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Abstract
The last decade saw the rise of digitalization and data-supported decision making in the manufacturing industry: the Fourth
Industrial Revolution. This trend, also known as Industry 4.0, allows manufacturing enterprises to discover manufacturing
uncertainties and measure their real manufacturing capability. One of the ways in which Industry 4.0 trends have been
exploited is in the improvement of maintenance, which went from following planning-focused paradigms to more proactive-
focused stances. Enabling the Industry 4.0 vision for maintenance purposes has historically required companies to either
replace or upgrade their existing legacy devices. It is through the latter course of action that Smart retrofitting in maintenance
(SRM) intends to bring value to enterprises. This work aims to present a systematic literature review on SRM, utilizing
the oft-cited PRISMA methodology. Through this analysis, a definition of SRM that reflects the current state of the art is
proposed. Furthermore, the research in SRMapplied in the context of different maintenance strategies is assessed (i.e. reactive,
planned, proactive and strategic maintenance), and the most common drivers and challenges in SRM are presented. Finally,
a roadmap for the implementation of SRM is proposed. The analysis of the SRM literature reveals that there are important
research opportunities in the exploitation of SRM for strategic maintenance and asset management. The authors hope that
this document leads to the consolidation of a new research area that aims to add value to maintenance in enterprises through
the application of smart retrofitting in preexisting legacy devices.
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Introduction

Regardless of the quality of their construction, all systems are
unreliable: their capability to perform their intended function
will degrade with usage or time and they will eventually fail.
The function of maintenance is then to ensure that the sys-
tems can be retained in or restored to a state where they
can perform their intended function (Ben-Daya et al., 2016).
Maintenance strategies have evolved since the first industrial
machines required repairs in the First Industrial Revolution.
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These strategies havematured from simple corrective actions
to more complex strategies that support asset management
and provide added value through the exploitation of infor-
mation and computer technologies (GFMAM, 2021). An
overview of this evolution as proposed by the Global Forum
on Maintenance & Asset Management (GFMAM) is illus-
trated in Fig. 1 and is explained in the following points:

• Reactive maintenance involves the handling of failures
once breakdowns have occurred. This strategy can lead
to unexpected machine downtime and high production
costs (Lee et al., 2020). Reactive maintenance was born
around the year 1800 in the first industrial revolution,
when the first equipment that requires maintenance was
born.

• Planned maintenance is associated with maintenance
actions (such as inspections and routine maintenance)
that occur at periodic intervals based on time or usage
(Ben-Daya et al., 2016). It can prevent certain failures
by slowing down the deterioration process that leads to
faults. However, it is unable to detect random failures
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Fig. 1 Evolution ofmaintenancematurity in organizations, leading to the fourmainmaintenance strategies; adapted from theGFMAMMaintenance
Framework (GFMAM, 2021)

that do not follow age-related patterns (Peng et al., 2010).
Planned maintenance gained prevalence around the time
of the Second World War (Ben-Daya et al., 2016).

• Proactive maintenance aims to predict failures through
the monitoring of a machine, allowing maintenance
actions to occur when they are needed (Carvalho et al.,
2019). Condition monitoring is made possible through
the acquisition and processing of sensor data from the
monitored machine (Barbieri et al., 2020). This acqui-
sition can either be continuous or periodic (Jardine
et al., 2006). Furthermore, proactive maintenance is
characterized by the application of techniques like Reli-
ability Centered Maintenance (RCM), Total Productive
Maintenance (TPM), and Failure Modes and Effects
Analysis (FMEA) that aim to learn from previous fail-
ures throughout the operational life of systems to improve
maintenancemanagement (GFMAM, 2021; Ben-Daya et
al., 2016). Such techniques became widespread around
the year 1970 (Ben-Daya et al., 2016).

• Strategic maintenance adopts a perspective of asset man-
agement. Rather than only focusing on retaining or
restoring the functionality of machines, asset manage-
ment refers to the set of activities that “enables an
organization to realize value from assets in the achieve-
ment of its organizational objectives” (ISO, 2014). In the
strategic maintenance vision, maintenance is not consid-
ered in isolation. This means that instead of focusing on
reducing the maintenance cost of systems and increas-
ing their reliability and maintainability as maintenance
traditionally does, strategic maintenance considers main-
tenance as one of the processes involved within the asset
management landscape (Parra et al., 2019). Maintenance
decisions are thus made considering the maintenance
function in the context of the entire asset management
process (GFMAM, 2016). In this context, the conflicting
goals of multiple departments (such as maintenance ver-
sus production) must be balanced to obtain a solution that

is in the best interest of the enterprise (Campos, 2009).
An evolution that goes from considering maintenance
activities in isolation to properly implementing asset
management has the potential to improve overall finan-
cial performance, support riskmanagement, and improve
the efficiency and effectiveness towards the achievement
of the organizational goals (ISO, 2014). Strategic main-
tenance started becoming the most relevant around the
2010’s, when the BSI PAS 55 standard (BSI, 2008) and
its successor ISO 55000 (ISO, 2014) were first released.

Alongside this evolution of maintenance strategies, an
evolution of technology has occurred. Technologies such as
Cyber-Physical Systems (CPS) and the Internet of Things
(IoT) have led a trend of automation in the manufacturing
industry, known as the Fourth Industrial Revolution or Indus-
try 4.0 (Oztemel & Gursev, 2020). This Industry 4.0 trend
involves a vision of enabling transparency, which is the abil-
ity to discover manufacturing uncertainties and measure real
manufacturing capability (Lee et al., 2013). Manufacturers
can quantifywhat is usually invisible through the exploitation
of Industry 4.0 technologies and the realization of trans-
parency. For instance, the real availability (often wrongfully
assumed to be complete availability) and real performance
capability (often wrongfully assumed to be optimal perfor-
mance) of manufacturing systems can now bemeasured (Lee
et al., 2013). This insight into the real state of machinery
enables the optimization of existingmanufacturing processes
(Monostori et al., 2016), such as maintenance. In particular,
the increase of transparency inmanufacturing through Indus-
try 4.0 technology has enabled the rise of both proactive and
strategic maintenance.

On one hand, proactive maintenance benefits from Indus-
try 4.0 by enabling failure prediction. Many failures can be
predicted in a system through the monitoring of its physi-
cal conditions (Nowlan & Heap, 1978); this monitoring has
been paired with physics-based (Singh et al., 2014), data-
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based (Lee et al., 2021) and hybrid (Cofre-Martel et al.,
2021) models to reach predictions about the system. This
failure prediction capability is exploited through Condition-
basedMaintenance (CBM), amaintenance program that uses
condition monitoring data to suggest maintenance actions
(Jardine et al., 2006). Regardless of its specific type, CBM
allows maintenance managers to enable maintenance trans-
parency and more effectively decide which items should be
scheduled for maintenance (Lee et al., 2013).

