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Abstract
Additive manufacturing (AM), originally used for prototyping, is increasingly adopted for custom final part production
across different industries. However, printing speed and production volume are two barriers for the adoption of AM for
product customization at large scale. Nevertheless, manufacturers could aim to combine the benefits of AM for product
customization with traditional mass customization (MC) technologies over the product life cycle (PLC). This approach is
showcased in our paper as a manufacturing opportunity and is addressed via a non convex-concave optimization model that
considers a monopolist manufacturer producing horizontally differentiated products at scale. To satisfy individual customer
preferences under capacity considerations, the firm jointly decides on the inventory, production quantity, product variety,
optimal technology-switching times (between AM and MC) and pricing strategy. Our approach can be implemented by
decision-makers to leverage customer-centricity and benefit from this novel hybrid manufacturing practice. By deriving a
closed-form solution for the production quantity based on an adaptive inventory policy, the resulting optimization problem
is solved using the Sample Average Approximation framework grounded by analytical results. Our results demonstrate
that the new usage of AM with MC can benefit a manufacturer for customer-centric driven strategies. Significant profit
improvements can be achieved with an AM–MC–AM technology-switching scenario under certain capacity conditions and
with an increasing-decreasing pricing strategy. Our results also indicate that the benefits of pricing flexibility are highest when
capacity is unlimited or when the firm does not hold inventory. Under capacity constraints, a simple decreasing pricing policy
combined with inventory performs very well.
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Introduction

Technological advances and digital transformation influence
and shift common practices in different fields, including the
field of additive manufacturing (AM, also known as 3D-
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printing). Indeed, AM is being used for product prototyping
already since 1988 (Hon, 2007). Nevertheless, only recently
has it been adopted for rapid manufacturing (RM) in the
serial production of final parts (see Campbell et al. Campbell
et al. 2020). Adopting AM for final parts production has been
proliferating across different industries (Berman, 2012): In
the automotive industry, BMW is manufacturing 3D-printed
customized components for commercial vehicles. AFMG
(2020) reports that “from consumer electronics to toys and
sportswear, key players within the consumer goods indus-
try are increasingly recognizing 3D-printing as a valuable
addition to existing manufacturing solutions.” As for indus-
trial goods, Bowman International, a leading UK bearings
manufacturer, and MX3D, a Dutch company that 3D-prints
aluminium bike frames, are a few other examples of 3D-
printing for large-scale end-part production (Davies, 2018;
MX3D, 2020). Overall, according to the industrial report by
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Campbell et al. (2020), rapid manufacturing using AM grew
from 3.9 to 60.6% of the total AM market during recent
years, while more and more manufacturers are interested in
using 3D-printing technologies for full-scale production as
they believe they can benefit from product customization at
lower costs. In this type of AM manufacturing, customiza-
tion implies a very high flexibility of manufacturing systems
and, thus, the ability to address customer needs delivering
high speed and lower cost which are both at the forefront
of AM technology. Following this path in our article, AM is
referred to as the technology fully adoptable for rapid pro-
duction of perfectly-customized final goods (Deradjat and
Minshall, 2017). The absence of tooling requirements, geom-
etry freedom, and inventory reduction through just-in-time
operations makes AM particularly attractive over conven-
tional manufacturing processes (Weller et al., 2015; Baumers
et al., 2016).

Unlike AM, the technology of mass “customization”
(MC) has the unique ability to design and manufacture prod-
ucts at mass production efficiency and speed (see Anderson,
2004). In this paper, MC is considered as the technology
which aims to address as large a customer base as possible via
a limited assortment of products and with a lower setup cost
than AM Alptekinoğlu and Corbett (2008), Berman (2012)
and Dong et al. (2020). Although AM and MC are capa-
ble of producing custom final parts cost-effectively, these
twoprocesses display technology-specific cost structures and
different customization capabilities highlighted in Lacroix
et al. (2021). According to them, the technologies differ in
(i) the part production process, (ii) the degree of part cus-
tomization, (iii) the setup cost and (iv) the marginal cost.
This is based on the fact that AM is commonly used to man-
ufacture complex geometrical parts in one production run,
unlike MC, which requires several production tools for an
equivalent result. By this, AM technology offers an unlimited
assortment of product variants (and, thus, allows for perfect
product customization), while MC displays a restricted vari-
ant assortment only (Dong et al., 2020). Furthermore, similar
to the work ofWeller et al. (2015), one can assume a constant
marginal cost under AM as opposed to a linearly increasing
cost in the number of product variants offered under MC.

Currently, AM technology is not widely deployed for
large-scale production and is not expected to replace tradi-
tional MC processes. In particular, printing speed and pro-
duction volume are preventing AM adoption on a large scale
(Arbabian andWagner, 2020). Nevertheless, researchers and
industry experts argue that AM can supplement existing MC
processes for the benefit of manufacturers (Holweg, 2015;
Rogers et al., 2016; Sasson and Johnson, 2016; AFMG,
2020). In this article, the benefits of combining AM with
traditional MC processes over the course of the product life
cycle (PLC) are analyzed. For this, both the demand and the
supply sides are considered in order to provide quantitative

decision tools to assess the optimal use of AM and MC tech-
nologies.

On the demand side, practitioners and academics have
scrutinized customer-centric strategies, recognized to add
business value, particularly in the context of MC. For
instance, (Lacroix, 2021) develop a time-varying locational
customer choice model that allows for customer hetero-
geneity and forward-looking behavior. They highlight the
importance of linking individual customers’ preferenceswith
the PLC and the technology choice (AM or MC) over time.
Following their path, the combination of customer-centric
strategies with the use of AM and MC provide broad manu-
facturing opportunities. Yet, economic benefits of particular
strategies still need to be uncovered. This especially holds
true for the cases with capacity constraints and across the
PLC. As demonstrated by Dong et al. (2020), AM and MC
technologies present different degrees of flexibility and cost
structures. Hence, optimal technology-switching scenarios
operating AM andMC over the PLC and with limited capac-
ity are of interest to manufacturers who aim to maximize
their profitwhile addressing individual customer preferences.
The well-known design thinking Venn diagram (Ideo, 2020)
is widely used in practice to deliver a profitable customer-
centric solution. Building on it (see Fig. 1), one can illustrate
the manufacturing sweet spot that drives operational effi-
ciency, customer satisfaction, and profit.

The diagram also highlights pending questions related to
this opportunity: Which pricing policy should be applied?
How many product variants to manufacture to satisfy indi-
vidual customer preferences? Which technology-switching
scenario over the PLC (i.e., combining AM with the firm’s
existing MC processes) would be most beneficial? What
are the effects of production capacity constraints and inven-
tory decisions on marketing and operations decisions? This
paper aims to answer the following question: “How can a
manufacturer best combine the benefits of AM with tradi-
tional MC technology under capacity constraints?”. Using
a mathematical model, which accounts for both the individ-
ual customer preferences and the manufacturer’s capacity
constraints throughout the PLC, the impact of combining
AM with MC for a monopolist manufacturer producing hor-
izontally differentiated products at scale is analyzed. In this
model, the manufacturer jointly decides on the inventory,
production quantity, product variety, technology-switching
times (between AM and MC) and product prices. To this
end, several technology-switching scenarios, and three pro-
duction capacity and inventory cases are analyzed.

On the supply side, the manufacturing setup presented in
this paper demonstrates that significant profit improvements
can be achievedwith anAM–MC–AMtechnology-switching
scenario givenourmanufacturing setup, revealing that to con-
sider both customer heterogeneity and limited production
capacity requires an increasing-decreasing pricing policy.
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Fig. 1 Manufacturing sweet spot to transition toward mass customization at scale

The findings naturally confirm that the benefits of pricing
flexibility are the highest when capacity is unlimited or when
the firm does not hold inventory. Nevertheless, under capac-
ity constraints, a simple decreasing pricing policy combined
with inventory performs very well and lessens the need for
pricing flexibility. Overall, our numerical results show that
combining AM and MC with customer-centric marketing
and operations strategies can increase amanufacturer’s profit
while addressing individual customer preferences.

The remainder of this paper is organized as follows. “Lit-
erature review” section explores the relevant literature and in
“Model framework” sectionour analyticalmodel is described
in detail. Specifically, the customer choice model is pre-
sented, various manufacturing scenarios are introduced, and
the technology production characteristics that differentiate
AM from MC are analyzed. Next, our demand forecasting
methods are described and our objective function is charac-
terized by building on the analytical properties of our demand
forecasting method to ground the non-convex-concave opti-
mization problem. In “Solution approach tomaximize profit”
section, an adaptive inventory policy is developed and the
Sample Average Approximation (SAA) framework is used
to solve our optimization problem numerically. “Numeri-
cal experiments” section is dedicated to robustness tests and
sensitivity analysis for the validity of the SAA framework,
presenting the main managerial insights thereafter. “Conclu-
sion and managerial insights” section summarizes our key
findings. The e-companion provides an overview of our nota-
tions and parametric assumptions (see Table 7), as well as
analytical results, algorithms, and proofs.

