Q
and r , and the company’s profit. In such a situation, effective
inspection to identify those defective products, which may
be reworked or sold at a lower price, is helpful to reduce
the shortage cost and eventually increase the company’s
profit. Safety stock allows the decision-maker to control the
expected unplanned shortages, which directly helps to reduce
the total cost. During the inspection period, all items were
inspected. Due to the imperfect manufacturing system, some
defective items were produced randomly. This random vari-
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able’s distribution depends on the fraction of defective items
in a batch (Karakatsoulis & Skouri, 2021).

The traditional inventory model was considered human-
based inspection, whichmay be error-prone (Sarkar& Saren,
2016). However, there was a chance of errors in this type of
inspection, which had amajor impact in optimizing total sys-
temcost (Sarkar&Saren, 2016). Furthermore, this inspection
error leads to a tremendous shortage cost (Tajbakhsh, 2010).
For example, due to the low quality ofmasks, 1.3million face
masks were banned, and huge shortage costs occurred dur-
ing the COVID-19 pandemic as per Euronews on March 21,
2020 (https://www.euronews.com). To overcome a massive
shortage and calculate proper reorder level, it is necessary to
perform an error-free inspection (Cheikhrouhou et al., 2018).
Thus, checking the quality and defectiveness of the product
is critical for any (Q, r) inventory system. A machine-based
autonomated inspection policy was very much effective in
detecting defective products (Lin et al., 2019; Sarkar et al.,
2020). This autonomation helps prevent the product’s defec-
tiveness and decreases the shortage cost (Dey et al., 2021b).
Hence, this present study attempts to formulate a (Q, r)

inventory model integrated with an autonomated inspection
policy, making the process more intelligent and profitable
than the traditional one.

On the other hand, customers become more careful about
the service provided by the company (Guajardo&Rönnqvist,
2015). Before buying the products, customers find which
type of services the company will offer. They can get service
instantly if problems arise in the product’s life span (Reba-
iaia & Ati-kadi, 2021; Rezg et al., 2008). Different types of
servicing or maintaining a particular product are crucial in
those days to optimize the profit of companies (Höller et al.,
2020). Such service strategies of companies directly affect
the demand and profit. Several existing studies were con-
centrated on maintaining the production process in terms of
preventive or corrective maintenance (Haidar et al., 2022).
However, as per the authors’ knowledge, different services
like home delivery, customer support, and repairing a sold
product during the product’s life cycle are in an inventory
system still not considered by any existing literature.

Hence, an intelligent inventory model to address these
issues is proposed in this current study. Machine-based
autonomated inspection is implied to detect faulty items, con-
trol the shortages, and market demand along with enhance-
ment in the profit of the inventory model. When customer
demand is service-dependent, the best servicing strategy
among the unpaid, partially paid, and full paid services are
determined under various conditions. Some investments are
incorporated to upgrade the servicing strategies. It helps to
keep the company’s brand image and enhance the industry’s
total profit.

In brief, the following significant issues for a (Q, r) inven-
tory model are solved in this study:

(i) Most traditional (Q, r)models are considered ahuman-
based inspection policy to detect imperfect or defective
items (Sana et al., 2007;Karakatsoulis&Skouri, 2021).
The autonomated inspection policy (Dey et al., 2021)
for the (Q,r) inventory model was still not considered
in the literature. Hence, a machine-based autonomated
inspection policy is applied to detect the faulty prod-
uct for the (Q, r) inventory model, which provides
an error-free inspection process and makes the (Q, r)

model more profitable.
(ii) The traditional (Q, r) inventory model deals with con-

stant or deterministic demand (Widyadana & Wee,
2010). Some inventory and production models were
recently developed under the consideration of sell-
ing price-dependent demand (Cárdenas-Barrón et al.,
2021), and some production models were developed
under quality-dependent demand (Dey et al., 2021b).
However, a service-dependent (Q, r) inventory model
is not sufficiently discussed. Thus, an effort is made in
this current manuscript to fill this research gap.

(iii) Several inventory models set the service as a constraint
(Albrecht, 2017; Sereshti et al., 2021). However, profit
optimization by selective services to the customers, by
the company, during the life cycle of the products is still
not tried in any existing literature. Hence, in this study,
an effort ismade to optimize the company’s profit based
on the company’s servicing strategy.

The detailed gaps in research and literature review are dis-
cussed in section “Previous studies related to this field”. The
(Q, r) model is illustratively described along with notations
and assumption in section “Model description & formula-
tion”. Section “Solution methodology” contains the solution
methodology, whereas Section “Numerical examples and
analyses” deals with numerical examples and case studies.
The sensitivity of the critical parameters is provided in the
Sensitivity analysis section “Sensitivity analysis”. The indus-
trial benefits are discussed in section “Managerial insights”
asmanagerial insights. Finally, some concluding remarks and
feature extensions are described in the Conclusion, section
“Conclusion”.

Previous studies related to this field

This section discusses the in-depth analysis of the existing
literature along with the research gaps, research questions,
and the necessity of this study.

Necessity of autonomation

One traditional assumption for the EOQ model is that all
produced products were perfect in condition. But in reality,
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not all produced items may be of excellent quality due to
various issues. An EOQ model, along with the considera-
tion of defective items, was proposed by Salameh and Jaber
(2000). They considered that a random portion of defective
items was delivered with a probability distribution function
which is independent of lot size. Moreover, they considered
a 100% inspection process to detect the defective quality
item in a batch through the human inspection process. Those
imperfect quality items were sold in a secondary market with
less price. Manna and Chaudhuri (2006) proposed an inven-
tory model, where shortages arose due to defective products,
and they solved both the case with and without shortages.
Moreover, their model was developed for a deteriorating
product.Anoptimal buffer policywas constructively stated to
overcome the shortage situation by Sana (2012). An inven-
tory system with defective items was proposed by Sarkar
(2012), where system reliability was increased through some
investment. Strong bonding between producer and buyer was
always beneficial for enhancing the profit of any imper-
fect system (Das Roy et al., 2012). Das Roy et al. (2012)
discussed a just-in-time-based imperfect production system
with shortages and backorder. An imperfect manufacturing-
remanufacturing productionmodel for the green product was
developed by Sarkar et al. (2022b). In this model, they dis-
cussed environmental and economic sustainability, however,
they neglected the concept of intelligent inspection.

Themain theme of a (Q, r) inventory system is to manage
the lot size Q and calculate the safety factor r properly to han-
dle the situation of shortages. The effect of safety stock in an
(Q, r) inventorymodel under stochastic demand in the fuzzy
environment was studied by De and Sana (2018); Kumar et
al. (2016). Recently, an (Q, r) model was developed under
the consideration of available lead time and backorder by
Barron and Baron (2020). The number of generations of
faulty products increases in an imperfect production sys-
tem’s out-of-control state (Mahata, 2017). Mahata (2017)
also discussed the effect of learning in his model. Recently,
Karakatsoulis and Skouri (2021) considered an (Q, r) inven-
tory systemand calculated the optimumorder level and safety
factor in shortages. They constructed their study based on
constant demand and without a proper inspection strategy.

An inspection is required to control the shortage situa-
tion due to imperfect production (Sana et al., 2007). One
can calculate the exact amount of shortages of an (Q, r)

inventory model if the product inspection is 100% error-free.
However, 100%error-free inspection through a human-based
inspection strategy for an inventory system is near impos-
sible (Tiwari et al., 2020). Tiwari et al. (2020) proved that
inspection errorwas vital in determining the ordered quantity,
demand, system cost, and profit. Therefore, a machine-based
inspection is required to perform an error-free inspection,
which directly helps to calculate the safety factor exactly for
an intelligent (Q, r) inventory model (Sett et al., 2020b). In

a similar direction, an automated system was proposed by
Lin et al. (2019) to detect the defectiveness of LED bulbs,
which enhances the system profit. They prove that automated
inspection increases the system’s reliability up to 5.04%. An
autonomated inspection is always beneficial for an imper-
fect production system to perform an error-free inspection
and to identify defective items properly (Sarkar et al., 2020;
Dey et al., 2022). Thus, for performing an error-free inspec-
tion and calculating the exact value of the safety factor, the
concept of an intelligentmachine-based autonomated inspec-
tion policy is very much beneficial for imperfect production
systems (Dey et al., 2021b) (See Fig. 1). If one considered
constant demand, neglected the autonomation-based inspec-
tion strategy and calculated the total system cost, this model
shifted to Karakatsoulis and Skouri (2021) model. However,
existing literature still does not consider a machine-based
intelligent autonomated inspection strategy for an (Q, r)

inventory model, which is necessary to control the short-
ages properly. Thus, performing an error-free inspection for
an (Q, r) inventory model and controlling the shortages sit-
uation appropriately, where the defective rate is random and
follows specific probability distribution was studied in this
current research.

Service-dependent demand

Traditional inventory models deal with constant or deter-
ministic demand patterns. However, it is almost impossible
to determine the exact demand for a particular product. An
intelligent service strategy for the customers is important to
increase the demand for any product. Each company provides
different services like home delivery, product installation,
customer support, and many more. It isn’t easy to provide
100% services to their customer all the time. There must be
some limitations in these services. Thus, the determination
of the exact service level is a very much crucial task.