On the other hand, strategic maintenance can bene-
fit from transparency by quantifying the contribution that
maintenance brings to the enterprise. Decisions made in
strategic maintenance intend to fulfill the maintenance func-
tions while supporting asset management and organizational
objectives (Márquez, 2007). As a consequence, all mainte-
nance decisions must consider these higher objectives. Once
maintenance decisions are made and the resulting actions
are executed, their contribution can be evaluated so that fur-
ther decisions can continue supporting asset management.
This evaluation is possible through the analysis of indicators
related to health, performance, quality, and resource usage
metrics (Lee et al., 2013). Such indicators can be calculated
thanks to the increased transparency enabled by Industry 4.0
technologies (Lee et al., 2013).

To exploit the benefits of transparency in maintenance,
Industry 4.0 technologies must be integrated into the man-
ufacturing devices of a company. Devices that do not have
these capabilities are often referred to as legacy devices. Such
devices must be either replaced or upgraded to enable trans-
parency (Villar-Fidalgo et al., 2018). The latter process is
known as smart retrofitting. Jaspert et al. (2021) define Smart
Retrofitting as the integration of new technologies into legacy
systems to enable the transition towards Industry 4.0. It is an
action that involves machinery that was not designed for the
Industry 4.0 vision, and it aims to transfer the requirements of
this vision to such machinery using the lowest time and capi-
tal investment (Guerreiro et al., 2018). As a result, machines
that undergo smart retrofitting are converted intoCPS (Lins&
Oliveira, 2020). The improvement of devices through smart
retrofitting is a desirable outcome, as it enables Industry 4.0
transparency without the high investment and high risk asso-
ciated with the replacement of machinery. Smart retrofitting
has several advantages, such as ensuring competitiveness of
enterprises, increasing equipment efficiency, and achieving
sustainability (Jaspert et al., 2021).

This work is interested in the study of smart retrofitting in
the maintenance context: Smart Retrofitting in Maintenance
(SRM). While Jaspert et al. have already produced a litera-
ture review on smart retrofitting (Jaspert et al., 2021), they
focus on the manufacturing domain. The main novelty of the
present work is then to focus on the maintenance domain.
Such a focus is of interest because there might be require-

ments or characteristics of smart retrofitting that are specific
to maintenance.

Given the above, the rest of this paper is organized as
follows. The definition and execution of the methodology
utilized for the systematic reviewonSRMis presented inSec-
tion 2. The results that arise from its application are illustrated
in Section 3 and discussed in Section 4. Finally, Section 5
draws conclusions and outlines future work.

Methodology

An inductive approach was followed to define the necessary
steps to create a systematic review on SRM. In an effort
to find common patterns, this approach involved studying
multiple engineering-related systematic literature reviews.
The objective was to identify the required steps, along with
the methods and tools that were utilized. An initial analy-
sis of reviews on manufacturing (Franciosi et al., 2020) and
retrofitting (Jaspert et al., 2021), along with a review on sys-
tematic reviews (Kitchenhamet al., 2009) led to the following
workflow:

• Research questions: define a set of Research Questions
(also referred to as “RQ” in this document) that the liter-
ature review must reply.

• Specific methodology: define a specific methodology for
conducting the literature review.

• Keyword matrix: define a keyword matrix for building
the initial database of papers of the literature review.

• Screening and eligibility: identify and apply a set of
exclusion criteria to refine the initial database.

• Analysis: read the complete texts and search the answer
to the defined research questions.

The remainder of this section illustrates the identified
steps.

Research questions

In an effort to select a proper set of research questions, the
ones identified in different systematic literature reviews on
engineering-related topics were analyzed (Franciosi et al.,
2020; Cimino et al., 2019; Kitchenham et al., 2009; Jaspert
et al., 2021). Then, the following research questions were
chosen for this literature review:

• RQ1: how is smart retrofitting in maintenance defined in
the literature?

• RQ2: how does smart retrofitting support differentmain-
tenance strategies?

• RQ3: what are the benefits (drivers) of smart retrofitting
in maintenance?

123



4 Journal of Intelligent Manufacturing (2023) 34:1–19

Fig. 2 Visual representation of a keyword matrix, using standard
boolean notation where + corresponds to the or operator and × sign
to the and operator. As long as one keyword in each group exists in a
paper, it will appear in the keyword search

Fig. 3 Keyword groups in the final keyword matrix

• RQ4: what are the challenges for implementing smart
retrofitting in maintenance?

Specific methodology

The PRISMA (Preferred Reporting Items for Systematic
reviews andMeta-Analyses) method (Liberati et al., 2009) is
a frequently used approach for the realization of systematic
literature reviews, with at least 700 recorded uses in engi-
neering and computer science works. The method involves
an identification phase, a screening phase, and an eligibility
phase. Given its pervasiveness, PRISMA was chosen as the
methodology for this review.

Identification: keywordmatrix

One of the most critical steps in this process was searching
for works using keywords from a keyword matrix. Keyword
matrices are a systematic method to select the specific key-
words to use in a literature review. This method is described
by Jaspert et al. (2021), and it consists in using AND and OR
operators to find papers that discuss a specific subject within
scientific databases; such as Scopus and World of Science.

As a general rule, a keyword matrix is created by defin-
ing certain groups of keywords that are thematically related,
and linking said groups with the AND operator. Within each
group, keywords are linked with OR operators. This means
that a given work will appear in the search results if at least
one keyword from each group is present on it. A visual guide

to the method of the keyword matrices is depicted in Fig. 2.
Note that these results correspond to manuscripts that were
published until around June 2021. The final matrix, shown in
Fig. 3, includes a topic group pertaining to smart retrofitting,
an activity group that considers maintenance, a narrowing
of the areas of interest in the area group, and a group of
related paradigms and technologies of which at least one is
expected to be present in any reference related to SRM. This
last group also has the purpose of searching for documents
that are related to different maintenance strategies.

Screening and eligibility

Once the initial set of articles was found through Scopus and
World of Science using the keyword matrix, the PRISMA
methodology was followed. The following exclusion criteria
were used for the screening and eligibility phases:

• Screening Exclusion Criteria (SEC)

– SEC1: is the document an article published in a peer-
reviewed journal or conference, or a book chapter?

– SEC2: does the document show a possible relation-
ship with both retrofitting and maintenance?

• Eligibility Exclusion Criteria (EEC)

– EEC1: is the full document available for downloading
in English?

– EEC2: does the document show a clear relationship
with both retrofitting and maintenance?

– EEC3: does the document present an answer to at
least one of the research questions?

The SEC were chosen because they were easily verifiable
with only reading the title and the abstract, while the EEC
required the full document to be analyzed. A flow chart with
the result of the application of the methodology is depicted
in Fig. 4.

Analysis

After thePRISMAscreening and eligibility phases, 82 papers
were selected for a complete analysis. The method described
in Saldaña (2016) and adopted by Jaspert et al. (2021) was
utilized for said analysis. This consists of assigning descrip-
tive keywords (codes) to text excerpts from each paper that
could present an answer to the research questions, to then
organize the keywords into meaningful categories.

