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Abstract
Carbon fibre reinforced plastic (CFRP) manufacturing cycle time is a major driver of production rate and cost for aerospace
manufacturers. In vacuum assisted resin transfer molding (VARTM) where liquid thermoset resin is infused into dry carbon
reinforcement under vacuum pressure, the design of a resin distribution network to minimize fill time while ensuring the
preform is completely full of resin is critical to achieving acceptable quality and cycle time. Complex resin distribution
networks in aerospace composites increase the need for quick, optimized virtual design feedback. Framing the problem flow
media placement in terms of reinforcement learning, we train a deep neural network agent using a 3D Finite Element based
process model of resin flow in dry carbon preforms. Our agent learns to place flow media on thin laminates in order to avoid
resin starvation and reduce total infusion time. Due to the knowledge the agent has gained during training on a variety of thin
laminate geometries, when presented with a new thin laminate geometry it is able to propose a good flow media layout in less
than a second. On a realistic aerospace part with a complex 12-dimensional flow media network, we demonstrate our method
reduces fill time by 32% when compared to an expert designed placement, while maintaining the same fill quality.

Keywords Textile composites · Finite element analysis (FEA) · Resin transfer moulding (RTM) · Machine Learning ·
Optimization

Introduction

Improved fuel efficiency of passenger flights is critical to
the environmental sustainability and economic viability of
air travel. In response, major aircraft manufacturers have
moved to improve the efficiency of their products through
new designs and new technology. The weight of an aircraft
is of singular significance to fuel burn, and for this reason
the industry has moved away from Aluminium as the major
structural material to lighter composite materials like Car-
bon Fibre Reinforced Plastic (CFRP). Over the past 30 years
each generation of aircraft has includedmoreCFRP to reduce
weight. Modern passenger aircraft are over 50 percent CFRP
by weight, including CFRP primary structure such as the
fuselage and wings on the Boeing 787 and Airbus A350
(Roberts, 2007). CFRP cure cycle time is a major driver of
production rate and cost for Original EquipmentManufactur-
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ers (OEMs), as well as Maintenance, Repair, and Overhaul
(MRO) organisations.

In Liquid Composite Molding (LCM) techniques such as
Vacuum Assisted Resin Transfer Molding (VARTM), liq-
uid thermoset resin is infused into dry carbon reinforcement
under vacuum pressure in an oven. When compared to tra-
ditional cure processes where the carbon reinforcement is
preimpregnated with resin (prepreg) and then cured under
pressure in an autoclave, the comparatively lower cost of
ovens alongwith other advantages has lead to increased inter-
est in the use of VARTM in aerospace structures (Soutis,
2005). However, the time required to fill the dry reinforce-
ment with resin means that a part produced with VARTM
will spend more time in an oven than a prepreg part spends
in an autoclave. Designing processes to reduce this addi-
tional cycle time will be a critical factor as production rates
increase. This challenge also exists in a related family of
LCM techniques which use all rigid molding surfaces allow-
ing pressures higher than 1 atmosphere, calledResinTransfer
Molding (RTM). RTM is used to produce complex 3D parts,
but is limited in scalability due to the increased cost of
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double-sided sealed tooling, and so is not applicable to larger
structures.

LCM processes have two main stages (Sozer et al., 2012):

1. Placement of the dry preform on or inside the mold
2. Mold filling, in which the resin is infused or injected into

the preform to saturate all the empty space between the
fibers

During themoldfilling step, resin is injected through inlets
or ’gates’, and air leaves through outlets or ’vents’. The first
objective is to fully saturate the preformwith resin, displacing
all the air and volatile organic compounds, as not completely
filling the preform leads to dry spots and defective parts that
cannot be used. The second objective is to minimize the fill
time. A successful LCM process will completely fill the pre-
form quickly (Sozer et al., 2012).

There are two main approaches to reduce fill time. In a
RTM setting, a high pressure can be used to increase the resin
flow rate. In both RTM and VARTM settings, the design of
the resin distribution system has a direct impact on how the
resin flows through the preform (Hsiao and Heider, 2012)
and whether the preform is entirely filled, it is therefore of
primary importance to LCM process design.

A resin distribution system includes the design and loca-
tion of resin injection sites, the location of air outlets, the
design and location of channels or flow pipes designed to
carry resin from one area of a mold to another, and the
design and location of high permeability material layers
(’flow media’ or ’distribution media’) placed on top of the
preform that distribute resin preferentially (Hsiao and Hei-
der, 2012).

The design of these systems must be done carefully and
is not always intuitive (George, 2011). In industry, process
engineers depend on their experience and knowledge to pro-
pose a resin distribution system design, which is then refined
through trial and error loops, expensively testing fabrication
strategies, rather than a systematic optimization approach.
To avoid many physical experiments, Finite Element Meth-
ods (FEM) have been previously established in the literature
solving Darcy’s law describing the flow of resin in a dry pre-
form (Bruschke andAdvani, 1990), we briefly review the key
points in Section Simulation and Process Model. However,
even with accurate process models, optimization of the resin
distribution network still remains a challenge.

In RTM where the high pressure helps assist in achieving
high resin flow rates, the design of gate and vent locations has
been the subject of active research. Using various models of
resin flow, many optimization techniques have been studied,
we briefly review some key contributions to the RTM design
optimization literature below:

– Young (1994) use a genetic algorithm to optimize 2 gate
locations evaluated using a mold filling FEM that also
simulates temperature. They propose an objective func-
tion weighting resin injection pressure, the maximum
time difference between boundary nodes being filled, and
the maximum temperature difference between nodes at
the end of mold filling. They find their results are encour-
aging but that computational complexity is a limit to the
effectiveness as the number of design variables increases.

– Mathur et al. (1999) use a genetic algorithm to optimize 2
vent locations for minimum fill time using a mold filling
FEM. They propose an objective function that weights
fill time and dry spot formation, and use a step func-
tion penalty to impose constraints. They report that their
results make physical sense and could be used to seed a
local search.

– Gokce et al. (2002) optimize the location of a single
gate using a branch and bound approach and a mold fill-
ing FEM. They partition the possible gate locations into
sets geometrically and exploit a locality assumption that
the lower bound of the objective function (total unfilled
nodes) is of the same order of magnitude as the aver-
age over a given spatial partition. They perform separate
optimizations for cycle time and elimination of dry spots.
The authors report that the branch and bound approach
had an 86% lower computational cost when compared
to a genetic algorithm, and verified it found an optimal
solution via exhaustive search.

– Boccard et al. (1995) use a geometric approach based on
distances which does not take into account material prop-
erties to propose gate locations for thin molds that avoid
trapping air bubbles. Their approach is based on con-
structing geometric subdomains in the 2D plane, such
that each domain contains one inlet. They then use the
distance from each inlet port to the two closest points on
the perimeter to determine the gate locations algorithmi-
cally, without using input from a mold filling simulator.