The selling price of the product is essential to determine
the demand for an EOQ model (Sana, 2010). Sana (2010)
developed an ordering policy under selling price-dependent
demand. Pal et al. (2015) discussed the effect of selling price
and product quality on demand for an SCM model. In a
similar direction, Taleizadeh et al. (2015) proposed a Ven-
dor Managed Inventory model considering price-dependent
demand. In this regard, an inventory model was proposed
by Taleizadeh et al. (2018), where the selling price of the
product was optimized. In a similar direction, a selling price-
dependent integrated inventory model was proposed by Dey
et al. (2019), where they used the concept of safety stock.
An online-to-offline (O2O) retailing under the considera-
tion of imperfect production was elaborated by Sett et al.
(2020a), where they assumed that the demand for the prod-
uct varies with the service level, selling price, and quality
of the products. An inventory model for the perishable item
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Fig. 1 Necessity of autonomation

Table 1 Research gaps and contributions of previous author(s)

Author(s) Model type Demand Inspection policy Safety factor Maintenance strategy

Salameh and Jaber (2000) IP Constant NA NA NA

Maddah et al. (2010) Inv Constant HB Shortage NA

Khan et al. (2010) EOQ Constant LE NA NA

Hsu and Hsu (2013) EOQ Constant HE Shortage NA

Taleizadeh et al. (2015) EOQ Constant NA PB NA

Sarkar and Saren (2016) EPQ Constant HE NA NA

Dey et al. (2019) II SPD NA Variable NA

Dey et al. (2021b) IP SPD AUI Variable NA

Karakatsoulis and Skouri (2021) (Q, r) Constant HB Variable NA

This model (Q, r) SLD AUI Variable UP, PP, & FP

NA not applicable; Inv. Inventory; EOQ Economic Order Quantity; EPQ Economic Production Quantity; HE Human inspection with error; IP
Imperfect production; II Integrated inventory; SPD Selling price dependent; AUI Autonomated inspection; SLD Service level dependent; PB
Partial backorder; HB Human based inspection; LE Learning effect; (Q, r): (Q, r) inventory; UP Unpaid or free maintenance; PP Partially paid
maintenance; FP full paid maintenance

was established by Khan et al. (2020), where the demand for
the deteriorating items depends on selling price and adver-
tisement. A replenishment policy for inventory system under
selling price varying demand was developed by Duan and
Ventura (2021).

Several studieswere conducted based on demand variabil-
ity, where the demand for the products depends on different
realistic issues like selling price, advertisement, and qual-

ity of the products. However, in recent days, customers have
been more careful about the company’s service. Customers
always prefer to buy those company’s products, which will
provide the best servicing. Nowadays, it is well known to
every consumer that every product has an expiration date,
and the product may transfer to an imperfect or faulty prod-
uct during its life span. Thus, every customer was very much
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aware of the servicing or maintenance policy provided by the
company.

Rezg et al. (2008) presented an optimum strategy to
control inventory, where they adopted the preventive main-
tenance policy for the production system. Servicing strategy
and product end-of-life (EOL) management in a sustainable
way was illustrated by (Shokohyar et al., 2014). Based on the
company’s service level, an (Q, r, L) inventory model was
proposed by Moon et al. (2014). This model minimized total
system cost using the Min-Max distribution-free approach.
Simultaneously, they provided the best policy for ordering
quantity and reordered points. Moon et al. (2014) model was
extended bySarkar et al. (2015) by considering variable setup
cost and investment to improve the process and service-level
constraint. A service-levels-based inventory systemwith dif-
ferent spare parts was developed by Guajardo and Rönnqvist
(2015). They proposed the Minimum Deviation from Ser-
vice Level Referential Cost Method (MIND) to optimize the
service level. Shin et al. (2016) proposed an inventory model
where service level is a constraint. Moreover, they calculate
the exact lead time for their model. Albrecht (2017) pro-
posed an inventory model under the consideration of service
level constraints. He also optimized the safety stock for his
model. The effect of service level for an inventory model
was studied by Gruson et al. (2018). Recently, a just-in-time
inventory system under preventive maintenance and servic-
ing was proposed by Haidar et al. (2022). Under an uncertain
fuzzy environment, Bhuniya et al. (2021) proposed a supply
chain model under the consideration of service level con-
straints. They discussed the transportation discount under
distribution-free approaches.

Most of the inventory model deals with the service level
as a constraint (Lin & Yang, 2011; Tsai & Zheng, 2013;
Tavaghof-Gigloo&Minner, 2021;Kilic et al., 2018). Amod-
ified flower pollination algorithm was developed by Saha
et al. (2021). They discussed the dynamic investment for
promotion, which increased customer satisfaction, and an
upgraded service was provided to the customers. The circu-
lar economy plays a major role in providing better service to
the customers and keeping the environment clean fromwaste
(Sarkar et al., 2022a). Since the provided service of the com-
pany can not be infinite, and this is the reason to assume the
company’s service level is up to a specific limit. Now, if it
is possible to calculate the exact service level, the company
undoubtedly benefited from the value of the optimal service
level. In other words, the company’s services enhance the
demand for a particular product. Thus, this model was devel-
oped under the consideration of service-dependent demand,
which is rare in literature. This study also incorporated some
investments to develop the servicing strategies, which helps
to optimize the profit. Moreover, the traditional model con-
sidered a maintenance policy for the production system, and
sometimes a free minimal warranty policy was adopted by

different existing literature (Rezg et al., 2008; Shokohyar et
al., 2014; Rebaiaia & Ati-kadi, 2021). Whereas optimizing
the inventory model by different types of servicing (unpaid,
partially paid, fully paid) for the customer is unique. The con-
cept of different servicing depends on the amount payable
by customers for an (Q, r) inventory model with a faulty
product, and intelligent autonomated inspection policy to cal-
culate accurate safety factor is a newconcept and an extensive
research gap, which was fulfilled by the current study.

Model description & formulation

This section contains notations, assumptions, and a detailed
description of the formulation of the model. A graphical rep-
resentation (Fig. 2) is provided to show different types of
services provided to the customers by the company.

Notation

To construct the model, the following notations are used

Decision Variables

A Investment for autonomated inspection ($/unit time)
s Percentage of service provided by the company

(percentage)
sa Percentage of service provided by the company

during no shortage (percentage)
sb Percentage of service provided by the company

during unplanned shortage (percentage)
r Reorder point
Q Order quantity (units)
Qa Order quantity for no shortage case (units)
Qb Order quantity for unplanned shortage case (units)
Parameters

A0 Initial fixed cost for inspection ($/unit time)
p Fraction of faulty items (percentage)
μ Percentage of servicing fees paid

By the customers (percentage) (0≤ μ ≤ 1)
BQ Number of non-faulty items in a batch of size Q

(unit)
λ Shape parameter related to service
B(t) Number of non-faulty items detected at time t (unit)
γ Shape parameter related to the investment for service
f p Probability density function of p
ξ Shape parameter related to the investment for

autonomation
PQ Probability density function of BQ
Pt Probability density function of B(t)
η Scaling parameter related to service
D Demand rate, which depends on service level (unit),

D = λsη

h Cost for holding per unit per unit time ($/unit/unit
time)

T Cycle length (time unit)
t0 Time at which shortages occurs (time unit)

123



312 Journal of Intelligent Manufacturing (2024) 35:307–330

Fig. 2 Services provided to the
customers

x Rate of screening (percentage)
z Rate of defectiveness per batch D/x
K Fixed ordering cost ($/cycle)
Csu Servicing/maintance cost per unit ($/unit)
b backordering cost per unit per unit time ($/unit/unit

time)
E S(.) Expected unplanned shortages per cycle
T Ca Expected total cost for no shortage case
T Pa Expected total profit for no shortage case
T Cb Expected total cost for unplanned shortage case
T Pb Expected total profit for unplanned shortage case

Assumption

1. The demand rate, D = λsη, which depends on the
percentage of service provided by the company. It is
clear that if the company’s services increase, the demand
automatically increases, and simultaneously profit of the
entire system is increased.

2. The company provides three types of servicing scheme to
their final customers, namely free servicing, which mean
no amount will be charged to the customer for this ser-
vicing, second is partial payment servicing, whichmeans
customers have to pay a certain percentage of the total
servicing amount, and the company will pay rest amount.
The third is the full payment servicing, e.g., the consumer
will pay the total servicing fees.

3. An order of size, Q, is placed every time the inventory
level drops to r ≥ 0. The time between two consecutive
orders is defined as a cycle, and it is of length T .

4. In each batch of size Q, a fraction, p, of items are defec-
tive. This implies that each batch contains a random
number, BQ , of non-defective items with a pdf PQ . The
number of defective items in a cycle is independent of the
numbers in other cycles. Two different cases about BQ

are considered. In the first case, every item has a constant
and known probability, m, to be defective. In the second

case, BQ = (1 − p)Q, where p is a random variable,
with pdf f p, p ∈ [α, β], α < β < 1 (so independent of
Q) with E(p) = m. These two cases affect the probabil-
ity function of the number of non-defective items during
the screening period and, at the same time, make V ar(p)

dependent or independent of the order quantity Q. Hence,
from now on, the first case will be referred to as the case
with V ar(p) dependent of Q, while the second case will
be referred to as the case with V ar(p) independent of Q
(Karakatsoulis & Skouri, 2021).

5. Each batch is subject to 100% and an error-free screening
process through a smart autonomation strategy at a finite
rate x > D. During the autonomated inspection process,
someunplanned shortagesmay appear,which are entirely
backlogged, costing b per unit per unit time.

6. In each cycle, the number of non-faulty items, BQ , is at
least equal to the demand during the screening process
with probability 1, i.e. P(BQ ≥ DQ/x) = 1.