The grouping of keywords into meaningful categories,
along with the explanation and analysis of these categories,
is presented in the following section.
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Fig. 4 PRISMA stages for the SRM review

Results

This section presents an overview of the answers found in the
literature to each RQ. After the extraction of text excerpts,
keywords were assigned to each document and meaningful
categories were found.

RQ1: Definitions

RQ1 focuses on formulating a definition for SRM. It should
be noted that simply looking for explicit definitions for SRM
would have yielded poor results. Only a few of the reviewed
papers mentioned the word retrofit (Uhlmann et al., 2017;
Cattaneo &Macchi, 2019; Sepehri et al., 2018; Strauß et al.,
2018; Hesser &Markert, 2019; Surico et al., 2020; Bernal et
al., 2018), and they used it without attempting to formalize a
definition. Because of this, the following approach was taken
to answer this research question. In each paper, authors state
the characteristics or requirements needed for a process to
be considered a retrofitting (with maintenance purposes) of a
legacy device. These characteristics and requirements were
recorded for the building of a definition of SRM.ForRQ1, the
keywords fell into four main categories: data collection, data
communication, data processing, and services. The resulting
frequency of each category is depicted in Fig. 5, and the most
cited works in each category are illustrated in Table 1. Next,
a description of each group is presented.

Data collection

If data analysis is to occur, devices must have the capability
of collecting data from sensors (Barksdale et al., 2018; Ge et
al., 2019; Liu et al., 2018). This can be done through preex-
isting sensing capabilities if they are available (Luo, 2020;

Fig. 5 Frequency of the categories found regarding Research Question
1: Definition

Chau et al., 2015; Calabrese et al., 2020), but other times
the installation of additional sensors is necessary (Huber et
al., 2019; Prathima et al., 2020; Kiangala & Wang, 2018).
Such sensors are sometimes added in the form of sensor
nodes (Christou et al., 2020; Surico et al., 2020; Catenazzo
et al., 2018), which are IoT devices that integrate both sens-
ing and communication capabilities. Although it might not
always be possible, some authors emphasize the need to col-
lect data in a non-invasive manner. Jónasdóttir et al. (2018)
propose a retrofitting solution that does not require machin-
ery to be opened or heavily modified. Wiemer et al. (2019)
cite the need of not interrupting a running production while
the upgrading process takes place by performing any pilot
test in a testbed rather than in the production line. Regardless
of the specific details of the process, it becomes clear that any
SRM process involves capturing data from the target legacy
devices.

Data communication

Devices also need the ability to communicate with other
entities. The OM2M platform (Alaya et al., 2014) defines
three actors present in any Machine to Machine (M2M)
architecture: M2M devices (which are natively capable of
communicating to an M2M network), legacy devices (which
are not capable of communicating to a network), and M2M
gateways (which enable M2M communication capabilities
for legacy devices). Communication in SRM closely resem-
bles this paradigm. According to the reviewed literature,
devices must be able to communicate with external entities
such as smart mobile devices (Ranjbar et al., 2019; Hussain
et al., 2020; Cologni et al., 2015), local central computers or
processors (Atluru et al., 2012; Ashjaei & Bengtsson, 2017;
Short&Twiddle, 2019), or to a remote location (Nordal&El-
Thalji, 2021; Damanik et al., 2020; Bucci et al., 2020) (such
as the equipment maintainer or the cloud). Through commu-
nication, legacy devices can be integrated into management
software, like Maintenance Execution Systems (MES) and
Computerized Maintenance Management Systems (CMMS)
(Balogh et al., 2018; Barton et al., 2019; Chau et al., 2015).
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Table 1 Most cited papers in the
categories identified for RQ1

Collection Communication

Zhang et al. (2017) Zhang et al. (2017)

Mourtzis and Vlachou (2018) Mourtzis and Vlachou (2018)

Chen et al. (2018) Chen et al. (2018)

Processing Services

Wang et al. (2020) Zhang et al. (2017)

Mourtzis and Vlachou (2018) Mourtzis and Vlachou (2018)

Chen et al. (2018) Chen et al. (2018)

Some authors identified that such communication should
be wireless (Ziegelaar et al., 2020; Magadán et al., 2020;
Uhlmann et al., 2017), sometimes referencing the use of
wireless sensor networks (Talmoudi et al., 2019; Priyanka
et al., 2021; Sadiki et al., 2018). Furthermore, enabling inter-
operability by being compatible with multiple vendors and
protocols is also cited as a requirement for all these types of
communication (Priller et al., 2014; Chen et al., 2018; Liang
et al., 2020).Whencommunication is not initially possible for
a device, it is often enabled using a gateway device (Alexan-
dru et al., 2016; Richter et al., 2019; Scholtz et al., 2018).
The specific means of communication and the specific entity
with which devices communicate change depending on the
considered application, but the requirement of data commu-
nication remains constant in most of the analyzed works.

Data processing

Data that are collected and transmitted must then be pro-
cessed, converting it into information, knowledge and even-
tually wisdom (Ackoff, 1989). Such processing involves any
manipulation of data that requires computational capabili-
ties before the data can lead to decision making and other
added value services. Data are generally stored in databases
(Bousdekis et al., 2019; Prudenzi et al., 2019a; Arosio et al.,
2014), so that current and historical data can be retrieved at
any point (Ardila et al., 2020; Romero et al., 2021). Process-
ing then includes data cleaning or preprocessing (Uhlmann et
al., 2017; Åkerman et al., 2018; Chen et al., 2018), data visu-
alization (Yu et al., 2014; Bousdekis et al., 2019; Prathima et
al., 2020), and in general, data analysis (Wiemer et al., 2019;
Ranjbar et al., 2019; Calabrese et al., 2020). Although data
processing is often performed entirely in the cloud (Gayathri
& Vasudevan, 2018; Balogh et al., 2018; Iqbal et al., 2019),
edge and fog computing can be utilized as alternatives or sup-
plements to cloud computing (Strauß et al., 2018; Shapsough
et al., 2020; Magadán et al., 2020).

Services

By enabling data collection, communication, and processing
for a legacy device, the exploitation of service-based archi-

tectures can be achieved (Lesjak et al., 2014; McNally et al.,
2020; Alonso et al., 2018). Such services can be classified
according to the Prognostics andHealthManagement (PHM)
architecture proposed in Li et al. (2020). These services con-
sist in:

• FaultDiagnosis Assessment (FDA): the current fault state
of devices can be estimated through retrofitting (Lee et
al., 2017; Barton et al., 2019; Sepehri et al., 2018). This
fault estimation includes detecting the presence of fail-
ures, isolating the failed component, and identifying the
specific failure mode.

• Prognosis Assessment (PA): incipient failures can be
detected before they can affect the device performance
(Aqueveque et al., 2021; Bucci et al., 2020; Alves et
al., 2020). This is possible through the estimation of the
health state and the prediction of Remaining Useful Life
(RUL).

• HealthManagement (HM): once the fault and health state
of a device have been assessed, decision making can take
place (Ciancio et al., 2020;Vieira et al., 2018;Mourtzis&
Vlachou, 2018). Health management services must first
integrate the fault and health information. Then, they are
able to offer maintenance advisory through the analysis
of this information. This enables the conversion of infor-
mation into knowledge and eventually wisdom (Ackoff,
1989).

