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Abstract
An intelligent manufacturing paradigm requires material systems, manufacturing systems, and design engineering to be
better connected. Surrogate models are used to couple product-design choices with manufacturing process variables and
material systems, hence, to connect and capture knowledge and embed intelligence in the system. Later, optimisation-driven
design provides the ability to enhance the human cognitive abilities in decision-making in complex systems. This research
proposes a multidisciplinary design optimisation problem to explore and exploit the interactions between different engineer-
ing disciplines using a socket prosthetic device as a case study. The originality of this research is in the conceptualisation
of a computer-aided expert system capable of exploring process–structure–property–performance linkages in digital man-
ufacturing. Thus, trade-off exploration and optimisation are enabled of competing objectives, including prosthetic socket
mass, manufacturing time, and performance-tailored socket stiffness for patient comfort. The material system is modelled
by experimental characterisation—the manufacturing time by computer simulations, and the product-design subsystem is
simulated using a finite element analysis (FEA) surrogate model. We used polynomial surface response-based surrogate
models and a Bayesian Network for design space exploration at the embodiment design stage. Next, at detail design, a gra-
dient descent algorithm-based optimisation exploits the results using desirability functions to isolate Pareto non-dominated
solutions. This work demonstrates how advanced engineering design synthesis methods can enhance designers’ cognitive
ability to explore and exploit multiple disciplines concurrently and improve overall system performance, thus paving the
way for the next generation of computer systems with highly intertwined material, digital design and manufacturing work-
flows.
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Introduction

Engineering design and manufacturing processes are a rich
source of data. Data is spread across the entire product
development process, including design concepts, experimen-
tal data at the material microscale, mesoscale, macroscale,
simulations and test experiments, and intertwined manu-
facturing planning and process-related data (Oztemel &
Gursev, 2020; Yan et al., 2018a, 2018b). Hypothetically,
harnessing and analysing data can enable more efficient
decision-making (Xiong et al., 2020). The human cognitive
capabilities are limited when considering multiple complex
interactions between design and performance variables, non-
linear cause-effect relationships, and large datasets that must
be discovered and unveiled. Advanced design support and
synthesis methods can enhance the cognitive ability of the
system designer to be fully aware of the ripple effects of
design choices (Nti et al., 2022). However, decision-making
during engineering design is, to a large extent, conducted
sequentially. The design space from product design, mate-
rial selection, and manufacturing is narrowed down and
optimised sequentially, without considering the complex
interactions between the domains or disciplines.

The typical engineering design approach is composed
of four phases, namely, (i) planning and clarification, (ii)
conceptual design, (iii) embodiment design, and (iv) detail
design (Pahl et al., 2007). After selecting a design concept,
the objective is to explore configurations of design choices
(e.g., geometrical features and material systems) that satisfy

performance requirements (Xiong et al., 2019). The design
space exploration at the embodiment design stage can search
for potential solutions to meet design targets, defined by a
set of ranges rather than specific values. On the other hand,
design exploitation narrows a set of potential solutions from
exploration down to one or few optimal design solutions
considering design preferences. It provides ready-to-execute
instructions at the detailed design stage (Xiong et al., 2020).

In a sequential product design andmanufacturing process,
disciplinary specialists strive to optimise objectives and sat-
isfy constraints regarding their disciplinary variables (Hou
& Jiao, 2020). The discipline-specific optimisation process
can produce unintended consequences to other disciplines
that prove detrimental to overall system performance. On
the other hand, a concurrent engineering design approach
encompasses multiple engineering disciplines simultane-
ously to construct a multidisciplinary design problem for-
mulation (Balling & Sobieszczanski-Sobieski, 1996).

The primarymotivation for usingmultidisciplinary design
optimisation (MDO) is that the performance at the system
level is driven not only by the performance of the indi-
vidual subsystems but also by their interactions (Martins
& Lambe, 2013). MDO problem formulations aim to opti-
mise the system as a whole rather than as a collection of
sequentially designed subsystems. Each disciplinary model
has discipline-dependent state equations, a vector of design
variables, state variables, residuals, coupling variables, func-
tions, and constraints (Balling & Sobieszczanski-Sobieski,
1996). In MDOs, the subsystem disciplines are represented
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by combining data from multi-fidelity models, including
physics-based and data-driven models (aka. surrogate mod-
els) (Wang & Shan, 2006). Surrogate models represent an
abstraction (i.e., an approximation or interpolation) of under-
lying physical phenomena (i.e., a response) over a specific
region of the design space (Simpson et al., 2008), thus build-
ing the quantitative links and interdependencies between
disciplines.

Intelligent manufacturing (also known as smart manu-
facturing) is a broad concept of manufacturing to optimise
production and product transactions; therefore, interdepen-
dencies are considered between disciplines by making full
use of information technologies and digital technologies for
manufacturing (Zhong et al., 2017). Additive manufactur-
ing (AM) is inherently a digital manufacturing process that
enables novel methods for integrated digital design and pro-
duction (Conner et al., 2014; Ballardini et al., 2018; Jiang
et al., 2022). The advantage of AM technologies in product
design and manufacturing is that: "Product performance can
be maximized through the synthesis of shapes, sizes, hierar-
chical structures and material compositions, subject to the
capabilities of AM technologies" involving a digital process
from design to product (Rosen, 2014).

Olson (1997) presents materials as multilevel systems
with quantitative conceptual design linkages at process,
structure, property, and performance levels (PSPP). The per-
formance of material systems rests on the twin pillars of
process–structure and structure–property relations. Existing
literature shows how to combine multi-physics models and
data-drivenmethods across length scales to understandmetal
AM and how computational methods play a key role in
understanding the fundamental PSPP relationships driving
the physics and properties of AM products (Hashemi et al.,
2022; Smith et al., 2016). In sum, the design freedom asso-
ciated with composition and microstructure morphology and
processing variables can improve products, processes and
performance (Flores Ituarte et al., 2019). The process of
relating properties to performance is effectively a selection-
compromise exercise in which materials design becomes a
multilevel andmultiobjective optimisation problem (Panchal
et al., 2008).

Figure 1 presents the global conceptual framework devel-
oped in this research to expand PSPP linkages to a product-
level length scale while maintaining the ability to explore
and exploit concurrent disciplines optimisation objectives
involving quantitative linkages in digital design to manu-
facturing workflows. The initial hypothesis is that product
design disciplinary choices can be interlinked with man-
ufacturing processes and materials micro and mesoscale
descriptors (Yan et al., 2018a, 2018b). This research concep-
tualises a computer-aided expert system capable of exploring
process–structure–property–performance linkages to allow

the trade-off optimisation of competing objectives in mate-
rial, manufacturing, and product design disciplines. Hence,
it contributes to enhancing the cognitive ability of system
designers towarddeveloping anewgenre ofmultidisciplinary
computational design environments (Riesenfeld et al., 2015).

The product-design discipline is represented by a pros-
thetic socket device exemplary case manufactured using
material jetting AM. The material system disciplinary prop-
erties are modelled by experimental characterisation. The
manufacturing discipline and process time are modelled by
changing geometrical and material parameters in a manu-
facturing software pre-processor. Finally, the product-design
discipline uses a prosthetic socket device as an exemplary
case and is simulated using a finite element analysis surro-
gate model.

Limb prosthetic socket design as a case study

The use of AM and multi-material techniques in limb pros-
thetic design and manufacturing can enable (i) the use of
a fully digital workflow to produce one-of-a-kind anatomi-
cally customized prosthetics using CT-MRI data, (ii) the use
of structural optimisation to balance stiffness and lightweight
design, and (iii) the combined use of multi-materials prop-
erties to create stiff and soft parts in specific zones of a
one-piece socket (Comotti et al., 2017; Faustini et al., 2006;
Rogers et al., 2000; Sato et al., 2016). Predominant designs
such as the Patellar-Tendon Bearing (PTB) prosthesis were
developed for amputee patients at the University of Califor-
nia at Berkeley in 1957 (Foort, 1965). This design has been
regarded as the international standard for prosthetic socket
devices (Hachisuka et al., 1998). By the 1980s, two new
design concepts were introduced: the hydrostatic weight-
bearing principle and the total surface bearing (TSB) concept
(Mak et al., 2001). The basic principles for socket design vary
in load distributionwherein distributingmost of the load over
specific load-bearing areas as in the case of PTB or more
uniformly distributing the load over the entire limb as in the
case of TSB design (Mak et al., 2001). Figure 2 illustrates the
prosthetic socket design and exemplary results of the FEA.