7. Holding costs for perfect and faulty products are the same
as they are kept in the same warehouse (Karakatsoulis &
Skouri, 2021). The planning horizon is infinite, and lead
time is negligible.

Formulation of model

Thecurrent study is basedon an inventorypolicy to determine
the optimal order quantity and safety stock to control short-
ages. Moreover, demand is considered service-dependent,
as most existing literature discusses deterministic constant
demand (Karakatsoulis&Skouri, 2021).However, stochastic
service-dependent demand provides more realistic solutions.
Simultaneously, instead of a traditional human inspection
policy, amachine-based autonomated inspection policy (Dey
et al., 2021b) is implied to perform an error-free inspection.
A shortage occurs when all the warehouse products are sold
out; in other words, one can say that shortages only occur
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after the depletion of the safety stock r . Due to huge demand
and faulty production processes, stock out or shortages may
occur after the safety stock’s end. As per the assumption of
this model, the chance of occurrence of unplanned shortages
is zero for t ≥ t0 as P(YQ ≥ DQ/x) = 1. Therefore, based
on the assumption, different situations may occur, where one
case is considered without shortages and occurs only when
r ≥ Dt0. However, unplanned shortages may take account if
r < Dt0. Thus, two different cases: one with shortages and
another without shortages, are considered as follows.

Case I: r ≥ Dt0

This case is when there are no shortages. Most of the cost
functions are taken from Karakatsoulis and Skouri (2021).
The cost related to this without shortages case are elaborated
as follows:

Ordering cost (OC) To avoid the complexity of the model,
the current study was created under the thought of conven-
tional fixed ordering costs. The ordering cost for the entire
cycle is given by

OC = Kλsη

Q(1 − m)
(1)

Holding cost (HC)Since this case is developed under the con-
sideration of without shortages, thus initial inventory level is
provided by Q + r . Due to the demand rate D, the inventory
level diminishes with a linear rate of −D.

Therefore, the total expected holding cost for the entire
cycle is given by

HC = λsη

1 − m

(
hr(1 − m)

λsη
+ hQ[E p(1 − p)2 + 2mz]

2λsη

)

(2)

Autonomation inspection cost (AIC) The traditional (Q, r)

model is considered a human-based inspection,with a chance
of error in the inspection process, which increases the sys-
tem cost as well as decreers the brand image of the company.
Thus, in this current study, an intelligent machine-based
autonomated inspection policy (Sett et al., 2020b) is utilized
to determine the faulty product.

Thus, the total cost for autonomation along with invest-
ment is given by

AIC = AQ + ξ log

(
A0

A

)
(3)

Investment for service To satisfy and attract the customers,
some service is provided by the company to their customers
during the product’s life cycle.

Now, to provide those services, some cost or investment is
needed (Sarkar & Bhuniya, 2022). The investments for those
services are given by

Investment for service = γ s2

2
(4)

When r ≥ Dt0, the total cost of the system per unit time,
T Ca(r , Q, s, A) is given by:

T Ca(r , Q, s, A) = OC + HC + AI C + γ s2

2
(5)

Now, if it is considered that P is the unit selling price, Cus is
the unit service cost for the portionμ, and the unit purchasing
cost is C p, then the profit of the system is provided as

T Pa(r , Q, s, A)

= (P − C p + μCsu)λsη − T Ca(r , Q, s, A) (6)

One can rewrite Eq. (6) as

T Pa(r , Q, s, A)

= (P − C p + μCsu)λsη

−
[

λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη
+ hm(1 − m)

2λsη

+h[(1 − m)2 + 2mz]Q

2λsη

}

+AQ + ξ log

(
A0

A

)
+ γ s2

2

]
(7)

Case II: r < Dt0

In this case, the situation of unplanned shortages is dis-
cussed.After performing the autonomated inspection, perfect
or non-defective items are sold in the market, also treated as
serviceable items. Hence, perfect but non-inspected products
cannot be used to satisfy the demand. Therefore, the service-
able within the time interval t ∈ (0, Q/x) is r + B(t). B(t)
is a random variable with pdf ft (y), y ∈ (0, . . . , xt).

Now, when y(t) + r ≥ Dt that is enough inspected items
in hand to satisfy the demand, then the expected holding cost
is given by

h

Q/x∫
0

xt∫
Dt−r

(Q + r − Dt) ft (y)dydt (8)

Again when y(t)+ r < Dt that is the number of serviceable
or inspected perfect items are limited, then some unplanned
backorders are taken into account, and in that case holding
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cost is given by

h

Q/x∫
0

Dt−r∫
0

(Q − y) ft (y)dydt (9)

After some calculation, the expected holding cost in (0, Q/x)

is given by:

hzQ2

2λsη
(2 − z) + hzr Q

λsη
+ hE S(r , Q, S, A) (10)

and the holding cost during (Q/x, T ) is given by

hQ2E p(1 − p − z)2

2λsη
+ hr(1 − m − z)Q

λsη
(11)

Now, the expected shortages per cycle are given by

E S(r , Q, s, A) =
t0∫

r/D

Dt−r∫
0

(λsηt − r − y) ft (y)dydt

Then, the expected cost for unplanned backlogged inventory
is given by

bE S(r , Q, S, A) (12)

Therefore, using theRenewal Reward Theorem, and by using
the concept from Karakatsoulis and Skouri (2021) the total
cost of the system per unit time is calculated by summing
ordering cost, holding cost, backlogging cost, autonomated
investment cost, and investment for service, where ordering
cost, autonomated investment cost, and investment for ser-
vices are the same as case r ≥ Dt0.
Then, the total expected cost of the entire system is given by:

T Cb(r , Q, s, A) = λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη

+h[E p(1 − p)2 + 2mz]Q

2λsη

+ (h + b)

Q
E S(r , Q)

}
+ AQ

+ξ log

(
A0

A

)
+ γ s2

2
(13)

Now, if it is considered that P is the unit selling price and
the unit purchasing cost is C p, then the profit of the system
is provided as

T Pb(r , Q, s, A) = (P − C p + μCsu)λsη − T Cb(r , Q, s, A)

(14)

Therefore, the total profit of the system per unit time,
T P(r , Q, s, A), is:

T P(r , Q, s, A) =
{

T Pa(r , Q, s, A), for r ≥ λsηt0
T Pb(r , Q, s, A), for r < λsηt0

(15)

The objective is to determine the values of r , Q, s, A that
maximize the T P(r , Q, s, A) i.e., to solve the problem:

max
r≥0,Q≥0,s≥0,A≥0

T P(r , Q, s, A)

s.t. P(YQ ≥ λsη Q/x) = 1

Solutionmethodology

Since the service level and investment values for autono-
mated inspection are independent of E p(1 − p)2 and Pt .
Therefore, the values of the service level and the investment
for autonomated inspection to detect the faulty product for
both cases are obtained by taking the first ordered partial
derivative of the function T P(r , Q, s, A) equating to zero,
concerning the decision variable under the conditions Q ≥ 0,
and r ≥ 0. Thus, the optimum values of the service level and
investment for autonomated inspection are obtained as fol-
lows:

A∗ = ξ

Q
(16)

To obtain the optimal value of the ordered quantity and safety
stock, one must calculate the value of the E p(1 − p)2 and
pt . The value of V ar(p) is required to find the value of
E p(1− p)2. As per assumption 4, to find the optimal result,
it is required to find whether the value of Pt depends on Q or
not. Simultaneously, to find the value of Q, it is essential to
consider whether the value of V ar(p) depends on Q or not.

When Var(p) depends on the value ofQ

This section is developed to find the value of Q, when the
value of V ar(p) depends on Q. To calculate the optimal val-
ues, followingproposition is contracted under the assumption
that the value of pt is independent of Q.

Proposition 1 Let non-defective items in a batch Q be rep-
resented by the random variable BQ. Also, every item has a
constant and independent of the other items’ probability m to
be defective. Mathematically, BQ ∼ B(Q, 1−m). Moreover,
it is assumed that the number of inspecting items is xt ∈ N,
t ∈ (0, Q/x). Then the number of non-defective items, i.e.,
perfect items, will be found as a random variable with
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P(B(t) = k) =
(

xt
k

)
(1 − m)kmxt−k, k ∈ {0, . . . , xt}

(17)

Since, the above Proposition guaranteed the independency
of Pt on Q. Besides it BQ ∼ B(Q, 1 − m) implies
that V ar(BQ) = Qm(1 − m). Moreover, V ar(p =
BQ
Q )= m(1−m)

Q , that implies the dependency of BQ on Q.
One can conclude the following corollary from proposi-

tion 1.

Corollary 1 The likelihood of the event of an unplanned
shortage at time t is independent of Q.

From the corollary, it is clear that time is independent of
Q. However, it depends on safety stock, i.e., depends on r,
then one can write E S(r , Q)=E S(r).

Now, the total system profit is given by

T Pa(r , Q, s, A)

= (P − C p + μCsu)λsη

−
[

λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη
+ hm(1 − m)

2λsη

+h[(1 − m)2 + 2mz]Q

2λsη

}

+AQ + ξ log

(
A0

A

)
+ γ s2

2

]

and

T Pb(r , Q, s, A)

= (P − C p + μCsu)λsη

−
[

λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη

+ (h + b)

Q
E S(r) + h[(1 − m)2 + 2mz]Q

2λsη

+hm(1 − m)

2λsη

}
+ AQ + ξ log

(
A0

A

)
+ γ s2

2

]

Proof See Appendix A.
Now, one has to find the optimum values of the deci-

sion variables and prove the concavity of the profit function
T P(r , Q, s, A) with the help of the optimum values of the
decision variables.

