
Journal of Intelligent Manufacturing (2023) 34:151–180
https://doi.org/10.1007/s10845-022-01988-z

Attention-based advantage actor-critic algorithmwith prioritized
experience replay for complex 2-D robotic motion planning

Chengmin Zhou1,2 · Bingding Huang2 · Haseeb Hassan2 · Pasi Fränti1,3

Received: 13 October 2021 / Accepted: 1 July 2022 / Published online: 7 August 2022
© The Author(s) 2022

Abstract
Robotic motion planning in dense and dynamic indoor scenarios constantly challenges the researchers because of the motion
unpredictability of obstacles. Recent progress in reinforcement learning enables robots to better cope with the dense and
unpredictable obstacles by encoding complex features of the robot and obstacles into the encoders like the long-short term
memory (LSTM). Then these features are learned by the robot using reinforcement learning algorithms, such as the deep Q
network and asynchronous advantage actor critic algorithm. However, existing methods depend heavily on expert experiences
to enhance the convergence speed of the networks by initializing them via imitation learning. Moreover, those approaches
based on LSTM to encode the obstacle features are not always efficient and robust enough, therefore sometimes causing
the network overfitting in training. This paper focuses on the advantage actor critic algorithm and introduces an attention-
based actor critic algorithm with experience replay algorithm to improve the performance of existing algorithm from two
perspectives. First, LSTM encoder is replaced by a robust encoder attention weight to better interpret the complex features of
the robot and obstacles. Second, the robot learns from its past prioritized experiences to initialize the networks of the advantage
actor-critic algorithm. This is achieved by applying the prioritized experience replay method, which makes the best of past
useful experiences to improve the convergence speed. As results, the network based on our algorithm takes only around 15%
and 30% experiences to get rid of the early-stage training without the expert experiences in cases with five and ten obstacles,
respectively. Then it converges faster to a better reward with less experiences (near 45% and 65% of experiences in cases
with ten and five obstacles respectively) when comparing with the baseline LSTM-based advantage actor critic algorithm.
Our source code is freely available at the GitHub (https://github.com/CHUENGMINCHOU/AW-PER-A2C).

Keywords Motion planning · Path planning · Reinforcement learning · Intelligent robot · Deep learning

Abbreviations

A2C Advantage actor critic
A3C Asynchronous advantage actor-critic
AW Attention weight
CNN Convolutional neural network

B Bingding Huang
huangbingding@sztu.edu.cn

B Pasi Fränti
franti@cs.uef.fi

1 School of Computing, University of Eastern Finland,
Joensuu, Finland

2 College of Big Data and Internet, Shenzhen Technology
University, Shenzhen, China

3 Machine Learning Group, School of Computing, University
of Eastern Finland, Joensuu, Finland

DDPG Deep deterministic policy gradient
DL Deep learning
DPG Deterministic policy gradient
DQN Deep Q learning
DWA Dynamic window approach
IID Independently identical distribution
IL Imitation learning
LSTM Long-short term memory
MDP Markov decision process
MLP Multiple layer perceptron
ORCA Optimal reciprocal collision avoidance
PER Prioritized experience replay
PPO Proximal policy optimization
RL Reinforcement learning
RRT Rapidly-exploring random tree
RG Relation graph
TD Temporal difference

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01988-z&domain=pdf
http://orcid.org/0000-0002-9554-2827
https://github.com/CHUENGMINCHOU/AW-PER-A2C