As part of the research, an exemplary parametric CAD
model of a TSB socket was developed. The CADmodel was
later used in FEA simulations performed inANSYSmechan-
ical. The initial dataset for the embodiment design stage is
created by sampling the design space using a design of exper-
iment (DOE), including geometrical and material variables.
Figure 2a shows the complete prosthetic device, including
the socket, the attachment fitting to the knee joint and pylon,
and the prosthetic foot. Figure 2b shows the design of the
socket, composed of two regions: (i) soft region in contact
with the skin and (ii) rigid region that provides the required
stiffness and structural support at the stump-socket interface.
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Fig. 1 Computer-aided expert system conceptual framework and methodological schema for optimization driven design of process-structure-
property-performance linkages in digital manufacturing

Fig. 2 Representation of the FEA model of the limb prosthetic socket product design made by AM

In this product-design exploration, themechanical properties
and thickness of the rigid region (Rt) are varied to character-
ize their impact on the overall volume of the socket and the
resulting variation in the mass, overall stiffness of the socket
and manufacturing time. Figure 2c shows the geometrical
detail of the socket, with varying width (w), depth (d), and
height (h) dimensions as a function of soft region thickness
(St) and rigid region thickness (Rt).

The literature study found that stresses at the stump-socket
interface are in two directions—pressure, perpendicular to
the skin surface, and shear stress, tangential to the skin sur-
face. Both provide support at the stump-socket interface, but
above a certain level and duration can induce skin break-
down. Skin responds to pressure differently than it does to
shear stress as just 8 kPa of constant pressure is sufficient to
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occlude blood flow that can lead to ischemia and tissue necro-
sis in the patient (Sanders, 2005). Therefore, controlling the
socket design’s overall stiffness, flexibility, and elastic defor-
mation can be advantageous to improving patient comfort.
When walking, the pressure in the stump-socket interface
for an adult male is generally below 220 kPa, with a max-
imum shear stress of 61 kPa (Mak et al., 2001). Existing
research through FEA and experimental tests define a load-
ing condition with 350 kPa pressure and 85 kPa shear load
(Laszczak et al., 2015). Other research has shown that the
maximal mean peak at the stump-socket interface pressure
can go up to 215.8 kPa over the patellar tendon when walk-
ing on an incline. The maximum pressure over the popliteal
area is 190.6 kPawhile walking downslope (Hachisuka et al.,
1998).

The literature shows that pressure and shear load in an
adult male is typically equal to or lower than 350 kPa and
80 kPa, respectively. This loading condition is reported at
the stump–socket interface, and it is used for the FEA in this
research. Figure 2d shows how the pressure is distributed
uniformly and perpendicular to the inner socket surface, and
shear stress is tangential to the same surface. We applied a
bonded contact between the soft and the rigid region and
fixed displacement in all three axes as boundary conditions
at the attachment fitting between the socket and the pylon.
Figure 2e and f show one of the explored combinations of
variables for the socket product design and the FEA results of
total deformation and equivalent stress. The maximum stress
is located between the soft and rigid regions at the interface.

MDO research design

MDO framework and decomposition of disciplines

Vertical engineering design is focused on optimisation at
subsystem-level, whereas a horizontal MDO problem for-
mulation includes coupling variables and functions between
disciplines (Ferguson et al., 2009). Typically, the MDO
problem formulation uses one main system-level design
problem integrating subsystem-level design problems for
each discipline (Balling & Sobieszczanski-Sobieski, 1996).
MDOs have been used widely in the mobility industry,
and aerospace wherein the optimisation problem includes
structures, fatigue, propulsion, aerodynamics, payload, eco-
nomics, and others disciplines as subsystems (Kodiyalam &
Sobieszczanski-Sobieski, 2001; Miao et al., 2020).

In MDOs, the complexity lies at the problem formulation
stage. First, it is necessary to select significant disciplinary
design variables with lower and upper bounds and disci-
plinary optimisation objectives. Second, we need to define
disciplinary models at the subsystem level and possible con-
straints that influence performance at the subsystem and

system levels (Martins & Lambe, 2013). Third, wemust con-
sider the coupling between disciplinary models by variables
and functions that interact across disciplines. Themathemati-
cal formulation of anMDOproblem statement can bewritten
as:

minx f (x)

s.t . gi (x , u(x), v(x)) ≤ 0
hi (x , u, v) = 0
xL B ≤ x ≤ xU B

(1)

where f (x) represent the disciplinary objective function or
performance function that needs to be optimized, x is the
vector of design variables, xL B and xU B are the lower bound
and upper bound of the design variable, u(x) and v(x) are the
coupling variables, gi (x) represent the inequality constraints,
and hi (x) are general equality constraints.

Once the MDO problem is formulated, heuristic solution
methods lead to non-unique conflicting optimized results,
allowing the system designer to explore and exploit the
design space (Kodiyalam & Sobieszczanski-Sobieski, 2001;
Serhat & Basdogan, 2019).During embodiment design, the
outcome of an MDO does not provide a single optimal solu-
tion that is better than the others. Instead, the objective is to
unveil a region in the design space composed of a set of solu-
tions representing the "best trade-offs". Revealing the design
space mathematically can also assist in refining the region of
interest that lead to a set optimal solution (Meng et al., 2021).

These solutions are called "Pareto optimal," wherein it
is impossible to increase one objective’s fitness without
decreasing the fitness in at least another objective (Coello,
1999). Isolating the Pareto Front (PF) allows the system
designer to evaluate the best trade-offs between compet-
ing objectives and exploit the design space (Ghiabakloo
et al., 2016). The information obtained at the embodiment
design stage can be refined and reused at the detailed design
stage by focusing on a narrower non-dominated and feasi-
ble design region while exploiting a concrete system-level
optimal design in a point-wise solution manner (Xiong et al.,
2019).

The subsystem-level disciplines were decomposed into
three domains. First, the material discipline (i.e., D1) and its
vector design variables (i.e.,Xd1), second, themanufacturing
discipline (i.e., D2) and its vector design variables (i.e., Xd2),
and third, the product-design discipline (i.e., D3) and its vec-
tor design variables (i.e., Xd3). Coupling among these three
disciplines was modelled by shared functions, constraints,
and variables (i.e., Di–Dj). Each discipline has its objective
function (i.e., J1, J2, and J3).

When competing objective functions exist, the optimum
is no longer a single design point but an entire set of non-
dominated solutions referred to as the Pareto front (Ferguson
et al., 2009). In MDOs, the Pareto dominance relationship is
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Fig. 3 Data dependence graph to decompose material discipline (D1),
manufacturing discipline (D2) and product-design discipline (D3) in
AM, adapted from (Martins & Lambe, 2013)

studied to distinguish the qualities of different solutions in
the design space. The collection of all the Pareto optimal
solutions in the decision space is called the Pareto optimal
set (PS), and the projection of the PS in the objective space
is called the Pareto optimal front (PF). Figure 3 shows the
data dependence graph describing the MDO problem for-
mulation. The overall optimisation objective or system-level
optimisation objective (J*) is to provide feasible solutions.
Thus, solutions that satisfy the imposed constraints within
the given bounds isolate the Pareto Front (i.e., solutions that
are non-dominated). Hypothetically, embodiment and detail
design stages can utilize the MDO formulation to explore
and exploit PSPP linkages while optimizing objective func-
tions per discipline that satisfy material, manufacturing, and
product-design constraints.