Literature review

A growing body of literature develops analytical models to
evaluate the impact of AM vs. conventional manufactur-
ing systems on operations management (Westerweel et al.,
2018b, a; Sethuraman et al., 2018; Song and Zhang, 2020;
Dong et al., 2020; Chen et al., 2020). Early works in this
field focused primarily on spare part logistics (Westerweel
et al., 2018a; Song and Zhang, 2020), consumer goods retail-
ing (Chen et al., 2020), component design cost analysis
(Westerweel et al., 2018b), and assortment planning (Dong
et al., 2020). Only few papers (i.e., Dong et al. (2020); Chen
et al. (2020)) position themselves at the operations-marketing
interface, considering both the demand and supply perspec-
tives. Our work contributes to this literature stream.

In the work of Chen et al. (2020), the authors focused
on AM adoption cases in a dual-channel retail setting (i.e.,
online and in-store channels) and studied the firm’s joint
decision about product offers, pricing and inventory. Fur-
ther, Dong et al. (2020) were among the first to evaluate the
impact of AM over conventional manufacturing systems on
a firm’s manufacturing strategy. The authors examine three
manufacturing technologies (i.e., AM, traditional flexible,
and dedicated technologies) and focus on product assortment
decisions under capacity constraints, demonstrating that pair-
ing AM with dedicated technology allows wider product
variety and profit increase. Recently, Lacroix et al. (2021)
has built on thework of Dong et al. (2020) to add technology-
switching (betweenAMandMC)andpricingdecisions under
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PLC considerations to the optimal decision-making process.
Assuming limited capacity under AM and MC, our article
extends their work to account for inventory decisions under
MC technology.

As our research focuses on a monopolist manufacturer
producing custom products that are horizontally differenti-
ated, papers modeling a utility-based demand in the mass
customization (MC) literature are relevant and of interest
to us. Commonly used in the marketing literature, utility-
based demand models in assortment planning (see Kök et
al., 2015) for a detailed review of demand models in this
research area) consider customer heterogeneity. Although
some researchers (e.g., Dong et al. (2020)) model customer
preferences through a multinomial logit (MNL) model, in
our paper demand is derived from the “Hotelling-Lancaster-
Bass” (HLB) demand model developed by Lacroix et al.
(2021). The HLB model is a novel time-varying locational
customer choice model that combines the classic Hotelling-
Lancaster model (Lancaster, 1990) (also referred to as an
“address model” by Kök et al. (2015)) and the well-known
Bass diffusion model (Bass, 1969). For tractability reasons,
most of the above papers study marketing and operations
decisions in a static setting. However, forward-looking cus-
tomers are typically variant-sensitive but also time-sensitive
in their purchasing decisions. Thus, as previouslymentioned,
our article adopts the HLB demand model, which character-
izes the demand of heterogeneous customers at the individual
level and also mimics the product life cycle (PLC) dynamics.

With respect to the operations side, few studies have
been conducted on generalized Bass diffusion models (i.e.,
including the selling price) (Bass, 2004) with production or
inventory decisions e.g., Ho et al. (2002), Kumar and Swami-
nathan (2003) and Shen et al. (2013). Ho et al. (2002) jointly
analyze demand and sales dynamics in a constrained new
product diffusion context where backorders and lost sales are
deemed. Kumar and Swaminathan (2003) explicitly model
interactions betweenmanufacturing andmarketing decisions
for a firm with a fixed production capacity. Shen et al. (2013)
focus on the joint impact of pricing, sales, and production
decisions with limited capacity. They derive optimal policies
for handling new product introductions. Unlike these papers,
our article does not use the Bass diffusion model as such to
model the demand but includes it through the HLB frame-
work. This goes in line with the fact that most Bass diffusion
models consider aggregate demands and do not address the
needs of operationsmanagers to apply customer-centric oper-
ations strategies.

The pioneering work of Chatterjee and Eliashberg (1990)
developed an innovation diffusion model using a micro-
modeling approach (i.e., modeling demand at the individual
level) andhighlighted the added-valueof customer segmenta-
tion in terms of adoption times. Lacroix et al. (2021) showed
the importance of modeling time-varying customer prefer-

ences at the individual level as they could directly impact the
operations, marketing decisions and manufacturers’ profit.
Accordingly, since our focus is not on new product introduc-
tion timing but on evaluating the benefits of combining AM
with traditional MC, our work builds upon that of Lacroix
et al. (2021). The authors consider amonopolistmanufacturer
who jointly optimizes technology-switching, pricing and
product variety decisions across the PLC, whereas our model
considers AM and MC technologies as capacity-constrained
with inventory decisions under MC technology.

Our work is also related to the literature on pricing and
production control under capacity constraints.While this line
of literature primarily focuses on inventory control where a
demand distribution is assumed to be known and station-
ary, few studies are intended for consumer goods exhibiting
non-stationary demand (i.e., the demand probability func-
tion changes over time) and partial information. The focus
in this paper is on adaptive inventory control problems for
non-stationary demand and incomplete information. The ear-
liest model investigating stochastic non-stationary demand
was presented by Hadley and Whitin (1961). They proposed
an optimal inventory model where demand is Poisson dis-
tributed. Graves (1999) developed an adaptive base-stock
inventory policy for a non-stationary problem. However, in
Graves’ model, the firm has complete information as the
demand is fully characterized by an auto-regressive inte-
grated moving average ARIMA(0,1,1) and by the observed
demand from previous periods. Kurawarwala and Matsuo
(1996) presented a growth model to estimate the parameters
of a non-stationary demand process over its entire PLC but
do not revise these estimates using new observations. Tre-
harne and Sox (2002) examined a periodic-review inventory
model with non-stationary and partially observed demand.
The demand state is estimated using the observed sales in
each period. The inventory control problem is modeled as
a partially observed Markov’s decision process. Recently,
Yang and Kim (2018) developed a joint replenishment pol-
icy characterized by a variable order-up-to level for items
sold in a retail system. They adopt a multiplicative seasonal
model to generate demand data to forecast the true demand
and assume that the forecast errors are normally distributed.
Our model forecasts the demand using a discrete-time ver-
sion of a diffusion model. The above-mentioned studies are
different from our work in that they do not apply customer-
centric manufacturing strategies, that is, they do not consider
the evolving customer purchasing behavior at the individual
level and most of them do not combine marketing and oper-
ations decisions. Key realistic features that distinguish our
paper from the above-mentioned ones are (i) customer het-
erogeneity in terms of product attributes and buying times,
(ii) pricing flexibility, and (iii) capacity constraints and PLC
considerations at the marketing-operations interface. In fact,
technology-switching, pricing, product variety, and inven-
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tory decisions that are of interest to operations managers are
jointly optimized in our work, in a context where customer-
centric operations strategies have gained much attention.

Model framework

Consider a monopolist manufacturer, who serves customers
over a finite time horizon with periods t = 1, ..., T . The cus-
tomer preferences are heterogeneous in product attributes
and buying times and are described through a time-varying
locational choice model similar to Lacroix et al. (2021).
This model is referred to as the Hotelling-Lancaster Bass
(HLB) model by the authors (see Section 3.1). Accounting
for the individual customer preferences, the manufacturer
decides which production technologies (AM, MC or their
combination) to employ over the PLC in order to maximize
profit. The technology-switching scenario uses a specific
combination of AM and MC technologies and requires the
computation of optimal technology-switching times, defined
as a pair (TA→M , TM→A) where TA→M and TM→A repre-
sent the time periods when the manufacturer changes the
AM technology for the MC setup and vice versa. We set
T = {(TA→M , TM→A) : 0 ≤ TA→M < TM→A ≤
T + 1} and denote AM and MC production periods by
T A = {t ∈ {0, T } : t ≤ TA→M or t > TM→A} and
T M = {t ∈ {0, T } : TA→M < t ≤ TM→A} correspond-
ingly. To determine those optimally, an analytical model is
proposed that jointly accounts for the following decisions
over time t : (i) the technology-switching times; (ii) the pric-
ing strategy (pt )1≤t≤T ; (iii) the product variety underMC, n;
(iv) the production quantity for each mass-customized vari-
ant j , Q j,t .

Starting with the customer choice model, manufactur-
ing scenarios, production technology assumptions and firms’
optimal operational decisions are discussed next.

Demand side: customer choice model

Let the potential market size, N , represent the initial num-
ber of potential customers. Unknown a priori, this number
can be estimated qualitatively via market research or via the
Delphi method (Snyder and Shen, 2019). A random cus-
tomer ξ is determined by two independent attributes τ and
φ: ξ = (τ, φ),Pξ = Pτ ⊗Pφ , where τ is an ideal buying time
and φ is the level of the customer’s heterogeneity describing
his/her product preferences. To satisfy customers, the man-
ufacturer adopts horizontal product differentiation, i.e., the
selling price is equal for all product variants.

The virtual product space � = [0, 1] is a set of cus-
tomers’ ideal product variants φ, uniformly distributed as
Pφ = U([0, 1]). The AM technology is assumed to serve
customers perfectly in product attributes, while, in contrast,

the customers are served with the nearest mass-customized
variant under the MC technology. The set of MC-produced
variants is denoted by X = {x1, . . . , xn} ⊂ [0, 1]n and con-
tains n products. Further, the customer’s ideal buying time τ

follows the truncated Bass distribution Fτ (t), which models
the spread of customers alongwith the PLC (seeLacroix et al.
2021). Note that the Bass distribution (Bass, 1969) models
the PLC using coefficients p and q describing innovators and
imitators correspondingly. The truncated Bass distribution is
the modification allowing to consider a finite time selling
horizon as in this paper.