152 Journal of Intelligent Manufacturing (2023) 34:151–180

TRPO Trust region policy optimization

Introduction

Service robots, especially the indoor service robots, appeared
in scenarios like airports, restaurants, and train stations nowa-
days to provide simple services to visitors. For instance,
luggage delivery, food delivery, and direction consulting.
However, these robots suffer poor motion planning per-
formance in scenarios with dense and dynamic obstacles
(pedestrians) because of the motion unpredictability of these
obstacles. This barricades the further commercial use of
these service robots. Motions of some robots are con-
trolled by classical path planning algorithms like the graph
search algorithm [e.g., A* (Hart et al., 1968)], sample-based
algorithm [e.g., the rapidly-exploring random tree (RRT)
(Bry & Roy, 2011)], and interpolating curve algorithms
(Farouki & Sakkalis, 1994; Funke et al., 2012; González
et al., 2014; Reeds & Shepp, 1990; Xu et al., 2012). These
algorithms work well in static environments or low-speed
scenarios with less obstacles. However, they make robots
suffermore collisions in caseswith dense and dynamic obsta-
cles because these algorithms generate the motions or paths
in an online way. Online motion generation depends on the
update of environmental maps that require much comput-
ing resources. Reaction-based algorithms like the dynamic
window approach (DWA) (Fox et al., 1997) and optimal
reciprocal collision avoidance (ORCA) (Van Berg et al.,
2008) perform fast to handle the obstacle’s unpredictabil-
ity. This enables the robot to better avoid the slow-speed
obstacles. However, these algorithms still require the online
updates of environmental information that should not be
ignored in cases with dense and dynamic obstacles.

Deep learning (DL) algorithms generate the robotic
motions by performing a trained model, in which the time
consumed is short and it can be ignored. Classical DL like
the convolutional neural network (CNN) (Bai et al., 2019)
can generate instant motions to dynamic obstacles. These
motions are one-step predictions which do not consider task
goals, therefore obtaining suboptimal solutions or trajecto-
ries eventually. Recent progress in the deep reinforcement
learning (RL) like the optimal valueRL [e.g.,Dueling deepQ
network (DQN) (Wang et al., 2016)] and policy gradient RL
[e.g., asynchronous advantage actor critic algorithm (A3C)
(Mnih et al., 2016)] enable the robot to consider the task goal
and instant obstacle avoidance simultaneously. These algo-
rithms obtain near-optimal solutions to better copewith cases
with dense and dynamic obstacles. However, RL algorithms
face many challenges, like overfitting and slow convergence
speed caused by high bias or variance. It is still not enough to
obtain a desired performance of motion planning by improv-
ing the RL algorithms merely. The performance of robotic

motion planning can be further improved by improving other
factors, such as the input quality.

Input quality in this paper is defined as the efficacy of
data and the efficiency to make the best of useful data. This
means: (1) The input data of the algorithm should fully rep-
resent the environmental information or environmental state
(e.g., the relationship of obstacles, the speed, radius, mov-
ing direction, and position of obstacles). (2) The algorithm
should first select the high-quality input data (e.g., the tra-
jectory in which the robot reaches the goal), and then makes
the best of it by the data replay and replay strategies. The
efficacy of data denotes how good the data represents the
environmental information. High data efficacy depends on
suitable methods to describe the environmental information.
This provides qualified or comprehensive data without noise
for RL algorithms to learn from.

Some works use source data from the environment, like
the source images (Bai et al., 2019), as the input of algorithms
directly. This type of data includes much noise (e.g., back-
ground information), hence may causing the overfitting of
algorithms. Some works use the methods (e.g., LSTM) that
partially interpret the environmental information (Everett
et al., 2018) to generate dataset. Algorithms based on these
methods cannot fully learn the core or needed information
from dataset and then the overfitting or slow convergence
speed follows. High efficiency to make the best of data relies
on the methods to reuse the dataset generated by performing
the algorithm itself on the robot. Recent RL algorithms based
on the experience replay (Wang et al., 2017) and the priori-
tized experience replay (PER) (Schaul et al., 2016) make it
possible to better make the best of dataset, therefore realizing
decent performances in many continuous-control problems.
These methods are data-efficient and independent than the
onlineRL [e.g., onlineA3C(Mnih et al., 2016)] and the imita-
tion learning (IL) based method (Chen et al., 2019b). Online
RL is the data guzzler which discards the data after the train-
ing. IL based method heavily depends on other algorithms or
artificial data to generate expert experiences (e.g., trajecto-
ries generated via ORCA, and artificial trajectories planned
by human) to initialize the RL algorithms.