Material discipline

Material jetting allows combining two or more photopoly-
mer resins that provide a range of mechanical properties
from soft to rigid polymer behaviour (Mueller et al., 2015).
In the process, a print block consisting of several piezo-
electric inkjet heads deposits the resin droplets following
predefined deposition patterns (Bass et al., 2016). Then,
a roller is used to smooth each layer, and the material is

cured with an ultraviolet (UV) lamp (Ryu et al., 2019). The
two photopolymers used in this work were the flexible Tan-
goPlus (FLX980) and the rigid VeroClear (RGD810). For
simplicity, we define the ratio between the two materials
Vero and Tango, as volume fraction (V f ), which is defined
as V f V ero = (1 − V f T ango). The volume fraction (V f )
is used as a microstructural descriptor for material homog-
enization which allows us to express the material behavior
with simple regression models (Flores Ituarte et al., 2019).
Other, variables such as infill strategies or designed hierar-
chical structures can affect effective mechanical properties;
however, this was limited to Vf due to its statistical signif-
icance as well as to simplify the homogenization process
for later FEA simulations. In sum, the regression models
are used to connect the material discipline to manufactur-
ing and product-design disciplines. Table 1 shows the design
variables (Xd1) and bounds used to model the mechanical
properties of the multi-material system. In this research, the
material subsystem is modelled by changing the ratio of V f
from one (1) to zero (0), which implies switching between
pure Vero to pure Tango.

For the characterisation of the material system, tensile
specimens were fabricated in a unique build direction using
the voxel printing functionality using a Stratasys J750 mate-
rial jetting AM system (Stratasys). The machine was set to
high-mix printing mode with a layer thickness of 0.27 mm to
print the tensile specimens. The specimen’s voxel size was
defined as 0.42× 0.84× 0.27 (mm), and V f per layer of the
specimen was distributed using a randomisation algorithm
to obtain samples with a homogeneous material distribu-
tion. Three rectangular tensile specimens per V f , each with
a uniform V f distribution were prepared and characterized
(Flores Ituarte et al., 2019).

The dimensions for the tensile specimen were 25 × 5 ×
60mm, with a cross-sectional area of 125mm2. Thematerial
characterisation was performed using a uniaxial tensile test
on an Instronmodel 5982with a100kN load cell and clamped
with a pneumatic gripping force of approximately 10 kN. The
specimens were elongated until failure at a 0.4 mm/s strain
rate. Figure 4 shows the stress–strain curves obtained during
the uniaxial tension tests of the tensile specimens with differ-
ent V f . Based on the tensile test, it was found that a higher
V f resulted in a stiffer material. For the tensile specimens
with V f ≥ 0.8, the results show higher yield strength but
at the cost of brittle fracture and reduced elongation capa-
bility. The specimens with V f ≤ 0.2 show a linear elastic

Table 1 DOE for the digital
material subsystem discipline
(D1)

Design variable (Xd1) Nomenclature Levels

Volume fraction V f 1.0–0.8–0.6–0.4–0.2–0.0
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Fig. 4 The stress–strain curves of the tested tensile specimens with a
volume fraction: 0.0 ≤ Vf ≤ 1.0 subject to a strain rate of 0.4 mm/s

deformation until the moment of fracture, with mechanical
properties similar to rubber-like materials, such as silicone.

The tensile test results in Fig. 4 were used to build regres-
sionmodels for Young’smodulus (E) and yield strength (YS)
of the material as a function of V f . Both regression models
E and YS are used in the product-design discipline (D3) and
linked to the material model subroutine in ANSYS- FEA to
simulate the structural integrity of the socket.

The material subsystem optimisation objective (i.e., J1) is
tominimise themass of the obtained socket design.We found
that the density of the material system changes as a function
of the Vf , which influences the mass of the obtained designs.
For this research, the density was modelled as a function of
the Vf using the DOE reported in Table 1. The density was
measured in rectangular samples with an average volume of
5.40 ± 0.08 cm3 and using a solid density analyser, Quan-
tachrome (USA)Ultrapyc 1200e. Each samplewasmeasured
five times. The experiment data was used to build the regres-
sion models for density (ρ) as a function of Vf . Equation (2)
defines the scalar form of the implemented third-order poly-
nomial regression used to model young’s modulus (E), yield
strength (YS), and density (ρ) regressions as a function of
Vf :

y = βo +
k∑

i=1

βi xi +
k∑

i=1

βi i x2i +
k∑

i=1

βi i i x3i + ε (2)

where ε is the unobserved random error, β with appropriate
subscript represents the coefficients of the regression model
for each term (i.e. intercept βo, first order βi , quadratic βi i ,
and cubic βi i i ). These are calculated by the least-squares
method. xi represents the independent variable Vf and y cor-
responds to the dependent variables (i.e., E, YS, and ρ).

All first, second, and third-order termswere included in the
test to construct the regressionmodels. A stepwise regression
approachwasused to eliminate non-significant terms andfind
themost parsimoniousmodel. The stopping rule was set with
a forward P-value threshold significance to enter at P-value

≤ 0.25, which represents the maximum P-value that a term
must have to be included in the model during a forward step.
A detailed discussion regarding the regression results for E,
YS, and ρ as a function of Vf is presented in Appendix 1.
Figure 5 displays the resulting regression models for E, YS,
and ρ, as a function of V f microstructural descriptor. All
three figures display the confidence interval at 95%, which
represents a range of likely values for the mean response,
as well as the prediction interval at 95%, which is the range
of likely values for new observations. Figure 5a shows the
obtained regression function for Young’s modulus (E) as a
function of V f .

To simplify the regression model for E, we reduced the
product-design exploration to 0.4 ≤ V f ≤ 1.0 region. The
material design space shows that the variation of V f (i.e., the
ratio between Vero and Tango material) provides a range of
Young’smodulus values between200±1.15MPa (i.e.,V f =
0.4) and1401.67±2.03MPa (i.e.,V f = 1). Figure 5b shows
the obtained regression function for yield strength (YS) as a
function of Vf . The variation of Vf provides a yield strength
range between 5.03 ± 0.08 MPa (i.e.V f = 0.4) and 60.75
± 0.38 MPa (i.e.V f = 1). The optimisatin objective J1 is
to minimise the mass of the socket design. The change in Vf
leads to changes in the obtained material density which in
turn impacts mass. Figure 5c shows the regression function
for density as a function of Vf . In this case, a higher Vf result
in a denser material. The results show that the variation of Vf
provide a density range between 1.119 ± 0.061 g/cm3 (Vf =
0.0) and 1.177 ± 0.002 g/cm3 (Vf = 1.0).

Manufacturing discipline

Voxel-based multi-material jetting AM allows fabrication of
materials systems at the mesoscale (∼1 mm) by controlling
the deposition patterns of soft elastomeric and rigid glassy
polymers at the voxel-scale (∼90 μm) in a layer by layer
approach (Flores Ituarte et al., 2019). The most significant
factor that determines the manufacturing time (Mt) in AM is
often related to the vertical height of the part due to the part
orientation effect on the layer by layer manufacturing pro-
cess (Salmi et al., 2016). However, parameters such as the
occupied build area and other manufacturing process param-
eters are relevant to measuring manufacturing process time
(Zhang et al., 2015). Additionally, manufacturing process
parameters, such as layer thickness, affect the achievable
manufacturing time (Kretzschmar et al., 2018; Flores et al.,
2020).

Table 2 shows the vector of design variables (Xd2) used to
model the manufacturing process time (Mt). In this regard,
height (H), build area (A), and the average material ratio
of V f were modified in a three-level DOE. The subsystem
optimisation objective for the manufacturing discipline (i.e.,
J2) is to minimise the manufacturing time (Mt).
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Fig. 5 Regression model for material homogenization based Vf microstructural descriptor. a Cubic regression model of Young’s modulus (E).
b Quadratic regression model of yield strength (YS). c Quadratic regression model of density (ρ)

Table 2 DOE for the manufacturing subsystem discipline (D2)

Design variables (Xd2) Nomenclature Levels

Height H (cm) 2–10–18

Build area A (cm2) 582–1170–1728

Average volume fraction V f 0–0.5–1

The manufacturing time was estimated using GrabCad
print (Stratasys, 2022), a software pre-processor that sim-
ulates manufacturing time while connected to the Strata-
sys J750 material jetting AM system. The printing mode
recorded was at high-mix with a layer thickness of 0.27 mm,
the same manufacturing process parameter used to fabricate
the tensile specimens in the material discipline (D1). The
manufacturing time was estimated using different rectangu-
lar parallelograms modelled as "stl" files, uploaded to the
GrabCadprint pre-processing software to simulate eachDOE
combination proposed in Table 2.

