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Abstract
Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of
process–property relationships for porosity prediction require many experiments or computationally expensive simulations
without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity
after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is
proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers.
The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized
tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied
to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the
next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted
part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.

Keywords Porosity prediction · Thermal signatures · Convolutional neural network · Encoder–decoder · Powder bed fusion ·
Additive manufacturing

Introduction

The increasing availability of data from the first three
paradigms of science (experiments, theory, and simulations),
along with advances in artificial intelligence and machine
learning (AI/ML) techniques has offered unprecedented
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opportunities for data-driven science and discovery, which
is the fourth paradigm of science (Agrawal & Choudhary,
2016).Within the field ofAI/ML, deep learning (DL) (LeCun
et al., 2015) has emerged as a transformative technology in
the last few years, and has been extensively used in materi-
als science (Agrawal & Choudhary, 2019; Ge et al., 2020;
Gupta et al., 2021, 2022; Jha et al., 2018, 2019, 2021, 2022;
Li et al., 2019; Mater & Coote, 2019; Yang et al., 2018,
2019, 2020; Ziletti et al., 2018) to enhance materials prop-
erty prediction, discovery, and design, as well as in additive
manufacturing (AM) (Francis &Bian, 2019; Ghungrad et al.,
2021; Imani et al., 2019; Li et al., 2020;Mozaffar et al., 2018;
Qin et al., 2020; Scime&Beuth, 2018;Xie et al., 2021;Zhang
et al., 2019). Laser Powder Bed Fusion (L-PBF) is a popu-
lar AM technique, widely researched in both academia and
industries ranging from aerospace to healthcare. However,
pores in an AM part lead to stress concentration contributing
to the formation and propagation of cracks that are detri-
mental to mechanical properties, such as tensile strength and
fatigue life (Sabzi et al., 2020). Porosity formation mech-
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anism is still difficult to describe, although it is popularly
investigated in not only one but also hybrid additive manu-
facturing process (Webster et al., 2021).

In-situ process monitoring of the melt-pool, laser track,
or build layer during the AM process is critical in detecting
potential porosity and controlling part quality. Commonly
measured signatures are thermal (Bakish, 1983; Nath &
Mahadevan, 2021) or acoustic features (Eschner et al., 2020),
and optical images (Bugatti & Colosimo, 2021; Li et al.,
2021; McCann et al., 2021) before or after powder recoat-
ing or powder fusion (Grasso & Colosimo, 2017). However,
In-situ process monitoring, and porosity detection in current
literature (Paulson et al., 2020; Scime et al., 2020; Zhang et
al., 2020) can only detect porosity that has already occurred
but cannot predict potential porosity which might occur in
the future, a much-desired ability to guide real-time process
parameter optimization for better part quality. One possi-
ble direction is to understand the process–structure–property
relationships by exploring the effect of different processing
parameters (i.e., laser power, scanning speed, hatch spacing,
etc.) on the microstructure, mechanical properties, or poros-
ity of the L-PBFed parts (Gawade et al., 2022; Liu & Zhang,
2021;Nath&Mahadevan, 2021; Tang et al., 2017). However,
simulation methods require prior knowledge and experience
from expertise when designing parameters according to dif-
ferent materials, set-ups, geometries, etc.

Given the limitations of the previous studies mentioned
above and the idea that one can adjust laser process param-
eters in the next layer if the potential of porosity formation
can be predicted, it is critical to build a porosity prediction
system that can predict potential porosity occurrence. At the
very least, if such a predictivemodel existed, the current build
could be stopped before unallowable part defects occur using
in-situ monitored signals to avoid more serious part porosity
and save on machine time.

Inspired by advanced applications of deep learning meth-
ods in material science and additive manufacturing, a deep
learning framework is proposed in this paper to predict poten-
tial porosity formation using in-situmonitored signatures. To
the best of our knowledge, this is the first work that attempts
porosity prediction before it happens based on in-situ ther-
mal signatures using a deep learning approach. The proposed
detection-prediction framework is composed of two mod-
ules, a detection and a prediction module. The detection
module detects porosity based on thermal signatures while
the prediction module predicts porosity in the next layer
according to previous layers. Each module can be applied
separately or in unison for different purposes.

The related works are reviewed in section “Related
works”. The methods used in this work are introduced in
section “Methods”, including the description of the dataset
in section “Dataset preparation” and the proposed frame-
work in section “Deep learning methods”. The experiments

and results are presented in section “Results and discussion”.
Finally, conclusions of this work and future work are dis-
cussed in section “Conclusions and future work”.