RQ2: maintenance strategies

Next, RQ2 is analyzed. Reactive, planned, proactive and
strategic maintenance strategies are defined in the GFMAM
Maintenance Framework (GFMAM, 2021), and these are the
strategies considered in this review. Note that a single paper
could discuss the use of SRM in the context of multiple
strategies. The following criteria were used to classify the
maintenance strategy or strategies considered in a paper:

• If the studied maintenance actions occur after a failure,
the paper is classified as reactive maintenance.
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Fig. 6 Frequency of the keywords found regarding Research Question
2: Maintenance Maturity

• If maintenance actions occur before failures but there
is no condition assessment, the paper is classified as
planned maintenance.

• If maintenance actions occur before the occurring of
failures, and the condition is assessed through the
measurement of physical variables (e.g., acceleration,
temperature), the paper is classified as proactivemainte-
nance.

• If maintenance actions occur following a framework that
considers asset management and/or business objectives,
the paper is classified as strategic maintenance.

The differentiation of planned and proactive maintenance
is of special interest. A paper was classified as studying
SRM in planned or proactive maintenance when SRM is
used to collect data that allows maintenance actions to be
planned before the occurrence of failures. The main differ-
ence between both categories then lies in the nature of the
collected data. If measured variables enable the estimation of
the current condition of the machinery (i.e. the current wear)
then a paper was classified as studying proactive mainte-
nance. In contrast, a paper was classified as studying planned
maintenance if the measured variables enable the quantifica-
tion of how long a given device has been operating.

The frequency of each strategy is presented in Fig. 6, and
themost citedworks in each category are provided in Table 2.
The most frequently studied maintenance strategy is proac-
tive maintenance, followed by planned maintenance which
was studied or mentioned with significantly less frequency.
Regarding reactive and strategic maintenance, they were sel-
dommentioned in the analyzed works. The remainder of this
section presents an overview of the state of SRM in each of
the maintenance strategies.

Reactive maintenance

Only four of the analyzed works explicitly study SRM in
the context of reactive maintenance. Alexandru et al. (2016)
generate smartphone notifications when a machine’s pro-
grammable logic controller (PLC) triggers an alarm. Ramani
et al. (2016) and Deroussi et al. (2018) use SRM to generate
notifications that are sent to operators when amachine failure
is detected. Priller et al. (2014) mention the potential of using
retrofitting to execute predefined reaction patterns when a
machine breaks down (such as automatically scheduling a
repair action), rather than simply generating a notification. It
can be noticed that the objective is the automation of reac-
tive maintenance actions through SRM after the occurrence
of functional failures. However, such exploitation of SRM in
reactivemaintenance policies appears to be relatively uncom-
mon.

It is worthy of mention that this scarcity of reac-
tive maintenance-related papers was expected. The chosen
keyword matrix includes terms such as Industry 4.0 and
Smart Maintenance, whose technologies are not necessar-
ily required in reactive maintenance. Instead, traditional
industrial automation technologies (such as PLC’s) might be
sufficient to enable maintenance-related services in reactive
maintenance; e.g. fault detection. This low number of papers
does not reflect a lack of research on smart retrofitting in
reactive maintenance, but instead shows that the focus of
this literature review lies elsewhere.

Plannedmaintenance

Planned maintenance papers were found to be researched
more frequently than reactive and strategic maintenance.
Within planned maintenance papers, two variables that were
frequentlymeasured are the operational state and operational
mode of devices. An operational state refers to the level of
activity within a structure. Operational states are commonly
described in simple terms of binary ON and OFF values
(Wasson, 2006). Whereas, an operational mode specifies an
abstract user-selectable set of system activities that focuses
on satisfying an objective. They are not limited to ON / OFF
values, since operational modes might also include modes
like initialization, calibration, configuration, cleaning, pro-
duction, and even maintenance (Wasson, 2006).

Regarding operational states (ON/OFF), machinery was
retrofitted so that start and stop times could be recorded,
allowing maintenance to be done according to total work-
hours (Damanik et al., 2020; Bhandari et al., 2020; Calabrese
et al., 2020; Erazo Navas et al., 2021). When devices do
not have the ability to measure their own state, variables
such as voltage and current can be used to monitor the oper-
ational state (Bhandari et al., 2020; Mourtzis & Vlachou,
2018). The machine operational mode is also recorded in
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Table 2 Most cited papers in the
categories identified for RQ2

Reactive Planned

Priller et al. (2014) Mourtzis and Vlachou (2018)

Ramani et al. (2016) Lin et al. (2014)

Alexandru et al. (2016) Atluru et al. (2012)

Proactive Strategic

Zhang et al. (2017) Huber et al. (2019)

Mourtzis and Vlachou (2018) Wiemer et al. (2019)

Chen et al. (2018) Nordal and El-Thalji (2021)

some of the analyzed works (Pistofidis & Emmanouilidis,
2012;Mourtzis&Vlachou, 2018;Cattaneo&Macchi, 2019).
These operational measurements allow for an increased
awareness of the shop floor condition, which in turn allows
better maintenance andworkshop planning (Mourtzis&Vla-
chou, 2018).

Proactive maintenance

Proactive maintenance papers were by far the most frequent.
Suchworks are characterized by the implementation of CBM
techniques, which aim to predict potential failures through
the analysis of physical variables (Jardine et al., 2006).

The most frequently measured variables were vibration
(Surico et al., 2020; Aqueveque et al., 2021; Magadán et al.,
2020) and temperature (Ciancio et al., 2020; Iqbal et al., 2019;
Short & Twiddle, 2019), followed by electric current (Ge et
al., 2019; Strauß et al., 2018; Barksdale et al., 2018). The
most analyzed components were motors, induction or other-
wise (Rubio et al., 2018; Eiskop et al., 2017; Talmoudi et al.,
2019), followed by bearings (Richter et al., 2019; Bernal et
al., 2018). Most research on SRM involves rotating machin-
ery. Other variables of interest that were measured were fluid
pressure (Schneider et al., 2019; Lalanda et al., 2017) and
electric voltage (Al Kindhi & Pratama, 2021; Prudenzi et al.,
2019b).

Strategic maintenance

Specific mentions to strategic maintenance (i.e. fulfillment
of asset management or organizational goals) were seldom
found. Only two of the analyzed works study SRM in the
context of strategic maintenance, both of which belong to
the same research group.