– Lin et al. (2000) use a quasi-newton optimizationmethod
to refine the initial placement of 3 gates using a mold fill-
ing FEM.The authors find that using a FEMwith gradient
based search requires either a finemesh or adaptivemesh-
ing so that small differences in evaluated gate locations
provide a useful gradient to the optimizer. They recom-
mend that if one or more of the parameters are discrete
(such as the number of gates), gradient based optimiza-
tion should either not be used, or used in conjunctionwith
a search based method like genetic algorithms.

– Wang et al. (2017) use a geometric approach (medial axis
transform) to find initial symmetric designs for injection
channels in RTM molds of shell-like complex parts. The
initial designs are then optimized using a FEM based
moldfilling simulation to determine theflowpattern. This
flow pattern is then geometrically partitioned to allow a
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binary search to move injection channels to correct for
anisotropy in the preform.

The main challenge of VARTM is the reliance on vac-
uum pressure. As the resin follows the pressure gradient
through the preform, the varying permeability caused by
complex geometries is especially prone to dry spots if the
resin delivery system is notwell designed.VersusRTM, there
is comparatively less literature concerning optimization of
VARTM resin distribution networks. We summarize some of
the key approaches below:

– Hsiao et al. (2004) optimize the cross-sectional area of
2 flow runner channels, and the number of plies of dis-
tribution media in 6 sections to determine an optimal
flow distribution network for a co-cured stiffened panel.
The authors define an optimization objective weighting
dry spot volume fraction and fill time. They use a genetic
algorithm and a finite element flowmodel and report their
GA found a solution in the top 1.3% of all possibilities,
using only 15.5%of the computational time. Their results
were verified by exhaustive search and experimentation.

– Kessels et al. (2007) optimize the location of 3 flow
runner pipes on a complex glider shell. They use a 3D
geometric mesh distance model based on the assumption
that the resin first fills the nodes that are closest to the
inlet, then the next closest, etc. They remark that this
assumption is locally true but not globally, and suggest
modifying mesh distances to capture anisotropic perme-
ability, although this is not demonstrated. Themesh based
distance model is then used in the loop of a genetic algo-
rithm. They found generally good agreement between
their model and a FEM filling model, but reported that
when the flow is complex, the results differ from a FEM
filling model and recommend a final calculation to refine
the vent locations.

– Sánchez et al. (2015) propose a pre-design tool for resin
channels on a large thin boat shell using a geometric
model. The model is based on distance fields computed
by level sets which are then partitioned into indepen-
dent regions. The partitioning lines are the resin channel
paths, resembling a medial axis. It assumes uniform
and isotropic permeability in the preform and that gates
should be placed on the boundary, as far away from inlets
as possible. based on an assumption of uniform perme-
ability to be used. The authors conclude that the resultant
pre-design should then be computed by a full physics-
based simulation.

– Sas et al. (2015) optimize 6flowmedia sections on a panel
and 14 sections on a complex geometry for robustness
under multiple racetracking scenarios around an insert.
Focusing on robustness, they explicitly enumerate the
possible racetracking scenarios around the insert and use

tree-search based method to perform discrete optimiza-
tion over the number of distribution media plies in each
region. Of note, their tree search is able to update the
number of regions if the optimization does not converge.
Evaluation in the tree search is done using a FEM fill
model. They report a case study in which their proposed
solution is able to fill the mold for all scenarios.

Many of these approaches can be considered a multiob-
jective grid based placement optimization problem. A more
complex and constrained variant of this general problem is
heavily studied in integrated circuit design and is known as
Global Placement.While there are analytical approaches like
Integer Linear Programming, and numerical approaches like
non-linear optimization,much like flowmedia placement it is
often solved stochastically using GAs, Tree/Graph search, or
Reinforcement Learning (Mirhoseini et al., 2020). We have
focused our literature review on the optimisation techniques
previously applied to flowmedia placement and similar man-
ufacturing problems in composites, however for interested
readers we recommend the review of the history of work in
this related field that inspired ours by (Kahng, 2021).

In the case of the RTM literature, optimizations that use
realistic physics-based flow models all exhibit very low
dimensional design spaces (typically only one or two gate
locations are optimized) and often have an intuitive start-
ing position such as the center of the mold to work from.
Conversely, VARTM resin delivery systems are often more
complex, and the set of design variables is larger. There-
fore most studies that consider flow pipes or channels have
not used accurate physics-based models, but instead made
use of symmetry and assumptions of the homogeneity of
the permeability in parts, which is a significant limitation
for application to VARTM aerospace structures. While the
placement of distribution media has a very large effect on
the flow front, natural through-thickness permeability varia-
tion in the preform can also have an effect on the evenness
of the flow front along the bottom surface. Yun et al. (2017)
found that this variation meant that the percentage of voids
in the final filled preform increased with the permeability
of the distribution media, further emphasizing that physics-
based simulations with appropriate material properties are
important for resin distribution network optimization.

Hsiao et al. (2004) and Sas et al. (2015) tackle the high-
est dimensional design spaces in a problem setting similar to
ours. In Hsiao et al. (2004), the authors optimize 6 sections
of resin flow media and the cross-sectional area of 2 flow
runner channels, allowing multiple layers of flow media in
each section, resulting in a search space with 32 ∗22 = 2916
combinations. The main limitation of the work in Hsiao et al.
(2004) is in scalability, as their proposed genetic algorithm
explores a full 16% of this relatively small design space to
yield the optimized result. In Sas et al. (2015) the authors
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expand the search space under optimization compared to
Hsiao et al. (2004) by considering up to 14 flow media sec-
tions (allowing one or zero layers of flow media at each)
giving a design space of 214 = 16, 384.

In aerospace VARTM designs with many flow media sec-
tions and multiple layers allowed at each, the design space
is at least one and possibly three orders of magnitude larger
than considered in Sas, and exploring that much of the design
space is expensive in both computational time and real time.
Designing aerospace geometry is an iterative process as
requirements and interfaces are refined. Many distinct but
related part designs will be proposed before the geometry
is finalized. Hence, optimizations that take significant time
before feedback is given to the engineers can become bot-
tlenecks in the design process. Our proposed solution to this
problem is an optimization technique that is able to transfer
knowledge from previous optimizations performed on simi-
lar designs to a new design in the same way an expert would.

We achieve this by training a neural network-based
agent to optimize the placement (location and thickness) of
flow media through Deep Reinforcement Learning (DRL).
Through experience, our agent learns the skill of placing
flow media when presented with a part design. This expe-
rience encoded in the neural network can then be thought of
as a skill that can be applied to other parts without requiring
additional experience.

This is a shift in how to think about process optimiza-
tion. Instead of directly optimizing the scenario of interest
by running a process model, we train an agent on a vari-
ety of (usually randomly generated or perturbed) scenarios
in order to gather relevant experience for the agent. Then,
when presented with a previously unseen scenario, the agent
immediately proposes new parameters without any further
training. This can create significant time savings as it poten-
tially eliminates entire optimization runs. The applicability
of the agent’s previous experience and therefore the overall
effectiveness when the agent is presented with a new sce-
nario will depend on the similarity between the scenarios it
was trained on, and the scenario of interest.