Related works

Simulationmethods

Tang et al. (2017) proposed a geometry-based simulation
method to predict the volume fraction of the unmelted mate-
rial (i.e., lack of fusion porosity) in parts built by L-PBF by
calculating the overlap between melt pools. It was assumed
that melt pools are in the shape of dual half-ellipses on the
cross-section along with the scanning and building direc-
tions. The inputs into the simulation model were melt-pool
cross-sectional area, hatch spacing, and layer thickness.
Melt-pool areaswere estimatedwith the analytical Rosenthal
equation in which material properties at room temperature
need to be carefully collated. However, this simulationmodel
does not incorporate any environmental variables (i.e., envi-
ronmental temperature, humidity, airflow, etc.) that might
lead to a discrepancy in the melt-pool sizes. Nath and
Mahadevan (2021) updated the physics-based model at each
layer using in situ monitoring data for porosity prediction at
future layers. However, lots of prior knowledge is required to
build the simulation model, such as heat transfer mechanism
in different materials.

Artificial intelligencemethods

Deep learning has become the AI/ML technique of choice
in the last few years, due to its groundbreaking success
in numerous real-world applications (Aghazadeh & Ghare-
hchopogh, 2018; Asghari et al., 2021; Collobert & Weston,
2008;KhataeiMaragheh et al., 2022;Krizhevsky et al., 2017;
Lin et al., 2019; Niu et al., 2019). Four machine learning
methods were adopted by Paulson et al. (2020) to model the
relationships between thermal histories and surface porosity
formation in Ti6Al4V during single line scans using L-PBF.
Each run was equally separated into eight segments based on
time and each run had eight data points corresponding to the
eight-time segments. For each data point, the input is the ther-
mal history (black-body radiance measured using infrared
imaging) at the middle of each time segment and the output
is the most serious porosity formation situation of any time
segment during the whole run. In the study by Liu and Zhang
(2021), physical parameters (i.e., laser energy density and
laser radiation pressure) were first extracted from the original
machine setting parameters (i.e., laser powder, laser angle,
etc.) and used as inputs for six machine learning methods to
predict maximum, mean, and median pore diameters as well
as median pore spacing. The physics-based model was able
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to explain pore generation mechanisms and was validated on
an L-PBF machine (i.e., Concept Laser M2 machine) with a
porosity prediction error of 10–26%. Other significant phys-
ical effects influencing pore formation were not considered
in their models, such as material energy absorption and heat
transfer between material and air.

In the study by McGowan et al. (2022), experimental and
simulated laser metal deposition data are applied to train
a convolutional neural network (CNN)-based model with
physics-informed loss functions for porosity prediction. The
results show that the physics-informed model works bet-
ter than the model without any prior physics knowledge. A
CNN-based model named ResNet18, proposed by Zhang et
al. (2020), achieved an accuracy higher than 99 % in lack
of fusion and keyhole defect detection in L-PBFed single
Ti6Al4V beads. Each sample was scanned for 32 s with
a width of 200 mm. The inputs to the image classification
model were 2D spectral images transformed from audio sig-
nals. In the studybyScime et al. (2020), in-situ optical images
of the build plate and powder bed at each layer were captured
and labeled pixel by pixel. Their results demonstrated that
machine learning-basedmodels (i.e., Dynamic Segmentation
CNN, etc.) achieved real-time detection and classification of
12 types of defects (such as porosity, super-elevation, soot,
etc.) in six different PBFmachines. However, for the porosity
detection problem, the model was validated only in one PBF
machine with a true positive rate of only 78.4%. Although
the study by Zhang et al. (2019) presented that their proposed
CNNmodels achieved local volumeporosity prediction, their
models actually detected pore size using in-process cross-
section images or tomography scans after the pores happened
instead of predicting them ahead.

Methods

Dataset preparation

The proposed porosity detection-prediction framework will
be used to examine the lack of fusion porosity. To obtain the
dataset, a part named lack of fusion (LOF) with only lack of
fusion porosity was manufactured using an L-PBF machine
EOS M290 and Ti6Al4V powder with a size distribution of
23–50 µm. The part had 594 layers with a layer thickness of
30 µm, including 501 part layers, from the 85th to the 585th
layer, while the layers below are for building the part sup-
ports and the layers above are for part annotations. The part,
shown in Fig. 1c, was built in its axial direction as denoted by
the red arrow. As shown in Fig. 1a and b, the imparted poros-
ity regions are designed to be spherical, and their diameters
decrease from 1.10 to 0.10 mm along the building direction.
On a given building level, six porosity regions with the same
diameter were designed and distributed in a hexagonal pat-

tern. Fig. 1b shows the top view of parts with the designed
six anomalies with a diameter of 1.10 mm. Layer ranges
of each designed porosity region are listed in Table 2. For
example, a porosity region with a diameter of 1.10 mm is
designed to range from the 133th to the 170th layer. When
the laser comes to the designed porous regions, less energy
is applied to achieve a lack of fusion porosity as shown in
Table 1. Optimal processing parameters obtained in prelim-
inary experiments were applied to build the non-defective
regions (Table 2).