Thus, the optimum values for the decision variables for
constant r , and for r ≥ λsη is given by

Qa =
√

2λsη K

2A(1 − m) + h
(
(1 − m)2 + 2mz

) (18)

sa =
[

(1 − m)Qγ

ηλ
(
(1 − m)(P − cp + μCsu) − K

)
] 1

η−2

(19)

��
Theorem 1 To find the concavity of the profit function, the
following properties must be held:

1. The profit function T Pa(r , Q, s, A) is decreasing when
r ≥ λsηt0, and concave in Q ≥ 0, s ≥ 0, A ≥ 0, when
�3 < 0, and 	3 < 0.

2. The profit function T Pb(r , Q, s, A) is concave when r ≤
λsηt0 for constant Q, s, A.

3. The profit function T Pb(r , Q, s, A) is concave in Q ≥ 0,
s ≥ 0, A ≥ 0, when �7 < 0, and 	5 < 0 for constant r .

Proof See Appendix B. ��
Theorem 2 It can be proven easily that the total system profit
function is continuous for r ≥ 0 owing to

lim
r→Dt0

T Pb(r , Q, s, A) = T Pa(λsηt0, Q, s, A)

Now, the aim is to maximize T P(r , Q, s, A). Moreover,
T Pa(r , Q, s, A) takes it maximum value, when r = λsηt0.
Therefore, to prove that the profit function T P(r , Q, s, A)

is optimum, it is sufficient to optimize T Pb(r , Q, s, A) over
(Q, r) ∈ [0, λsηt0] × (0,∞).

Now, one must find the value of Q∗ and r∗ by using the
T Pb.

Thus, the maximum value of T P(r , Q, s, A) is obtained
with (Q∗, r∗, s∗, A∗), the value of Q∗ in terms of Qb is
obtained as

Qb =
√

2λsη
(
K + (h + b)E S(rb)

)
2A(1 − m) + h

(
(1 − m)2 + 2mz

) (20)

sb =
[

(1 − m)Qγ

ηλ
(
(1 − m)(P − cp + μCsu) − K − (h + b)E S(rb)

)
] 1

η−2

(21)
λsη

Qb(1 − m)

∫ t0

rb
λsη

Ft

(
λsηt − rb

)
dt = h

h + b
; i f rb

≥ 0

(22)

or,

maxT P(r , Q, s, A)

= T P

(
0,

√
2λsη (K + (h + b)E S(0))

2A(1 − m) + h
(
(1 − m)2 + 2mz

) ,

sb, A∗
)

, i f rb < 0,

123



316 Journal of Intelligent Manufacturing (2024) 35:307–330

which gives that

λsη[(1 − m)2 + 2mz]
(1 − m)2

t0∫
rb
λsη

Pt

(
λsηt − rb

)
dt >

h

h + b

(23)

Thus, one can conclude that

maxT P(r∗, Q∗, s∗, A∗)

= max

{
T P

(
λsηt0,

√
2λsη (K )

2A(1 − m) + h
(
(1 − m)2 + 2mz

) , s∗, A∗
)

,

T P

(
0,

√
2λsη (K + (h + b)E S(0))

2A(1 − m) + h
(
(1 − m)2 + 2mz

) , s∗, A∗
)}

(24)

It proves that an almost closed-form solution is obtained for
the profit expression with optimal order quantity, optimum
percentage of service, and optimum investment for autono-
mation, and the solutions are provided in Eqs. (20), and (21).

Proof See Appendix C. ��

When Var(p) is independent of the value ofQ

When V ar(p) is independent of Q, Pt depends on Q .
Now, by using Bayes’ Theorem and utilizing the concept
of (Karakatsoulis & Skouri, 2021) model. The profit func-
tions are obtained as follows. Therefore, the total profit of
the system per unit time, T P(r , Q, s, A), is given by:

T P(r , Q, s, A) =
{

T Pa(r , Q, s, A), for r ≥ βQz
T Pb(r , Q, s, A), for r < βQz

(25)

where

T Pa(r , Q, s, A) = (P − C p + μCsu)λsη

−
[

λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη

+h[E p(1 − p)2 + 2mz]Q

2λsη

}

+AQ + ξ log

(
A0

A

)
+ γ s2

2

]

and

T Pb(r , Q, s, A) = (P − C p + μCsu)λsη

−
[

λsη

1 − m

{
K

Q
+ hr(1 − m)

λsη

+ (h + b)

Q
E S(r , Q)

+h[E p(1 − p)2 + 2mz]Q

2λsη

}

+AQ + ξ log

(
A0

A

)
+ γ s2

2

]

where

E S(r , Q, s, A) =
t0∫

r/D

Dt−r∫
0

(Dt − r − y) ft (y)dydt

and E p(1 − p)2 is independent of Q (as f p is independent
of Q).

The objective is the determination of r(≥ 0), Q(≥ 0),
s(≥ 0), and A(≥ 0) that maximize T P(r , Q, s, A). The
next theorem provides properties in this direction.

Thus, the optimum values for the decision variables for
constant r , and for r ≥ βQz is given by

Qa =
√

2λsη K

2A(1 − m) + h
(
E p(1 − p)2 + 2mz

) (26)

sa =
[

(1 − m)Qγ

ηλ
(
(1 − m)(P − cp + μCsu) − K

)
] 1

η−2

(27)

Theorem 3 To find the concavity of the profit function, the
following properties must be hold:

1. The profit function T Pa(r , Q, s, A) is decreasing when
r ≥ βzQ, and concave in Q ≥ 0, s ≥ 0, A ≥ 0, when
ϒ1 < 0, and �1 < 0.

2. The profit function T Pb(r , Q, s, A) is concave when r <

βzQ for constant Q, s, A.
3. The profit function T Pb(r , Q, s, A) is concave in Q ≥ 0,

s ≥ 0, A ≥ 0, when ϒ3 < 0, and �2 < 0 for constant r .

Proof See Appendix D. ��
Theorem 4 It can be proven easily that the total system profit
function is continuous for r ≥ 0 owing to

lim
r→βzQ

T Pb(r , Q, s, A) = T Pa(λsηt0, Q, s, A)

Now, the aim is to maximize T P(r , Q, s, A). Moreover,
T Pa(r , Q, s, A) takes it maximum value, when r = βzQ.
Therefore, to prove that the profit function T P(r , Q, s, A)

is optimum, it is sufficient to optimize T Pb(r , Q, s, A) over
(Q, r) ∈ [0, βzQ × (0,∞).

Now, one have to find the value of Q∗ and r∗, and s∗ by
using the T Pb.

Thus, the maximum value of T P(r , Q, s, A) is obtain with
(Q∗, r∗, s∗, A∗), the value of Q∗ in terms of Qb is obtained
as
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Qb =
√

2λsη
(
K + (h + b)E S(rb)

)
2A(1 − m) + h

(
E p(1 − p)2 + 2mz

) (28)

sb =
[

(1 − m)Qγ

ηλ
(
(1 − m)(P − cp + μCsu) − K − (h + b)E S(rb)

)
] 1

η−2

(29)
λsη

Qb(1 − m)

∫ t0

rb
λsη

Ft

(
λsηt − rb

)
dt = h

h + b
; i f rb ≥ 0

(30)

or,

maxT P(r , Q, s, A)

= T P

(
0,

√
2λsη (K + (h + b)E S(0))

2A(1 − m) + h
(
E p(1 − p)2 + 2mz

) ,

s∗, A∗
)

, i f rb < 0,

which gives that

λsη[E p(1 − p)2 + 2mz]
(1 − m)2

t0∫
rb
λsη

Pt

(
λsηt − rb

)
dt >

h

h + b

(31)

Thus, one can conclude that

maxT P(r∗, Q∗, s∗, A∗)

= max

{
T P

(
βQz, Q

=
√

2λsη K

2A(1 − m) + h
(
E p(1 − p)2 + 2mz

) , s∗, A∗
)

,

T P

(
0,

√
2λsη (K + (h + b)E S(0))

2A(1 − m) + h
(
E p(1 − p)2 + 2mz

) , s∗, A∗
)}

(32)

It proves that an almost closed-form solution is obtained for
the profit expression with optimal order quantity, optimum
percentage of service, and optimum investment for autono-
mation. The solutions are provided in Eqs. (28), and (29).

Proof See Appendix E. ��

Numerical examples and analyses

The following data are utilized to perform the numerical
experiment, the values of the parameters are taken from
Karakatsoulis and Skouri (2021) and Dey et al. (2021b). The

solution is obtained byMathematica 11.0 at Windows 10 64-
bit operating system with an Intel i7 processor and 16 GB
of RAM. The computation time is within 0.3 s. Since this
is a general nonlinear function with four variables, the time
complexity of the solutions does not matter.

Numerical examples when Var(p) depends on the
value ofQ

The value of holding cost is 5$ (per unit), setup cost is 85$
(per setup), initial fixed inspection cost is $250, unit selling
price is $30 (per unit) and the parches price is $26 per unit, the
value of the scaling and shape parameters are λ = 16, 500,
η = 2, ξ = 10, 000, unit service charge is Csu = $7 per
unit, investment for service is $500 per cycle, ordering cost
is $85.