To cope with shortcomings mentioned above, this paper
first focuses on the advantage actor critic algorithm (A2C)
which is a robust policy gradient RL algorithm to cope
with the sequential-decision robotic motion planning prob-
lems. Then the performance of robotic motion planning is
improved by enhancing the input quality (efficacy of data,
and efficiency to make the best of useful data). The main
contributions of this paper include:

(1) The improvement in efficacy of data: Improving the
state-of-art long-short term memory (LSTM) based
actor critic algorithm by applying the attention weight

123

Journal of Intelligent Manufacturing (2023) 34:151–180 153

(AW)encoder to replace theLSTMencoder for the inter-
pretation of environmental information.

(2) Combination of online and offline A2C with PER: Fit-
ting the PER into combined online and offline A2C
to fast improve its convergence speed. Therefore AW-
based A2C converges steeply to a better reward without
expert experiences from other methods. To our knowl-
edge, our method is the first to specially focus on two
aspects of input quality to better improve the robotics
motion planning in dense and dynamic scenarios. Other
works are the data guzzler, or they depend heavily on
expert experiences.

The main contents of this paper include following four
sections: Sect. 2 is the research background that describes
related works, preliminary of RL, and problem formula-
tion of complex robotic motion planning; Sect. 3 is the
research methods that consist of the principle to design the
RL network, combination of online/offline A2C, LSTM/AW
encoders, AW-PER-based A2C and its training strategies;
Sect. 4 is the experiment results that include the design of net-
work architecture, model trainings, and model evaluations;
Sect. 5 analyzes the problems found in the training and their
solutions, followed by the future research directions.

Research background

Research background includes three parts that are the prelim-
inary of RL, related works and problem formulation. Some
preliminary ofRLare listed to provide basic understanding or
definition of RL-related terms. Relatedworks focus on recent
progresses of RL algorithms in solving continuous-control
problems. These progresses are elaborated from two differ-
ent levels: algorithm level, and input quality level. Algorithm
level here denotes the state-of-art RL algorithms to solve the
time-sequential problems in games. Input quality level here
includes recent algorithms to interpret and reuse the data for
improving the data efficacy and efficiency to make the best
of it.

Preliminary of RL

Markov decision process

The Markov decision process (MDP) is the sequential deci-
sion process based on Markov Chain (Bas, 2019) which is a
variable set X � {Xn : n > 0} and p(Xt+1|Xt , . . . , X1) �
p(Xt+1|Xt). This means the state and action of the next step
only depend on the state and action of the current step. MDP
is described as a tuple < S, A, P , R >. State S: S denotes
the state and here it refers to the state of robot and obstacles.
ActionA:A denotes an action taken by the robot. RewardR:R

denotes the reward or punishment received by the robot after
executing actions. State transition probability P: P denotes
the possibility to transit from one state to the next state.

Value function

The values denote how good one state is or how good one
action is in one state, and they are called the state value
(V value) and state-action value (Q value) respectively. Val-
ues are defined as the expectation of accumulative rewards
V (s) � E

[
Rt+1 + γ Rt+1 + · · · + γ T−1RT |st

]
or Q(s, a) �

E
[
Rt+1 + γ Rt+1 + · · · + γ T−1RT |(st , at)

]
where γ is a dis-

counted factor. The value function in deep RL scope is
represented by neural networks to estimate the value of envi-
ronmental state via the function approximation (Baird, 1995).

Policy function

The policy denotes the way to select actions. Policy func-
tion is also represented by neural networks in deep RL,
and actions are decided by either indirect way (e.g., a ←
argmaxa R(s, a) + Q(s, a; θ) in DQN (Mnih et al., 2013;
Mnih et al., 2015)) or direct way [e.g., πθ : s → a in actor-
critic algorithm (Konda & Tsitsiklis, 2000)].

Related works

Algorithm level

RL algorithms basically include the optimal value RL and
policy gradient RL. They are primarily tested in games
like Atari game, and their representatives are DQN (Mnih
et al., 2013) and actor-critic algorithm (Konda & Tsitsiklis,
2000). Then, these twoalgorithms are continuously improved
from different perspectives and many variants follow. DQN
evolves into double DQN (Van Hasselt et al., 2016) and
dueling DQN (Wang et al., 2016), while actor-critic algo-
rithm basically evolves from three perspectives:multi-thread
policy improvement, deterministic policy improvement, and
monotonous policy improvement. Variants frommulti-thread
policy improvement focus onmaking the best of the multiply
thread method and policy entropy to accelerate the conver-
gence speed, and typical examples are A3C and A2C (Mnih
et al., 2016). Deterministic policy improvement proves that
the policy to select actions is stable in one state s and actions
can be directly decided by this state a ← μθ(s), while its
counterpart the stochastic policy selects actions by the pos-
sibility a ← πθ (a|s). Typical examples of variant based
on the deterministic policy improvement are the determin-
istic policy gradient (DPG) (Silver et al., 2014) and the
deep deterministic policy gradient DDPG (Munos et al.,
2016). Monotonous policy improvement introduces the trust
region constraint, surrogate, and adaptive penalty to ensure