Applying DRL to production system optimization has
been recently shown to outperform conventional methods in
many manufacturing domains. We recommend the review of
this area by (Panzer and Bender, 2021) for a comprehensive
summary. DRL has been shown to work well in the manu-
facturing setting through creating RL environments based on
offline processmodel simulators such as ozonation of textiles
(He et al., 2021), material draping (Zimmerling et al., 2022),
metal forging (Ma et al., 2022), and brine injection (Andersen
et al., 2019). The need for knowledge transfer combined with
the high-dimensional decision problem and the demonstrated
success of DRL in industrial process optimization motivate
our use of Deep Reinforcement Learning in this domain.

Our model is trained using realistic geometries and pro-
cess model runs from a design family of thin laminates with
complex “pad-ups” (an aerospace term for locally thicker
sections on an aerostructure skin), the system is then instantly
able to propose a good placement on previously unseen parts
from that same family without running the process model at
all. Additionally, by finetuning, the system can continually
learn and improve from new experiences as it is used.

The main contributions of our work are:

– We introduce a novel instant optimization method using
machine learned knowledge transfer for VARTM flow
media placement that is scalable to realistic aerospace
parts with the objective of avoiding dry spots and mini-
mizing fill time

– We detail our Deep Reinforcement Learning (DRL)
based optimization methodology that successfully learns
a skill from experience in simulation to optimize flow
media placement on designs that were not seen during
training, without evaluating any process model on the
design under optimization

– We present a case study applying ourmethod to a realistic
aerospace laminate part with a 12-dimensional design
space of size 312 = 531, 441 where we reduce fill time
by 32%when compared to an expert designed placement,
while maintaining a complete fill of the preform

The remainder of this paper is organized as follows. In
Section Flow distribution network optimization, we describe
the overall resin flow optimization problem. In Section Sim-
ulation and Process Model we describe the process model
used in our optimization. In Section Flow media placement
optimization we describe our proposed approach to flow
media placement optimization. The results and discussion
are presented in Section Results and discussion. Finally, Sec-
tion Limitations concludes the paper and discusses future
work.

Flow distribution network optimization

In this study we consider a VARTM process occurring in
an oven with metallic tooling underneath the CFRP and soft
tooling on top as in Fig. 1. The tooling is Inner Mold Line
(IML) controlled as is used in complex structures in the
aerospace industry (Hiken, 2017), meaning complex pad-ups
are placed on the tool side to control assembly tolerances. A
stack of carbon sheets (plies) are stacked (layed up) between
the top and bottom layer of tooling materials. In VARTM,
the soft tooling materials are sealed to the mold surface, and
the carbon plies are then held under vacuum to compact them
and remove air. The resin is injected through inlets and leaves
through outlets under 1 atmosphere of vacuum, this pressure
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Fig. 1 VARTM tooling
arrangement

Fig. 2 Example resin distribution network containing a flow runner and
flow media

differential pulling the resin through the dry preform and
filling the empty space between fibers with the resin. Once
saturated, the now filled preform is held under vacuum and
the temperature is raised to cure the resin and create the final
composite part. In order to ensure the preform is appropri-
ately filled, a resin distribution network is used to direct the
flow of the resin during infusion.

The resin distribution network consists of the inlets,
outlets, flow channels or pipes, and high permeability dis-
tribution media (flow media) layers. As the impregnation of
the resin into the dry reinforcement is achieved only through
vacuum, the resin distribution network design significantly
influences part quality and cycle time.

While inlets can be single points, it is typical to use a
’flow runner’ (channel or leaky pipe) so that injected resin
flows from a line instead of a point. These are commonly
placed along one edge of the part for practicality. Default
practice is to cover most of the top surface of the preform
with a layer of high permeability distribution media in order
to encourage resin flow across the top of the preform (in-
plane) first, and then allow the resin toflow through thickness.
Due to the vacuum outlet location on the opposite edge from
the inlet, the pressure differential pulls resin both in-plane
and through thickness, however as the permeability through-
thickness is much lower than the in-plane permeability, care
with the placement of distribution media must be taken to
ensure the resin doesn’t flow across the top of the preform
in-plane before filling through-thickness. An example of a
resin distribution network containing a flow runner and flow
media is displayed in Fig. 2.

While filling, the resin flow front will be non-uniform
through the thickness of the preform. This phenonmena is
displayed in Fig. 3. In aerospace parts with large scale and/or
complex geometrieswith locally varying thicknesses, this lag
in the flow front between the top and bottom surfaces is exas-
cerbated, and can cause the resin to ’racetrack’, arriving at
the outlet through a more permeable path around thick areas
instead of through thembefore thewhole preform is full, trap-
ping off vacuum and causing dry spots due to resin starvation
(known as ’trapoff’). An illustration of this phenomena for
a part with varying thickness as an example is displayed in
Fig. 4).

As a preform that is not almost completely filled will lead
to a defective part, a sub-optimal resin distribution network
design causes both quality issues and poor cycle time.

Optimizing resin distribution is therefore an important
problem in industry, however current practice relies on man-
ual optimization by trial and error either through simulation
physical experiments.

Simulation and Process Model

In the literature, flow optimization makes use of either a
numerical process simulator (Gokce et al., 2002; Lin et al.,
2000; Young, 1994; Boccard et al., 1995;Mathur et al., 1999;
Hsiao et al., 2004) or a geometric surrogate model (Sánchez
et al., 2015; Kessels et al., 2007), in order to evaluate an
objective function without doing expensive physical experi-
ments.

Mathematical models of the relevant physics of resin flow
during processing of thermoset composites and their solu-
tions using Finite Element Methods have been previously
established in the literature (Bruschke and Advani, 1990)
and the key points briefly reviewed here. We do not propose
a new process model in this work, but use existing work to
feed our optimization.

When filling the dry preform, we can treat the resin as a
fluid flowing through an anisotropic porous medium and we
can describe it with Darcy’s law (Eq. 1).

−→u = −K

η
∇P (1)

Where η is the viscocity of the resin, K is the permeability
tensor of the perform, −→u is the average velocity, and ∇P is
the pressure gradient in the flow field.
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Fig. 3 Non-uniform
through-thickness resin fill front
showing resin flowing quickly
along the distribution media
faster than through the thickness
of the preform

Fig. 4 Visualization of ’trapoff’

Darcy’s law states that the velocity of a fluid flowing
through a porous medium is directly proportional to the driv-
ing pressure drop.

If we assume that the resin is incompressible and the flow
is quasi-steady state in the domain (the domain is at full
saturation) as in Eq. 2, we generate the following PDE (Eq.
3).