Optimum result under different defective rates and
different percentage amount of customer’s service fee
when r ≥ �s�t0

If one varies the defective rate, the system profit under full
paid service, partially paid service, and unpaid services are
provided in Table 2. From Table 2, it is clear that system
profit is optimum if the system produces all perfect items
and the customer pays the full amount for service. In con-
trast, the percentage of service is 79%, safety stock is 30,
optimum order quantity is almost 85 unit, and optimum total
expected profit is $84, 920.60. The investment for the intelli-
gent autonomated inspection strategy is $116.69. Similarly,
suppose customers paid 70% of the total amount for services
and the company paid 30%. In that case, the system profit
is $63, 290.50, whereas if customers paid 50% of the total
amount for services and the company paid 50% for the ser-
vice, the system profit is $48, 873.80. If customers paid 30%
for service, and the company pays the rest, the system profit
is $34, 457.10. Finally, if the company provides full service
free of cost, customers do not need to pay any amount for
services, the system profit is $12, 832.10.

When the defective rate is 3%, the total system profit
under full paid service is $84, 600.40, and the optimal order
quantity is 88.25 units with the percentage of service 79%.
Simultaneously, safety stock is 31 units, and investment for
autonomation is $113.31. Again, suppose customers paid
70% of the total amount for services and the company
paid 30% for the service. In that case, the system profit is
$62, 975.30, whereas, if customers paid 50% of the total
amount for services and the company paid 50% for the ser-
vice, then systemprofit is $48, 558.60. If customers paid 30%
for service, and the company pays the rest, then system profit
is $34, 141.90. Finally, if the company provides full service
free of cost, that is, customers no need to pay any amount for
services, then system profit is $12, 516.80 (see Table 2).

123



318 Journal of Intelligent Manufacturing (2024) 35:307–330

Table 2 Optimum values for
different defective rates under
different percentage amounts of
service fee

DR SL OQ SS IA TP(FP) TP(70%) TP(50%) TP(30%) TP(UP)

0 0.79 85.69 30 116.69 84920.60 63290.50 48873.80 34457.10 12832.10

0.03 0.79 88.25 31 113.31 84600.40 62975.30 48558.60 34141.90 12516.80

0.05 0.76 83.48 31 119.79 76747.90 56734.00 43391.50 30048.90 10035.10

0.07 0.76 85.21 28 117.35 76542.60 56528.80 43186.20 29843.70 9829.82

DRDefective rate (%); SL Service level (%);OQ Order quantity (units); SS Safety stock (units); IA Investment
for autonomated inspection ($); TP(FP): Total profit under full paid service ($/cycle); TP(70%): Total profit
under 70% paid service ($/cycle); TP(50%): Total profit under 50% paid service ($/cycle); TP(30%): Total
profit under 30% paid service ($/cycle); TP(UP): Total profit under unpaid or free service ($/cycle)

A similar discussion can draw for defective rate 5% and
7%.

From Table 2, it is clear that total profit is reduced with an
increasing rate of defectiveness. From Table 2, it is also clear
that if the defective rate increase, the percentage of service
of the company is reduced, and investment for autonomation
increases up to a specific limit and is then reduced.

Table 2 shows that the value of all decision variables is the
same; that is, the optimum value of service, order quantity
and cost for autonomated inspection are the same. However,
system profit was different due to the variation in the amount
paid for the service. Thus, it is clear that the service provided
by the company to their customers during the product’s life
cycle takes a significant role in profit optimization.

The concavity of the profit function with respect to the
optimal value of order quantity and investment for autono-
mation is graphically presented in Fig. 3.

Numerical examples when Var(p) depends on the value of
Q and r < �s�t0

Here the explanation of the situation when the value of
V ar(p) depends on the value of Q and unplanned shortages
may occur is discussed. The parameter values are taken as
the previous case with the value of b =20. From the previous
discussion, it is clear that payment for servicing the product
during its life cycle takes a vital role in profit optimization.
Thus, in this section, full-paid service and free service cases
are discussed. The optimum values for paid service and free
service are presented in Table 3. Moreover, the concavity of
the function is graphically illustrated in Fig. 4.

Similar to the previous discussion, profit is optimumwhen
both cases’ defective rate is zero. The optimum profit for full
paid service and free service is $75, 690.60 and $3607.02,
and the investment for autonomation is $48.62. The optimum
ordered quantity is 205 units, and the percentage of service is
79%.FromTable 3, it is clear that profit is quite less compared
to the case when r ≥ λsηt0.

Table 3 Optimum values for different defective rates under full paid
and unpaid services

DR SL OQ SS IA TP(FPS) TP(UPS)

0 0.79 205.67 22 48.62 75690.60 3607.02

0.03 0.77 178.69 20 55.96 71592.40 3112.48

0.05 0.77 182.36 20 54.84 71378.10 2898.18

0.07 0.74 149.97 18 66.68 65291.50 2043.66

DR Defective rate (%); SL Service level (%); OQ order quantity (units);
SS safety stock (units); IA investment for autonomated inspection ($);
TP total profit ($/cycle); FPS full paid service; UPS unpaid service

Special case I: without autonomated inspection

All parameters’ values are taken similarly to previous exam-
ples. Only the value of the scaling parameter related to
autonomous inspection is set at zero and eliminates the func-
tion related to autonomated inspection. This model transfers
to the general EOQmodel under traditional inspection. Then
the profit for full paid and free service are provided in Tables
4 and 5, respectively. The concavity of the function concern-
ing optimum order quantity and service level is graphically
presented in Fig. 5.

Similar to the previous discussion, profit is optimumwhen
the defective rate is zero for both the cases and optimumprofit
for full paid service, and free services are $80660.00 and
$9768.55. Owing to the intelligent autonomated inspection
strategy, the company will benefit by $4260 for full paid
service, whereas for free service, the company will benefit
by $3064. Thus, intelligent autonomated inspection is very
much beneficial for any inventory model.

Special case II: without autonomated inspection and
investment in service

The parametric values all are the same, only the investment
function related to service and revenue due to the service
is neglected. Then the current model shifted to a traditional
inventory model, and the optimum results are provided in
Table 6.
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Fig. 3 Concavity of total profit with respect to investment for autonomation and ordered quantity under full paid and free service

Fig. 4 Concavity of total profit
with respect to investment for
autonomation and ordered
quantity

Table 4 Optimum values for different defective rates without autonomation

Defective rate (%) Service level (%) Order quantity Safety stock Total Profit ($/cycle)(Full paid service)

0 0.72 129.29 30 80,660.00

0.03 0.72 132.07 30 80,609.30

0.05 0.69 133.95 35 73,569.00

0.07 0.69 135.86 35 73,532.10

Table 5 Optimum values for
different defective rates without
autonomation (unpaid/free
service)

Defective rate (%) Service level (%) Order quantity Safety stock Total Profit ($/cycle)

0 0.82 318.41 30 9768.55

0.03 0.82 325.26 30 9753.82

0.05 0.82 329.91 35 9718.05

0.07 0.82 334.61 35 9706.44
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Fig. 5 Concavity of total profit
with respect to ordered quantity
and service level without
autonomation

Table 6 Optimum values for
different defective rates without
autonomation and investment
for service

Defective rate (%) Service level (%) Order quantity Safety stock Total Profit ($/cycle)

0 0.75 561.75 68 33,726.30

0.03 0.75 573.84 65 33,715.30

0.05 0.74 574.28 65 32,751.00

0.07 0.73 574.59 69 31,778.90

From Table 6, it is clear that the optimum profit is
$33, 726.30, where the optimum order quantity is 561, and
the percentage of service is 75%. From Table 6, it is also
clear that profit, in this case, is much less compared to previ-
ous cases. Using the concept of autonomous inspection and
revenue from service, the system profit is $84, 920, whereas
the profit, in this case, is $33, 726.30. Thus, using an autono-
mation strategy and different service policies optimizes total
system profit by more than two and half times the traditional
inventorymodel. The optimality of the profit graphically pre-
sented in Fig. 6.

Numerical examples when Var(p) is independent of
the value ofQ

Now, some numerical examples are provided in this section
when V ar(p) is independent of the value of Q. From the
previous discussion, it is clear that paid service is always
beneficial. Thus, it is enough to show the profit for full paid
service and profit for unpaid service.

Numerical examples under different defective rates when
r ≥ �s�t0

Tables 2 and 7 clearly show that there are no changes in
total system profits and the optimum value of the decision
variables. Thus, it is clear that the dependency of V ar(p)

on Q does not numerically affect the total system profit or
cost. It is only an effect in analytic solutions. The solution
methodology section states that the dependency of V ar(p)

on Q provides a more closed-form solution.
Similar discussion one can draw for the case when r <

λsηt0.

Comparisons with existing literature

In this current section, a comparison based on numerical
results is performed. The optimum result for different cases
compared to the present study are provided in Table 8. The
settings of the present study is not directly matched with
those provided in existing studies. Hence, it is impossible to
use all parameters precisely the same.We tried to use the val-
ues of the parameters from existing studies at their best fit in
this model for comparison. An (Q, r , l) inventorymodel was
developed by Sarkar (2012) where the production rate is vari-
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Fig. 6 Concavity of total profit
with respect to ordered quantity
without autonomation and
investment for service

Table 7 Optimum values for different defective rates under full paid
service

DR SL OQ SS IA TP(FP) TP(UP)

0 0.79 85.69 30 116.69 84,920.60 12,832.10

0.03 0.79 88.25 31 113.31 84,600.40 12,516.80

0.05 0.76 83.48 31 119.79 76,747.90 10,035.10

0.07 0.76 85.21 28 117.35 76,542.60 9829.82

DRDefective rate (%); SL Service level (%);OQOrder quantity (units);
SS Safety stock (units); IA Investment for autonomated inspection ($);
TP Total profit ($/cycle); FP Full paid service; UP Unpaid service

able, and some investments were incorporated to upgrade the
quality of the production process. Moreover, he formulated
the model for the imperfect production process. However,
in his model, he ignored the company’s service strategy. He
also did not consider themachine-based autonomation strate-
gies to identify defective products. The total system profit
for Sarkar (2012) model was $66775.90. In a similar direc-
tion, Cárdenas-Barrón et al. (2021) calculated the profit of
an (Q, r) inventory under time-dependent holding cost. The
profit for Cárdenas-Barrón et al. (2021)modelwas $6350.92.
In contrast, due to the use of different service and autono-
mated inspection strategies, the current study provides better
results compared to Sarkar (2012), and Cárdenas-Barrón et
al. (2021) models. Therefore, it is clear that different ser-
vice strategies and autonomated inspection policies are more
beneficial for any inventory system.