The build volume of the material jetting J750 machine
defines the lower and upper bounds for height and build area.
During the DOE, the height (H) of the rectangular parallel-
ogram was varied in three discrete intervals of 2 cm, 10 cm,
and 18 cm, respectively. Thus, the section or projected area
(A) of the parallelograms was varied in three discrete inter-
vals of 582 cm2, 1170 cm2, and 1728 cm2, respectively, such
that the area represents 30%, 60%, and 90%occupation of the
build platform, respectively. Ultimately, the material impact
in process time was modelled by changing the Vf in three
levels as 0.0, 0.5, and 1.0, which represent the average use of
volume fraction between Vero and Tango (V f ) in the design.
In total, this DOE recorded 27 test trials with no need for rep-
etition due to the deterministic nature of the pre-processing
software.

The results of the DOE were analysed using an ANOVA
testwith a confidence level of 95% (α= 0.05).Mt ismodelled
using response surface approximating functionswith second-
order polynomial two-factor interactions terms described in

Eq. (3):

y = βo +
k∑

i=1

βi xi +
k∑

i=1

βi i x2i +
∑

i

∑

j

βi j xi x j + ε (3)

where ε is the unobserved random error, β represent the coef-
ficients of the regression model for each term (i.e. intercept
βo, first-order βi , second-order βi i , and the interaction term
βi j ) calculated by the least square method, xi represent the
independent variables H, A, and Vf . The interaction terms
between independent variables are represented by xi x j and
y is the dependent manufacturing time (Mt).

Similar to the material subsystem modelling, a stepwise
regression was used to eliminate non-significant terms, and
the stopping rule was set with a forward P-value < 0.25.
Appendix 1 presents the regression results for Mt as a func-
tion of H, A, and Vf . Figure 6a shows the contour plot for
H and A over Mt. In this regard, the colour map from dark
to light corresponds to achievable manufacturing time (Mt).
The horizontal axis of the contour plot corresponds to part
build area (A) and the vertical axis represents part height (H).

Figure 6b shows the factor plot of the effect of the inde-
pendent variables on the response manufacturing time (Mt).
The part orientation in the build platform was simplified by
running the part location function in the GrabCad print pre-
processing software, which optimizes the build orientation to
minimize the height and reducemanufacturing time. The fac-
tor plot also includes the effect of varying material volume
fraction (Vf ) on Mt. The factor plots show the confidence
interval at 95%, representing a range of likely values for the
mean response.

As a principle, themore significant the difference between
the mean effect’s minimum and maximum value, the higher
its significance and, therefore, the influence of the indepen-
dent variable over the response. By comparing the mean
effect of H, A, and Vf , over the response Mt, part height (H)
is the most significant variable followed by surface area (A),
which significantly affects the Mt. On the contrary, Vf has a
limited effect on MT. Nevertheless, the ANOVA test shows
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Fig. 6 a Contour plot of the effect of H and A on Mt. b Factor plot on the effect of H , A, and Vf on manufacturing time (Mt)

Table 3 DOE for the product-design subsystem discipline (D3)

Design variable (Xd3) Nomenclature Levels

Rigid region thickness Rt (mm) 5–10–15–20–25

Material—rigid region V f Rigid 0,4–0,6–0,8–1

Soft region thickness St (mm) 6

Material—soft region V f Sof t 0

that the interaction effect between H and Vf (i.e., H*Vf ) has
reduced the p-value (i.e., P-value= 0.129). Therefore, it sig-
nificantly impacts the response and is included as a term in
the regression model. Looking at the first-order terms, the
increase of Vf harms Mt. On the contrary, the interaction
term H*Vf has a positive effect on Mt.

Product-design discipline

The Product-design subsystem is studied using FEA model-
based approach, where an elastic isotropic material model
was assumed. The socket design, depicted in Fig. 2, is com-
posed of two regions. The region in contact with the skin is
soft with silicone like behaviour and a rigid region responsi-
ble for providing the required stiffness to make the prosthetic
functional. For this study, the product-design discipline (D3)
was explored by maintaining a constant thickness and mate-
rial properties at the soft region (St),whereas the design space
of the rigid region was explored by varying the thickness (Rt)
and the mechanical properties (i.e., E, YS, and ρ as a func-
tion of Vf ). In the case of the soft region, St was set to 6 mm
and the material characteristic of the soft region was set to
V f Sof t = 0, which provides elastic properties similar to sili-
conewith aYoung’smodulus of 0.53± 0.04MPa, elongation
at break of 94.94 ± 3.68 mm, and a yield strength 0.47 ±
0.02 MPa. In the case of the rigid region, the socket design
requires a stiffer material for structural integrity; hence the
design space exploration was limited to 0.4 ≤ V f Rigid ≤ 1.
Table 3 shows the design variables (Xd3) and bounds used
to model the product-design discipline (D3).

For the design space exploration of D3, we included
two dependent variables: safety factor (Sf), which is used
to define the constraint function in the MDO, and maxi-
mum total deformation (D), which becomes an optimisation
objective. The Sf was evaluated by looking at the resulting
maximum von Mises stress of the FEA socket design. The
von Mises yield criterion states that the von Mises stress of
a material under load must be less than or equal to the yield
strength of thematerial under simple tension for the resulting
design to be able to withstand the loading conditions. The
Sf allowed determining if a given combination of Vf and
Rt will yield or fracture, thus, resulting in a mechanically
non-feasible socket design. The Eq. (4) is used to construct
the constraint function, defined by the margin of safety (Sf)
described as:

S f = (Y ield Strength/Max .von Mises stress)i − 1 (4)

where the subscript i represents the experimental combina-
tions of the DOE, supposing that the resulting Sf is equal
to 0, the maximum von Mises stress and yield strength are
equal,hence capable of withstanding the loads and bound-
ary conditions. If the Sf < 0, the resulting socket design is
under-engineered, and it would yield or fracture, resulting in
a non-feasible solution, whereas an Sf > 0 represents that the
socket design is over-engineered.

The resulting values of the FEA provide the maximum
value of deformation of the socket per experimental combina-
tion. Maximum Deformation (D) is calculated by the square
root of the summation of the square of maximum deforma-
tions in X-direction, Y-direction, and Z-direction. During the
design of the prosthetic, controlling D provides the possibil-
ity to vary the overall stiffness and flexibility of the socket
design, which can be leveraged and tailored based on user
preferences. Figure 7 shows the contour plot of the feasible
design space with Rt and Vf as a function of the margin of
safety (Sf), which is the inequality constraint function. The
FEA, and the resulting polynomial model, shows that certain
combinations of Vf and Rt would provide negative values for
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Fig. 7 Contour plot based on the polynomial RSM. Effect of Rt and Vf
on safety factor (Sf)

Sf. This region provides non-feasible solutions as the result-
ing socket design would yield or fracture.

During the design engineering of the socket, the decision-
maker can decide between three optimisation alternatives for
the subsystem optimisation objective (J3): (i) Minimization
of D to obtain the stiffest socket design (i.e., scenario 1 for
optimisation), which advanced prosthetic users and profes-
sional athletes can use. (ii) Maximization of D to obtain the
softest available design (i.e., scenario 2 for optimisation)
to increase the comfort of early users of prosthetic sock-
ets. Additionally, an inductive design approach can be taken
(Choi et al., 2008). Hence, (iii) the stiffness level and defor-
mation (D) can be set to a target value based on patient
preferences (i.e., scenario 3 for optimisation). The MDO
would provide Vf and Rt values that lead to an optimal set
of feasible and non-dominated solutions (J*).