The built part was tested using computed tomography
(CT) and a Standard Tessellation Language (STL) file was
created that indicates lack of fusion anomalies in three
dimensions, as shown in Fig. 1d. The CT scan data was
subsequently transformed into layer-wise labeled images
indicating the location of the porosity in each layer of the
part LOF. Each pixel in a labeled image has a value. As for
a certain pixel in one part layer, if porosity appears at that
pixel’s location according to the CT scan data, the label value
of the pixel is set to 1, otherwise 0. These labeled images
constitute the porosity ground truth for the proposed poros-
ity detection-prediction framework. The supervised learning
algorithms are applied in this study.

During the manufacturing process, six thermal features
of the melt pool scanned by the moving laser were in-situ
monitored by a Co-Axial Planck Thermometry system pro-
vided by Sigma Labs Inc. Planck Thermometry is based on
Planck’s law. The six thermal features provided by the sys-
tem are Thermal Energy Planck (TEP), TEP_sigma, Thermal
Energy Density (TED), TED_sigma, counts, and TEP_sums,
which will be explained as follows. TEP represents the tem-
perature of the melt pool by taking the ratio of two radiation
values at two wavelengths. TED is the integrated radiation
taken in the whole near-infrared region. Thus, TEP is repre-
sentative of the temperature of the energy deposited region
while TED is representative of the input process parameters
and material response. Counts indicate measurement times
for each deposited region. The TEP_sums value is the sum of
all TEPmeasurements of the correspondingdeposited region.
Thermal signatures of all part points are measured right after
laser scanning and stitched as images, so that there are six
images at each part layer. In other words, each pixel in each
layer has six values that correspond to six thermal signatures.

All in all, each layer has six imageswhich represent the six
thermal signatures (i.e., TEP, TEP sigma, TED, TED sigma,
counts, and TEP sums) and one image that represents the
porosity labels. The size of all the images is 160 pixels× 160
pixels with one pixel in the imaging system representing 100
µm in the part system. Fig. 2a–f shows six thermal signature
images in colormaps and Fig. 2g shows the labeled image of
the 185th layer. The values of these six thermal features vary
from10 to 105, thus, the value of each feature is normalized to
0–1 using the mean and standard deviation correspondingly,
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Fig. 1 a Front view; b Top view; c Part geometry (the building direction denoted by the red arrow); d STL file obtained by CT indicating lack of
fusion anomalies

Table 1 Manufacturing process parameters

Laser power (W) Laser speed (mm/s)

Non-porous region 280 1200

Lack-of-fusion region 75 1800

which is also applied in the study by Sorkhabi et al. (2020).
All images of part LOF built using the EOS M290 machine
are collected as a dataset named EOS-LOF (EOS denotes
the machine name and LOF denotes the porosity type) with
a dimension of 501 layers × 7 images × 160 pixels × 160
pixels.

Sigma Labs Inc. has claimed that the six thermal features
described above can indicate four types of defects, including
gas porosity, lack of fusion, keyhole, and tungsten inclusion
(Betts & Anderson, 2020). In their statement, the average

value of all pixels in the window (i.e., 5 pixels × 5 pix-
els) centered at a certain pixel is considered as the feature
value of that pixel. All six feature values at the current layer
and the previous layer (total of 12 values) were input into
ExtraTree Regressor models to predict the probability of
each pixel being defective. Each model was trained only for
detecting one type of defect. The probability is in the range
from 0.0 to 1.0. But in their work, no threshold was applied
to its result to actually classify each pixel into porous or
non-porous categories, which is done in our study by iden-
tifying an appropriate threshold. Secondly, their model can
only identify already existing defects rather than predicting
potential defects in the future. Thirdly, their way of dividing
the dataset into training and testing sets is different (randomly
at pixel-level) than the way used in our study (temporally at
layer-level, which is a more realistic and stringent evaluation
of the predictive capability of the model).
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Table 2 Porosity distribution along the building direction in the
designed part