Sensitivity analysis

The effect of critical parameters is discussed in this section.
The present study is for a general (Q, r) inventory prob-

lem for a smart product industry (like a smartphone, laptops,
etc.). It was evident that every parameter value can change
for different industries. To illustrate this situation, we per-
form the sensitivity analysis for the key parameters. From
the sensitivity analysis section, one can find the effect of
parametric values on total profit, and we change the values
of the parameters within the range±50%. Thus, even though
we use some particular parametric value from the existing lit-
erature to perform the numerical results, ourmodel can use in
the (Q, r) inventory sector. Sensitivity examination decides
how diverse values of an autonomous variable influence a
specific dependent variable under a given set of assumptions
is sensitivity examinations, how different sources of vulner-
ability in numerical results contribute to the models by and
significant instability. If the value of a particular parame-
ter change up to −50%,−25%,+25%,+50%. At the same
time, the value of the reaming parameters is fixed, then the
effect of those particular parameters on total system profit is
presented in Table 9.

From Table 9, one can conclude the effect of the parame-
ters as follows:

(i) The value of the scaling parameter related to demand
is affected only when it decreases to +50%, within a
decreasing rate in scaling parameter, total system profit
is also reduced up to−53%, whereas an increasing rate
does not affect in total system profit.

(ii) The shape parameter related to demand is also very
much sensitive. The shape parameter related to demand
is inversely proportional to the total profit that is
the increasing rate in the shape parameter decreases
the total system profit. If one increases the shape
parameter’s value up to +50%, system cost reduces
to −21.44%, and if one increases up to +25%, then
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Table 8 Comparison with
existing literature numerically

Major findings Sarkar (2012) Cárdenas-Barrón et al. (2021) This study

Model (Q, r , l) (Q, r) (Q, r)

Defective rate 0.03 NC 0.03

Service NC NC cons.

Autonomation NC NC cons.

Total profit ($) 66775.90 6350.92 84,600.40

NC not considered; cons. considered

Table 9 Percentage change in total profit

Parameters Changes (in percentage) C P I ∗ (in percentage) Parameters Changes (in percentage) C P I ∗ (in percentage)

Scaling +50 NF Shape +50 −21.44

parameter +25 NF parameter +25 −11.34

related to −25 −26.77 related to −25 +12.72

demand −50 −53.15 demand −50 NF

+50 −0.32 +50 −1.77

Ordering +25 −0.16 Holding +25 −0.95

cost −25 +0.17 cost −25 +1.16

−50 +0.34 −50 +2.71

Scaling +50 −1.09 Unit +50 +33.41

parameter +25 −0.69 servicing +25 +16.71

related to −25 NF cost −25 −16.71

investment −50 NF −50 −33.41

Initial +50 −1.62 Investment +50 −0.004

inspection +25 −0.71 related to +25 −0.002

cost −25 +0.91 service −25 +0.002

−50 +2.19 −50 +0.004

*CPI (Combined profit increase) = Change of pro f i t
orginal pro f i t × 100%, NF stands for Not effected

system profit reduces up to −11.34%. Again if one
reduces up to −25%, then total system profit increases
to +12.72. Since the demand depends on the ser-
vice level, scaling and shape parameter related to this
demand is quite sensitive.

(iii) The ordering cost is a little bit sensitive. If one changes
ordering cost up to +50%, the system profit reduces
up to −0.32%, and if reduced up to −50%, then total
system profit increases up to +0.34%.

(iv) The holding cost always has an impact on total system
profit. It is quite natural that an increasing rate in hold-
ing costs is always harmful to any inventory system. If
one increases the holding cost to +50%, system profit
reduces up to −1.77%. Similarly, if one minimizes the
holding cost to −50%, the total system cost increases
up to +2.71%.

(v) Service always plays a vital role in determining the
total system profit. If any industry charges for every
service, the company will obviously benefit. However,
if the company provides free service, it can attractmore
customers and increase its system profit. Thus, unit

servicing cost significantly impacts optimizing total
system profit. If one increases the unit servicing price
to+50%, total system profit will increase to+33.41%,
whereas if one reduces the unit servicing cost to−50%,
then total system cost reduces up to −33.41%.

(vi) Rest parameters are a little bit sensitive to total system
profit.

Managerial insights

Taking the right decision on inventory is one of the most
critical issues for any industry to maximize its profit. The
managers of any industry can make several significant deci-
sions based on the current study.

1. From this study, the industry managers can decide how
much service is beneficial to increasing the demand for
any product and system profit.
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2. Moreover, managers can decide on investment for an
autonomated inspection policy, which provides an error-
free inspection.

3. Different service strategies are also beneficial in maxi-
mizing of the industry’s profit. One can decide on the
percentage of the amount that will be paid for the ser-
vices.

4. Managers can also decide on the safety stock and reorder
point, which are crucial for any industry.

5. This current study also determines the effect of plannedor
unplanned backorder. From this proposed research work,
the managers of industry can make several important
decisions, which directly increase the industry’s profit.

Conclusion

This model applies autonomated inspection and service
strategies in inventory management to maximize the com-
pany’s profit. The proposed model shows the enhancement
of profit increment of the company in terms of earned rev-
enue through the fees paid for services. Implementation of
autonomated inspection provides the exact amount of safety
stock. It increases the company’s profit to 5.02%, when cus-
tomers pay the full-service fee. A significant decision can be
taken by managers on safety stock and optimum order quan-
tity, which are themost common pillar for inventory systems.
From the numerical section, it is clear that the dependency
of V ar(p) on Q does not numerically affect total system
profit but provides a more closed-form solution analytically.
In contrast, the full paid service becomes the best strategy
to maximize profit. On the other hand, free service attracts
more customers. Thus, industry managers can decide on the
percentage of paid service to obtain maximum profit. There-
fore, the current study is beneficial for industry to maximize
system profit.

Lead time and infinite planning horizon are the limitations
of this study. One can develop this model by considering lead
time and extending this model as the (Q, r , l) model (Moon
et al., 2014). One can extend this model by considering some
warranty periods givenby the company (Rebaiaia&Ati-kadi,
2021). All servicing or maintenance will be free during that
period, attracting more customers while system profit was
increased simultaneously. In the future, one can consider the
concept of trade credit to extend this model (Mandal et al.,
2017). Industry can use the idea of third-party logistics (3PL)
to provide the service.
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Appendix A Proof of proposition 1

If xt items are screened, then the probability, P(B(t) = k),
k of them to be non-defective

P(B(t) = k) =
Q∑

y=0

P(B(t) = k : YQ = y)P(YQ = y)

=
Q∑

y=0

(y
k

)(Q−y
xt−k

)
(Q

xt

)
(

Q

y

)
(1 − m)ym Q−y

=
Q−xt+k∑

y=k

(y
k

)(Q−y
xt−k

)
(Q

xt

)
(

Q

y

)
(1 − m)ym Q−y

=
(

xt

k

)
(1 − m)kmxt−k

Q−xt+k∑
y=k

(
Q − xt

y − k

)
(1 − m)y−km Q−xt−y+k

=
(

xt

k

)
(1 − m)kmxt−k

Q−xt∑
λ=0

(
Q − xt

λ

)
(1 − m)λm Q−xt−λ

=
(

xt

k

)
(1 − m)kmxt−k, k ∈ {0, ..., xt}

Appendix B: Proof of Theorem 1

1.
∂T Ca(r ,Q,s,A)

∂r = −h < 0, hence T Ca(r , Q, s, A) is decreas-
ing in r ≥ Dt0. Thus,T Ca(r , Q, s, A) attains its maximum
at r = Dt0 which is independent of Q.
Also, since r is independent of Q

∂T Pa(r , Q, s, A)

∂ Q

= −A − λsη

1 − m

{−K

Q2 + h((1 − m)2 + 2mz)

2λsη

}

and

∂2T Pa(r , Q, s, A)

∂ Q2 = − 2Kλsη

(1 − m)Q3 = �1(say) < 0
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therefore T Pa(r , Q, s, A) is concave in Q.
Due to the independency of Q on r , one can calculate the

Hessian matrix for three variables, i.e., for Q, s, and A, and
calculate the value of the principal minors as follows: First
of all, one can calculate all second-order partial derivatives
with respect to the decision variables as follows:

∂2T Pa(r , Q, s, A)

∂ A2

= − ξ

A2 = �2(say) < 0

∂2T Pa(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q
+ h(1 − m)ms−η

2λ

+h(1 − m)rs−η

λ
+ hQs−η

(
(1 − m)2 + 2mz

)
2λ

)

−
(

2hη

s2(1 − m)
+ hη(−η − 1)

2(1 − m)s2

)(
− m(1 − m)

+2r(1 − m) + Q
(
(1 − m)2 + 2mz

))
= �3(say)

∂2T Pa(r , Q, s, A)

∂ Q∂ A

= ∂2T Pa(r , Q, s, A)

∂ A∂ Q
= −1

∂2T Pa(r , Q, s, A)

∂ Q∂s

= ∂2T Pa(r , Q, s, A)

∂s∂ Q
= hη

(
(1 − m)2 + 2mz

)
2(1 − m)s

−ηλsη−1

1 − m

(−K

Q2 + h
(
(1 − m)2 + 2mz

)
2λsη

)
= �5(say)

∂2T Pa(r , Q, s, A)

∂ A∂s

= ∂2T Pa(r , Q, s, A)

∂s∂ A
= 0

Now, one have to calculate the value of all principal diagonal
minors

H11 = ∂2T Pa(.)