123

154 Journal of Intelligent Manufacturing (2023) 34:151–180

the monotonous update of policy. Typical instances are the
trust region policy optimization (TRPO) (Schulman et al.,
2015) and the proximal policy optimization (PPO) (Schul-
man et al., 2017).

Input quality level

(1) Data interpretation: early-stage RL researchmakes use of
theCNN (Bai et al., 2019) to preprocess the source images for
extracting the features. These methods seem like the “black
box”, because it is hard to know what these CNN-based RL
algorithms learnt from the source images. Source images also
include much noise which probably causes the overfitting of
network. Then, the feature of the agents in the environment
(e.g., robots, obstacles, or pedestrians) are specially defined
into clear forms (e.g., vector or tensor) according to the
requirements of the motion planning task, and these features
are encoded accordingly to form an integrated description
or interpretation of the environmental information for RL
algorithms to learn. Representatives of encoding methods
include LSTM (Everett et al., 2018; Inoue et al., 2019), AW
(Chen et al., 2019b; Lin et al., 2017) and the relation graph
(RG) (Chen et al., 2019a). They are all robust methods, but
performance of motion planning based on these encoding
methods varies, because it not only depends on the robustness
of these methods but also relies on how to use these methods.
For example, LSTM (Everett et al., 2018) just encodes par-
tial environmental information therefore RL algorithms also
partially learn the needed information required by motion
planning tasks, hence may causing the overfitting and subop-
timal solutions in the training. (2) Experience replay: online
RL is a data guzzler thereforemany researchers turn to offline
learningor batch learning for bettermaking thebest of limited
dataset to improve the convergence speed. A milestone work
is the DQN (Mnih et al., 2013) which stochastically samples
and learns dataset stored in the memory. However, stochas-
tic sampling method ignores the importance or priority of
data which is the essential part for further improvement of
convergence, hence greedy sampling method (Schaul et al.,
2016) is introduced to fast improve the convergence but the
results are always suboptimal. PER (Schaul et al., 2016)
solves this problem by finding a better trade-off between the
stochastic sampling and greedy sampling. Following works
in experience replay are about the justification of PER from
mathematical perspectives (Li et al., 2021). There are also
some variants (Jiang et al., 2020; Zha et al., 2019) but their
improvements in convergence are limited.

Problem formulation

Recent work (Van Berg et al., 2008) introduced a competent
simulative environment (Fig. 1) that includes dynamic robot
and obstacles in a fix-size 2D indoor area. The robot and

obstacles move towards their own goals simultaneously and
avoid collisions to each other. They obey the sameor different
policies for motion planning to avoid collisions. This simula-
tive environment creates circle-crossing and square-crossing
scenarios that add predictable complexity to the environment.
It is therefore a good platform to evaluate algorithms adopted
by the robot or obstacles.

The robot and obstacles plan motions towards their goals
and avoid collisions by sequential decision making. Let s
represents the state of the robot. Let a and v represent action
and velocity of the robot, and a � v � [

vx , vy
]
. Let p �[

px , py
]
represents position of the robot. Let st represents

state of the robot at time step t. st is composed by observable
and hidden parts st � [

sobst , sht
]
, st ∈ R9. Observable part

refers to factors of state that can be measured by others. It
is composed by the position, velocity, and radius sobs �[
px , py , vx , vy , r