∇.
−→u = 0 (2)

∇.(
K

η
∇P) = 0 (3)

This second order PDE can be solved when the boundary
conditions (no flow through the boundary, inlet at the pro-
cess injection pressure, and flow front pressure at zero) are
prescribed. This is a moving boundary problem as the resin
domain changes over time. However, once the velocity is
obtained at the flow front, we can project the expansion of the
resin saturated domain for the next time step, and update the

pressure distribution. This is discretized using finite element-
control volume (FE-CV) methods to perform these updates.

As suggested in (Hsiao et al., 2004), by assigning different
(but fixed) permeability values (in 3D) to the preform, flow
runner, and flowmedia elements, we canmodel the resin flow
during the VARTM process for the purposes of flow media
layout optimization. We use the validated FE-CV model for-
mulation from Bruschke and Advani (Bruschke and Advani,
1990) which has been used with good correlation to exper-
iments in (Mathur et al., 1999; Gokce et al., 2002; Maier
et al., 1996; Hsiao et al., 2004). While we use this previ-
ously validated approach in our study,we emphasize here that
our optimization method detailed in the next section makes
no particular assumptions on the process model except for
access to the element fill volumes and times. With the appro-
priate software engineering it could be applied to work with
other tools such as PAM-RTMTM (ESI-GroupTM), and LIMS
(Maier et al., 1996).
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Fig. 5 Flow Media
parameterization into a discrete
4 x 3 grid for optimization

Flowmedia placement optimization

We consider the problem of determining optimal placement
of flow media for the fabrication of thermoset-matrix com-
posites using a VARTM process. Our optimization target is
the family of thin laminate parts with complex pad-ups as are
typically found on aircraft control surfaces. The objective is
to minimize the cycle time while simultaneously satisfying
the primary manufacturing constraint that all of the part is
filled with resin.

We assume the part is held at a constant infusion tempera-
ture at all locations during filling. The resin delivery network
under optimization consists of flow media layers placed on
the top surface of the preform. In all our scenarios there is
a flow runner channel running along one side of the tool,
with a vacuum outlet on the opposite side with the runner,
inlet, and outlet locations all held fixed. For the purposes of
optimization, we discretize the flow media design space into
a 4 by 3 grid, each position of which can accept 0, 1, or 2
layers of flowmedia. A visualization of the parameterization
is presented in Fig. 5. The Flow Media Map is a 2D matrix
containing the integers 0, 1, or 2 at each coordinate (i, j)
which corresponds to the number of flow media layers at
that position in the grid. This 1:1 correspondence between
the FlowMedia Map matrix and the flowmedia arrangement
is clear by inspecting Fig. 5. This parameterization results
in a design space of 312 = 531, 441 combinations. The grid
discretization of 4 by 3 was chosen to be at least an order
of magnitude larger than considered by previous literature
while not exceeding reasonable manufacturing complexity,
however our optimization method does not depend on the
exact discretization.

We use two-dimensional elements to represent the flow
distribution media in the finite element model with constant
thickness, porosity, and permeability. To model the addition
or removal of flow media, the Finite Element Mesh used as
input is modified by changing the thickness and therefore
control volume of the flow media elements that are mod-

eled on the top of the preform. The part is meshed in 3D
with tetrehedral elements and the flow progression is solved
as described in Section Simulation and Process Model. The
process model stores the time at which each element is full
which allows computation of flow fronts at any time t . This
output is used to produce the Fill Map (a heatmap where
the values represent the time at which the bottom surface
elements fill) and the Trapoff Map (a binary map where all
values are zero except element locations lacking connection
to the outlet boundary at any time). These maps can be inter-
preted as images produced by virtual cameras if the tooling
surface was transparent, as is common in validation studies.
This information gives the agent spatial context with which
to make decisions on flow media placement. Section State
describes how the process model information is encoded into
the state consumed by the agent. A visualization of the pro-
cess model elements used in optimization is presented in Fig.
6.

Reinforcement learning

DeepReinforcementLearning (DRL) approaches have recently
enjoyed success in solving control problems with high-
dimensional inputs from simulators where control policies
are difficult tomodel formally.Relevant examples are playing
Atari frompixels (Mnih et al., 2015), learning objectmanipu-
lation or locomotion in robotics, and playing strategy games
like Go (Silver et al., 2016) and StarCraft (Vinyals et al.,
2019). In industry, these approaches have successfully been
used to control HVAC systems in datacenters (Moriyama
et al., 2018), allocate computing resources (Mirhoseini et al.,
2017), and design semiconductors (Mirhoseini et al., 2020).
In composites, DRL was used to optimize VARTM tempera-
ture profiles and tooling thicknesses in (Szarski andChauhan,
2021).

We note that the placement of resin distribution network
have similarities to circuit placement problems in semicon-
ductor design.We are inspired by the industrial success in the
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Fig. 6 The 3D, 2D, and 1D
mesh elements model the dry
preform and resin distribution
network. Once the process
model is run with the resin
material properties, the output
maps are generated for use by
the optimizer

Fig. 7 Reinforcement learning setting

area of data-driven design of these complex systems using
Reinforcement Learning. Of particular interest is the ability
of neural network ’agents’ trained via reinforcement learning
to generalize from accrued experience and apply the knowl-
edge gained to new scenarios immediately without further
training.

In the setting of Reinforcement Learning (RL), we have an
agent interacting with an environment in discrete time steps.
At each time step t , the agent receives the environment’s
current state St , and the agent must choose an appropriate
action At in response. After the agent executes the action, the
agent receives a reward Rt and a new state St+1 (See Fig. 7).
We refer to the sequence (St , At , Rt , St+1, At+1, Rt+1, ...)

(i.e. the history of what action the agent took in each state
and the subsequent reward it received), as the trajectory τ .
Informally we can think of this as the experience the agent
is able to learn from.

The goal of Reinforcement Learning is therefore to train
an agent so that it “knows what to do”. This is equivalent
to learning the best action to take in a given state, so as to
maximize the expected numerical reward over time.We refer
to the map between states and actions as the policy.

In this setting, each time step t represents one full sim-
ulation with a set of input process parameters proposed by
the agent. The reward function is calculated on the output,

and over time the agent learns the relationships between the
input parameters and the output reward in order to make bet-
ter choices of process parameters based on its experience.

Markov Decision Processes are a mathematical frame-
work for modelling reinforcement learning problems. For
a thorough background we recommend the treatments in
(Sigaud and Buffet, 2013) and (Sutton and Barto, 2018).
However, we review the definition here.

Formally, we consider the flow media placement problem
as an infinite-horizon discounted Markov Decision Process
(MDP). An MDP M is a tuple M = 〈S, A, P, R, γ 〉, where:

– S is a set of states (e.g. a spatial representation of the
flow media placement, part geometry, and flow simula-
tion output),

– A is a set of possible actions to control the system (e.g.
adding or removing flow media from locations on the
tool),

– P : S × A × S → [0, 1] is the state-action-state transi-
tion probability distribution (e.g. what is the impact of a
change to flow media placement on the flow simulation)

– R : S× A× S → R is the reward function for transitions
(e.g. fill time and trapoff penalties)

– γ ∈ [0, 1) is a discount factor for future rewards

We seek a policy π : S × A → [0, 1] that maximizes
the discounted expected return η (i.e. the reward expectation
over multiple timesteps).