∂ Q2 = − 2Kλsη

(1 − m)Q3 = �1 < 0

H22 =
∂2T Pa(.)

∂ Q2
∂2T Pa(.)
∂ Q∂ A

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2

= 2K ξλsη

A2(1 − m)Q3 − 1 > 0

H33 =
∂2T Pa(.)

∂ Q2
∂2T Pa(.)
∂ Q∂ A

∂2T Pa(.)
∂ Q∂s

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂s∂ Q
∂2T Pa(.)

∂s∂ A
∂2T Pa(.)

∂s2

= ∂2T Pa(.)

∂ Q2 ×
∂2T Pa(.)

∂ A2
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂s2

− ∂2T Pa(.)

∂ Q∂ A

×
∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)
∂s∂ A

∂2T Pa(.)
∂s∂ Q

∂2T Pa(.)

∂s2

+∂2T Pa(.)

∂ Q∂s
×

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2

∂2T Pa(.)
∂s∂ Q

∂2T Pa(.)
∂ A∂s

= �1 (�2�3) − �3 − �2
5�2 = 	3(say)

2. Notice that
∫ λsηt0−r
0 ft0(y)dy = 0 (using Eq. (1)). Hence,

∂ E S(r)

∂r
= −

∫ t0

r/λsη

∫ λsηt−r

0
ft (y)dydt

∂2E S(r)

∂r2
=

∫ t0

r/λsη

ft (λsηt − r)dt ≥ 0

So,

∂T Pb(r , Q, s, A)

∂r
= − λsη

1 − m

×
{

− (h + b)

Q

∫ t0

r/λsη

∫ λsηt−r

0
ft (y)dydt + h(1 − m)

2λsη

}

and

∂2T Pb(r , Q, s, A)

∂r2
= −λsη(h + b)

(1 − m)Q

∫ t0

r/λsη
ft (λsηt − r)dt ≤ 0

∂2T Pb(r , Q, s, A)

∂ A2

= − ξ

A2 = �2(say) < 0

∂2T Pa(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q
+ h(1 − m)ms−η

2λ

+ (b + h)E S(r)

Q
+ h(1 − m)rs−η

λ

+
hQs−η

(
(1 − m)2 + 2mz

)
2λ

)

−
(

2hη

s2(1 − m)
+ hη(−η − 1)

2(1 − m)s2

)

(
− m(1 − m) + 2r(1 − m) + Q

(
(1 − m)2 + 2mz

) )

= �7(say)

which means that T Pb(r , Q, s, A) is concave in r < Dt0,
for constant Q, s, A.
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3.
Since E S(r) is independent of Q, s, A then general Hessian
matrix is calculated as follows to prove the concavity of the
function T Pb(r , Q, s, A)

∂T Pb(r , Q, s, A)

∂ Q
= −A − λsη

1 − m

×
{−K

Q2 + h(1 − m)2 + 2mz

2λsη
− (h + b)E S(r)

Q2

}

and

∂2T Pb(r , Q, s, A)

∂ Q2

= − 2λsη

(1 − m)Q3 [K + (h + b)E S(r)] = �8 < 0

∂2T Pb(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q

+h(1 − m)ms−η

2λ
+ (b + h)E S(r)

Q
+ h(1 − m)rs−η

λ

+hQs−η
(
(1 − m)2 + 2mz

)
2λ

)

−
(

2hη

s2(1 − m)
+ hη(−η − 1)

2(1 − m)s2

)

(
− m(1 − m) + 2r(1 − m) + Q

(
(1 − m)2 + 2mz

) )

= �7(say)

∂2T Pb(r , Q, s, A)

∂ Q∂ A

= ∂2T Pb(r , Q, s, A)

∂ A∂ Q
= −1

∂2T Pb(r , Q, s, A)

∂ Q∂s

= ∂2T Pb(r , Q, s, A)

∂s∂ Q

= hη
(
(1 − m)2 + 2mz

)
2(1 − m)s

− ηλsη−1

1 − m

(−K

Q2

− (b + h)E S(r)

Q2 + h
(
(1 − m)2 + 2mz

)
2λsη

)
= �9(say)

∂2T Pb(r , Q, s, A)

∂ A∂s

= ∂2T Pb(r , Q, s, A)

∂s∂ A
= 0

Now, one have to calculate the value of all principal diagonal
minors

H11 = ∂2T Pb(.)

∂ Q2

= − 2λsη

(1 − m)Q3 [K + (h + b)E S(r)] = �8 < 0

H22 =
∂2T Pb(.)

∂ Q2
∂2T Pb(.)
∂ Q∂ A

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2

= 2(K + (h + b)E S(r))ξλsη

A2(1 − m)Q3 − 1 > 0

H33

=
∂2T Pb(.)

∂ Q2
∂2T Pb(.)
∂ Q∂ A

∂2T Pb(.)
∂ Q∂s

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂s∂ Q
∂2T Pb(.)

∂s∂ A
∂2T Pb(.)

∂s2

= ∂2T Pb(.)

∂ Q2 ×
∂2T Pb(.)

∂ A2
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂s2

− ∂2T Pb(.)

∂ Q∂ A

×
∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)
∂s∂ A

∂2T Pb(.)
∂s∂ Q

∂2T Pb(.)

∂s2

+∂2T Pb(.)

∂ Q∂s
×

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2

∂2T Pb(.)
∂s∂ Q

∂2T Pb(.)
∂ A∂s

= �8 (�2�7) − �7 − �2
9�2 = 	5(say)

As a result, T Pb(r , Q, s, A) is concave in Q, s, and A, for
constant r .

Appendix C: Proof of Theorem 2

The first order derivatives ofT Pb(r , Q, s, A), w.r.t. Q, r , s,
and A are:

∂T Pb(r , Q, s, A)

∂ Q

= −A − λsη

1 − m

{−K

Q2 + h(1 − m)2 + 2mz

2λsη

− (h + b)E S(r)

Q2

}
(C1)

and

∂T Pb(r , Q, s, A)

∂r

= λsη

1 − m

{
− (h + b)

Q

∫ t0

r/λsη

∫ λsηt−r

0
ft (y)dydt

+h(1 − m)

2λsη

}
(C2)
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So, using relations (C1) and (C2) the first order conditions
for maximum give:

Qb =
√

2λsη(K + (h + b)E S(rb))

2A(1 − m) + h[(1 − m)2 + 2mz] (C3)

λsη

(1 − m)Qb

∫ t0

rb/λsη

Ft (λsηt − rb)dt = h

h + b
(C4)

From the second order condition for maximum, the solution
(rb, Qb), obtained from (C3), (C4), is optimal if

(h + b)[(1 − m)2 + 2mz]λsη

(1 − m)2

t0∫

rb/λsη

ft (λsηt − rb)dt < −h

(C5)

The relation (C4) does not ensure non-negative solution for
rb, but notice that,

limr→λsηT0
∂T Pb(r , Q, s, A)

∂r
= −h(1 − m)

λsη
< 0 (C6)

Hence, if in the solution of (C3) and (C4) rb ≥ 0 then
(rb, Qb) is the optimal policy, while if rb < 0 then

maxT P(r∗, Q∗, s∗, A∗)

= max

{
T P

(
Dt0,

√
2λsη K

2A(1 − m) + h
(
(1 − m)2 + 2mz

) , s∗, A∗
)

,

T P

(
0,

√
2λsη (K + (h + b)E S(0))

2A(1 − m) + h
(
(1 − m)2 + 2mz

) , s∗, A∗
)}

Appendix D: Proof of Theorem 3

1. ∂T Pa(r ,Q,s,A)
∂r = −h < 0, hence T Pa(r , Q, s, A) is

decreasing in r . Thus,T Pa(r , Q, s, A) attains its maximum
at r = βQz which is independent of Q.
Also, since r is independent of Q

∂T Pa(r , Q, s, A)

∂ Q

= −A − λsη

1 − m

{−K

Q2 + h(E p(1 − p)2 + 2mz)

2λsη

}

and

∂2T Pa(r , Q, s, A)

∂ Q2 = − 2Kλsη

(1 − m)Q3 = �1(say) < 0

∂2T Pa(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q
+ h(1 − m)βQzs−η

λ

+hQs−η
(
E p(1 − p)2 + 2mz

)
2λ

)

+hη(η − 1)

s2

(
βQz + Q[E p(1 − p)2 + 2mz]

2(1 − m)

)

= ϒ1(say)

therefore T Pa(r , Q, s, A) is concave in Q.
Due to the independency of Q on r , one can calculate the

Hessian matrix for three variables, i.e., for Q, s, and A, and
calculate the value of the principal minors as follows: First
of all, one can calculate all second-order partial derivatives
with respect to the decision variables as follows:

∂2T Pa(r , Q, s, A)

∂ A2

= − ξ

A2 = �2(say) < 0

∂2T Pa(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q
+ h(1 − m)βQzs−η

λ

+hQs−η
(
E p(1 − p)2 + 2mz

)
2λ

)

+hη(η − 1)

s2

(
βQz + Q[E p(1 − p)2 + 2mz]

2(1 − m)

)

= ϒ1(say)

∂2T Pa(r , Q, s, A)

∂ Q∂ A
= ∂2T Pa(r , Q, s, A)

∂ A∂ Q
= −1

∂2T Pa(r , Q, s, A)

∂ Q∂s

= ∂2T Pa(r , Q, s, A)

∂s∂ Q
= hη

(
E p(1 − p)2 + 2mz

)
2(1 − m)s

−ηλsη−1

1 − m

(
− K

Q2 + h
(
E p(1 − p)2 + 2mz

)
2λsη

)

= ϒ2(say)

∂2T Pa(r , Q, s, A)

∂ A∂s

= ∂2T Pa(r , Q, s, A)

∂s∂ A
= 0
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Now, one have to calculate the value of all principal diagonal
minors

H11 = ∂2T Pa(.)