]
, sobs ∈ R5. Hidden part refers to factors

of state that cannot be seen by others. It is composed by
the planned goal position, preferred speed and heading angle
sh � [

pgx , pgy , vpre f , θ
]
, sh ∈ R4. The state, position, and

radius of obstacles are described by ŝ, p̂ and r̂ .
To analyze this decision-making process, we first intro-

duce the one-robot one-obstacle case. Then extend it to the
one-robot multi-obstacle case. The robot plans its motion
by obeying policy π :

(
s0:t , ŝobs0:t

) → at while obstacles
obey π̂ :

(
ŝ0:t , sobs0:t

) → at . The objective of the robot is to
minimize the time to its goal E

[
tg

]
(Eq. 1) under the pol-

icy π without collisions to obstacles. Constraints of robot’s
motion planning in this sequential decision problem can be
formulated via Eqs. 2–5 that represent the collision avoid-
ance constraint, goal constraint, kinematics of the robot and
kinematics of obstacle, respectively. The collision avoidance
constraint denotes that the distance of the robot and obstacles
‖pt − p̂t‖2 should be greater than or equal to the radius sum
of the robot and obstacles r + r̂ . The goal constraint denotes
that the position of the robot ptg should be equal to the goal
position pg if the robot reaches the goal. Kinematics of the
robot denotes that the position of the robot in time step t
pt is equal to the sum of the robot position in time step t-1
pt−1. The change of the robot position �t · π :

(
s0:t , ŝobs0:t

)

where π :
(
s0:t , ŝobs0:t

)
is a velocity decided by the policy π .

Kinematics of obstacles is the same as that of the robot.

minimize E
[
tg ∨ s0, ŝ

obs
0 , π , π̂

]
(1)

s.t .‖pt − p̂t‖2 ≥ r + r̂∀t (2)

ptg � pg (3)

pt � pt−1 + �t · π :
(
s0:t , ŝ

obs
0:t

)
(4)

123

Journal of Intelligent Manufacturing (2023) 34:151–180 155

Fig. 1 Circle-crossing (left) and
square-crossing simulators
(right). Obstacles are randomly
generated near the brink of the
circle in the circle-crossing
environment. Then they move
towards their opposite sides. In
the square-crossing environment,
obstacles are randomly generated
on the left side or right side and
then they move towards any
positions on their opposite side

Robot

Goal of robot

Dynamic obstacle
Goal of obstacle

Left side Right side

Circle-crossing

environment

Square-crossing

environment

p̂t � p̂t−1 + �t · π̂ :
(
ŝ0:t , s

obs
0:t

)
(5)

Constraints of one-robot one-obstacle case can
be easily extended into one-robot N-obstacle case
where the objective (Eq. 1) is replaced by the
minimizeE

[
tg|s0,

{
ŝobs0 . . . ŝobsN

}
, π , π̂

]
where we assume

that obstacles use the same policy π̂ . Collision avoidance
constraint (Eq. 2) is replaced by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖pt − p̂0:t‖2 ≥ r + r̂
‖pt − p̂1:t‖2 ≥ r + r̂

. . .

‖pt − p̂N−1:t‖2 ≥ r + r̂

∀t (6)

assuming that obstacles are in the same radius r̂ . p̂N−1:t

denotes the position of theN-th obstacle in time step t. Kine-
matics of the robot is replaced by pt � pt−1 + �t · π :(
s0:t , {̂sobs0:t . . . ŝobsN−1:t }

)
. Kinematics of obstacles is replaced

by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̂0:t � p̂0:t−1 + �t · π̂ :
(
ŝ0:t , sobs0:t

)

p̂1:t � p̂1:t−1 + �t · π̂ :
(
ŝ1:t , sobs0:t

)

. . .

p̂N−1:t � p̂N−1:t−1 + �t · π̂ :
(
ŝN−1:t , sobs0:t

)
. (7)

Methods

This section first describes the principles to design RL net-
work. These principles are about the strategies to configure
the number of layer and node in each layer (Sect. 3.1). Then,

principles of combining the onlineA2C and offlineA2Cwith
PER are given (Sect. 3.2). It is followed by the principles of
the LSTM encoder and AW encoder (Sect. 3.3). The last,
AW-based A2C can be further improved by our algorithm
AW-PER-based A2C while some training strategies are also
presented (Sect. 3.4).