System-level MDO problem formulation

In this MDO problem formulation, material discipline is
coupled with product design (i.e., D1–D3), as the variation
in Vf affects the mechanical properties (i.e., E and YS),
and therefore the constraint function margin of safety (Sf)
and disciplinary design optimisation objective (J3) that is
total deformation (D). Product-design to manufacturing (i.e.,
D3–D2) is coupled by the variation of V f which has an
impact on the manufacturing time (Mt). More significantly,
the variation of the thickness of the rigid region of the pros-
thetic (Rt) affects part height (H) and projected area (A),
and therefore the manufacturing time (Mt). Similarly, design
choices in product design are coupled with material and
resulting part mass (i.e., D3–D1). To this end, the variation of
Rt affects the obtained volume of the prosthetic socket, and
the variation ofVf affects part density. The resulting product-
design combinations for Vf and Rt determine the product
volume, material density, and product mass. The resulting
subsystem disciplinary surrogate models are summarized in
Appendix 1. Table 4 shows the formalizedMDOproblem for-

Table 4 MDO problem formulation for the prosthetic socket design

Given

The optimisation objectives, constraint functions, variables, and
coupling function shared between material discipline D1,
manufacturing discipline D2, and product-design discipline D3 (see
Appendix)

Find

Subsystem level variables: Vf and Rt

Satisfy

Product-design (D3) subsystem level constraint function:

Inequality constraint:

S f ≥ 0

Equality constraint (soft region):

St(mm) = 6

V f Sof t = 0

Goals (objective functions):

(J1) Min {mass (gr)}: part weight

(J2) Min {time (h)}: manufacturing time

(J3) Max, min, and on target {D (mm)}: total deformation

Bounds

Material subsystem D1 (Xd1):

0 ≤ V f ≤ 1

Manufacturing subsystem D2 (Xd2):

0 ≤ A
(
cm2

) ≤ 1911

0 ≤ H(cm) ≤ 20

0 ≤ V f ≤ 1

Product-design D3 (Xd3):

Rigid region:

5 ≤ Rt(mm) ≤ 25

0.4 ≤ V f ≤ 1

System-level optimisation objective (J*):

An optimal set of feasible and non-dominated solutions

mulation for the presented case study of a prosthetic socket
design produced by material jetting AM.

MDO solutionmethods for design space exploration
and exploitation

Embodiment design using a Bayesian network

Bayesian networks (BN) are an effective tool for decision
making and reasoningunder uncertainty. Their popularity has
risen in the last decade due to their ability to handle incom-
plete datasets by encoding statistical dependencies between
the variables, ability to explore causal relationships between
the variables within a system and to model domain knowl-
edge and data simultaneously, making them a sophisticated
package for data analysis (Heckerman et al., 1995).
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In the context of complex manufacturing process mod-
elling, BN support decision making through reasoning and
integrated product-process models can be created to explore
regions of interest in the design space during embodiment
stages of design (James et al., 2012; Shahan & Seepersad,
2012; Wu & Wang, 2021). In comparison to function-
oriented methods, BN modelling is progressive. BN allows
integration of data or functional models at any stage of the
model development and, therefore, is especially suitable at
the embodiment design stage (Hou&Jiao, 2020). BNs enable
the combination of multidisciplinary models, expert knowl-
edge, and data by providing a global and intuitive view of
dependencies (Moullec et al., 2013). Embodiment design and
exploration can be facilitated by defining statistical distribu-
tions of the design vector variables, and the likelihood of the
optimisation objectives can be calculated using the Bayesian
theorem. The likelihood of the objective gives the informa-
tion about what area (or range) of the design variables has
a higher probability of generating expected designs (Nanna-
paneni et al., 2017).

We used BayesiaLab 8 for the development and simula-
tion of the BN model. At its core, a BN presents a modular
and efficient representation of the joint probability distribu-
tion of a set of domain variables. The Bayes theorem powers
the inference mechanism in a BN wherein the probability
of occurrence of an event can be estimated based on prior
knowledge of conditional relation to the event (mathemat-
ical expression presented in Appendix 2). A BN can be
constructed to represent the dependencies within a system
comprising of all variables and decisions. The variables or
decisions are represented by nodes connected by arcs to sig-
nify conditional probability dependence, while the absence
of an arc signifies conditional independence. Parent nodes
feed dependencies into the dependent child nodes, forming
a hierarchy of decisions.

Based on the dependencies between different variables,
the joint probability distribution (JPD) of a BN can be fac-
torized into a set of conditional probability tables at the
nodes given their parent nodes. By manipulating the JPD
of the network with a large number of variables can be time-
consuming, local computations of posterior probabilities in
the presence of new information using conditional indepen-
dence assumptions of the variables modelled, speeding up
the inference mechanism (Lauritzen & Spiegelhalter, 1988;
McNaught & Chan, 2011). The BN uses the conditional and
marginal probability tables at each node to make inferences
during simulations (Koller et al., 2007). The development of
the BN for embodiment design for the MDO problem for-
mulation is explained below.

To produce aBN in the context of this research, we created
a directed acyclic graph (DAG) (Iwasaki & Simon, 1994).
The graph in Fig. 8 is represented as a colour-coded DAG
depicting the PSPP linkages for the prosthetic device. The

ρ

E
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H

A

Rt

Manufacturing

Vol.Rigid

Mass

ρVf(0)

Design

Mt

Vol.Soft

Sf

D
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Performance Variable

Independent Variable

Vf

VfveroVftango

Note: Variable Vf (connected by do ed green line) is presented in two places in the figure to 
improve readability

Fig. 8 Colour coded directed acyclic graph system model of an AM
prosthetic socket design

DAG is constructed based on the set of equations and the
associated ranges of values described in Appendix 1. The
probabilistic relations modelled in the BN for the case study
are shown in Appendix 2. The parent nodes or independent
variables (represented in green) within the developed net-
work consisting of four nodes (Rt, VfTango, VfVero, ρVf(0))
are assigned a prior marginal probability distribution (MPD)
of the form P(Node) ∼ U (a, b)which represents a uniform
probability distribution between a and b. The domain of each
parent node is split into a number of states of equal range.
The parent nodes feed dependencies into the child nodes (9
child nodes, represented in blue).

The relationship between the parent nodes and child
nodes is modelled using the surrogate models presented in
Appendix 1.Basedon the relationship, the domainof the vari-
able (child nodes) is calculated and assigned to equal states
within the node. Conditional probability tables (CPT) are
then computed within the network for the child nodes, given
the probability of their respective parent nodes. Finally, the
target nodes (Mass, Mt, and D) are performance variables
in the system model represented in red. The target nodes are
child nodes for which conditional probability tables are com-
puted like other child nodes. Themathematical expression for
computation of the conditional probability distribution in the
child nodes follows the Bayes theorem shown in Appendix
2.

In addition, equality and inequality constraint nodes (4)
are added between nodes (Vf, Sf), (Vf, mass), (Vf, Mt) and
(Vf, D) to ensure that the value of Vf remains between 0.4
and 1 following the MDO problem constraint. Thus, condi-
tional probability values for the states of the variable Vf <
0.4 are set to be zero. This implies that any values of mass,
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Mt, D, and Sf when Vf is less than 0.4 are not considered
in the network computations during simulation. The JPD of
the BN is calculated using the equation shown in Appendix
2 to compute the probability of all possible events in the net-
work as defined by the combination of the values of all the
variables. However, the BN factors the joint distribution into
conditional distributions of variables locally, given the parent
nodes of the variable. In addition, the independence assertion
that each variable is only dependent on its immediate parents
helps speed up the computation. Thus, during the simulation
of a fully specified BN, the posterior probabilities of any sub-
set of variables are computed bidirectionally, given evidence
about another variable subset using the Bayes theorem.

For this specific problem formulation, the BN is used to
harness the variation of design variables (i.e., Xdi) and map
the feasible design space. Besides, we wanted to identify the
region of interest that optimizes the objective functions while
satisfying the constraint functions. A BN allowed us to char-
acterise the effect of design variables on the target variables
and map the region of interest leading to optimal results. The
BN can be expanded to include expert product knowledge to
determine variable constraints and uncertainties and ascer-
tain variable interrelationships. Besides, the BN can guide a
resampling strategy to be implemented at the detail design.
Thus, adding data points can increase the local accuracy of
the models for the exploitation phase (Xiong et al., 2019).

Based on the inequality constraint on the safety factor, the
design space is classified into two regions, feasible and non-
feasible (i.e., feasible if Sf≥ 0). The obtained feasible region
still comprises amultitude of design solutions. To further nar-
rowdown the solution space, theBNexplores optimal regions
of the design space and reduces solution space to probabilis-
tically optimal solutions. The Bayesian inference is built on
top of the developed DAG. The BN comprises 21 nodes,
17 for variables and 4 for constraints (shown in Appendix
2), with each node divided into states. Each variable in the
DAG is designed as a node with multiple states within the
BN, such that the range of values the variable can take is
equally distributed based on the number of states defined for
that specific node. The nodes are connected with the help of
directed arrows whose direction determines the parent–child
relationship between the nodes. The independent variables
in this study are defined using a uniform distribution divided
into n number of states. The probability of the variable to
take a value within any of its defined states is equal at the
independent nodes. The range of values for dependent nodes
is based on the node connections coming into the node. Thus,
the probability of each state of a dependent variable is cal-
culated based on the conditional probability tables generated
for the dependent nodes (child nodes).