Overall, the customer ξ acquires the following utility at
period t from a given production technology:

UT (ξ, t) = UT (τ, φ, t) = ω(τ)

(
1 − γ (τ)

|τ − (2t − 1)/2|
T

−λ(τ)d(φ,X )1T M (t)

)
. (1)

Here, ω(τ), γ (τ) and λ(τ) are the customer’s willingness-
to-pay, time- and product-sensitivities, correspondingly. Fur-
ther, d(φ,X ) is the Euclidean distance between the cus-
tomer’s ideal variant φ and its nearest mass-customized
variant in X , where the set X is a finite subset of [0, 1]n and
φ is an element uniformly drawn from the interval [0, 1];
1T M (t) denotes the indicator function equal to one under the
MC technology and to zero, otherwise.

The product disutility, which is equal to the product sensi-
tivity λ(τ) multiplied by the product misfit d(φ,X )1T M (t),
occurs due to the limited number of product variants available
under the MC technology. Oppositely, the AM technology
enables customers to order products perfectly matching their
desires, i.e., d(φ,X )1T M (t) = 0 under AM. By this, the
MC technology provides a higher customer willingness-to-
pay penalization than the AM technology given that all other
parameters are equal. Further, independently of the technol-
ogy of the production, the utility is reduced in line with the
time disutility factor, which is the product of the time sensi-
tivity γ (τ) and the normalized time lag |τ− 2t−1

2 |/T between
the product’s selling period and the customer’s ideal buying
time τ . Note that all the parametersmay vary over the product
life cycle (PLC), representing evolving customers’ interests
and their sensitivity.

Overall, it is assumed that customers are rational utility
maximizers (i.e., the customers choose the product variant
that yields the maximum utility for them). Furthermore, the
following assumptions are adopted about the customer pur-
chasing behavior: given the selling price pt , (i) a customer
buys at most one product as soon as his or her utility exceeds
the selling price, (ii) the customer buys at the first period t
at which the previous purchasing condition is satisfied, if
the product is available, and leaves the market. Assump-
tion (i) implies that the initial market size N (the set of
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remaining potential customers after t) is denoted by 	t .
Our general notations and parametric assumptions for the
decision variables, theHLBcustomer choicemodel, the tech-
nology characteristics, and the inventory policy (described in
“Demand side: forecasting model” section) are summarized
in Table 7 (see e-companion).

Demand side: forecastingmodel

Let Dt denote the demand at time t and let D j,t specify the
demand for the variant j . The demand for the mass-produced
product j with characteristics x j ∈ X can be written as
D j,t = ∑

i∈	t−1
1{UT (ξi ,t)>pt }∩{d(φi ,x j )≤δ}, where δ = 1

2n is
the maximal level of tolerance between the desired product
φi and its closest available analog x j in X . Thus,

[
Dt = ∑

j
∑

i∈	t−1
1{UT (ξi ,t)>pt }∩{d(φi ,x j )≤δ} if T (t) = MC

Dt = ∑
i∈	t−1

1{UT (ξi ,t)>pt } if T (t) = AM .

(2)

Note that the purchase happens if the individual cus-
tomer’s utility is greater or equal to the price (see Timonina-
Farkas, 2020) for an example with optimal purchase quan-
tities). This goes in line with the well-known concept
of customer’s surplus, which is greater than zero if the
willingness-to-pay adjusted for the time and product mis-
fit in our model (see Eq. (1)) exceeds the price. Clearly, the
theoretical demand (2) depends on parameters which need
to be estimated based on data. The quality of this estima-
tion strongly influences the manufacturer’s decision about
the production quantity (see Snyder and Shen 2019). This
article proposes two methods to approximate the demand

forecast ∗D′
j,t based on censored and uncensored informa-

tion cases.
In the censored information case, the firm estimates the

Bass distribution Fτ (t) and the demand forecast is obtained
based on this estimate. A left subscript c (for censored) rep-
resents this alternative. Due to the independence of τ and φ

for the population of size N , the demand forecast, thus, can
be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c D′
j,t = N ×

cd′
j,t︷ ︸︸ ︷

P({t ≤ τ < t + 1} ∩ {d(φi , x j ) ≤ δ})
= N

n (Fτ (t + 1) − Fτ (t))

c D′
t = ∑

j c D′
j,t ; (:= Ncd′

j,t = N
n cd′

t)

⎤
⎥⎥⎥⎦ if T (t) = MC;

c D′
t = N × P(t ≤ τ < t + 1)︸ ︷︷ ︸

cd′
t

= N (Fτ (t + 1) − Fτ (t))
]

if T (t) = AM .

(3)

In the uncensored information case, the firm can statis-
tically estimate the customer attributes ω, λ and γ through
market research. In this case, the demand forecast is com-
puted for a given pricing strategy and is based only on the
mean value of the demand in the customer choice model.
This alternative is characterized by a left subscript u (for
uncensored). The demand forecast yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u D′
j,t = N ×

ud′
j,t︷ ︸︸ ︷

P

(
{UT (ξ, t) ≥ pt } ∩ (∩1≤g<t {UT (ξ, g) < pg}) ∩ {d(φi , x j ) ≤ δ}

)
u D′

t = ∑
j u D′

j,t ; (:= Nud′
j,t = N

n ud′
t, see (5) below)

⎤
⎥⎥⎦ if T (t) = MC;

u D′
t = N × P

(
{UT (ξ, t) ≥ pt } ∩ (∩1≤g<t {UT (ξ, g) < pg})

)
︸ ︷︷ ︸

ud′
t

⎤
⎦ if T (t) = AM .

(4)

To approximate the demands, one can use the indepen-
dence of τ and φ and the transfer theorem against the product
law to compute ud ′

j,t :

ud ′
j,t =

∫ T

0

⎛
⎝∫ x j + 1

2n

x j − 1
2n

⎛
⎝ t−1∏

g=1

1{UT (x,y,g)<pg}

⎞
⎠

1{UT (x,y,t)≥pt } fτ (x)dy

⎞
⎠ dx . (5)
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Note that the desired and the produced products are con-
sidered to be close to each other, i.e., d(φi , x j ) ≤ δ, if
and only if φi ∈ [x j − 1

2n , x j + 1
2n ]. Then, a change

of variables y′ = x j ′ − x j + y in the above expression
leads to the following equality under the MC technology:

ud ′
j ′,t =u d ′

j,t , ∀ j, j ′. The uncensored forecast alternative
plays a central role in analytically grounding results of this
paper (see Lemma 1 and Theorems 1, 2). Note that the fol-
lowing holds as a consequence of the uniform distribution in
the Hotelling-Lancaster model, the independence of τ and φ,
and (3, 4):

∗ D′
j,t =∗ D′

t/n, ∗ D′
j,t = N∗d ′

j,t , ∗ D′
t = N∗d ′

t ,

∗d ′
t =∗ d ′

j,t/n, where “∗′′ represents c or u. (6)

Supply side: manufacturing policies

Consider themanufacturer, who can serially produce product
variants usingAMor/andMC technologies, characterized by
the following assumptions:

(A1) AM and MC are both considered as flexible manu-
facturing systems – they can easily adapt to changes
in the product variant and in the quantity being man-
ufactured (Dong et al., 2020).

(A2) The lead time is zero, that is the product variants are
produced instantaneously.

(A3) The product quality is similar under bothAMandMC
technologies. Nevertheless, AM is assumed to serve
customers perfectly in terms of customer preferences
φ. Oppositely, the product assortment X is limited
under MC.

(A4) Both technologies require one unit of common raw
material to produce one product variant.

(A5) As the models of horizontal product differentiation
assume no price discrimination, the selling prices and
unit production costs are assumed to be identical for
all variants at time t .

(A6) Themanufacturing capacity per period K A underAM
(respectively, K M under MC) is constant over the
PLC, following Dong et al. (2020).

(A7) Following assumption (A6), we also assume that
customer orders are served on the First-Come First-
Served (FCFS) basis up until the capacity limit is
reached.

(A8) AM follows the Make-To-Order (MTO) production
process, i.e., the manufacturer does not hold inven-
tory as products are tailor-made and shipped directly
to customers. Producing ahead of time under AM
would require prior knowledge of customer pref-
erences, which is beyond the scope of this article.
Differently, MC follows the Make-To-Stock (MTS)

process with one-dimensional product customization
(see the assumption of Jiang et al., 2006). As produc-
tion capacity and the assortment size (set to nmax ) are
limited, the manufacturer may need to produce ahead
of time tomeet demand during the upcoming periods.