Huber et al. (2019); Wiemer et al. (2019) worked on
extending the CRoss-Industry Standard Process for Data
Mining (CRISP-DM). CRISP-DM is an open standard that
describes a standard approach to data mining projects (Wirth
& Hipp, 2000). It consists of 6 layers: Business Understand-
ing, Data Understanding, Data Preparation, Model Building,

Fig. 7 Frequency of the categories found regarding Research Question
3: Drivers

Model Evaluation, and Deployment. The two first layers
are of special interest. Business Understanding focuses on
understanding the project objectives and requirements from
a business perspective, while Data Understanding involves
data collection (Wirth & Hipp, 2000). Authors defined inter-
mediate steps between Business Understanding and Data
Understanding. These are: i) business objectives are trans-
formed into technical tasks that fulfill said objectives; ii)
a selection of the data required to complete these techni-
cal tasks is made; iii) proper measurement equipment and
methodology are selected. Such intermediate steps allow a
direct link between organizational goals and technical imple-
mentations of SRM, making these papers examples of the
implementation of strategic maintenance in an enterprise.

RQ3: drivers

To create cohesive groups of SRM drivers, the GFMAM
Maintenance Framework was followed (GFMAM, 2021).
This identifies three categories in which maintenance man-
agement adds value to businesses: performance, risk and
cost. The resulting frequency of each category is illustrated in
Fig. 7, and themost citedworks in each category are provided
in Table 3. A description of each group follows.
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Table 3 Most cited papers in the
categories identified for RQ3

Performance Risk Costs

Wang et al. (2020) Mourtzis and Vlachou (2018) Zhang et al. (2017)

Zhang et al. (2017) Chen et al. (2018) Mourtzis and Vlachou (2018)

Mourtzis and Vlachou (2018) Lee et al. (2017) Chen et al. (2018)

Performance

The introduction of maintenance services through smart
retrofitting can increase the performance of manufacturing
systems, optimizing their production capabilities (Tedeschi
et al., 2017; Ramani et al., 2016; Jung & Jin, 2018). This
is possible by improving the availability of physical assets,
which is in turn a function of their reliability and maintain-
ability (Parra & Crespo, 2015).

SRM has the potential to improve the reliability of assets
(Cattaneo &Macchi, 2019; Deroussi et al., 2018; Hussain et
al., 2020), by increasing the Mean Time To Failure (MTTF)
and consequently decreasing the Failure Frequency (FF).
Improving reliability is often cited as a result of an improved
ability to schedule maintenance actions (Priller et al., 2014;
Yiu et al., 2019; Catenazzo et al., 2018), and in some cases,
as a result of implementing prognostics and health manage-
ment through retrofitting (Ranjbar et al., 2019; Cattaneo &
Macchi, 2019; Vogl et al., 2015). When failures occur, SRM
can also reduce the Mean Down Time (MDT), effectively
improving maintainability (Sezer et al., 2018; Lesjak et al.,
2014; Alves et al., 2020). Besides an improved maintenance
schedule, maintainability might be augmented by retrofitting
through faster response times (Wang et al., 2020; Liang et al.,
2020; Gayathri & Vasudevan, 2018), which enable the use of
alarms, earlier detection of faults, and remote notifications.

The collection of these improvements increase the avail-
ability of assets (Jónasdóttir et al., 2018; Bernal et al., 2018;
Mykoniatis, 2020), which means that assets stay in a pro-
ductive state for a greater amount of time. Furthermore,
the optimization of production through workshop schedul-
ing (rather than just maintenance scheduling) is also enabled
by SRM (Zhang et al., 2017; Vogl et al., 2015; Chen et al.,
2018). Finally, SRM can improve the quality of produced
products and offered services (Prudenzi et al., 2019a; Sezer
et al., 2018; Hsu et al., 2019).

Risk

Another way in which maintenance adds value is by reduc-
ing risk. Risk is the potential impact to an asset or another
source of value thatmay arise fromapresent process or froma
future situation (Márquez, 2007). In maintenance, risk com-
monly refers to safety, environmental, operational and not
operational effects of failures that might lead to monetary

losses (Ben-Daya et al., 2016). Maintenance can reduce risk
in an organization through: safety, environmental risk, and
stakeholder confidence (GFMAM, 2021). SRM was found
to address all these elements in varying levels.

SRM has been said to improve operator safety. Safety
sometimes comes from the increased autonomy of assets,
which reduce the need of operators directly interacting with
potentially hazardous machinery (Gayathri & Vasudevan,
2018; Catenazzo et al., 2018). Risk has also been mini-
mized by reducing the chances of potential injuries due to
damaged equipment (Hesser & Markert, 2019), preventing
unsafe working conditions (Nordal & El-Thalji, 2021), or
by providing clear instructions for operators to follow when
performing risky tasks, reducing potential human errors
(Arosio et al., 2014). Regarding human-asset interactions,
somepapers also trackedoperator location through retrofitted
machinery. These authors propose tracking the position of
each operator and which tasks they have completed on which
assets (Arosio et al., 2014; Pistofidis & Emmanouilidis,
2012). This tracking mechanics can lead to a more human-
centered maintenance enabling greater situational awareness
of operators (Oliveira et al., 2013), and increasing safety
while reducing errors (Gavish et al., 2015).

Concerning environmental risks, some authors in the
studied papers concerned themselves with environmental
sustainability (Scholtz et al., 2018; Zhang et al., 2017).
Although sustainability was seldom mentioned directly in
SMR-related works, one of the main functions of mainte-
nance ismaintainingplant and environmental safety (Muchiri
et al., 2011). This indicates that the improvement of themain-
tenance function has the potential to improve environmental
sustainability. Conversely, an inadequate execution of main-
tenance can lead to hazardous emissions, production wastes
due to untimely breakdowns, and inefficient use of energy
and resources (Liyanage & Badurdeen, 2010). Proper main-
tenance (and SRM as an extension) then has a significant
sustainability impact in the organizations (Franciosi et al.,
2020).

Finally, the literature indicates that SRM has the poten-
tial to increase stakeholder satisfaction (Jung & Jin, 2018;
Gayathri & Vasudevan, 2018), by enabling working-culture-
oriented and reliable business models (Nordal & El-Thalji,
2021). The studied works then indicate that SMR has the
potential to bring a positive impact on risk management
through safety, environmental risk, and stakeholder confi-
dence.
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Costs

The third main added value that maintenance offers is cost
reduction. The costs associated with asset utilization can be
divided into capital expenditures and operational expendi-
tures. Maintenance can support the reduction of these costs
(GFMAM, 2021), and SRM can aid this process.

Capital expenditures (CAPEX) involve money spent on
acquiring or upgrading productive assets. This includes buy-
ing or replacing machinery to increase overall productivity
or augment redundancy. One way SRM enables the reduc-
tion of this cost is by increasing the remaining useful life
(RUL) of assets (Hesser & Markert, 2019; Aqueveque et
al., 2021; Strauß et al., 2018). When machines can perform
their functions for longer, less refurbishments and replace-
ments are needed. Another driver that reduces CAPEX is
enabling interoperability between machinery from different
vendors (Mourtzis & Vlachou, 2018; Barton et al., 2019;
Iqbal et al., 2019). Interoperability eliminates the need to
replace functioning machinery simply because it uses a dif-
ferent or outdated communication interface, and removes the
need to purchase separate software tools that are compatible
with specific vendors only. Finally, SRM solutions usually
aim to have a low-cost implementation, meaning that transi-
tioning from legacy to retrofitted assets does not involve high
CAPEX (Chen et al., 2016; Eiskop et al., 2017; Sezer et al.,
2018).