η(π) = Eτ

[ ∞∑
i=0

γ i R(si , ai , si+1)

]
(4)

With τ = (s0, a0, s1, a1, ...). With flow media placement
posed as an MDP, the optimization problem is equivalent
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Fig. 8 A single timestep of RL

to finding the policy π that maximizes a reward function
designed to minimize trapoff and total fill time. A critical
point is that our policy π must be learned from experience
with state-action pairs (i.e. the expected fill pattern of a given
placement on a given geometry) that have varying geometry,
such that the agent can learn a skill that generalizes to simi-
lar parts. In our flow placement formulation we hold the flow
media grid size, material properties, and inlet/outlet arrange-
ment fixed. During training, we refer to a single trajectory
τ as an episode. This means that every timestep t from the
RL agent’s point of view is a complete run of the FEM and
therefore distinct from the time variables in the PDE. As the
action at each timestep adds or subtracts a single layer to each
grid cell, a single timestep is not enough for the flow media
grid to reach our maximum thickness of two layers per cell.
Due to this and the stochastic nature of many RL algorithms,
we model the decision problem as an MDP with episodes of
2 timesteps, which allows grid cells to reach the maximum
thickness in our problem setting. To enable more extreme
designs in future work, the episode length could simply be
increased with no change to the model. Every episode, a new
part geometry is generated, such that the agent receives expe-
rience during training across a variety of flat laminates with
local pad-ups (see Section Random part mesh generator).

Flowmedia placement reinforcement learning
environment

We implement the environment following the Open AI Gym
interface (Brockman et al., 2016), which requires reset() and
step() methods, which reset the simulation or progress it
one timestep, respectively. Because it is necessary to fully
run a flow model with a flow media placement in order
to calculate a useful reward, in our case each timestep of
the environment reflects a full run of the flow model with
a given placement, with the agent modifying the place-
ment each time. A flowchart of this process is shown in
Fig. 8.

We defined and implemented a resin flow environment for
reinforcement learning as follows:

State

– 64x64x1 Part Geometry Height Map
– 64x64x1 Part Fill Map
– 64x64x1 Flow Media Map
– 64x64x1 Trapoff Map
– 64x64x1 Absolute Fill Time Channel
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As our policy neural network is designed to work with 2D
data, our proposed state representation is image based. After
each run of the processmodel we produce 5 images of resolu-
tion 64 x 64 for each process model run as input to the policy
network, representing the part geometry, flow media layout,
and the resulting resin flow. All maps are normalized to the
range of [0.0, 1.0] by the environment when they are given
to the DRL agent. The Part Geometry Height Map is a 2D
view of the part thickness normalized to 25.4mm thick. The
Part Fill Map is a 2D heatmap representing the latest fill time
of a preform element on the tooling surface at each point,
normalized against the maximum fill time of any element in
the map. The Flow Media Map represents the spatial flow
media density as solid blocks as in Fig. 5 and is normalized
against the maximum allowable flow media thickness. The
Trapoff Map is calculated as follows:

1. Step through the flow progression in i steps of 1/100 the
maximum fill time, calculating the area Ai of all tooling
surface preform elements that are not connected to the
boundary at step i

2. Take i such that Ai is at its maximum
3. Create an image such that all tooling surface preform

elements that are not connected to the boundary are set
to 1 and the background is set to 0

The trapoff map can be seen as a spatial representation of
the areas that have high trapoff risk (unfilled nodes with no
connection to the boundary at any time). Both the trapoff
map and fill map are produced with a virtual surface camera
looking at the tooling surface elements as in Fig. 9.

The entire state representation is displayed in Fig. 10.

Action

The flow media placement optimization problem is treated
as discrete action control, with the agent choosing to add,
remove, or leave flowmedia layers at all locations on the tool
at every timestep through amultinomial action distribution of
dimension n ∗ 3, where n is the number of discrete locations
where flow media may be placed on the preform.

– n commanded placement modifications for flow media
thickness [Remove, Leave, Add]

The flow media actions are applied as in Fig. 11. We use
the flow media map color convention for the remainder of
the paper.

Reward

The reward at each step is a fill time penalty based on the
maximum fill time of any element in the laminate:

Fig. 9 Production of trapoff and fill maps

rT = −maxi ti
C

(5)

where C is a fill time normalization constant set to the largest
allowable fill time, ti is the fill time for element i , and i
enumerates all mesh elements that belong to the preform.

The time penalty is added to a penalty considering all
preform elements not connected to the border (trapoff):

rF = −
f=F∑
f=0

w ∗ |E \ (E 	 B)| f
n

(6)

where f is the step in the FEM flow simulation, F is
the final step of the FEM flow simulation, |E \ (E 	 B)|t
is the number of elements that are not path connected to
the boundary at time f , n is the number of mesh elements
that belong to the preform, and w is a weighting factor for
disconnected element count that is set to 4 in our experiments.
The trapoff map considers the entire fill time and not just the
final state to avoid sensitivity to extremely long fill times -
as the pressure in the preform is unlikely to ever be exactly
zero it is possible that in the model, given a large amount of
time, these elements may eventually fill, but this may not be
physically realistic and is almost certainly not useful.
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Fig. 10 State Representation

Fig. 11 Action application

The total reward at each timestep is designed to balance
fill time and trapoff rewards through a weighted average:

r = 0.5 ∗ rT + 0.5 ∗ rF (7)

RL Interaction Example

In the beginning of training, actions taken by the RL agent
in each episode will appear random as the agent explores, as
in Fig. 12. Each time the process model is run, the reward is
calculated, penalizing trapoff and fill time. During training,

the agent learns a policy that can take in the 5 maps as the
current state, and propose an action that is likely to lead to
an increased reward (faster fill time and/or less trapoff). A
schematic of an episode later during training is displayed
in Fig. 13. In this episode, presented with different random
geometry, we can see the agent discovers an ’L-shaped’ flow
media placement strategy for this pad-up geometry and then
refines it. This experience can be used by the agent later, on
further geometries.
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Fig. 12 One episode at the start of reinforcement learning

Fig. 13 One episode later during reinforcement learning
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Proximal policy optimization

Our policy πθ mapping states to actions is a Convolutional
Neural Network that consumes the 5 2D Matrix heatmaps
stacked as a 5-dimensional state tensor (see Section State)
and outputs the mean μ and standard deviation σ vectors
of a 12 (3x4) dimensional multivariate gaussian distribution
which determines the next placement actions (remove, leave,
or add, for each of the 12 grid locations). Informally, training
the policy involves collecting samples of the reward given
when the agent takes a certain action in a given state, and
then based on the reward, modifying the agent’s policy to
make it more or less likely that the agent takes that action
when it is presented with that same state in the future. The
power of the Convolutional Neural Network policy is that
it can generalize between similar states, so that not every
state needs to be previously observed in order to take a good
action.