Given the product life cycle stage, the firm decides whether
to switch from one production technology to another to
maximize the profit while satisfying individual customer
preferences. Following the setup of Lacroix et al. (2021),
five production scenarios are analyzed. The scenarios are
structured in line with the PLC curve and associated with
product life cycle stages (i.e., introduction, growth, maturity
and decline). Nevertheless, oppositely to themodel presented
in Lacroix et al. (2021), our article takes capacity constraints
and inventory levels explicitly into account (see Shen et al.,
2013). Overall, the following production scenarios are con-
sidered in this work:

Base case (BC): The manufacturer uses MC technology
independently of the PLC stage;

Case 1 (C1) AM → MC: AM is used during the PLC
introduction/growth stages;

Case 2 (C2) MC → AM: The manufacturer uses AM
toward the PLC decline stage;

Case 3 (C3) AM → MC → AM: The manufacturer
uses MC during the PLC maturity stage;

Case 4 (C4) AM:Themanufacturer uses only AMover
the PLC.

Note that we do not consider scenarios withmultiple technol-
ogy switches during one stage of the PLC. This is due to the
suboptimality of such scenarios in case no substantial change
in demand is foreseen. Following our model setup, one can
also eliminate theMC → AM →MC case because of higher
costs associated with it at different stages of the PLC. The
manufacturing technologies characteristics and notations are
summarized in Table 1.

UnderAMandMC technologies correspondingly, thefirm
incurs one-time fixed costs, k A(N ), and k M (N ), which are
independent of the production quantity, though dependent
on the market size, N . This reflects investment expenses on
AM and MC equipment. The fixed cost k M (N ) is counted
once if TA→M < T , while the fixed cost k A(N ) is incurred
if TA→M > 0 or TM→A < T . Following the assumption of
Dong et al. (2020), one can assume that kA(N ) ≥ kM (N )

since 3D-printers are typically more expensive than MC
equipment. Based on the assumption of Lacroix et al. (2021),
the authors set k A(N ) = Nk̃ A, k M (N ) = Nk̃ M , where
k̃ A = k A/N and k̃ M = k M/N . Further, per unit production
costs are denoted by cA for AM technology and by cM (n) for
MC technology, where cA > 0 and cM (n) > 0. Due to AM’s
infinite flexibility in terms of product variants, cA does not

123



288 Journal of Intelligent Manufacturing (2023) 34:281–301

Table 1 MC and AM technology characteristics comparison

Characteristic Production technology comparison

MC AM

Production framework MTS MTO

Production period T M T A

Assortment size n ∈ [1; nmax ] n ∈ [1; +∞[
Unit production cost cM (n) = cB(1 + (n − 1)δ) > 0 cA = constant > 0

Setup cost k M = constant > 0 k A = constant > 0

Production capacity K M
j > 0,∀ j ∈ {1, . . . , n} K A > 0, K A ≤ ∑

j K M
j := K M

Total production capacity K M = ∑
j K M

j = N K̃ M K A = N K̃ A, K A ≤ K M

Holding cost h 0 (no inventory under AM)

Salvage value v = 0.8 × pTM→A 0 (no inventory under AM)

depend on the product’s variety and is set constant for sim-
plicity. By contrast, cM (n) = cB(1 + (n − 1)δ) depends on
the number of mass-customized variants, where cB denotes
a base cost and δ represents an incremental cost (following
the form and notations in Dong et al. (2020)).

Besides the production framework (MTS and MTO), the
product misfit penalty cost and the cost structure, AM and
MC differ from each other in terms of production capacities
(in line with Shen et al. (2013) and assumption (A6)). The
total production capacity underMC is denoted by K M/n and
computed per period and variant. Being equally distributed
among the mass-customized variants, it is greater than the
production capacity under AM per period, which is denoted
by K A. We set K A = κ N

T > 0, where K A ≤ ∑
j K M

j :=
K M = κ

ρ
N
T , where κ denotes the production capacity mag-

nitude, and ρ = K A

K M the production capacity ratio between
AM and MC. To adapt the production capacities to the
market size, they are set proportional to N . Proportionality
coefficients introduced are K̃ M = K M/N = κ/(ρT ) and
K̃ A = K A/N = κ/T .

Overall, on the supply side, our article considers a
capacity-constrained production that uses two flexible man-
ufacturing systems, namely AM and MC. Three production
capacity and inventory scenarios are investigaged: (i) the
MTO uncapacitated (MTOUC) scenario (which serves as
our reference case), where production capacities under AM
and MC are assumed to be unlimited and the firm does not
hold inventory; (ii) the MTO capacitated (MTOC) sce-
nario, where the production capacities under AM and MC
are constant over time, and the firm does not hold inven-
tory; finally, (iii) the MTS capacitated (MTSC) scenario,
which is similar to the MTOC scenario and allows the firm
tohold inventory. The lead time is zero, that is, the variants are
produced instantaneously. Also, the manufacturer can face a
non-stationary demand for which the information distribu-
tion is not necessarily accessible. Therefore, in the MTSC

scenario, the manufacturer carries an inventory for an assort-
ment of mass-customized variants, sold to end-users. The
inventory is controlled using an adaptive inventory policy,
described in “Adaptive inventory policy” section.

Further, on the demand side of the MTOC scenario, the
customers purchasing MC-produced goods are not able to
observe the manufacturer’s inventory levels, do not make a
second choice or return later in time if the first choice is
unavailable due to production capacity shortage. In this case,
unmet demand during the period is considered lost for the
manufacturer, who incurs a stockout cost denoted by s. Fur-
ther, the excess inventory is salvaged at value v, at the end
of the last MC period, i.e., at TM→A + 1. The salvage value
corresponds to a fraction of the selling price of the last period
under MC. The on-hand inventory is being held with a hold-
ing cost h per unit per period. The holding cost is assumed
to be lower than the stockout cost, h < s, otherwise there
would be no incentive for the firm to stock the variants. Also,
to ensure the profitability of the manufacturer the following
condition should hold: pt > v > cM (n). The notations are
summarized in Table 7 (see e-companion).

Supply side: manufacturer’s profit

One can now compute the manufacturer’s profits implied by
AM and MC technologies. We denote the profit at period t
by 
T

t (p). Based on the cost structures described in “Sup-
ply side: manufacturing policies” section, we formulate the
following profit function for the AM technology:


T
t (p) = (pt − cA)St − sLt , if T (t) = AM, (7)

where St = min{Dt , K A} are the realized periodic sales and
Lt = max{0, Dt − K A} are the lost sales with unit cost s.
Further, the profit function forMC technology can be defined
as:
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T
t (p) =

∑
j

(
pt S j,t − cM (n)Q j,t − hI j,t+1

−sL j,t + v I j,TM→A+11{t=TM→A}
)
, if T (t) = MC, (8)

where S j,t = min{D j,t , K M
j + I j,t } are the the realized sales

and L j,t = max{0, D j,t − I j,t − Q j,t } are the lost sales
for the product j at period t . Unlike the profit generated by
AM technology, the profit under MC technology requires
the optimization over the production quantity Q j,t , as well
as the knowledge about the inventory I j,t+1 and the salvage
amount I j,TM→A+1 for product j . Thus, the manufacturer’s
total profit, combining the functions (7) and (8), and incor-
porating the fixed costs for AM and MC technologies, can
be written as:



T

({ξi }N
i=1, p) =

∑
t


T
t (p)

−k A(N )1{t :T (t)=AM}
=∅ − k M (N )1{t :T (t)=MC}
=∅. (9)

Note that the additivity property presented in the work of
Lacroix et al. (2021) does not hold under the MTOC and
MTSC scenarios in our profit function. Faced with produc-
tion capacity constraints, the manufacturer risks that some
potential buyers cannot be served due to product unavailabil-
ity. For instance, if two customers have a positive utility and
are interested in the same product variant, one customer will
end up not purchasing if only one such variant is available.
In general,



T

({ξi }N
i=1, p) 
=

N∑
i=1



T

({ξi }, p). (10)

Thus, the individual customers’ profits cannot be defined
independently of each other and the Law of Large Num-
bers (LLN) cannot be applied directly. Considering the mean
profit per customer as the function πT ({ξi }N

i=1, p) defined
as

πT ({ξi }N
i=1, p) = 1

N

T ({ξi }N

i=1, p), (11)

the main question which arises is if the limit in (11) exists
and what its value might be. This question is addressed in
“Supply side: mean profit per customer” section. In partic-
ular, the limit of (11) is described algorithmically and its
almost sure (a.s.) convergence is proven. To further validate
our optimization approach, the validity of the SAA approach
is verified (see “SAA convergence” section).

Supply side: mean profit per customer

As observed in (10), the arguments fromLacroix et al. (2021)
to prove a.s. convergence in (11) to some limit can no longer

be used. If such a limit existed, it would be the theoreti-
cal mean profit per customer, denoted by π̃(T , n, p) for the
given pricing, product variety and production strategies. In
this section, a precise algorithmic formulation of π̃(T , n, p)

is developed and the aforementioned a.s. convergence is
proven. Note that, for the ud ′

t , we have an integral form (5):

ud ′
t =

∫ T

0

⎛
⎝∫ 1

0

⎛
⎝ t−1∏

g=1

1{UT (x,y,g)<pg}

⎞
⎠

1{UT (x,y,t)≥pt } fτ (x)dy
)

dx . (12)

Lemma 1 The actual mean demand convergences almost
surely (a.s.) to the uncensored mean demand for all t , j .