Once all the nodes and their connections are defined, the
BN model can be simulated for variables of interest by pro-
viding evidence to the nodes of the network. It is important

to note that the underlying mechanism for developing the
DAG and hence, the BN is modular and is dependent on
the variable interactions represented as equations. Design-
ers can simulate and assess the three subsystems collectively
and independently. For specific levels of granularity war-
ranted, designers can redefine or update system boundaries,
add or remove the connections and nodes, and changes can
be made to their states and value range within each node. In
this research, more states are provided for nodes Rt and Vf
than others to aid in the design of space exploration.

Detailed design using desirability functions and Pareto
Front

The detailed design requires that all three objective func-
tions need to be optimized concurrently. In this specificMDO
problem formulation, the objective functions were modelled
using response surface approximating functionswith second-
order polynomial two-factor interactions terms. The response
surface optimisation anddesirability function approach intro-
duced by Derringer and Suich (1980) was implemented
where the optimisation objectives of each were simulated
to isolate the Pareto Frontier (PF) of non-dominated solu-
tions such that no design solution can improve one criterion
without diminishing at least another criterion. The resulting
PF contains all dominant solutions with a maximum overall
desirability score.

Desirability function-based methods transforms the esti-
mated response models (̂y), into individual desirability func-
tions (d) that are then aggregated into a composite function
(Des.). This function is usually a geometric or an arithmetic
mean, which will be maximized or minimized, respectively
(Costa et al., 2011). Derringer and Suich proposed individ-
ual desirability functions based on three response types as
follows: Nominal-The-Best (NTB) (i.e., scenario 3 for opti-
misation—obtain target deformation socket design), where
the value of the estimated response is expected to achieve–a
particular target value (T). For this response type, the indi-
vidual desirability function is defined as:

d =

⎧
⎪⎪⎨

⎪⎪⎩

(
ŷ−L
T −L

)S
, L ≤ ŷ ≤ T

(
ŷ−L
T −U

)t
, L ≤ ŷ ≤ T

0, otherwise

(5)

where S are t are user-specified parameters (S, t > 0) thast
allow the system designer to specify the shape of d. The
individual desirability function transforms the response vari-
able into a range of values between 0 and 1, where 1 is most
favorable. In the NTB case, d = 1 for ŷ = T , and d = 0
for ŷ < L or for ŷ > U , where U is the upper and L is the
lower specification limit of the response.
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Larger-The-Best (LTB) (i.e., scenario 2 for optimisa-
tion—obtain the softest socket design), where the value of
the estimated response is expected to be larger than a lower
bound (ŷ > L). For this response type, the individual desir-
ability function is defined as:

d =
(

ŷ − L

U − L

)r

, L ≤ ŷ ≤ U (6)

where r is a user-specified parameter (r > 0). In the LTB
case one assumes that it is possible to establish a finite target
U such that d = 1 for ŷ ≥ U and d = 0 for ŷ ≤ L .

Smaller-The-Best (STB) (i.e., scenario 1 for optimisa-
tion—obtain the stiffest socket design), where the value of
the estimated response is expected to be smaller than an upper
bound (ŷ < U ). For this response type, the individual desir-
ability function is defined as:

d =
(

ŷ − U

L − U

)r

, L ≤ ŷ ≤ U (7)

under the assumption that it is possible to establish a finite
target L such that d = 1 for ŷ > L , and d = 0 for ŷ ≥ U .

The values assigned to s,t , and r allow changing the shape
ofd. Illustrative plots for different weights and discussion on
their choice are presented by Kros and Mastrangelo (2004).
The basic idea of the desirability function approach is to
transform a multi-response problem into a single response
problem transforming it mathematically. To simultaneously
optimize several responses, each of these disciplinary desir-
ability scores is combined using the geometric mean that
leads to the overall desirability score for each design solu-
tion. In essence, this transformation condenses a multivariate
optimisation problem into a univariate one, with the ability
to compare the overall desirability score as a function of
one or more independent variables. Mathematically speak-
ing, Eq. (8) defines the overall desirability score as:

Des. = (d1 ∗ d2 ∗ d3 ∗ . . . ∗ dn)1/n (8)

where (Des.) represents the overall desirability score that
is calculated by the geometric mean of individual dn , which
represents each individual transformed response of the objec-
tive functions (i.e., J1—Mass, J2—Manufacturing time, and
J3—Total deformation). The rationale behind using the geo-
metric mean is that if any quality characteristic has an
undesirable value (i.e., dn = 0) at a particular region of
the combination of design variables, the overall result is a
product that will return an unacceptable solution (Derringer
& Suich, 1980).

The simulation and optimisation during the exploitation
phase are based on a gradient descent algorithm as the
design variables are continuous. The gradient-based optimi-
sation algorithm is used to find the values of a function’s

parameters (coefficients) that minimize a cost function as
far as possible (Burke et al., 2018). The choice of desirabil-
ity functions and weighting factor depends on the priorities
of the decision-maker. This allows integrating prior knowl-
edge or preferences. The transformed response di obtains a
value 0 when the outcome represents a completely undesir-
able response and obtains value of 1 for the most desirable
response (Fuller & Scherer, 1998). In transforming objec-
tive functions to desirability scores, the sensitivity allocation
of "preferences" per design scenario was considered in the
analysis of optimal design solutions.

Results: prosthetic socket design

Embodiment design and solution space exploration

The BN is simulated to optimize the disciplinary objectives
in two scenarios. Scenario 1: (i) minimizing both mass (J1)
andmanufacturing time (J2), along withminimizing the total
deformation (J3) of the product to obtain the stiffest socket
design. Scenario 2: (ii) minimizing both the mass (J1) and
manufacturing time (J2)whilemaximizing the total deforma-
tion (J3) to obtain themost flexible design. Figure 9 shows the
BN design space exploration results, including results prior
to optimisation and scenarios 1 and 2. In Fig. 9, the target or
performance variables of the model (optimisation objective
in the context of MDO) is represented in (a), the dependent
variable (safety constraint in MDO) is presented in (b), and
the independent variables of the model are presented in (c).

The BN model is simulated backwards to perform the
exploration study for the different scenarios. It is important to
note that a forward simulation could also be executed to per-
form predictive analysis moving from independent variables
to the targets. Prior to optimisation, the left-most column in
Fig. 9 represents the default probability values for the states
of the performance and design variables (i.e., mass, Mt, D,
Vf, Rt, and Sf). The probability for Vf < 0.4 is set to zero to
satisfy the product design inequality constraint, as shown in
Table 4. The simulation output provides equal probabilities
for states of independent variables and conditional probabil-
ities for states of dependent variables when no evidence is
provided to the BN. It is observed that only 35.73% of solu-
tions in the design space satisfy the safety constraint for the
current configuration of the BN (see prior to optimisation in
Fig. 9). The probabilities for all states of nodeRt are observed
to be 5% each.

Optimal solutions need to be feasible, and therefore, they
must satisfy the inequality constraint such that Sf ≥ 0. For
scenario 1, hard evidence was provided to nodes mass, Mt,
and D to optimise (i.e., stiffest socket design while minimiz-
ing Mt and mass). The probability of the three nodes was set
to be 100% at the lowest possible state of each node. Scenario
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Fig. 9 BN design space exploration (a erformance variables, b dependent variable, c Independent variables) prior to optimisation for scenario 1
and scenario 2
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Fig. 10 Contour plot on the effect of Rt and Vf on total deformation (D)
and overlay view of the non-feasible design region and BN exploration
results

1 results show the effect of these choices on nodes Rt and
Vf. Vf at a state where its value is greater than 0.95 has the
highest probability (48.24%). Overall, several design solu-
tions exist for 0.85 < Vf ≤ 1. Similarly, for Rt, the highest
probability of 90.57% was observed for 10 < Rt ≤ 11 and
overall, design solutions exist for 9 < Rt ≤ 11.