Our contributions are the AW-based A2C and AW-PER-
based A2C (Sect. 3.4). Note that AW-based A2C is just a
part of the AW-PER-based A2C. Hence, we just present the
pseudocode of AW-PER-based A2C (Algorithms 1–4). AW-
based A2C is the optimized version of LSTM-based A2C by
replacing the LSTM encoder with AW encoder. AW-PER-
based A2C is the optimized version of AW-based A2C by
combining the online and offline learning (batch learning)
to update the network. Architectures of AW-based A2C and
AW-PER-basedA2Care shown inFig. 2, and theirworkflows
are almost the same:

(1) These two algorithms collect the same source environ-
ment information (the robot and obstacles) which is
encoded by the attention encoder.

(2) The encoded environment information is then fed to
A2Calgorithm toupdate the network (model).However,
the network of AW-based A2C is just updated by online
A2C, while that of AW-PER-based A2C is updated by
online and offline A2C simultaneously.

(3) The network configurations of these two algorithms are
always suboptimal.Hence, the number of layer and node
of each layer need to be configured to obtain the optimal
network configurations.

123

156 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 2 Architectures of our proposed algorithms: AW-based A2C and
AW-PER-based A2C

Principles to design networks for RL

Principles of configuration for number of layer and node

The network with one layer is only used for simple linear
problem (e.g., two-class classification). Amultiple layer per-
ceptron (MLP) with one hidden layer can approximate any
function that we require (Hornik et al., 1989). A feedforward
network can approximate any Borel measurable function.
This network should be with a linear output layer and at least
one hidden layer with any “squashing” activation function
(e.g., the logistic sigmoid activation function). The feed-
forward network approximates from one finite-dimensional
space to another with any desired non-zero amount of error,

provided that the network is given enough hidden units
(Goodfellow et al., 2016). Artificial neural network (e.g.,
MLP) with two hidden layers is sufficient for creating any
classification regions of desired shape (Lippmann, 1988).
Although a single hidden layer is optimal for some functions,
there are others for which a single-hidden-layer-solution is
very inefficient compared to solutions with two or more hid-
den layers (Reed & MarksII, 1999).

However, the question of “how many nodes should be
used in each layer” had not been solved yet. Currently, the
selection of number in the layer and node is more art than
science. This means how to configure layers and nodes is
more likely to consider the empirical findings in literature or
intuitions from experience (Goodfellow et al., 2016).

Strategies in configuration of layer and node

It is an efficient starting point to find better solutions for the
configuration of layers and nodes, but it still requires robust
test harnesses and controlled experiments that include some
basic strategies (Brownlee, 2018):

(1) Random test: random configurations for the number of
layers and the number of nodes in each layer.

(2) Grid test: systematic search for the number of layers
and the number of nodes in each layer.

(3) Heuristic test: directed search for the number of lay-
ers and the number of nodes in each layer according
to search algorithms [e.g., genetic algorithm (Stathakis,
2009)].

(4) Exhaustive test: all combinations of the number of layers
and the number of nodes in each layer, but this strategy
is feasible for simple network or dataset.

Combination of online A2C and offline A2C with PER

Online A2C

A2C is a variant of A3C (Mnih et al., 2016), and they share
the same objectives. Their difference is that A3C collects
experience and updates the wight of network individually
and asynchronously in each thread. However, A2C collects
experience only in each thread and the weight of network is
updated synchronously. The objective (loss function) of A2C
is defined as the expectation of losses in the policy function
and value function:

Lonline � Es, a∼πθ (L
online
policy + βonlineLonline

value) (8)

123

Journal of Intelligent Manufacturing (2023) 34:151–180 157

whereβonline is a discounted factor. Losses of policy function
and value function are defined by

Lonline
policy � −logπθ (at |st)

(
V n
t − Vθ (st)

) − αHπθ
t (9)

Lonline
value � 1

2
‖Vθ (st) − V n

t ‖2 (10)

where Hπθ
t � −∑

aπ(a|st)logπ(a|st) is the policy entropy
to encourage the exploration for finding better potential
action, and α is a discounted factor. V n

t � γ nVθ (st+n) +∑n−1
m�0γ

mrt+m is the n-step discounted accumulative state
value to represent how good the state st is. In our experi-
ment, the data is the episodic experience therefore the n is
defined as the number of steps in each episode.