Pore diameter (mm) Layer range (th) Number of layers

0.1 569–572 3

0.2 541–547 6

0.3 514–524 10

0.4 487–501 14

0.5 444–461 17

0.6 391–411 20

0.7 339–363 24

0.8 288–315 27

0.9 236–266 30

1.0 184–218 34

1.1 133–170 37

Deep learningmethods

A detection-prediction framework based on deep learning is
proposed in this paper, which aimed at predicting porosity
in the next layer based on the thermal signatures of previous
layers is shown in Fig. 3. The framework includes two mod-
ules, a detection and a prediction module to be described in
detail in section “Detection module” and “Prediction mod-
ule”, respectively. The inputs are the thermal signatures of
layers {li−k, ..., li−1}, the outputs are the porosity labels in
layer li . k indicates the number of layers in history whose
information is used for the integrated framework to predict
the next layer’s porosity occurrence. H indicates the number
of layers in historywhose information is used for the porosity
detection of one layer. j presents the number of layers whose
porosity labeled images are used to predict the next layer’s
porosity labels. Here, k = H + j .

Detection module

Recently, convolutional neural networks (CNN) (LeCun et
al., 1998) have led to great successes in a broad range of
image-based applications, e.g., image segmentation (Schulz
& Behnke, 2012), image classification (Sermanet & LeCun,
2011) and face recognition (Adjabi et al., 2020). For this
module, we develop a CNN-based method to detect porosity
according to thermal signatures in a pixel-wise fashion. The
challenges of the porosity detection problem are limited and
imbalanced data. Especially, for this dataset, some layers lack
porosity. Thus, it is challenging to use semantic segmentation
methods on this dataset. We consider the porosity detection
problem as a regression problem, and take each pixel as a data
point to predict the probability of this pixel being porous
using CNN-based methods. If the probability of a pixel is
larger than a threshold, the pixel is classified as porous.

A CNNmodel is usually comprised of three basic compo-
nents: convolution layers, pooling layers, and fully connected
layers. These components can be repeated multiple times in
a CNN model. The convolution layer forms the core layer of
CNN models, and its goal is to objectively extract important
features from the input images. This is accomplished using
a set of convolution kernels (Krizhevsky et al., 2012) in each
convolution layer. 2-D kernels are usually used for image
classification.

Considering not only the six thermal signatures of the tar-
get pixel, but also the informationof surroundingneighboring
pixels and the history of these pixels might be important to
achieve good detection accuracy. The information of sur-
rounding neighboring pixels and the history of these pixels
in previous layers are composed ofC channels of 2-D images
for each data point as the input of a CNN model. For every
target pixel in layer li , we impose a D × D square region in
this layer, where the central pixel is the target pixel and other
pixels are the surrounding neighbors of the target pixel. Each
pixel has six thermal signatures, so we obtain six D × D
images in layer li . The square regions at the same position in
H previous layers include the historical information of these
pixels. Similarly, we obtain six D × D images for each pre-
vious layer. Hence, C = 6× (H + 1), and the input for each
data point is C × D× D images. Figure 4 shows an example
input, where D = 5. The output is the probability of being
porous at the current layer at the location corresponding to
the target pixel.

A pooling layer is usually employed after one or several
stacked convolution layers. The purpose of the pooling layer
is to reduce the dimensionality of featuremaps, which are the
outputs of the convolution layers. The outputs obtained after
employing stacks of convolution and pooling layers are flat-
tened to a vector. This vector is then fed into a fully connected
layer. TheCNNarchitecture used in thiswork is shown inFig.
5, and is designed by stacking several convolutional layers
and pooling layers, and one fully connected layer at the end.
In the convolutional layer, the kernel size is 5×5, stride = 1,
padding = 2. In the pooling layer, the kernel size is 5× 5,
stride = 2. The first and second convolutional layers have
16 and 32 kernels, respectively. ReLU is used as the acti-
vation function for all convolutional (Conv) layers and the
sigmoid function is used after the fully connected (FC) layer.

Prediction module

The objective of the prediction module is to predict poros-
ity labels in the next layer according to the porosity labels
of previous layers. Because both the current and history
information about surrounding neighbors can impact the
pixel-wise porosity in future layers, one needs to consider
the correlation between local neighbors when forecasting. In
other words, both spatial and temporal context information
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Fig. 2 Example images of six features and the ground truth at the 185th layer in colormaps: a counts; b TED; c TED_sigma; d TEP; e TEP_sigma;
f TEP_sums; g ground truth labels (the porosity regions are in light yellow and the part region is in light blue)

needs to be considered for prediction.Therefore, this problem
can be formulated as a spatiotemporal sequence forecasting
problemwith the sequence of porosity labeled images in pre-
vious layers as input and the porosity labeled image in the
next layer as output. When predicting the porosity labels in
layer li , the labeled images of previous layers {li− j , ..., li−1}
are used to directly predict the labeled image in layer li . The
size of all the images is 160 × 160.