∂ Q2 = − 2Kλsη

(1 − m)Q3 = �1 < 0

H22 =
∂2T Pa(.)

∂ Q2
∂2T Pa(.)
∂ Q∂ A

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2

= 2K ξλsη

A2(1 − m)Q3 − 1 > 0

H33 =
∂2T Pa(.)

∂ Q2
∂2T Pa(.)
∂ Q∂ A

∂2T Pa(.)
∂ Q∂s

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂s∂ Q
∂2T Pa(.)

∂s∂ A
∂2T Pa(.)

∂s2

= ∂2T Pa(.)

∂ Q2 ×
∂2T Pa(.)

∂ A2
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂ A∂s
∂2T Pa(.)

∂s2

− ∂2T Pa(.)

∂ Q∂ A

×
∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)
∂s∂ A

∂2T Pa(.)
∂s∂ Q

∂2T Pa(.)

∂s2

+∂2T Pa(.)

∂ Q∂s
×

∂2T Pa(.)
∂ A∂ Q

∂2T Pa(.)

∂ A2

∂2T Pa(.)
∂s∂ Q

∂2T Pa(.)
∂ A∂s

= �1 (�2ϒ1) − ϒ1 − ϒ2
2�2 = �1(say)

2. Notice that
∫ λsηt0−r
0 ft0(y)dy = 0. Hence,

∂ E S(r)

∂r
= −

t0∫
r/λsη

λsηt−r∫
0

ft (y)dydt

∂2E S(r)

∂r2
=

t0∫
r/λsη

ft (λsηt − r)dt ≥ 0

So,

∂T Pb(r , Q, s, A)

∂r

= − λsη

1 − m

⎧⎪⎨
⎪⎩− (h + b)

Q

t0∫
r/λsη

λsηt−r∫
0

ft (y)dydt + h(1 − m)

2λsη

⎫⎬
⎭

∂2T Pb(r , Q, s, A)

∂r2

= −λsη(h + b)

(1 − m)Q

t0∫
r/λsη

ft (λsηt − r)dt ≤ 0

∂2T Pb(r , Q, s, A)

∂ A2 = − ξ

A2 = �2(say) < 0

∂2T Pa(r , Q, s, A)

∂s2
= ηλsη−2(η − 1)(P − C p + μCsu)

−γ − η(η − 1)λsη−2

1 − m(
K

Q
+ (b + h)E S(r)

Q
+ h(1 − m)βzs−η

λ

+hQs−η
(
E p(1 − p)2 + 2mz

)
2λ

)

+hη(η − 1)

s2

(
βz+ Q[E p(1 − p)2 + 2mz]

2(1−m)

)
=ϒ3(say)

which means that T Pb(r , Q, s, A) is concave in r < βzQ,
for constant Q, s, A.
3. Since, E S(r) is independent of Q, s, A then general Hes-
sian matrix is calculated as follows to prove the concavity of
the function T Pb(r , Q, s, A)

∂T Pb(r , Q, s, A)

∂ Q

= −A − λsη

1 − m

{−K

Q2 + h(E p(1 − p)2 + 2mz)

2λsη

− (h + b)E S(r)

Q2

}

and

∂2T Pb(r , Q, s, A)

∂ Q2

= − 2λsη

(1 − m)Q3 [K + (h + b)E S(r)] = �8 < 0

∂2T Pb(r , Q, s, A)

∂s2

= ηλsη−2(η − 1)(P − C p + μCsu) − γ

−η(η − 1)λsη−2

1 − m

(
K

Q

+ (b + h)E S(r)

Q
+ h(1 − m)βzs−η

λ

+hQs−η
(
E p(1 − p)2 + 2mz

)
2λ

)

+hη(η − 1)

s2

(
βz + Q[E p(1 − p)2 + 2mz]

2(1 − m)

)

= ϒ3(say)
∂2T Pb(r , Q, s, A)

∂ Q∂ A

= ∂2T Pb(r , Q, s, A)

∂ A∂ Q
= −1

∂2T Pb(r , Q, s, A)

∂ Q∂s

= ∂2T Pb(r , Q, s, A)

∂s∂ Q
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= hη
(
E p(1 − p)2 + 2mz

)
2(1 − m)s

− ηλsη−1

1 − m

(−K

Q2

− (h + b)E S(r)

Q2 + h
(
E p(1 − p)2 + 2mz

)
2λsη

)

= ϒ4(say)

∂2T Pb(r , Q, s, A)

∂ A∂s
= ∂2T Pb(r , Q, s, A)

∂s∂ A
= 0

Now, one have to calculate the value of all principal diagonal
minors

H11 = ∂2T Pb(.)

∂ Q2 = − 2λsη

(1 − m)Q3 [K + (h + b)E S(r)]
= �8 < 0

H22 =
∂2T Pb(.)

∂ Q2
∂2T Pb(.)
∂ Q∂ A

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2

= 2(K + (h + b)E S(r))ξλsη

A2(1 − m)Q3 − 1 > 0

H33 =
∂2T Pb(.)

∂ Q2
∂2T Pb(.)
∂ Q∂ A

∂2T Pb(.)
∂ Q∂s

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂s∂ Q
∂2T Pb(.)

∂s∂ A
∂2T Pb(.)

∂s2

= ∂2T Pb(.)

∂ Q2

×
∂2T Pb(.)

∂ A2
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂ A∂s
∂2T Pb(.)

∂s2

−∂2T Pb(.)

∂ Q∂ A
×

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)
∂s∂ A

∂2T Pb(.)
∂s∂ Q

∂2T Pb(.)

∂s2

+∂2T Pb(.)

∂ Q∂s
×

∂2T Pb(.)
∂ A∂ Q

∂2T Pb(.)

∂ A2

∂2T Pb(.)
∂s∂ Q

∂2T Pb(.)
∂ A∂s

= �8 (�2ϒ3) − ϒ3 − ϒ2
4�2 = �2(say)

As a result, T Pb(r , Q, s, A) is concave in Q, s, and A, for
constant r .

Appendix E: Proof of Theorem 4

The proof is similar to the proof of Theorem 2. First of all,
the first order derivatives of T Pb(r , Q, s, A) w.r.t. Q r , s,
and A correspondingly, are

∂T Pb(s, r , Q, A)

∂ Q

= −A − λsη

1 − m

{−K

Q2 + h[E p(1 − p)2 + 2mz]
2λsη

− (h + b)E S(r)

Q2

}
(E7)

∂T Pb(s, r , Q, A)

∂r

= − λsη

1 − m

{
− (h + b)

Q

∫ t0

r/λsη

∫ λsηt−r

0
ft (y)dydt

+h(1 − m)

λsη

}
(E8)

So using relations (E7), (E8) the first order conditions for
maximum give:

Qb =
√

2Kλsη + 2λsη(h + b)E S(rb)

2A(1 − m) + h[E(1 − p)2 + 2mz] (E9)

λsη

(1 − m)Qb

t0∫

rb/λsη

Ft (λsηt − rb)dt = h

h + b
(E10)

From the second order condition for minimum, the solution
(rb, Qb), obtained from (E9), (E10) is optimal if

(h + b)[E p(1 − p)2 + 2mz]λsη

(1 − m)2

t0∫

rb/λsη

ft (λsηt − rb)dt < h

(E11)

The relation (E10) does not ensure non-negative solution for
rb, but

limr→βQz
∂T Pb(r , Qb, sb, A∗)

∂r
= −h(1 − m)

λsη
< 0 (E12)

Hence, if in the solution of (E9) and (E10) rb ≥ 0 then
(rb, Qb) is the optimal policy, while if rb < 0 then

maxT P(r , Q, s, A) = maxT P

×
(
0,

√
2Kλsη + 2λsη(h + b)E S(0)

2A(1 − m) + h[E(1 − p)2 + 2mz] , s, A

)

If inequality (E12) does not hold, then:max T P(r , Q, s, A)=

max

{
T P

(
βQz, Q =

√
2Kλsη

2A(1−m)+h[E(1−p)2+2z(m+(1−m)β)] ,

s, A) T P
(
0,

√
2Kλsη+2λsη(h+b)E S(0)

2A(1−m)+h[E(1−p)2+2mz] , s, A
) }
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