Proof of Lemma 1. By the Law of Large Numbers (LLN) the
a.s. convergence of the actual mean demand to the uncen-
sored mean demand for all t , j is obtained. From this follows
the a.s. convergence of the quantities involved in the profit
function, that is the mean of target and on-hand inventory
levels, production quantity, sales and lost sales, on-hand
inventory for the next period and, finally, the profit per period
(see e-companion EC. 2 for more details).

The limiting total target inventory level per period (i ′1, . . .
, i ′T +1) can be obtained from (∗d ′

1, . . . ,∗ d ′
t ) by an algorithm

that resembles the method (WFS), described in Section 4.1.
Using this key observation and Lemma 1, the theoretical
mean profit per customer and its algorithmic formulation
can now be formally defined. .

��
Theorem 1 Mean profit per customer, a.s.convergence. If
(ξi )1≤i≤N are i.i.d. random variables, then



T

({ξi }N
i=1, p)

/
N →a.s. π̃ (T , n, p), where (13)

π̃(T , n, p) = πT
1 + . . . + πT

T − k̃ A1{TA→M >0 or TM→A<T }
−k̃ M1{TA→M <T }, (14)

and the πT
t ’s are obtained from algorithm (A-MTS) (see e-

companion EC.4).

Proof of Theorem 1 The proof follows from Lemma 1 (see
e-companion EC.2).

��
Further, the following corollaries arise using arguments

similar to those detailed in Lemma 1 and Theorem 1. They
provide the basis for algorithmic computations of the theo-
retical mean profits per customer derived from the equation
for ud ′

t , in the MTOC and MTOUC scenarios.

Corollary 1 Mean profit per customer – the MTOC sce-
nario. The a.s. convergence holds in the MTOC setup, while
the limit of the mean profit per customer can be obtained
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by a simplified version of the (A-MTS) algorithm (see e-
companion EC.5).

Corollary 2 Mean profit per customer – the MTOUC sce-
nario. In the absence of inventory and production capacity
limitation, the case of Lacroix et al. (2021) is recovered, for
which the a.s. convergence of the mean profit is derived (see
e-companion EC.6).

Solution approach tomaximize profit

The manufacturer aims to maximize the total expected profit
by jointly deciding on (i) the technology-switching times
(TA→M , TM→A), (ii) the pricing strategy pt , (iii) the product
variety n, and (iv) the production quantity Qt under MC.
Our optimization problem is formulated using the theoretical
mean profit per customer in line with Theorem 1:

π∗ := max
T

1≤n≤nmax

max
p∈P

π̃(T , n, p).
(15)

Importantly, as demonstrated in “Adaptive inventory policy”
section, the optimal production quantity can be written in a
closed-form and, thus, one does not need to specify this deci-
sion variable in the formulation (15) for a numerical solution.
Furthermore, pricing decisions are separable from the deci-
sions about switching times and product variety. Thus, let us
first consider the inner maximization, which is a non-convex
optimization problem:

π̃(T , n) := max
p∈P

π̃(T , n, p). (16)

Its solution can be obtained via methods similar to those
described in Lacroix et al. (2021), i.e., via the use of the SAA
framework (Shapiro et al., 2014) and a direct local search
method, in particular a Pattern Search (PS). Note that the PS
heuristic is commonly used for nonlinear programming prob-
lems with discontinuous non-smooth objectives (Chinneck,
2015).

In the outer optimization, the optimal value π̃(T , n, p) is
estimated based on Theorem 1, Corollaries 1, 2 and employ-
ing algorithms (wfs, A-MTS, A-MTOC, A-MTOUC). As
the computation of the value ud ′

t in Eq. (4) is based on T
integrals (12) and is computationally complex, the function
(15) is optimized using the SAA framework. For this, one
estimates the maximum mean profit per customer (16) and
finds the optimal pricing strategy for a fixed production and
a product variety strategy T and n, correspondingly. Multi-
ple estimates are generated to efficiently obtain the value π∗
which guarantees a lower bound on the profit via associated
strategies p∗, T ∗, n∗.

Importantly, one can prove that the SAA convergence
holds even in the absence of the additivity property (10).
A robustness test is conducted in “Robustness test and pop-
ulation sample size choice” section to determine a sufficient
sample population size for the SAA optimization problem.

Adaptive inventory policy

The optimal quantity Q j,t for the mass-produced variant j
must correspond to the minimum between the capacity K M

j
and the demand D j,t adjusted for the discrepancy between
available and necessary (i.e., target) inventories on stock.
The inventory on stock must suffice for a part of the present
demand and a part of future demand in case the production
capacity is low.Denote the on-hand inventory by I j,t and note
that it might differ from the target inventory I ′

j,t , which is
necessary to hold in reality already at time t to avoid losses
because of upcoming demands. The production quantities
and the evolution of inventories in time can be written as:

Q j,t =1{T (t)=MC} min{K M
j ,max{0, I ′

j,t − I j,t +D j,t }},
Qt =

∑
j

Q j,t (17)

I j,t+1=max{0, I j,t +Q j,t −D j,t }, It+1 =
∑

j

I j,t+1.

(18)

Clearly, one would wish for no discrepancy between the
available and target inventories I j,t and I ′

j,t . To reduce
this discrepancy, an adaptive inventory policy is developed,
which relies on a procedure described below and accounts for
the fact that the demand forecast is interdependent across the
PLC due to the influence of production capacity on the cus-
tomer’s ability to purchase. The on-hand inventory I j,t can
be monitored periodically at the beginning of each period t
and one can assume, without loss of generality, that there are
no initial inventories (i.e., I j,TA→M+1 = 0):

Backward step: The backward step is based on demand
forecasts ∗ D′

j,t for each period (see (3) and (4)). Going
backward in time (i.e., starting at t = T ), the manufac-
turer estimates the target inventory I ′

j,t for each period t
and variant j . For this, the manufacturer observes if the
demand forecast exceeds the MC production capacity. In
case of an excess demand, the amount should be present
in stock already in period t − 1. Repeating the opera-
tion, the manufacturer decides about inventories up to
period t = 1. Note that by this the manufacturer employs
the “Water Filling Scheme” (WFS) which is an algo-
rithm typically used in information theory (Yu and Cioffi,
2001), providing equalization strategies on communica-
tions channels. Indeed, if the water level (i.e., demand
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forecast) in the lock chamber (i.e., period t) exceeds
the maximum allowed water level (i.e., MC production
capacity), the valve separating the current lock chamber
from the previous one (i.e., period t −1) needs to be open
(see Fig. 2 for analogy).
Denoting the mean target inventory level per period and
variant by i ′j,t , 1 ≤ j ≤ n, 1 ≤ t ≤ T + 1, the total
target inventory level per period by I ′

t , 1 ≤ t ≤ T + 1
and the mean total target inventory level per period by i ′t ,
1 ≤ t ≤ T + 1, the following algorithm is derived:

(I′
1, . . . ,I

′
T+1) = WFS(T ,n, (∗D′

1, . . . ,∗ D′
T)) :

t = T , I ′
T +1 = i ′T +1 = I ′

j,T +1 = i ′j,T +1 = 0
whilet > 0

if t > TA→M

I ′
j,t = max((∗ D′

j,t − K M
j )1{T (t)=MC} + I ′

j,t+1, 0)

i ′j,t = 1
N I ′

j,t =max((∗d ′
j,t − K̃ M/n)1{T (t)=MC}+i ′j,t+1, 0)

I ′
t = ∑

j I ′
j,t

i ′t = ∑
j i ′j,t = I ′

t /N

t = t − 1
elseif ≤ TA→M

i ′t = 0
t = t − 1

end
end

(WFS)

Note that the algorithm is proposed for computation of
inventory levels underMC technology, as soon as theAM
technology does not require holding on-hand stock, i.e.,
I ′
t = i ′t = I ′

j,t = i ′j,t = 0, if T (t) = AM .
Forward step: The forward determines the optimal pro-

duction quantity Q j,t after observing the actual demand
D j,t . By this, the discrepancy between the on-hand inven-
tory level I j,t and the target inventory I ′

j,t computed
in the backward step is reduced. Going forward across
time periods (i.e., starting at t = 1), one determines
the production quantity and the inventory amount using
closed-form solutions (17) and (18), correspondingly.
The starting inventory levels at t = 1 are set at zero,
i.e., I j,1 = 0, ∀ j . The mean inventories amounts can be
computed as i j,t = I j,t/N , it = It/N .

SAA convergence

As demonstrated in “Supply side: manufacturer’s profit” sec-
tion the objective function is not equal to the sumof profits per
customer. Under capacity constraints, the demand becomes
interdependent across the PLC. Nevertheless, Lemma 1
(see EC.2) and Theorem 1 prove that the mean profit per

Fig. 2 Water filling scheme analogy

customer can be derived algorithmically from the integrals
defining the value of ud ′

t (4). Also, the a.s. convergence of
quantities discussed in Lemma 1 depends on that of the ratios
Dt/N and D j,t/N . The SAA approach purely relies on the
existence of a p-uniform a.s. convergence (UASC) (Shapiro
et al., 2014).