In the study by Shi et al. (2015), a convolutional LSTM
(ConvLSTM) network was proposed for a spatiotemporal
sequence forecasting problem. In ConvLSTM, the inputs,
cell outputs and states are all 3-D tensors whose last two
dimensions are spatial dimensions (rows and columns). Con-

vLSTM includes two structures, the convolutional and the
LSTM structure. The convolutional structures are in both the
input-to-state and state-to-state transitions, that are capable
of capturing local spatial features (e.g., correlation between
neighbors). The LSTM can capture temporal autocorrelation
in the data. Therefore, the ConvLSTM network has desirable
properties for spatiotemporal sequence forecastingproblems.

For the present problem, we develop an encoder–decoder
model to predict porosity labeled images. Figure 6 shows
the architecture of our model. The encoder–decoder model
has two networks, an encoder and a decoder network. The
encoder network compresses the whole input sequence into
a hidden state tensor, where three ConvLSTM layers are
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Fig. 3 The architecture of the porosity detection-prediction framework.
To predict the porosity labels in layer li , the thermal signatures of layers
{li−k , ..., li−1} are input to the detection module to obtain the detected
porosity labels of layers {li− j , ..., li−1}which are the inputs into the pre-
diction module to predict the porosity labels in layer li . The dimensions

of input and output are 160× 160× k and 160× 160, respectively. The
thermal signatures of layers {li−k , ..., li− j } are the input to the detec-
tion module to obtain the detected porosity labels of layer li− j , and the
thermal signatures of layers {li−( j−k+1), ..., li−1} are the input to the
detection module to obtain the detected porosity labels of layer li−1

Fig. 4 The input and output of the proposed CNN model

Fig. 5 The architecture of the proposed CNN model. Conv denotes a convolutional layer, FC denotes a fully connected layer

stacked with 32 hidden states each. The decoder network
unfolds this hidden state by three ConvLSTM layers with 32
hidden states and concatenates all the states. This is followed
by one 3-D CNN layer to produce the final prediction. All
the input-to-state and state-to-state kernels are of size 3 ×
3. After doing some hyper-parameter tuning, we use these
hyper-parameters in our experiments. The model simultane-
ously reconstructs the input sequence images and predicts

the future image. Both the input and output of the model are
a sequence of images. The input consists of porosity labeled
images in layers {li− j , ..., li−1}. The output data consists of
porosity labeled images in layers {li− j+1, ..., li }. Here j rep-
resents the number of history layers that are used to predict
layer li . The model is thus expected to predict the porosity
labeled image of layer li according to porosity labeled images
of previous j layers.
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Fig. 6 The architecture of the proposed ConvLSTM encoder–decoder model. The dimensions of both input and output are 160× 160× j

Table 3 The division of dataset EOS-LOF

Number of layers Non-porous Porous

Training set 350 8,918,111 41,889

Testing set 151 3,844,523 21,077

Sum 501 12,762,634 62,966

Results and discussion

We split the dataset EOS-LOF into training and testing sets
based on layer number in the ratio of 7:3 for all evalua-
tions of different models. The training set is composed of
the first 350 layers (85–434th) while the testing set is com-
posed of the remaining 151 layers (435–585th), as shown
in Table 3. Each pixel is taken as a data point. Several
metrics to evaluate the effectiveness of our framework will
be introduced in section “Evaluation metrics”. In section
“Experiments”, the detection and the prediction module are
first individually evaluated followed by the combined poros-
ity detection-prediction framework on the testing set. We
conducted all modeling experiments using PyTorch with an
NVIDIATesla V100 PCIe 16GBGPU. The code is available
at https://github.com/MaoYuwei/AM-porosity-prediction.

Evaluationmetrics

In this work, we use precision, recall, and the F1-score for
the minority class, i.e., porous class to evaluate the models.
Based on the confusionmatrix, model results are divided into
four categories: true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). As for the porous
class, true positives are those porous part pixels that are
correctly predicted as porous. False positives are those non-
porous part pixels that are wrongly predicted as porous.

False negatives are those porous part pixels that are predicted
wrongly as non-porous. True negatives are those non-porous
part pixels that are correctly predicted as non-porous.