In the context of flowmedia placement, during training the
agent observes the results of its many different flow media
placements on many different part geometries, and uses this
experience of howpart geometry, flowmedia, andfill patterns
interact to increasingly make better placements (as measured
by the reward function). Each simulation of (geometry, place-
ment design, fill pattern) is a state-action-reward trajectory
that is used to train the policy.

In order to train the policy neural network, we use the
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
algorithm. PPO is a policy gradient approach using advantage
estimation to smooth out the gradient.

Formally, we denote a policy π , a state action function
as Qπ , the value function as Vπ , and the advantage function
as Aπ . PPO updates the parameters θ of the neural network
policy πθ by taking multiple steps of minibatch Stochastic
Gradient Descent (SGD) over collected state-action-reward
trajectories and solving Eq. 8.

θk+1 = argmax
θ

E
s,a∼πθk[

min

(
πθ (a|s)
πθk (a|s)

Aπθk
(s, a), g(ε, Aπθk

(s, a)
)]

, (8)

Where:

g(ε, A) =
{

(1 + ε)A A ≥ 0

(1 − ε)A A < 0
(9)

Aπ (s, a) = Qπ (s, a) − Vπ (s) (10)

Qπ (si , ai ) = E
si+1,ai+1,...[ ∞∑

l=0

γ l R(si+l , ai+l , si+l+1)

]
(11)

Vπ (si ) = E
ai ,si+1,...[ ∞∑

l=0

γ l R(si+l , ai+l , si+l+1)

]
(12)

Results and discussion

Experimental setup

RL policy network

The policy network consists of a Convolutional Neural Net-
work (CNN) feature extractor based on (Mnih et al., 2015),
with 3 Convolutional layers (8x8, 4x4, and 3x3 kernel sizes,
with strides of 4, 2, and 1 respectively) and 2 Linear layers
with ReLU nonlinarities between all layers. The architecture
of the feature extractor is displayed in Fig. 14. At each envi-
ronment step, the policy network outputs amean and variance
vector of a multivariate gaussian representing the action to
take at each location on the tool (add, remove, or leave flow
media layers). Our training was purely model-free, based on
abstract representations of states and actions, no knowledge
of the placement problem was encoded into the policy net-
work.

Simulation environment

The environment was made up of a random part mesh gen-
erator and a 3D finite element model solving for the flow
progression. The material properties used in the simulation
were based on a T700 fiber based woven fabric and RTM6
resin, and are displayed in Table 1. Each step of the environ-
ment runs the FEM with the new distribution of flow media
until the part is either filled or a iteration limit is reached.
Total training time is about 12 hours on a 72 cores of an Intel
Xeon 2.0Ghz CPU.

Random part mesh generator

To learn a generalizable agent we seek to train on realistic
examples that could have been drawn from the distribution
of real parts of interest. Given the iterative process involved
in aerospace design, we restrict our random generator to a
single part type, with the aim of training an agent that is able
to generalize to modified designs within that part type. The
geometry family of interest has complex pad-up regions in
the tooling surface, with a flat surface at the top onwhich flow
media is placed. The laminates are all 1125mmx525mm.We
create a simple generative model of a skin-like laminate with
thick pad-ups similar to those used at interfaces on control
surfaces.
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Fig. 14 Neural network architecture

Table 1 Process model parameters

Parameter Value Unit

Flow Runner Permeability 1 × 10−5 m2

Flow Media Permeability 1 × 10−6 m2

Flow Media Fiber Volume Fraction 50% -

Flow Media Thickness 0.001 m

Preform Permeability x x 1 × 10−9 m2

Preform Permeability y y 1 × 10−9 m2

Preform Permeability z z 1 × 10−11 m2

Preform Fiber Volume Fraction 17% -

Pressure Gradient 1 atm

Resin Viscosity 59 mPa.s

The generator works as follows:

– Generate 2-3 random, non-overlapping intervals along
the panel y-axis

– Apply a random thickness to these intervals within
[3.175, 6.35] mm

– Within each interval, generate a thick pad-up between
[10,15] mm

We sample 10 random panels at the start of training, and
use the same 10 thereafter. Examples of two random pan-
els are displayed in Fig. 15. Thickness maps of 10 panels
sampled during training are available in Appendix A.

RL algorithm implementation

We use the open-source Stable Baselines 3 (Raffin et al.,
2019) implementation of the PPO algorithm in PyTorch,
distributed across 72 processes using the Message Passing
Interface (MPI) (Dalcin et al., 2011) for Python to allow effi-
cient communication between processes. The environment is
designed according to theOpenAIGym interface (Brockman
et al., 2016), and wrapped in the OpenAI Baselines Vec-
Normalize wrapper, which computes a running average of
observations and rewards for use during learning.

Experiments

We based our training hyperparameters on known-good val-
ues from (Schulman et al., 2017). As the environment is
deterministic and two successive actions can maximize or
minimize flow media in all locations, the Steps per Episode
was reduced to 2 in order increase the variety experienced by
the agent. The following hyperparameters were used in our
experiments:

– Learning Rate = 0.0003
– GAE λ = 0.95
– Batch Size = 48
– Minibatch Size = 48
– Steps per Episode = 2
– Episodes = 16000

We train our agent only on 10 randomly generated panels
as described in Section Random part mesh generator. As in
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Fig. 15 Randomly generated laminate examples

Section Reinforcement learning, during the training process
a panel is randomly selected every episode, so that the agent
receives experience across a variety of panels. We evaluate
the ability of our agent to use the knowledge it has gained
during training by asking it to instantly optimize two pan-
els it has never seen before but are from the same family
(thin laminates with pad-ups of dimension 1125 mm x 525
mm.). We use two geometries for this purpose, a randomly
generated geometry with two large pad-ups, and a realistic
human designed geometry from the control surface family of
interest. We reiterate here that the case studies are performed
without any training, and that the results for these panels are
instant.

The two geometries in our case study are displayed in
Fig. 16.

Results

Randomly generated test part

Fiures 17 and 18 present the pre- and post- optimization states
of the Randomly Generated Test Part, respectively. In each
case the ’pre-optimization’ state represents a uniform distri-
bution of one layer of flowmedia placed across the laminate,
which is the default used industrially for flat laminates and
unlikely to be optimal when applied to complex geometries.
Before optimization, only 88% of the part was filled due to

trapoff around the thick pad-up areas, after flowmedia layout
optimization, 99.9% of the part is filled.

Realistic part

Our optimization reduced fill time by 32% , while ensur-
ing complete fill of the part. On the realistic part we had an
aerospace practitioner manually design a flow media distri-
bution which we refer to hereafter as ’manually optimized’.
The unoptimized, manually optimized, and RL optimized
flow media distributions and fill progressions are displayed
in Figs. 19, 20 and 21.