Lemma 2 Uniform a.s. convergence of the ratio Dj,t/N.
If the convergence in Lemma 1 holds for ratios Dt/N and
D j,t/N, then

πT ({ξi }N
i=1, p)−→a.s. π̃ (T , n, p) uniformly in p ∈ P

(UASC)

where P = [0,maxx∈[0,T ] ω(x)]T .

Note that one can prove the convergence of ratios Dt/N
and D j,t/N using the same argument as in ((Lacroix et al.,
2021),Theorem 1).

Theorem 2 SAAconvergenceof themeanprofits. If (ξi )i≥1

are i.i.d. random variables and if

μω << μL ; and ∀c, t, μL

(
δ(·, t)−1({c})

)
= 0, (H)

then the statement (UASC) holds for ratios D j,t/N and
D j,t/N. As a consequence of Lemma 2, if

{
p(∗,N ) achieves maxp∈P πT ({ξi }N

i=1, p) := π(∗,T )({ξi }N
i=1, p(∗,N )),

p∗ achieves maxp∈P π̃(T , n, p) (= π̃(T , n) = π̃(T , n, p∗)),

then
{

p(∗,N ) → p∗;
π(∗,T )({ξi }N

i=1, p(∗,N )) →a.s. π̃ (T , n).
(SAA)

Proof of Theorem 2 See EC.3. ��
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Fig. 3 SAA validation

Numerical experiments

Numerical experiments using thePSalgorithmare carried out
to highlight the benefits of and required conditions for inter-
changing capacitatedAMandMCover thePLC.Specifically,
capacity constraints and inventory decisions are explored
with the aim of better understanding their effects on this new
manufacturing approach.

Robustness test and population sample size choice

In this section, 100 optimization strategies for 100 indepen-
dent sample population paths of size 10,000 are tested in
order to assess if the sample population of 10,000 is suffi-
cient for approximating p∗, π∗, T ∗, n∗. Then, variations on
the obtained optimal quantities are evaluated and the mean
profit for each sampled population and optimization strate-
gies is maximized. The profit is computed from materialized
sales. Figure 3 illustrates and validates the robustness by
comparing the normalized mean profits with the normal dis-
tribution, in the MTOC and MTS cases. Very low standard
deviations for the mean optimal profits are observed.

Table 2 SAA mean profit variations, sample size 104

Statistical estimators MTOC MTS

mean(mean profits) 5.79 5.91

std(mean profits) 0.025 0.027

Sensitivity analysis

Next, sensitivity analyses are performed and several para-
metric scenarios issued from ourmodel are investigated (e.g.,
“Value of holding inventory” and “Value of pricing flexibil-
ity” sections). Our parametric setup is similar to ((Lacroix
et al., 2021),Table 4), while capacity and inventory param-
eters are set as follows: the fixed production capacity
magnitude and ratio are κ = 0.5 and ρ = K A/K M = 0.5
respectively; the holding cost is h = 0.5; the stockout cost
is s = 0.8 per unit of unsatisfied demand; the potential
remaining inventory at the end of MC period is salvaged
at v = 0.8pTM→A . Table 3 reports the baseline parameters.

Production Capacity—Ratios and Magnitudes—
Sensitivity While analyzing several production capacity

ratios betweenAMandMC,namely K M

K A ∈ {10; 4; 2; 1.33; 1},
the production capacity under AM technology is considered
as fixed and the total production capacity under MC tech-
nology is being varied. The assumption (A6) which implies
K A ≤ K M is used, while low, medium, and high production
magnitudes are analyzed for each production capacity ratio.
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Table 3 Baseline parameter
values

Parameter p q N T nmax kM kA δ

Value 0.02 0.6 10,000 12 15 100 150% of kM 0.06

cb cM cA κ ρ h s v

2 2.48 180% of cb 0.5 K A

K M = 0.5 0.5 0.8 0.8 × pTM→A

In particular, the capacity levels K A ∈ {41; 208; 416} are
considered and the values for K M are determined through
the production capacity ratios.

Firstly, Fig. 4 demonstrates the behavior of the optimal
pricing strategy p∗. One can observe that the selling price
is not monotonically decreasing as it would be in the unca-
pacitated case (Lacroix et al., 2021). Instead, it exhibits an
increasing-decreasing patternwhen the demand tends toward
the production capacity under AM and MC. Thus, to avoid
potential lost sales from capacity shortage, the firm charges
high upfront prices by an increasing pricing policy. This strat-
egy helps the firm to boost short-term profits from the most
eager and interested initial customers. Compared with the
casewith high productionmagnitude, the firm charges higher
selling prices during the products’ introduction for the low
and medium capacity magnitudes. This is because the firm
can offer fewer products due to the capacity constraint, and,
consequently, tries to attract fewer customers but those with
higher product valuation. This also leads to higher profit and
reduced lost sales. Furthermore, the effect is strengthened
due to the forward-looking behavior of customers since they
have a decreasing willingness-to-pay (see (1)).

Secondly, Fig. 4 shows the demand process Dt . As cus-
tomers are modeled through a utility-based demand, the
selling price has a direct impact on the demand diffusion
pattern. In theMTOUCcase, one recovers the traditional bell-
shaped curve of the demand. In the MTS case, the demand
patterns and demand forecast are also bell-shaped for high
capacity magnitudes under MC (see demand for medium and

high capacity magnitudes and K M

K A = 10). As the produc-
tion capacity ratio diminishes, the demand trajectory tends
to flatten. At the beginning and the end of the PLC, there
are fewer customers due to their ideal buying time distribu-
tion. Less product quantity is sufficient to meet the demand.
The demand grows and the firm can sell at full production
capacity toward the middle of the PLC.

Thirdly, Fig. 4 depicts the on-hand inventories to satisfy
the demand. For low capacities, the inventory decreases as
the production capacity ratio diminishes. This is due to oppo-
site trends of the selling price and the demand patterns. Next,
one can observe that the lost sales are negligible. Also, for
similar production capacities and as the production capac-
ity magnitude increases, AM technology is used more often
by the manufacturer. Figure 4 illustrates this through the
technology-switching times. However, for the low capacity

magnitude case, and when K A is much lower than K M , the
manufacturer does not switch to AM (see the technology-

switching times for K M

K A = 10). During the introduction and
decline stages of the PLC, higher production capacitymagni-
tudes allow the firm to offset the higher fixed and production
costs of AM compared with those of MC. Overall, the manu-
facturer benefits from adopting AM at the beginning and the
end of the PLC in the MTS scenario. Switching to MC in the
middle of the product life cycle could be profitable provided
a high production capacity magnitude and similar capacities
under AM and MC.

Holding Cost Sensitivity The sensitivity of our results to
the holding cost and its impact on profits are examined in
the MTSC scenario. Figure 5 shows that the firm charges a
higher selling price as the holding cost value increases.

If the holding cost is lower, the firm decides to stock more
inventory to satisfy the demand and, oppositely, to stock less
when it is more expensive. Moreover, it is more beneficial to
start producingwithAMinstead ofMCwhen the holding cost
is high, and when the production capacity of this technology
allows to meet the demand. Table 4 reports the holding cost
impact on the technology-switching scenario andon themean
profit per customer. As expected, a lower holding cost yields
a higher mean profit per customer and as the holding cost
becomes expensive it is beneficial to start producing with
AM at the beginning of the PLC when there are fewer but
more excited customers (i.e., with a higher utility).

Value of holding inventory

To identify the value of holding inventory across the PLC,
three capacity and inventory scenarios are examined, namely
MTOUC, MTOC and MTSC. For each of these scenarios,
one extracts the optimal mean profit per customer for every
production strategy and highlights the highest among them,
which is the AM→MC→AM strategy for all the reference
cases (see Table 5). Considering the MTOUC case as a
benchmark, Table 5 shows that capacity constraints gener-
ate a 24% profit loss under the MTOC scenario, and a 22%
profit loss under the MTSC scenario. Nevertheless, adopt-
ing an AM → MC → AM technology-switching strategy
allows 17.6%, 12.6%, 1.9% profit gains compared to the MC
strategy for MTOUC, MTOC and MTSC scenarios corre-
spondingly. Taking the recent phenomenon of Omega ×
Swatch MoonSwatches as an example (see Financial Times
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Fig. 4 Sensitivity analysis of production capacity ratios and magnitude under AM and MC technologies, in the MTS scenario

Fig. 5 Holding cost sensitivity
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Table 4 Holding cost impact on
the mean profit per customer

Production strategy Mean profit per customer for each holding cost value

h = 0.1 h = 0.4 h = 0.7

MC 6.06 5.85 5.66

MC → AM 6.12 5.93 5.68

AM → MC 5.91 5.82 5.74

AM 4.02 3.81 4.04

AM → MC → AM 5.99 5.92 5.88

The numbers in bold serve to highlight the highest mean profit per customer for each holding cost value

Table 5 Capacity and inventory strategies impact on the mean profit
per customer

Production strategy Mean profit per customer

MTOUC MTOC MTSC

MC 6.42 5.08 5.79

MC → AM 7.22 5.16 5.87

AM → MC 7.46 5.62 5.80

AM 7.48 4.05 4.06

AM → MC → AM 7.55 5.72 5.90

review of Foulkes (2022)) and assuming that the company’s
production costs were aligned with our parameters, one can
observe that the mean profit per Swatch customer could have
been increased by 16.1% if the AM → MC → AM strategy
had been adopted and holding inventory had been allowed,
i.e., if MTSC had been implemented instead of Swatch’s
MTOC scenario, which clearly led the company to encounter
difficulties with addressing the unexpectedly high demand.