Operational expenditures (OPEX) are related to money
spent on operating costs such as raw materials, utilities
(electricity, water, etc.) and labor. It also includes main-
tenance itself, both labor-wise and parts-wise. Numerous
examples can be found in which SRM is demonstrated to
save resources, such as maintenance costs (Ramani et al.,
2016; Surico et al., 2020), materials (including spare parts)
(Bernal et al., 2018; Priller et al., 2014), and energy (Alonso
et al., 2018; Pignatelli et al., 2015). Of special interest are
ways in which SRM can simplify the maintenance process,
potentially saving money and time. Retrofitting has enabled
the use of remote services (Khademi et al., 2019; Liang et
al., 2020) and outsourcing maintenance through after-sales
services (Chen et al., 2016; Zhang et al., 2017), which reduce
the need of having expert personnel on-site. Meanwhile, it
has enabled an increased asset autonomy (Chau et al., 2015;
Prathima et al., 2020) and ease of use (Lin et al., 2014;
McNally et al., 2020), meaning that human resources may
be reduced through retrofitting.

RQ4: Challenges

When selecting a set of categories to group definitions and
drivers, pre-existing frameworks or standardswere used.This
approach does not apply well to RQ4, since they change as
technology advances and research prioritizes certain areas

Fig. 8 Frequency of the categories found regarding Research Question
4: Challenges

over others. Instead, categories were identified only from the
reading of the selected works. The resulting frequency of
each category is depicted in Fig. 8, and the most cited works
in each category are provided in Table 4. The identified cate-
gories consist in: unavailability of CBM data, lack of expert
knowledge in plants, and various technical challenges that
include security, interoperability, latency and data volume.
These are next illustrated.

Security

Cybersecurity is the computer science field that devotes itself
to protecting the privacy, confidentiality and integrity of data
that is stored and transmitted. The importance of this field
is ever-increasing, as cyber-attacks become more frequent
and sophisticated (Babiceanu & Seker, 2016). In this con-
text, multiple considerations are made regarding security of
retrofitted machinery. Intellectual property becomes a con-
cern, as poor security measures in data transmission might
lead to third parties capturing production data (Eiskop et
al., 2017; Mourtzis & Vlachou, 2018). Such considerations
become a greater concern if a device is connected perma-
nently to the internet (Lesjak et al., 2014), so alternatives
like edge and fog computing become of interest (Ashjaei &
Bengtsson, 2017).

Interoperability

Collecting data for maintenance purposes is not a new con-
cept since many plants already do this. However, these
datasets are usually fragmented across systems because of
their heterogeneous semantics and formats (Christou et al.,
2020; Barbieri &Gutierrez, 2021). The development of com-
mon standards for device interoperability were found to
be some of the main challenges of health management in
smart manufacturing (Weiss et al., 2015). Even if various
machine to machine (M2M) communication standards have
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Table 4 Most cited papers in the categories identified for RQ4

Security Interoperability Latency

Wang et al. (2020) Zhang et al. (2017) Wang et al. (2020)

Mourtzis and Vlachou (2018) Mourtzis and Vlachou (2018) Zhang et al. (2017)

Ashjaei and Bengtsson (2017) Lalanda et al. (2017) Mourtzis and Vlachou (2018)

Data volume Data availability Expert knowledge

Wang et al. (2020) Calabrese et al. (2020) Huber et al. (2019)

Lee et al. (2017) Alves et al. (2020) Kiangala and Wang (2018)

Catenazzo et al. (2018) Åkerman et al. (2018)

been developed to this day (such as MQTT1, MTConnect2,
and OPC-UA3), heterogeneity and the lack of interoperabil-
ity are still challenges today (Barton et al., 2019; Prathima et
al., 2020). Interoperability issues are not limited to machine
communication. Existing data analysis and visualization
dashboards (such as Power BI, Tableau, and Google Data
Studio) have been found to be incompatible with sensor
data streams and streaming technologies, but instead operate
properly only on classical data storage (Moens et al., 2020).

Latency

Cloud services are commonly used in retrofitting scenarios.
However, cloud services usually do not guarantee the reac-
tiveness required from time-critical operations (Khelifi et al.,
2018; Wang et al., 2020). Even for applications that are not
time-critical, network reliability has been identified as an
issue in using the cloud (Wang et al., 2020). Some authors
have also cited real-time data collection and processing as
challenges (Mourtzis&Vlachou, 2018; Cologni et al., 2015).
Consequently, edge computing has been proposed as a solu-
tion to these issues (Ashjaei & Bengtsson, 2017; Strauß et
al., 2018). However, edge computing has several constraints
that the cloud does not, such as computational power and
available data storage (Scholtz et al., 2018). The aforemen-
tioned issues make the challenge of latency in data transfer
still relevant.

Data volume

Volume is one of the main dimensions of Big Data,
which is increasingly relevant in the manufacturing domain
(Babiceanu & Seker, 2016). Big Data refers to amounts of
data that are too large to be processed efficiently through tra-
ditional methods (Kaisler et al., 2013). The communication,

1 mqtt.org
2 mtconnect.org
3 opcfoundation.org/about/opc-technologies/opc-ua

storage and real-time processing of such large data volumes
have become a challenge for IoT devices (and by extension,
retrofitted devices) (Lee et al., 2017). Regarding commu-
nication, the bandwidth of existing networks in industrial
scenarios can be insufficient for these data volumes (Cate-
nazzo et al., 2018). Edge computingmight be considered as a
solution to this, but storage and processing of large data vol-
umes are an even bigger challenge in edge computing than in
cloud computing (Scholtz et al., 2018). Furthermore enabling
this communication, storage and processing of large data
volumes might require large start-up (CAPEX) and main-
tenance (OPEX) investments in plants and businesses (Lee
et al., 2017). Note that this challenge should bemore relevant
in proactive maintenance than planned maintenance.

Data availability

When performingCBM, sensor datamust be collected before
being able to perform analyses. Run-to-failure data is nec-
essary to train CBM models so they can detect the current
state of a device (Calabrese et al., 2020; Alves et al., 2020).
However, such data is not always available to plants that per-
form CBM on a device for the first time (Lei et al., 2018).
The collection of sensor data through retrofitting well in
advance of obtaining condition estimation capabilities must
be a long-term commitment for enterprises that implement
CBM. Much like with data volume, this challenge should be
more relevant in proactive maintenance than planned main-
tenance.

Expert knowledge

Toproperly conduct a retrofitting project, an interdisciplinary
team of domain experts is needed (Huber et al., 2019); e.g.
data scientists, process engineers, control engineers, mainte-
nance engineers, etc. After the termination of the retrofitting
activity, professional and technical persons that are familiar
with Information and Communication Technologies (ICT)
are required to operate and maintain the retrofitted equip-
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ment (Liang et al., 2020; Bucci et al., 2020). Acquiring expert
knowledge and/or personnel that has such knowledge can be
especially challenging for Small and Medium Enterprises
(SMEs) whose budget might be more restricted than larger
enterprises (Jung & Jin, 2018; Surico et al., 2020).