For scenario 2 (i.e.,most flexible socket designwhilemini-
mizingMt andmass), hard evidence of 100%probability was
provided to nodes mass and Mt to lie in their lowest possible
states. Upon setting the evidence for mass and Mt, it was
observed that the probability of states for node D was zero
for any value of D > 41.99. Thus, to maximize J3, hard evi-
dence of 100% probability was applied to the state in which
the highest possible value of D was present, thus 19.66 <
D ≤ 41.99. Scenario 2 simulation shows the effect of these
choices on nodes Rt and Vf. The highest probability was
observed for Vf > 0.95 at 82.80%, and design solutions exist
for 0.85 < Vf≤ 1. Similarly, for Rt, the highest probability of
88.22% was observed for 9 < Rt ≤ 10, and design solutions
exist for 7 < Rt ≤ 11. Figure 10 shows the resulting contour
plot of Rt and Vf as a function of the total deformation (D).
Results show a strong preference for a stiff material, even if
high deformation is desired.

The contour plot displays the overlaid view of the non-
feasible design region, thus failing to satisfy the constraint of
Sf ≥ 0. The contour also combines the results obtained from
the BN exploration scenarios, defining a narrower design
space for the detail design stage. The observation results from
the BN simulations provide the region that leads to optimal
outcomes for both scenarios and can define a resampling plan
for additional FEA simulations to increase local accuracy at
the detail design and exploitation phase (Xiong et al., 2019).

Detailed design and solution space exploitation

Figure 11 shows the design alternatives’ impact on predic-
tions for D, Mt, and mass simultaneously. The design space
shows the combinations of Rt and Vf that lead to feasible and

Fig. 11 Design space results, including feasible and non-feasible solu-
tions. a 3D scatterplot for D as a function of mass, Mt, and resulting Sf.
b 2D scatter plot for mass as a function of Mt and resulting Sf

non-feasible solutions. In Fig. 11 (a), the surface plot shows
how increasing Vf values to Vf ≥ 0.6 lead to solutions that
satisfy Sf≥ 0.5. On the other hand, Fig. 11b shows the scatter
plot of Sf as a function of mass and MT. In this case, results
for Rt ≥ 12 mm led to a solution that satisfies Sf ≥ 0.5. In
the exploitation phase, a more restrictive Sf constraint is used
for the design exploitation phase, representing solutions that
lead to product design disciplinary alternatives with Sf≥ 0.5
and resulting in solutions where yield strength is at least 1.5
times the Von Mises stress (these solutions are coloured in
green, and therefore feasible).

The results of design "preferences" for the design exploita-
tion phase are provided in Table 5. We present a comparison
of design scenarios where optimisation objectives and design
constraints are modified, simulating different design pref-
erences. All the simulated design scenarios consider the
objectives to minimize socket Mt and mass. Comparing sce-
nario 1 (i.e., minimization of D to obtain the stiffest socket
design) design preferences,maximization of the Sf constraint
(i.e., scenario 1.0) and a solution where Sf is fixed to 0.5 (i.e.,
scenario 1.1). Maximizing Sf leads to the stiffest solution for
the socket (i.e., D = 1.32 mm) at the cost of providing the
highest Mt and mass for the socket (i.e., Mt = 39.76 h and
mass = 2426.89 g). On the other hand, targeting a Sf = 0.5
leads to an increased deformation (i.e., D= 5.95 mm), while
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Table 5 Design scenarios to minimize socket Mt and mass, considering different optimisation objectives for D, and Sf constraints

Scenario No Opt. objective (D) and design constraint (Sf) Rt (mm) Vf D (mm) Mt (h) Mass (g) Sf Des

1.0 Min. {D (mm)}; while Max. {Sf ≥ 0.5} 17.09 1 1.32 39.76 2426.89 2.05 0.58

1.1 Min. {D (mm)}; while Target {Sf = 0.5} 15.53 0.77 5.95 39.52 2228.58 0.50 0.68

2.0 Max. {D (mm)}; while Max. {Sf ≥ 0.5} 11.85 1 13.08 36.99 1830.27 0.82 0.51

2.1 Max. {D (mm)}; while Target {Sf = 0.5} 10.37 1 19.27 36.20 1671.29 0.50 0.90

3.0 Target {D (mm) = 8}; while Max. {Sf ≥ 0.5} 13.39 1 8.00 37.80 1999.67 1.16 0.58

3.1 Target {D (mm) = 8}; while Target {Sf = 0.5} 13.12 0.96 8.00 37.58 1986.48 0.5 0.73

improving Mt and mass (i.e., Mt = 39.52 h and mass =
2228.58 g) and overall desirability score (i.e., Des. = 0.68).

The design preferences in scenario 2 (i.e.,maximization of
D to obtain the softest available design) between maximiza-
tion of the Sf constraint (i.e., scenario 2.0) and a solution
where Sf is fixed to 0.5 (i.e., scenario 2.1) lead to a different
design outcome.Maximizing Sf leads to a more conservative
deflection (i.e., D = 13.08 mm) and increased Mt and mass
for the socket (i.e., Mt = 36.99 h and mass = 1830.27 g). In
comparison, targeting a Sf= 0.5 leads to the highest possible
deformation (i.e., D = 19.27 mm), while improving Mt and
mass (i.e., Mt = 36.20 h and mass = 1671.29 g) and highest
overall desirability score (i.e., Des. = 0.90).

Ultimately, scenario 3 (i.e., target deformation value based
on patient preferences) compares design preferences in terms
of Sf when deformation is set to a middle value (i.e., D =
8mm).Maximizing Sf (i.e., scenario 3.0) leads and increased
Mt and mass for the socket (i.e., Mt = 37.80 h and mass =
1999.67 g) in comparison to a solution where Sf is fixed to
0.5 (i.e., scenario 3.1) that provide slightly more reduced Mt
and mass for the socket design (i.e., Mt = 37.58 h and mass
= 1986.48 g) and higher overall desirability score (i.e., Des.
= 0.73).

To summarize the results of Table 5, the relative differ-
ence of mass from the stiffest to softest designs presented in
Table 5 provides a variation of 31.13%, corresponding to a
considerable reduction of mass of 755.6 g from the heaviest
and stiffest design to the lightest and softest design. Man-
ufacturing time (Mt) is less affected and provide optimal
solutions with an 8.95% difference from stiffest to softest
design. Defining the design Sf constraint impacts the result-
ing design alternative significantly. For example, selecting a
more conservative design with a higher Sf led to a lower-
ing overall desirability score, hence results that tend to be
heavier and have a longer manufacturing time. On the other
hand, reducing the Sf and targeting an Sf = 0.5 (i.e., solu-
tions where yield strength is 1.5 times the Von Mises stress)
increases the desirability score, leading to lighter designs and
faster manufacturing.

Figure 12 shows how the design exploitation phase can be
presented graphically. Figure 12a shows a 3D scatterplot for
D as a function of mass and Mt. This figure shows a Monte-
Carlo simulation of 4500 design alternatives that minimize
mass andMt,while satisfying Sf≥ 0.5. The Pareto Front (PF)
is isolated and represented by red point markers. In contrast,
blue point markers represent dominated solutions.

Figure 12b shows a 2D scatter plot for D as a function of
mass, and the resulting Rt is represented in a colour gradient.
The following Fig. 12c zooms into the PF and shows all the
design scenarios to minimize socket Mt and mass, consider-
ing different optimisation objectives for D and different Sf
constraints as presented in Table 5. Four out of six design
preferences presented in Table 5 are non-dominated solu-
tions. However, design preferences that imposed a Sf = 0.5
lead to theoretical dominated solutions (i.e., S1.1 and S3.1).

Conclusions and future work

Enhancing the intelligence of manufacturing systems
requires that material systems, design engineering, and man-
ufacturing systems are better connected. New computer
expert systemsmust support our ability to explore and exploit
cause-effect and interrelationships across disciplines more
efficiently, thus expanding the human cognitive capabilities.