Discussion

On the Randomly Generated Test Part, the RL agent is suc-
cessful at applying the knowledge gained during training to
a new geometry that it has not seen before. In Fig. 17, we can
see that a flow media layout with 1 layer across the top of
the preform suffers from racetracking causing trapoff. The
instant optimization produced a flow media layout that elim-
inated trapoff. Inspecting the flow media layout, we can see
that the agent has made two major changes to the default
design with 1 layer of flow media across the top of the entire
preform: adding a layer of flow media on the top of the
outer pad-up to encourage fast resin flow to the inner pad-
up, and removing all flow media near the outlet edge, to
slow resin flow to the outlet and allow time for both pad-ups
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Fig. 16 Case study parts

Fig. 17 Randomly generated test part pre-optimization
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Fig. 18 Randomly generated test part post-optimization

Fig. 19 Realistic part unoptimized
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Fig. 20 Realistic part manually optimized to avoid trapoff

Fig. 21 Realistic part RL optimized
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Table 2 Efficiency comparison Technique Design Space Evaluated Evaluated
Initially Per Optimization

GA (Hsiao et al., 2004) 2916 0% 16%

Tree Search (Sas et al., 2015) 16,384 0% 6.25%

DRL (Ours) 531,441 3% 0.0001%

to completely fill (see Figs. 17 and 18). This result agrees
with intuition and is especially encouraging, as the agent has
shown the ability to transfer knowledge from laminates seen
during training, and apply it instantly to a new previously
unseen geometry.

Applying the agent to a realistic geometry from the same
thin laminate family instantly is the fundamental test of the
method. Figs. 19, 20, and 21, show the unoptimized, man-
ually optimized, and RL optimized flow media placements
and flow progressions on the Realistic Part. In Fig. 19, we
can see that a naive flowmedia placement again suffers from
racetracking causing trapoff and ends in significant sections
of the part remaining unfilled. Themanually optimized place-
ment (Fig. 20) has reduced flow media in the area between
the flow runner and the thick area on the opposite edge of
the part, retarding flow and avoiding racetracking along the
top of the panel before the pad-up areas are filled through
their thickness. This has the effect of eliminating the trapoff,
however the fill time is significant for a part of this size.
The RL flow media placement (Fig. 21) uses a similar tac-
tic, reducing the flow to the pad-up regions by completely
removing flow media on the edge of the part. It is apparent
that there are two main differences between the RL and man-
ual placements: asymmetry, and the number of layers used
in less flow-critical sections of the part. By visual inspection
we can see that the asymmetry introduced by the RL pol-
icy mirrors the asymmetry in the part thickness, as while the
model ensures that the resin does not flow too quickly over
the center-middle pad-up, it has found that offsetting a per-
meable path with 2 flow media layers across the top of the
panel (the ’L’-shaped highway) allows a faster fill time over-
all. We also note the agent uses the same tactic to retain and
increase flowmedia in the right-top and right-bottom corners
where the panel is thin and will fill through-thickness easily.
While not obviously parsimonious, the choice of 0 layers of
flow media at the center-top position of the panel is techni-
cally a valid design, as vacuum is applied at all edges of the
panel so this offset slow to fill area does not cause trapoff
and still results in a complete fill. This tailoring of the flow
distribution network to increase flow in less critical areas
wherever possible, while retaining a focus on retarding flow
over the thickest areas results in both trapoff avoidance and
improvement in fill time, and shows the model has captured
the dynamics of the process and how they relate to local part
thickness and flow media density.

As all optimizationswere done byour trained agent ’blind’
(without running the process model at all), our case studies
demonstrate that the trained agent is able to apply its learned
process knowledge to realistic part geometries that were not
seen during the training process and we have therefore have
achieved our objective of knowledge transfer. On the Real-
istic Part, achieved improvement of 32% in fill time while
maintaining complete fill when compared to an manually
designed placement is industrially relevant. When applied to
the Realistic Part and the Randomly Generated Test Part, our
agent proposed the optimized flow media design in less than
a second, demonstrating successful knowledge transfer. In
both cases, the agent reached the highest reward configura-
tion in one timestep, however this is not always the case (see
Fig. 13 for an example of where the agent takes two steps to
arrive at the highest reward configuration).

When evaluated on 100 new randomly sampled panels
using the training mesh generation parameters the average
entropy of the predicted multinomial action distribution was
very close to zero (See Table 3), implying the agent is very
confident in its actions. This is likely because the agent has
overfit the training set and that the test and training sets are
similar enough that meaningful generalisation has occurred.
However, this overfitting is the goal in learning an optimal
placement skill in a constrained scope. These results suggest
that our approach could accomodate a more challenging and
diverse set of geometries than used in this study. We leave
this to future work.

Comparison to Hsiao et al. (2004) and Sas et al. (2015) is
not straightforward due to differences in focus and approach,
e.g.WhileHsaio et. al. focus on optimization, Sas et. al. focus
on robustness. However, both Hsaio and Sas propose direct
optimization methods - i.e. they run the process model many
times on the geometry of interest in a search procedure to
explore the space of possible designs and arrive at a high-
performing one. This process occurs for every new laminate
geometry and given the process model takes significant time
to run, the number of evaluated designs required to arrive
at a good result (the search efficiency) is crucial to the per-
formance of the overall method. In Table 2 we can see the
relative search efficiencies of the methods as reported in the
literature.

By contrast, our approach is completely different - we do
not run the process model many times on the geometry of
interest to explore the space. Instead, we initially evaluate a
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Table 3 Trained agent action
entropy across 100 random
panels

Mean Std. Dev.

0.010 0.067

number of designs on a number of different geometries. This
gives our trained agent an intuition about how to design,
much like a person would have. Based on that knowledge
gained upfront, our agent is able to propose a design with-
out running the process model at all, instead transferring its
learned knowledge to propose successful designs that lead
to complete fill and reduced time to fill. During training, our
method explores less space than a single run of Hasio or Sas,
and during application on to similar geometries, it doesn’t
need to do any exploration at all - effectively achieving close
to 100% efficiency on geometries in the family it was trained
on.

Limitations

Wehave demonstrated knowledge transferwithin our domain
of thin laminates with pad-ups for control surfaces. Within
this constraint, the geometry can be varied while maintain-
ing the instant optimization capability. Currently, changes
to the flow runner location, gate location, material proper-
ties, or flow media grid (something other than 4x3) currently
require retraining the agent. While material properties are
unlikely to change during a design phase, a more dense flow
media grid or a modified flow runner location are common
enough needs that the technique should be extended in the
future to be able to also handle these changes without retrain-
ing. While instant design assistance for a single geometry
family is industrially relevant, for design assistance of this
type to be generally useful, the agent would need to adapt to
major changes in geometry such as more complex 3D inte-
grated structure. We have not attempted to train an agent for
that level of complexity. Further, evaluating robustness in the
training by repeating the process with many random seeds,
collecting training statistics across many runs, and tuning
hyperparameters would be valuable in building confidence
in the method.