Discussion

In an effort to answer the RQs illustrated in this work, 82
different papers that discuss SRM were analyzed and cate-
gorized. This allowed the identification of: RQ1: a definition
of SRM; RQ2: the maintenance strategies in which SRM
is being researched the most; RQ3: the drivers that might
push enterprises towards the implementation of SRM; RQ4:
the challenges that hinder this implementation. This section
summarizes these findings and proposes a roadmap for the
implementation of SRM.

RQ1: definition

An analysis of the requirements for SRM that are found in
the literature leads to a definition of it. This definition should
reflect the need to enable data collection, communication,
and processing in legacy devices for the exploitation of such
capabilities to generate maintenance-related services. The
following definition is proposed based on the previous anal-
ysis:

Smart retrofitting in maintenance refers to the develop-
ment of maintenance services through the retrofitting of
legacy devices with the following functionalities:

• Data Collection: capability to collect operational data
through preexisting or additional sensors;

• Data Communication: capability to transmit sensor data
within a network to local or remote actors;

• DataProcessing: capability to transform sensor data into
information and knowledge through data preprocessing,
visualization, and analysis.

Some devicesmight already have embedded some of these
functionalities. The functionalities that must be retrofitted
then depend on the current capabilities of the device. For
instance, a device that already has data collection capabilities
(such as a computer numerical control or CNC mill) would
only require communication and processing capabilities to
be added for the implementation of SRM.

The definition proposed in this work is built from the
requirements that are found in the literature for the retrofitting
of legacy devices with maintenance purposes. This proposal
is not based on other definitions, since these are not available
in the analyzed works. Despite not being based on other defi-
nitions in the literature, the presented definition is found to be

aligned with various Industry 4.0 architectures. For instance,
the 5C CPS architecture proposed in Lee et al. (2015) and
the hierarchical architecture of smart factories presented by
Chen et al. (2017) pose similar technological needs. Such
similarities between this definition and Industry 4.0 archi-
tectures is not surprising, considering that “Industry 4.0” is
one of the keywords used to select the analyzed works. The
proposed definition is then supported by pre-existing Indus-
try 4.0 architectures while detailing specific requirements
and considerations for the case of SRM.

RQ2: maintenance strategies

A second set of findings comes from maintenance strate-
gies. By studying the concepts and the physical variables
monitored by retrofitted devices, each work was identified
as studying the use of SRM in the context of one or more
maintenance strategies. It is notable that significantly more
research has gone into SRM for proactive maintenance than
for any other maintenance strategy. The ways in which SRM
can support proactive maintenance are clear: it enables the
collection of physical variables, which can then be used for
FDA, PA and HM services. Ways in which SRM can support
other maintenance models are then of interest.

In the domain of planned maintenance, increased trans-
parency enables maintenance managers to know how much
each device has been used and in which mode of oper-
ation, thus allowing better maintenance planning. How-
ever, research on planned maintenance is significantly less
frequent than in proactive maintenance. Such a situation
becomes undesirable when considering that planned main-
tenance is still prevalent in industries today (Macchi et al.,
2017).

Regarding reactive maintenance, almost no research on
SRM was found. The papers that discuss this maintenance
model mention that SRM can improve the response to failure
by generating alarms and identifying which steps must be
taken next. The scarcity of results in this area is probably
caused not froma lack of research, but froma keywordmatrix
that is focused in different topics.

Finally, the reduced amount of research on SRM for
strategic maintenance proves to be undesirable. Strategic
maintenance is the most recent trend of maintenance evolu-
tion, and it has been regarded as the next step in increasing the
added value of the maintenance function (GFMAM, 2021).
The few works that studied SRM in strategic maintenance
first consider what type of data must be collected and then
use SRM to enable the collection of these data. However,
only two out of 82 analyzed documents discuss strategic
maintenance. This lack of works on how SRM can support
strategicmaintenance presents a strongopportunity for future
research.
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RQ3: drivers

In this work, SRM drivers were grouped into significant cat-
egories. Drivers were classified as supporting performance,
risk and costs. Performance is improved by SRM through
increased availability (achieved through higher reliability
and maintainability), increased production, and better qual-
ity in products and services. Risk is reduced by increasing
operator safety, considering sustainability goals, and enhanc-
ing stakeholder satisfaction. Finally, costs are reduced by
minimizing both capital and operating expenses, increas-
ing the useful life of assets, and decreasing the usage of
resources. These value drivers are aligned with the objec-
tives of asset management (ISO, 2014), and by extension, of
strategic maintenance.

SRM then has the potential to support enterprises in
their fulfillment of their organizational objectives through
strategic maintenance. Despite this potential, SRM does not
appear to be currently used to quantify how maintenance
impacts the enterprise at the organizational level. Since this
topic merge technology and organizations, the collaboration
between academia and industry is fundamental. The lack of
research may suggest a need to increment this collaboration.

RQ4: challenges

The challenges found through this review were divided into
security, interoperability between physical assets and soft-
ware tools, latency in both data transmission and processing,
data volume, data availability, and the lack of expert knowl-
edge regarding SRM. The analyzed literature suggests that
the challenges to implement SRM are mostly technical in
nature. Whereas, a discussion of the challenges for the
implementation of SRM in strategic maintenance is missing.
Researching how SRM can support strategic maintenance
processes is one of the challenges that the academy should
focus on, considering the course that maintenance is taking
towards more strategic approaches (GFMAM, 2021). Under-
taking this challenge will in turn realize the potential of SRM
to support enterprises in their fulfillment of asset manage-
ment and organizational objectives.

SRM: implementation roadmap

From the previous discussion, an important outcome of this
review is that the analyzed literature does not appear to con-
sistently consider the impact that SRM can bring to strategic
maintenance and its processes. By following an effective
asset management policy (which is part of strategic main-
tenance), organizations are able to realize greater value and
achieve a balance of performance, costs and risk (Parra et al.,
2019). Specific roadmaps that allow SRM to be exploited in
strategicmaintenance and assetmanagement were not found.

Even if few works propose architectures that consider asset
management and/or organizational goals (Huber et al., 2019;
Wiemer et al., 2019;Wirth&Hipp, 2000), these do not quan-
tify the benefits that SRMmaybring to the fulfillment of these
goals. Instead, most of the analyzed literature focuses on the
technical requirements and challenges of SRM.

This technological focus might be sufficient in the per-
spective of proactive maintenance, as the ability to predict
failures is enough to realize value. However, it proves to be
insufficient to realize value in strategicmaintenance.Because
of this, the tendency of many enterprises is to implement
SRM and then trying to realize value from it – following a
“technology-push” approach to business.