Value of pricing flexibility

To investigate the impact of pricing flexibility on the man-
ufacturer’s expected mean profit per customer, numerical
experiments are performed and three selling price trajectories
are analyzed, i.e., constant, linear decreasing, and flexible.

In line with our findings in “Sensitivity analysis” sec-
tion, Fig. 6 reveals that it is optimal to charge more under
MTOC and MTSC scenarios if selling prices must stay con-
stant over the time horizon. In contrast, when the pricing
pattern is linear decreasing, the firm charges the lowest price
under the MTSC case and the highest price under the MTOC
case up to the middle of the PLC. Following the example of
the Omega × Swatch MoonSwatches, whose selling price is
260,- USD per watch in comparison to 6600,- USD for an
Omega Speedmaster, and irrespective of the pricing strat-
egy the company implements, one could assume that the
customers’ willingness-to-pay and, thus, the initial selling
price was underestimated and chosen suboptimally, which,
in turn, might have initiated the phenomenal demand for the

proposed eleven MoonSwatch variants even though the full
product variability as under AM technology was not pro-
posed. Given flexibility in their pricing strategy, the optimal
solution for Swatch would be to increase prices for Moon-
Swatches in the short-run (see flexible pricing strategy in
Fig. 6 with a peak in selling price under the MTOC case).

Although MTOUC and MTOC scenarios only employ
AM during the whole PLC, the MTSC scenario uses MC
technology on its own. To offset the product misfit penalty
cost only incurred under MC and to attract more customers,
the firm relies on lower upfront prices until the demand peak.
The flexible pricing strategy results in an optimal non-convex
path. Interestingly, one observes “reversed” selling prices set
at t = 3 and t = 9 in our flexible pricing trajectories. This
can be explained by technology-switching and production
capacity effects on the selling price, and, consequently, on
demand.AMis used up to period t = 3 in theMTOCscenario
whereas it is used until period t = 2 in the MTSC scenario.
The price is thus set higher for the third period under AM in
the MTOC scenario. In both the MTOC and the MTSC sce-
narios, when the firm switches to AM at the end of the PLC,
the selling price first increases before decreasing as demand
is close to the production capacity under AM. The relative
gain of the flexible versus the constant pricing strategy is
defined as (π∗

f lex − π∗
const ) · (π∗

const )
−1 and, similarly, the

flexible versus linear decreasing pricing strategy is defined
as (π∗

f lex − π∗
dec) · (π∗

dec)
−1. Table 6 summarizes the results

and shows that there is a significant gap between a constant
and a flexible pricing policy.

Note that the profit gap between the flexible and decreas-
ing pricing policies is small when the firm has an infinite
capacity (i.e., +1.5% for the MTOUC case). On that basis,
it might be more cost-effective to apply a simple decreas-
ing pricing policy as suggested by the marketing literature.
It works well in practice and can avoid unobserved fees.
Under capacity constraints, the gap strongly increases and
benefits the flexible pricing strategy (+11.5% in the MTOC
scenario). Thus, the firm is better off using a flexible pricing
policy displaying an increasing-decreasing pattern. The abil-
ity to increase prices during the PLC helps the manufacturer
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Fig. 6 Selling price trajectory for each production and inventory scenario

Table 6 Impact of the pricing
trajectory on profit and
technology-switching scenario

Pricing trajectory MTOUC

π∗($) TA→M TM→A Production strategy

Constant 6.19 3 6 AM → MC → AM

Linear decreasing 7.44 12 13 AM

Flexible 7.55 4 8 AM → MC → AM

MTOC

Constant 4.11 2 7 AM → MC → AM

Linear decreasing 5.14 12 13 AM

Flexible 5.73 3 9 AM → MC → AM

MTSC

Constant 5.04 0 7 MC → AM

Linear decreasing 5.65 0 12 MC

Flexible 5.86 2 8 AM → MC → AM

to better align supply and demand (e.g., to cool down the
demand for products of the Omega× Swatch collaboration).

Our results are consistent with those of Shen et al. (2013),
who report that an increasing-decreasing pricing strategy,
combined with optimal production/inventory policies, is
profitable under capacity constraints. The value of pricing
flexibility is highest (+11.5%) under the MTOC scenario,
and decreaseswhen the firmcarries inventory (+3.7%).Hold-
ing inventory might lessen the need for pricing flexibility. In
other words, holding inventory allows the firm to have higher
profits by itself.

These findings can help operations managers to better
understand this new manufacturing approach and to take
advantage of the potential marketing and operations benefits
by combining AM with MC technology. Facing forward-
looking customers and their individual preferences, adopting
AM, in combination with MC, under capacity constraints,
could improve a manufacturer’s profit if the production
capacity magnitude is high enough and close to that of MC
technology.

Conclusion andmanagerial insights

This paper investigates the conditions underwhich a capacity-
constrained monopolist manufacturer could combine the
benefits of AM technology for product customization with
the traditional MC technology to increase profits. Given
the stage of the PLC, the firm jointly decides on mar-
keting (pricing policy, product variety) and on operations
(technology-switching times, production quantity, inventory)
strategies to maximize profit while addressing individual
customer preferences. Our model positions itself at the
marketing-operations interface. It considers not only the sup-
ply side with the technology choice in a dynamic setting
across the PLC, but also the demand side to account for
customer heterogeneity and their forward-looking behav-
ior. By this, our work provides an innovative methodology
to leverage customer-centricity and optimize operations and
marketing strategies.

First, the article investigates several technology-switching
scenarios under different production capacity and inventory
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cases. In the scenario where the firm holds inventory under
MC, a customer-centric adaptive inventory policy is devel-
opedwith an aim to address an interdependent non-stationary
demand. The inventory policy is built on a so-called water
filling algorithm, which is typically used in information the-
ory but can be adapted to fit our manufacturing context.
Such inventory policy allows us to specify a closed-form
solution for the production quantity decision. Formalizing
the resulting non-convex-concave optimization problem, our
work exploits the analytical properties of the demand fore-
cast and derives an algorithmic formulation for the objective
function under capacity and inventory scenarios. The opti-
mization problem is solved using the SAA framework, while
robustness tests are performed to check the convergence of
the approximation given the population sample size used in
our numerical experiments.

Our numerical results demonstrate that the combination
of customer-centric strategies with the new usage of AM and
MC could benefit a manufacturer. In particular, on the opera-
tions side, significant profit improvements could be achieved
with an AM–MC–AM technology-switching scenario if cer-
tain capacity and inventory conditions hold: in particular,
sufficient production capacities but high holding costs under
MC can lead to the profitability of the switching strategy.

Our findings also demonstrate the benefits of pricing flex-
ibility, which are the highest when capacity is limited and
when the firm does not hold inventory. This gives an insight
into a possible policy for addressing the recent phenomenon
of Omega × Swatch MoonSwatches, which are produced by
Swatch at a capacity limit without holding inventory but can-

not satisfy the increasing demand. If the firm would have an
option to hold inventory, facing low or medium production
capacity magnitudes would imply both increasing the sell-
ing price and to stock more. This strategy would help both
in preventing lost sales and meeting the demand peak during
the growth stage of the PLC.

Although there are limitations due to the lack of real-world
data availability, we believe that our work sheds light on this
new manufacturing opportunity. Finally, the manufacturing
approaches showcased in this article could be implemented
by decision-makers to leverage customer-centricity whilst
benefiting from the novel technology-switching practice,
which operates an Industry 4.0 technology such as AM for
product customization.
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Appendix

EC.1. Notations and parametric assumptions

See Table 7.
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Table 7 Notations and parametric assumptions

Parameters Assumptions

N : Initial market size of potential adopters N ∈ N

	t : Remaining potential adopters at period t
{ ∪T

m=t 	m
}T

t=1

T : Length of the finite selling horizon T ∈ N

t : Subscript denoting period {t}T
t=1

T : Set of production strategies characterized by (TA→M , TM→A) T ∈ {TA→M , TM→A}T

TA→M : Technology-switching time when the manufacturer switches from AM to MC 0 ≤ TA→M < TM→A

TM→A : Technology-switching time when the manufacturer switches from MC to AM TA→M < TM→A < T + 1

� : Virtual space of horizontally differentiated products � = [0, 1]
φ : Customer’s ideal product variant Pφ = U([0, 1])
τ : Customer’s ideal buying time see Lacroix et al. (2021)

p, q : Bass innovation and imitation coefficients, respectively p, q ∈ R
+

ξ : Random customer characterized by τ and φ ξ = (τ, φ) with Pξ = Pτ ∅

n : Number of mass-customized variants to offer to customers under MC 1 ≤ n ≤ nmax