Precision is calculated as T P/(T P + FP), while recall
is calculated as T P/(T P + FN ). F1-score is the harmonic
mean of precision and recall, calculated as 2× precision×
recall/(precision+recall). The Recall is the proportion of
actual porous part pixels that are correctly predicted porous,
and precision is the proportion of predicted porous part pixels
that are actually porous. From the perspective of engineering,
both recall and precision are equally important, so the F1-
score is utilized to comprehensively evaluate the prediction
performance of the proposed method using a single metric,
which by definition is good only when both precision and
recall are good.

Experiments

Detection module

In this study, we choose a region 15×15 in size, whichmeans
D = 15. The mean square error loss function is used with an
Adam optimizer (Kingma & Ba, 2014). The learning rate is
0.00001. The batch size is 10,000. The number of epochs is
300.

The training set is further randomly divided into a training
set and a validation set in the ratio of 7:3 for the detection
module. The validation set is used for exploring the param-
eter H and the threshold. For each pixel, if the predicted
probability is higher than the threshold, the pixel is predicted
as porous.

We explore the history of up to three previous layers for
detection, i.e., H = 0, 1, 2, or 3, respectively. The receiver
operating characteristics area under the curve (ROC AUC)
and the precision recall area under the curve (PR AUC) can
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Table 4 Results of of the detection module using different number of
history layers on the validation set

The number of history layers ROC AUC PR AUC

0 0.9856 0.8890

1 0.9945 0.9104

2 0.9942 0.9061

3 0.9937 0.9038

Table 5 Results of the detection module with different probability
thresholds for porous class on the validation set

Thresholds Precision Recall F1-score

0.2 0.66 0.94 0.78

0.3 0.75 0.88 0.81

0.4 0.81 0.81 0.81

0.5 0.86 0.74 0.79

be used to evaluate classification performance without con-
sidering the threshold, which is used to select the best H
values. The ROC AUC and PR AUC for the porous class are
shown in Table 4, showing that utilizing information about
the layers’ history facilitates better performance. The ROC
AUC using different H values are similar and PR AUC is the
best when H = 1, suggesting that using information from
just one previous layer is sufficient for porosity detection.
Therefore, we only use one previous layer, i.e., H = 1, in
the later experiments.

One of the main challenges of this detection problem is
that only a small number of pixels are porous. The ratio of
the number of non-porous pixels to that of porous ones in the
dataset EOS-LOF is about 200:1, as shown in Table 3. Thus,
porosity detection and prediction is an imbalanced data prob-
lem and the imbalance ratio (200:1) is very high. In binary
classification problems, the probability threshold is gener-
ally chosen as 0.5. But a smaller threshold may be better
for this imbalanced data problem. We thus explore a set of
different thresholds on the validation set, as shown in Table
5. All the precision, recall, and F1-score are close to 1.00
for the non-porous class, so we do not show them on this
table and the following tables. The threshold is set as 0.4 in
the following experiments, because the results for the porous
class are the best as shown in Table 5. In real applications, the
threshold can be adjusted in accordance with the given tasks
(depending on whether recall or precision is more impor-
tant). When it is more desirable not to miss porous pixels,
the recall is more important and a smaller threshold can be
used. When the prediction of porous pixels is required to be
with high confidence, the precision is more important and a
larger threshold can be used.

Table 6 Results of different porosity detection models for porous class
on the testing set

Models Precision Recall F1-score

ET 0.67 0.40 0.50

LR 0.72 0.77 0.74

KNN 0.67 0.58 0.62

Proposed CNN 0.82 0.82 0.82

The proposed CNNmodel is compared to several machine
learning (ML) algorithmswell-known for classification prob-
lems, such as the Extremely Randomized Trees [or Extra
Trees (ET)] (Geurts et al., 2006), Logistic Regression (LR),
and the K-Nearest Neighbor algorithm (KNN) (Cover &
Hart, 1967). In this study, all ML models are implemented
within the Python scikit-learn package. The ML models are
used here with hyper-parameter tuning using an extensive
grid search for each of these models as shown in Appendix
Table 9. The training set and testing set of MLmodels are the
same as the proposed CNN model. And all models are using
the same dimension of features, i.e., six thermal signatures
of neighbors at the current and previous layers. So the input
dimension for each data point is 15 × 15 × 2 × 6 = 2700,
the output is 0 (non-porous) or 1 (porous).

Table 6 compares the results of these models for porous
class. One can see that the proposed CNN model is better
than the other ML models in detecting where the poros-
ity occurs with higher precision, recall, and F1-score. The
proposed CNN model can not only learn the information of
surrounding neighboring pixels but also the relative position
information of these pixels.