This research has connected a material micro-scale
descriptor (Vf) and product design choices (Rt) into a broader
MDO problem formulation that includes multiple system-
level disciplinary optimisation objectives of a prosthetic
socket product design. The initial exploration was assisted
at the embodiment design with probabilistic reasoning based
on a Bayesian network (BN). The detail design stage showed
how to optimise all three objective functions using a desir-
ability function approach and gradient descent optimisation
algorithm to isolate non-dominated solutions. The resulting
problem formulation is used to generate feasible solutions
representing the best trade-off in the Pareto Front (PF) that
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Fig. 12 Pareto Front (PF) and
design space exploitation of
feasible solutions. a 3D
scatterplot for D as a mass
function, and Mt shows the PF
and dominated solutions. b 2D
scatter plot for D as a function of
mass and resulting Rt and Vf.
c 2D scatter plot for D as a
function of mass and resulting Sf
showing the PF results and
design preferences

satisfy disciplinary constraints and optimise objective func-
tions during the product design of an exemplary prosthetic
socket. The primary contribution and novelty of this research
are:

• To combine data-driven and model-based analysis meth-
ods to create multi-fidelity surrogate models in an explo-
ration and exploitation problem formulation using a pros-
thetic socket design as a case study.

• To develop an optimisation-driven design methodological
approach to be generalisable and adaptable to a large vari-
ety of engineering design problems.

• To demonstrate how engineering decisions at the mate-
rial micro-scale (i.e., Vf) and product design choices (i.e.,
Rt) had a ripple effect on concurrent disciplines across
length scales. Product performance was mathematically
intertwined with manufacturing, material systems, and
engineering design choices to increase system designers’
cognitive ability to find optimal solutions.

• To conceptualise a computer-aided expert system capa-
ble of exploring process-structure–property-performance
(PSPP) linkages in a digital manufacturing process.

Future research is planned to develop a higher-fidelity
FEA model capable of more reliably describing a socket
design’s behaviour and extending the problem formulation to
include a larger vector of design variables. For example, we
plan (i) problem formulations, including surrogatemodelling
selection and validation methods for higher dimensionality
problems. Thiswas limited intentionally to simplify the prob-
lem and interpretability of the socket study case. Besides, we
plan to include (ii) more disciplinary interactions as coupling

functions as represented by the dotted lines in Fig. 3 (e.g.,
variation of manufacturing process variables and its effect
on material structure D2–D1), (iii) other material systems,
including metallic materials and interactions with process
and heat-treatments, and (iv) considering different sources
of uncertainty from material system models, to manufactur-
ing and engineering design.

This socket study case was limited and cannot be used in
a real application context. To this end, considerable effort
is required to bring this specific design problem to a real-
world application, necessitating higher-fidelity mechanical
FEA simulations, functional prototyping, and validation test
studies involving prosthetists and patients. Nevertheless,
prosthetic sockets and similar applications can be engi-
neered using multidisciplinary exploration and exploitation
strategies. Hence, balancing stiffness and lightweight design
while combining multi-materials properties creates rigid and
soft pads in the socket’s specific "pain" areas. Besides, an
inductive design approach is highly desirable for end-users.
Hypothetically, the level of stiffness and deformation (D) can
be predefined at different socket regions. During the product
design, PSPP variables will be adjusted to provide optimal
solutions that tailor performance in an integrated digitalman-
ufacturing and design workflow to produce "one-of-a-kind"
prosthetics that are anatomically customised and mechani-
cally engineered to consider patient preferences and comfort.

In summary, optimisation-driven design poses signifi-
cant challenges. The design space must be defined and
intertwined mathematically in a problem that is neither
entirely understood nor necessarily appreciated across dis-
ciplines. One could imagine the next generation of novel
multi-scale computer-aided systems capable of exploring
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and exploiting the linkages at process, structure, property,
and performance levels tailoring the system to be capable
of solving specific product-design needs. Potentially, mate-
rial and manufacturing multi-fidelity models and advanced
design synthesis methods can be interlinked with advanced
computer-aided systems that consider product-design vari-
ables and expected performance. That being said, similar
exploration and exploitation approaches can be extended to
more diverse and sophisticated problem formulations dic-
tated by a particular application, manufacturing processes,
and material systems.

It can be argued that the entire design discipline is
"problem-centred". On the other hand, once the material
system and manufacturing disciplines are modelled, they
can support all kinds of design problems. For example, if
a new design problem emerges, the material and manu-
facturing surrogates can be "called" within the computer
expert system to assist in decision-making. Thus, providing
the system designer with the necessary information to drive
the design process considering the ripple effects of design
choices inmaterial andmanufacturing disciplines. The ongo-
ing research effort is focused on modelling other material,
manufacturing, and design processes involving machine
learning and artificial neural networks. Thus, allowing engi-
neering designers the holistic exploration and exploitation
using computer-aided systems tailored explicitly for inter-
twined digital manufacturing and design processes.
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Appendix 1

Equs. Functions MDO framework Summary of Fit

(9) E(M Pa) =
−7976 − 372, 073V f + 2895, 553V f 2 − 1134, 028V f 3

Where; 0 ≤ V f ≤ 1

D1–D3 RSquare 0.989009

RSquare Adj 0.986654

RMSE 60.71065

Mean 527.1156

Observations 18

(10) Y S(M Pa) = 1143 − 15, 753V f + 76, 332V f 2

Where; 0 ≤ V f ≤ 1
D1–D3 RSquare 0.992673

RSquare Adj 0.991696

RMSE 2.075053

Mean 21.25444

Observations 18

(11) A
(
cm2

) = 365.671 + 9.726Rt − 0.273Rt2 + 0.005Rt3

Where; 5 ≤ Rt(mm) ≤ 25
D3–D2 RSquare 0.999886

RSquare Adj 0.999544

RMSE 0.91435

Mean 465.12

Observations 5

(12) H(cm) = 14, 130 + 0, 193Rt
Where; 5 ≤ Rt(mm) ≤ 25

D3–D2 RSquare 0.999681

RSquare Adj 0.999575

RMSE 0.031623

Mean 17.04

Observations 5

(13) V f = [(V ol.Sof t/V ol.T otal) ∗ V f Sof t ] +
[(V ol.Rigid/V ol.T otal) ∗ V f ]/2
Satisfy; V ol.Sof t = 490, 9cm3 (8.1)
V f Sof t = 0 (8.2)

Where; 0 ≤ V f ≤ 1

D3–D2

(14) V ol.Rigid
(
cm3

) = 166.2 + 73, 642Rt + 0.740Rt2 + 0.002Rt3

Where; 5 ≤ Rt(mm) ≤ 25
D3–D1 RSquare 1

RSquare Adj 1

RMSE 0.119523

Mean 1487

Observations 5

(15) S f = 1653 − 0249Rt − 5.58V f + 0.00285Rt2 + 2543V f 2 +
0401Rt ∗ V f
Satisfy;
S f ≥ 0
Where;
5 ≤ Rt(mm) ≤ 25
0.4 ≤ V f ≤ 1

D3 (Constraint function) RSquare 0.995716

RSquare Adj 0.993931

RMSE 0.113362

Mean 0.492167

Observations 18
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Equs. Functions MDO framework Summary of Fit

(16) D(mm) = 218, 291 − 14, 258Rt − 191, 744V f +
0.2866Rt2 + 68, 597V f 2 + 3714Rt ∗ V f

Where; 5 ≤ Rt(mm) ≤ 25
0.4 ≤ V f ≤ 1

J3 RSquare 0.883631

RSquare Adj 0.835143

RMSE 8.361109

Mean 18.32945

Observations 18

(17) Mt(h) = −15, 911 + 2714H + 0.029A + 4130V f −
0.000012A2 + 0.002628H ∗ A − 0.637H ∗ V f

Where; 0 ≤ A
(
cm2

) ≤ 1911
0 ≤ H(cm) ≤ 20
0 ≤ V f ≤ 1

J2 (Min.) RSquare 0.98484

RSquare Adj 0.980292

RMSE 5.573067

Mean 54.90259

Observations 27

(18) ρ(g/cm3) = 1.101 + 0.116V f − 0.041V f 2

mass(g) = (
V ol.Rigid ∗ ρV f (i)

) + (V ol.Sof t ∗ ρV f (0))

Where; 0.4 ≤ V f ≤ 1
Satisfy;
V ol.Sof t = 490.9cm3

ρV f (0) = 1.119 ± 0.061g/cm3

J1 (Min.) RSquare 0.991623

RSquare Adj 0.989762

RMSE 0.002735

Mean 1.1441

Observations 12
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