X : Set of mass-customized product variants offered under MC X = {x1, . . . , xn} ⊂ [0, 1]n

j : Subscript denoting the mass-customized variant j ∈ {1, . . . , n}
x j : Location of product variant j on the virtual product space ∀ j ∈ {1, . . . , n}
wt (τ ) : Customer’s willingness-to-pay at period t ω(τ) ∈ R

+

γ (τ) : Buying time-sensitivity coefficient γ ∈ R
+

λ(τ) : Product variant sensitivity coefficient, incurred only under MC technology λ ∈ R
+

UT (ξ, t) : Customer ξ ’s utility at period t , dependent on the production strategy T (1)

pt : Selling price at period t 0 ≤ pt ≤ max{0, UT }, ∀ j ∈ �

∗ : Subscript denoting the demand forecast method ∗ =c,u

∗ D′
j,t : Demand forecast of variant j at time t

D j, t : Observed demand for product variant j at time t

I ′
j,t : Target inventory level of variant j at time t

I j, t : Observed inventory level of variant j at time t

K A : Constant production capacity under AM

K M : Constant production capacity under MC Equally distributed among n

κ : Production capacity magnitude κ ∈ R
+

ρ : Production capacity ratio between AM and MC ρ ∈ R
+

St : Sales at period t

Lt : Lost sales at period t

Q j,t : Optimal production quantity for each variant j at time t

cA : Constant marginal production cost under AM cA = constant > 0

cb : Unit production base cost under MC cb = constant > 0

cM (n) : Unit production cost under MC depending on n cM (n) = cb(1 + (n − 1)δ) > 0

k A : One-time fixed cost for AM technology k A = constant > 0

k M : One-time fixed cost for MC technology k M = constant > 0

h : Inventory holding cost per unit per period, common to all product variants h ∈ R
+

s : Stockout cost incurred when excess demand is lost per unit of unmet demand, h < s

common to all product variants

v : Salvage value of remaining inventory at the end of MC period pt > v > cM (n)
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EC.2. Proof of Lemma 1

Lemma 1 [Lemma 1.] By the Law of Large Numbers (LLN),
for all t , j ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) D j,t/N →a.s. ud ′
j,t

(i i) Dt/N →a.s. ud ′
t = ∑

j ud ′
j,t

(i i i) I ′
j,t/N →a.s. i ′j,t

(iv) I ′
t /N →a.s. i ′t = ∑

j i ′j,t , i ′j,t = i ′t/n
(v) I j,t/N →a.s. i j,t

(vi) It/N →a.s. it = ∑
j i j,t

(vi i) Q j,t/N →a.s.

{
q j,t = min(K̃ M/n,max(i ′t/n − i j,t +u d ′

j,t )) if T (t) = MC,

q j,t = 0 if T (t) = AM,

(vi i i) Qt/N →a.s.

{
qt = min(K̃ M ,max(i ′t − it +u d ′

t )) if T (t) = MC,

qt = 0 if T (t) = AM,

(i x) S j,t/N →a.s. s j,t = min(ud ′
j,t , q j,t + i j,t ) if T (t) = MC,

(x) St/N →a.s.

{
st = ∑

j s j,t = min(ud ′
t , it + qt ) if T (t) = MC,

st = min(K̃ A,ud ′
t ) if T (t) = AM,

(xi) L j,t/N →a.s. l j,t = max(0,u d ′
j,t − i j,t − q j,t ) if T (t) = MC;

(xii) Lt/N →a.s. lt =
{
max(0,u d ′

t − K̃ A) if T (t) = AM;∑
j l j,t = max(0,u d ′

t − it − qt ) if T (t) = MC;
(xii i) I j,t+1/N →a.s. i j,t+1 = max(0, q j,t + i j,t − s j,t )

(xiv) It+1/N →a.s. it+1 = ∑
j i j,t+1 = max(0, qt + it − st )

(xv) 
T
t /N →a.s.

πT
t = st (pt − cT (t)) − slt

−1T (t)=MC hit+1 + 1t=TM→A it+1(vpTM→A − cM (n))

Note that (i ′1, . . . , i ′T +1) is also obtained from (∗d ′
1, . . . ,∗ d ′

t )

by a water filling algorithm (wfs) that resembles the (WFS),
described in 4.1:

(i′
1, . . . ,i

′
T+1) = wfs(T , K̃ M, (∗d′

1, . . . ,∗ d′
T)) :

t = T , i ′T +1 = 0
while t > 0

if t > TA→M

i ′t = max((∗d ′
t − K̃ M )1{T (t)=MC} + i ′t+1, 0)

t = t − 1
elseif ≤ TA→M

i ′t = 0
t = t − 1

end
end

(wfs)

Proof of Lemma 1. By theLawofLargeNumbers (LLN), one
can obtain the (i − i i) a.s. convergence of the mean actual
demand to the mean uncensored demand for all t , j . From
this follows the a.s. convergence of the quantities involved in
the profit function, i.e., the mean of (i i i − iv) target, (v−vi)
on-hand inventory levels, (vi i − vi i i) production quantity,

(i x − x) sales, (xi − xii) lost sales, (xii i − xiv) on-hand
inventory for the next period and (xv) periodic profits.

Indeed, the convergence in (i i) is a direct consequence
of the Law of Large Numbers (LLN), since the draw of the
random population of size N is independent and uniform
with law Pξ , and by (3,4),

(D1, . . . , DT )/N → (d′
1, . . . , d′

T )

=
(
P(UT (ξ, t) ≥ p1),

P({UT (ξ, t) ≥ p2)} ∩ {UT (ξ, t) < p1)}), . . . ,
P({UT (ξ, t) ≥ pT } ∩ (∩1≤k<T {UT (ξ, g) < pk}))

)
.

From (i i) and (2,6), one deduces (i). Next, from the structure
of theWFS algorithm (WFS) and the convergences in (i−i i),
(i i i) and (iv) follow. Note that at this stage, one can also
deduce (wfs).

The remaining statements of convergence follow by
induction on t : from (17,18) and the convergence of demand,
one deduces the convergence of the mean production quanti-
ties and inventories,while the limit formulas in (v, vi, vi i, vi i i)
follow. Further, the convergences of (i x − xii) arises based
on the expressions for realized and lost sales of the manufac-
turer. The convergence and the equation in (xii i) follow from
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(18), while (xiv), in turn, follows from (vi) and (xii i). To
conclude, (xv) is deduced from the (7,8) and the preceding
convergences (i − xiv) for each 1 ≤ r ≤ t . ��

EC.3. Proof of Theorem 2

Proof of Theorem 2 Based on the Lemma 2, one needs to
prove that D j,t/N →u d ′

j,t and Dt/N →u d ′
t uniformly

in p ∈ P . The proof of these uniform convergences can
be conducted strictly as in ((Lacroix et al., 2021),proof of
Theorem 1). The only difference is in considering the mean
demand instead of themean profit per customer as inLacroix
et al. (2021). ��

EC.4. Profit algorithm (A-MTS) for Theorem 1

The mean profit per customer per period, πT
t , is obtained

algorithmically as follows

(i’1, . . . ,i’T+1) = wfs(T , K̃ M, (*d’1, . . . ,* d’T))

i1 = 0;
t = 1;
π̃(T , n, p) = 0
while t ≤ T

if T (t) = MC
qt = min(K̃ M ,max(i ′t − it +u d ′

t ));
st = min(ud ′

t , it + qt );
lt = max(0,u d ′

t − it − qt );
it+1 = qt + it − st ;

else
qt = 0;
st = min(K̃ A,ud ′

t );
lt = max(0,u d ′

t − K̃ A);
it+1 = it ;

end
πT

t = st (pt − cT (t)) − slt − 1{T (t)=MC}hit+1

+1{t=TM→A}it+1(vpTM→A − cT (t))

π̃(T , n, p) = π̃(T , n, p) + πT
t ;

t = t + 1;
end
π̃(T , n, p) = π̃(T , n, p) − k̃ M1{TA→M <T }

−k̃ A1{TA→M >0 or TM→A<T }
(A-MTS)

EC.5. Profit algorithm (A-MTOC) for
corollary 1

The limit of the mean profit per customer is obtained by a
simplified version of the (A-MTS) algorithm (see EC.4):

t = 1;
π̃(T , n, p) = 0;
while t ≤ T

st = min(ud ′
t , K̃T (t));

lt = max(0,u d ′
t − K̃T (t));

πT
t = st (pt − cT (t)) − slt ;

π̃(T , n, p) = π̃(T , n, p) + πT
t ;

t = t + 1;
end

π̃(T , n, p) = π̃(T , n, p) − k̃ M1{TA→M <T }
− k̃ A1{TA→M >0 or TM→A<T } (A-MTOC)

EC.6. Profit algorithm (A-MTOUC) for Corol-
lary 2

Similarly, the limit of the mean profit per customer is
obtained by a simplified version of the (A-MTS) algorithm
(see EC.4):

t = 1;
π̃(T , n, p) = 0;
while t ≤ T

st =u d ′
t ;

πT
t = st (pt − cT (t))

π̃(T , n, p) = π̃(T , n, p) + πT
t ;

t = t + 1;
end

π̃(T , n, p) = π̃(T , n, p) − k̃ M1{TA→M <T }
− k̃ A1{TA→M >0 or TM→A<T } (A-MTOUC)
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