Prediction module

To assess the predictive ability of the proposed framework, j
in Fig. 3 is set to 5, which means that porosity labeled images
of the previous five layers are used to predict the next layer.
A mean square error loss function is used with the Adam
optimizer and a learning rate of 0.001. The batch size is 8.
The number of epochs is 300. To evaluate the performance of
this module in a stand-alone manner (i.e., without coupling it
with the detection module), the raw testing set is used where
the actual porosity labeled images are used as input to pre-
dict the output images with each pixel assigned the predicted
probability of being porous, which are subsequently com-
pared with the actual porosity labeled images for evaluation.
We again use 0.4 as the probability threshold to convert the
predicted probabilities into porous/non-porous predictions.

Some ML models are used as baselines, which take each
pixel as a data point and the label values of the previous five
layers are features. Therefore, the dimension of features for a
data point is five. The output is 0 (non-porous) or 1 (porous).
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Table 7 Results of predictionmodule for differentmodels on the testing
set

Models Precision Recall F1-score

ET 0.44 0.54 0.48

LR 0.51 0.84 0.64

KNN 0.45 0.61 0.52

CNN 0.51 0.83 0.63

Proposed ConvLSTM 0.82 0.88 0.85

ACNNmodel is also used as a baseline using labeled images
of the previousfive layers as the input to predict the next layer.
The dimensions of input and output are 160 × 160 × 5 and
160 × 160, respectively. The other parameters remain the
same as for the ConvLSTMmodel. Table 7 shows the results
of the proposed ConvLSTMmodel and some baselines. One
can see that the results of the ConvLSTM model are better
than other models, which indicates that the proposed ConvL-
STMencoder–decodermodel can accurately predict porosity
labeled images in the next layer based on the actual porosity
labeled images of previous layers.

Detection-prediction framework

The twodetection andpredictionmodels proposed in sections
“Detection module” and “Prediction module” are combined
into an integrated framework to predict porosity labeled
images in the next layer according to only the thermal sig-
natures of previous layers, i.e., without knowing the actual
porosity labeled images in previous layers.

During a real manufacturing process, thermal signatures
can be immediately obtained after processing each layer and
used to label the images using the above-described detection
model according to their thermal signatures. After obtaining
and labeling the images of the previous layers, the prediction
module can be used to predict the porosity labeled image of
the next layer, but current porosity detection methods only
detect the existing porosity of manufactured layers. The pre-
dicted porosity labels of the next layer can thus be used to
decide whether or not to continue the manufacturing process
depending on the severity of porosity. If the manufacturing
process is continued, thermal signatures of the new layers
can be collected for predicting the porosity labels of the next

layer, and this can be continued until the end of the manu-
facturing process.

To evaluate the whole framework the process was sim-
ulated to the testing set. For each layer li , the input of the
integrated framework is the set of thermal signatures of the
previous {li−k, ..., li−1} layers and the output is the predicted
porosity label of layer li as shown in Fig. 3. The ground
truth is the actual porosity labeled image. Here H = 1 as
mentioned in section “Detection module”, which means one
previous layer’s information is used in the detection module.
Here j = 5 as mentioned in section “Prediction module”,
which means five previous layers are used to predict the
next layer in the prediction module. Thus, k = H + j , i.e.,
k=6. Specifically, to predict porosity labels in layer li , the
set of thermal signatures of previous layers {li−6, ..., li−1}
is input to the trained detection model, outputting a set of
detected porosity labeled images of {li−5, ..., li−1} layers
which becomes the input to the trained prediction model.

SomeMLmodels were trained as baselines, which use six
thermal signatures of the neighbors and the previous six lay-
ers as features, i.e., the feature dimension is 15×15×6×6 =
8100. Table 8 shows the results of the integrated detection-
prediction framework and the ML models on the testing set.
The results of the proposed framework are significantly better
than those of the MLmodels, which shows that the proposed
approach can predict porosity with reasonable accuracy,
which may be useful to help prevent more severe part poros-
ity.

The layer range (i.e., from the 444th to the 461th layer)
of the porosity region with a diameter of 0.50 mm are taken
as examples for detailed results analysis and common con-
clusion. The same phenomenon is also seen in other layer
ranges (i.e., 339–363th, etc.). Figure 7 shows some example
predictions and the corresponding ground truth. More pairs
of prediction and ground truth are provided in Appendix Fig.
8. The 445th and 459th layers are the beginning and the end
layers in the analyzed layer range in the manufactured part
LOF.While the 452th layer is in themiddle of the layer range.