This tendency is witnessed in Lubik et al. (2013). Here,
authors surveyed 25 different Italian manufacturing enter-
prises. Among the interviewed companies, 15 were found
to start with a technology-push philosophy, as opposed to
a market-pull or demand-pull one. Among technology-push
companies, decisions were usually instinct-based and their
first revenue took longer tomaterialize (4.2 years vs 2.9 years
in demand-pull organizations). The study also found that the
technology-push companies had to shift to a demand-pull
strategy. One reason for this change was the realization that
the real needs of their clients were different than the needs
they had supposed. Another reason was the inability to fulfill
profit targets through their current methods.

Lubik et al. (2013) are not the only researchers that reflect
on the disadvantages of deploying a given technology or
tool and then trying to realize value from it. Without spe-
cific strategies, Parra andCrespo (2015) warn that companies
might fall into the pitfall of implementing tools (e.g. SRM)
without a clear understanding on how or why to implement
them. Such implementations can result in underutilized tools
that do not bring as much value as they could. Indeed, Mit-
tal et al. (2018) conclude that there is a need for strategies
that allow organizations to: i) understand their own matu-
rity from a smart manufacturing standpoint (which is closely
related to the utilized maintenance strategy); ii) learn what
steps (courses of action) should be taken, according to their
current maturity.

It is now clear that a technology-first approach in which
SRM is implemented before designing a strategy is not desir-
able. A demand-first plan in which technology supports an
existing strategy is then a more effective way to exploit
SRM as a tool. In this regard, strategic maintenance and
asset management must be considered before any attempts
of implementing this (or any) tool. Enterprises first need to
focus on their operational contexts, financial and regulatory
constraints, and on the needs and requirements of their stake-
holders (ISO, 2014). Once all of these factors have been
considered, the following steps should take place:
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Fig. 9 Paradigm shift from technology-push to demand-pull for the
realization of organizational value

1. Process: organizationsmust first select the processes nec-
essary to fulfill their strategic maintenance vision. These
processes might be identified by following a preexist-
ing management framework, such as the Maintenance
Management Model from Márquez (2007), or the Main-
tenance Management Framework from GFMAM (either
Version One (GFMAM, 2016) or Two (GFMAM, 2021).
Some of these processes might include identifying which
assets in an organization are the most critical, analyzing
which failuremodes should be studied in those assets, and
deciding which maintenance policy is the most appropri-
ate for each failure mode (GFMAM, 2016).

2. Method: after a set of processes is established, enter-
prises must assign a supporting method for each process
(Márquez, 2007). For instance, the selection of mainte-
nance policy might utilize Reliability Centered Mainte-
nance (RCM) or Total Productive Maintenance (TPM).
Supporting methods should be selected as a result of
defining a set of processes, and not the other way around
(Parra & Crespo, 2015).

3. Tool: finally, after a set of processes and supporting
methods has been defined, a tool or technology must be
selected to support the implementation of each method.
For instance, in the case of RCM, a computerized main-
tenance management system (CMMS) would act as
an appropriate technology. The maintenance processes
that are traditionally implemented in the enterprises
do not need to be completely replaced or overhauled
from the technology. Instead, the idea of SRM is that
such processes should be improved and supported by
the transparency-enabling technologies of Industry 4.0
(Roda & Macchi, 2021).

A representation of this sequential procedure is depicted
in Fig. 9. The figure illustrates how the approach should shift
from a technology-first one to a process-first perspective. The
matter of how to exploit SRM as a tool to support specific
processes, realizing value at the process and organization
levels, then arises as an area for future research.

Threats to validity

Although great care went into making this review as com-
prehensive as possible, some threats to validity should be
considered when analyzing its results. First, documents from
before 2010 were for the most part not considered. Second,
the decision to only analyze English documents that were
indexed in either Scopus or Web of Science might have left
out relevant works that do not fulfill those conditions. And
finally, the selected keyword matrix (see Fig. 3) can be con-
sidered a threat to validity. The paradigms and technologies
group in particular contains keywords that, to the authors’
knowledge, would return documents related to proactive,
planned, and strategic maintenance. There is always the pos-
sibility, however, that there could have been keywords that
were not considered which would have returned more doc-
uments related to each maintenance strategy, presenting a
more accurate overview of the current literature.

Conclusions

This work aims to analyze the current state-of-the-art con-
cerning Smart Retrofitting in Maintenance (SRM). SRM
stands as an alternative to the complete replacement of
machinery when the digitalization of maintenance in an
enterprise is desired. In this context, it is of interest to ana-
lyze where research stands and where it might go. With
this in mind, the PRISMA method for systematic literature
reviews was followed, and 82 papers related to SRM were
analyzed. The objective was to propose a definition for SRM,
identify how SRM is currently exploited in multiple mainte-
nance strategies, and define the current drivers and challenges
towards the widespread implementation of SRM. The com-
pletion of this document led to multiple relevant outlooks.

First, a definition for SRM was provided:
Smart retrofitting in maintenance refers to the develop-

ment of maintenance services through the retrofitting of
legacy devices with the following functionalities:

• Data Collection: capability to collect operational data
through preexisting or additional sensors;

• Data Communication: capability to transmit sensor data
within a network to local or remote actors;

• DataProcessing: capability to transform sensor data into
information and knowledge through data preprocessing,
visualization, and analysis.

Then, an analysis was conducted concerning the main-
tenance strategies in which SRM is utilized. This analysis
presents a trend towards the exploitation of SRM in proactive
maintenance. Finally, a set of drivers and challenges was out-
lined concerning the implementation of SRM. Drivers were
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classified in accordancewith the forms inwhichmaintenance
adds value in an asset management setting; i.e. performance,
risk and cost. Concerning challenges, meanly technical ones
were found in the analyzed literature, while management-
focused or strategic-focused challenges were only partially
considered.

These results showed that the analyzed literature mainly
deals with technological issues without sufficient consid-
erations on strategy. Such a technology-first focus in the
management of companies has been deemed undesirable by
various authors, who instead advocate for more demand-
centric and strategy-focused approaches. Starting from this
result, a roadmap for the implementation of SRM was pro-
posed suggesting the utilization of SRM as a tool to support
the processes and methods of enterprises.

Based on the outcomes of this investigation, few opportu-
nities for further research arise:

• Strategic maintenance: due to the recent trend of mainte-
nance, it is fundamental to implement SRM in strategic
maintenance and asset management scenarios. The trans-
parency brought by SRM has shown many benefits in
proactive maintenance through FDA, PA, HM, and the
implementation of CBM in general. However, the bene-
fits that SRMmaybring to strategicmaintenance have not
been sufficiently explored. Likewise, following the prin-
ciples of strategic maintenance towards deciding how to
exploit SRM in a given scenario by following a demand-
first approach (for example, deciding if a specific asset
should undergo SRM or if it should simply be replaced
or left as it is) could be valuable. Achieving this goal
might require close cooperation between academia and
industries.

• Plannedmaintenance: despite the fact that plannedmain-
tenance is still very relevant in enterprises, most of
the analyzed works focuses on enabling transparency
in proactive maintenance. If SRM were to be exploited
cost-effectively in plannedmaintenance scenarios, a con-
siderable amount of enterprises might benefit from it.
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