Conclusion

In this work, we introduced a novel instant optimization
method for resin flow distribution networks based on learned
knowledge transfer. We framed the problem flow media
placement in terms of reinforcement learning, training an
agent using a 3D Finite Element based process model of
resin flow in carbon preforms. Trained on 10 panels from a
thin laminate geometry family, our agent learns to place flow

media in order to avoid resin starvation (trapoff), and reduce
total infusion time.Using a case study on a realistic aerospace
part with a complex 12-dimensional flowmedia network, we
show our method reduces fill time by 32%when compared to
a manually designed placement, while maintaining the same
fill quality. Due to the knowledge the agent has gained during
training, it is able to optimize this previously unseen panel
instantly (in less than a second). To our knowledge, this is
the first example of knowledge transfer in this domain. Nat-
ural extensions of this work include studying the application
of DRL-based optimization to very high dimensional liquid
molding design spaces such as arbitrary flow runner pipe
paths on complex 3D parts.
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Fig. 22 A random sample of 10 padups used in training

References

Andersen, R.E., Madsen, S., & Barlo, A,B, et al. (2019). Self-learning
Processes in Smart Factories: Deep Reinforcement Learning
for Process Control of Robot Brine Injection. Procedia Manu-
facturing 38:171–177. 29th International Conferenceon Flexible
Automation and Intelligent Manufacturing ( FAIM 2019), June
24-28, 2019, Limerick, Ireland, Beyond Industry 4.0: Industrial
Advances, Engineering Education and Intelligent Manufactur-
ing. https://doi.org/10.1016/j.promfg.2020.01.023, https://www.
sciencedirect.com/science/article/pii/S235197892030024X,

Boccard,A., Lee,W. I.,&Springer, G. S. (1995).Model for determining
the vent locations and the fill time of resin transfer molds. Journal
of Composite Materials, 29(3), 306–333.

Brockman, G., Cheung, V., & Pettersson L, et al. (2016). OpenAI Gym.
arXiv:1606.01540

Bruschke, M., & Advani, S. G. (1990). A finite element/control volume
approach to mold filling in anisotropic porous media. Polymer
composites, 11(6), 398–405.

Dalcin, L. D., Paz, R. R., Kler, P. A., et al. (2011). Parallel distributed
computing using Python. Advances in Water Resources, 34(9),
1124–1139.

George, A. (2011). Optimization of resin infusion processing for com-
posite materials: simulation and characterization strategies

Gokce, A., Hsiao, K. T., & Advani, S. G. (2002). Branch and bound
search to optimize injection gate locations in liquid composite
molding processes.Composites Part A: Applied Science andMan-
ufacturing, 33(9), 1263–1272.

He, Z., Tran, K. P., Thomassey, S., et al. (2021). A deep reinforcement
learning based multi-criteria decision support system for optimiz-
ing textile chemical process. Computers in Industry, 125(103),
373.

Hiken, A. (2017). The evolution of the composite fuselage-a man-
ufacturing perspective. SAE International Journal of Aerospace
10(2017-01-2154):77–91

Hsiao, K.T., & Heider, D. (2012). 10 - Vacuum assisted resin transfer
molding (VARTM) in polymer matrix composites. In: Advani SG,
Hsiao KT (eds) Manufacturing Techniques for Polymer Matrix
Composites (PMCs). Woodhead Publishing Series in Compos-
ites Science and Engineering, Woodhead Publishing, p 310 –

347, https://doi.org/10.1533/9780857096258.3.310, http://www.
sciencedirect.com/science/article/pii/B9780857090676500109

Hsiao, K. T., Devillard, M., & Advani, S. G. (2004). Simulation based
flow distribution network optimization for vacuum assisted resin
transfer moulding process.Modelling and Simulation in Materials
Science and Engineering, 12(3), S175.

Kahng, A.B. (2021). Advancing placement. In: Proceedings of the 2021
International Symposium on Physical Design, pp 15–22

Kessels, J. F., Jonker, A. S., & Akkerman, R. (2007). Optimising the
flow pipe arrangement for resin infusion under flexible tooling.
Composites Part A: Applied Science and Manufacturing, 38(9),
2076–2085.

Lin,M.,Murphy,M.,&Hahn,H. (2000).Resin transfermoldingprocess
optimization. Composites Part A: Applied Science and Manufac-
turing, 31(4), 361–371.

Ma, Y., Kassler, A., Ahmed, B.S., et al. (2022). Using Deep Rein-
forcement Learning for Zero Defect Smart Forging. arXiv preprint
arXiv:2201.10268

Maier, R., Rohaly, T., Advani, S., et al. (1996). A fast numerical method
for isothermal resin transfer mold filling. International Journal for
Numerical Methods in Engineering, 39(8), 1405–1417.

Mathur, R., Advani, S. G., & Fink, B. K. (1999). Use of genetic algo-
rithms to optimize gate and vent locations for the resin transfer
molding process. Polymer composites, 20(2), 167–178.

Mirhoseini, A., Pham, H., Le, Q.V., et al. (2017). Device placement
optimization with reinforcement learning. In: International Con-
ference on Machine Learning, PMLR, pp 2430–2439

Mirhoseini A, Goldie A, Yazgan M, et al. (2020). Chip Placement with
Deep Reinforcement Learning. arXiv preprint arXiv:2004.10746

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level
control through deep reinforcement learning. nature, 518(7540),
529–533.

Moriyama, T., DeMagistris, G., Tatsubori, M., et al. (2018). Reinforce-
ment Learning Testbed for Power-Consumption Optimization.
Methods and Applications for Modeling and Simulation of Com-
plex Systems (pp. 45–59). Singapore: Springer Singapore.

Panzer, M., & Bender, B. (2021). Deep reinforcement learning in
production systems: a systematic literature review. International
Journal of Production Research pp 1–26

Raffin, A., Hill, A., & Ernestus, M., et al. (2019). Stable Baselines3.
https://github.com/DLR-RM/stable-baselines3

123

https://doi.org/10.1016/j.promfg.2020.01.023
https://www.sciencedirect.com/science/article/pii/S235197892030024X
https://www.sciencedirect.com/science/article/pii/S235197892030024X
http://arxiv.org/abs/1606.01540
https://doi.org/10.1533/9780857096258.3.310
http://www.sciencedirect.com/science/article/pii/B9780857090676500109
http://www.sciencedirect.com/science/article/pii/B9780857090676500109
http://arxiv.org/abs/2201.10268
http://arxiv.org/abs/2004.10746
https://github.com/DLR-RM/stable-baselines3


218 Journal of Intelligent Manufacturing (2023) 34:197–218

Roberts, T. (2007). Rapid growth forecast for carbon fibremarket.Rein-
forced Plastics, 51(2), 10–13.

Sánchez, F., Domenech, L., García, V., et al. (2015). Fast and reliable
gate arrangement pre-design of resin infusion processes. Compos-
ites Part A: Applied Science and Manufacturing, 77, 285–292.
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