First, it can be observed that the proposed deep learning
framework has a remarkable prediction accuracy during the
period of porosity formation. As shown in the middle row of
Fig. 7c and d, at the 452th layer, the results in the middle of
the layer range are quite accurate. Second, we see that the
proposed deep learning framework might struggle in making

Table 8 Result of
detection-prediction framework
on the testing set

Models Precision Recall F1-score

ET 0.22 0.43 0.29

LR 0.13 0.89 0.23

KNN 0.19 0.05 0.08

Proposed detection-prediction framework 0.72 0.78 0.75
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Fig. 7 Example prediction
results on the testing set and
corresponding groundtruth. The
true or predicted porosity
regions are in yellow and the
part region is in light blue
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accurate predictions when the porosity formation starts or
ends. As shown in Fig. 7a and b, at the 445th layer, there are
six regions of lack of fusion porosity distributed hexagonally,
but only one is predicted. Similar results are at the beginning
of layer range 444–461th, several porous pixels are predicted
as not porous. As shown in Fig. 7e and f, at the 459th layer,
the performance is better in predicting porosity than at the
beginning of the layer range (tiny porosity is predicted) but
still worse than that in the middle layers.

We believe that the proposed method performs nicely dur-
ing the porosity formation, because the porosity in the current
layer and the previous layers is similar and the porosity is rel-
atively obvious. But at the beginning or end of the porosity
formation, large change and tiny size make the prediction
much harder.

To analyze the practical application, the trained models
can be generalized to predict porosity for new prints from
the k+1 layer (since the input of the proposed framework
is k layers’ thermal signatures) to the last layer. Note that
in order to make the first prediction from the trained model
on a new print, we will need the first k layers manufactured
(e.g., k=6 in this work), but that is much smaller than the
number of layers used in training (e.g., 350 in this work).
Further, if more layers happen to be available for new prints,
the trained model on old prints could be used as pre-trained
models which can be finetuned using thermal signatures col-
lected while building other prints.

Conclusions and future work

Current works can only detect already existing porosity
based on in-situ monitored signals. To solve this problem,
a detection-prediction framework is proposed based on deep
learning methods for porosity prediction using in-situ mon-
itored thermal signatures. The approach predicts lack of
fusion in the next layer based on the thermal signatures of
the previous layers. The precision, recall, and F1-score of the
integrated framework for the porous class are 0.72, 0.78 and
0.75. The framework includes a detection and a prediction
module, each of which can be applied separately for different
purposes. For instance, the detection module can be adopted
to localize the lack of fusion porosity at each layer of parts
built via L-PBF. The prediction module can also be built
upon to predict the thermal signature, melt pool geometries,
properties, etc.

The main limitation of the proposed method is its lim-
ited generalization ability. Since the system learns from the
dataset manufactured in the EOSM290machine, it is unclear
how it would perform for other L-PBF machines, like the
DMG-MORI machines, etc. This work is validated in pre-
dicting lack of fusion porosity, but its performance is not clear
for other types of porosity, like gas porosity. Moreover, the

performance is also unclear for other types of materials, like
In718. And predicting porosity in parts with other uninten-
tional and complex geometries, like lattice structure, is much
more challenging. It is unclear how the proposed framework
will work in more complex situations. The second limitation
is that the proposed method might struggle in predicting tiny
porosity and when the porosity formation starts or ends. Size
limitation is due to limited dimension accuracy of Co-Axial
Planck Thermometry system (each pixel represents 100 µm)
and the prediction accuracy of the proposed model (F1-score
of 0.75).

The most significant step in the future is to build more
parts of different geometries (e.g., cube, globe, etc.) with
undesigned and tinyporosity usingdifferentL-PBFmachines
(e.g., DMG-MORI, EOS machine, etc) and collect thermal
features during the manufacturing process for finetuning the
proposed modules. We could further improve the proposed
method based on the new larger dataset and improve gen-
eralizability and customize loss functions/models for the
beginning and end layers. We could also further analyze the
misclassification pixels of both the detectionmodule and pre-
diction module during processing.
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Fig. 8 Additional example
prediction results on the testing
set and corresponding
groundtruth. The true or
predicted porosity regions are in
yellow and the part region is in
light blue

123



328 Journal of Intelligent Manufacturing (2023) 34:315–329

Table 9 Hyper-parameters used for ML models

Models Hyper-parameters

ET N_estimators:{10, 50, 100} × Max_depth:{10, 15, 20, 25, 30, 35, 40}

LR Penalty:{‘l1’, ‘l2’, ‘elasticnet’, ‘none’} × Solver:{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}

KNN N_neighbors:{2, 3, 4, 5, 10, 100} × Weights:{‘uniform’, ‘distance’} × Algorithm:{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
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