Offline A2C and the combination of online/offline A2C

(Oh et al., 2018) is inspired by PER (Schaul et al., 2016) and
proposes an offline actor-critic loss, hence PER can be easily
integrated into the actor-critic based algorithms. The offline
actor-critic loss is defined by

Lof f line � Es, a∼πθ (L
of f line
policy + βof f lineLof f line

value) (11)

where βof f line is a discounted factor. Lof f line
policy and Lof f line

value
are defined accordingly by

Lof f line
policy � −logπθ (at |st)(Rt − Vθ (st))+ (12)

Lof f line
value � 1

2
‖(Rt − Vθ (st))+‖2 (13)

where Rt � ∑∞
k γ k−t rk is the Monte-Carlo return instead

of the accumulative return V n
t , and (·)+ � max(·, 0).

To make the best of offline A2C to improve the conver-
gence speed of online A2C, two problems should be solved:
(1) selection of useful data; (2) different way of weight update
caused by different data distribution in the online learning
and batch learning. Online learning updates its weight in
a stochastic way. Its dataset is unnecessary to fit any dis-
tribution therefore the way of weight update is unbiased.
Dataset in the batch learning, however, is expected tomeet the
independently identical distribution (IID). Therefore, weight
update in batch learning mismatches that in the online learn-
ing, hence introducing the bias if online learning and batch
learning are simply combined.

The PER better solves these two problems by setting the
priority of data and applying the importance sampling weigh
in the batch learning. The priority is defined by the temporal
difference (TD)-error δ:

pi � |δ| + ε (14)

where ε is a small positive constant, while the priority in the
offline A2C is set to be the lower bound of TD-error:

pi � (δ)+, δ � R − Vθ (s). (15)

Hence, the probability to sample the experience is defined
by

P(i) � pα
i∑
k p

α
k

(16)

where α is the discount of priority, k the transitions in one
episode and iεk. The bias caused by batch learning is reduced
by the importance sampling weight that is defined by

wi � (N · P(i))−β

maxiwi
(17)

where 1
maxiwi

is a weight for normalization to stabilize the
weight update, N the size of samples and β ∈ [0, 1] is a
compensation of P(i). Hence the way of weight update in
the offline/batch learning turns into

� ← � + wi · ∇θ (L
of f line
policy + βof f lineLof f line

value) (18)

LSTM and AW encoders

LSTM encoder uses LSTM to encode the obstacles near the
robot, hence forming the description of environmental state
Slstm which includes the features of the robot and obstacles

Slstm � [sr , S
lstm
o] (19)

where Slstmo denotes the features of the obstacle in the envi-
ronment. Obstacles are encoded by LSTM according to their
distances (Everett et al., 2018) to the robot:

Slstmo � LST M
(
[elstmdmin

, . . . , elstmdmax
]
)
, [elstmdmin

, . . . , elstmdmax
]

← rank(di), i ∈ N (20)

where N denotes the number of obstacles. di denotes the
distance of obstacle oi to the robot. elstmdmin

and elstmdmax
denote

thepairwise features of the obstacleswith shortest and largest
distances to the robot. The pairwise feature is defined as the
combined feature of the robot and one of the obstacles:

elstmi � [sr , oi] (21)

AW encoder is based on the attention weight (Chen et al.,
2019b; Lin et al., 2017). It also defines the environmental

123

158 Journal of Intelligent Manufacturing (2023) 34:151–180

state as the feature combination of the robot and obstacles:

Saw � [sr , S
aw
o] (22)

where Saw
o denotes the features of the obstacle encoded by

AW, and it is defined by

Saw
o �

∑n

i�1
[so f tmax(αi)] · hi (23)

where αi and hi denote the attention score and the interac-
tion feature of the robot and obstacle oi respectively. The
interaction feature is defined as

hi � fh(ei ; wh) (24)

where fh(·) andwh denote the neural network and its weight.
ei denotes the embedded feature of the robot and obstacle oi .
The attention score is defined by

αi � fα(ei , emean ; wa) (25)

where fα(·) andwa denote the neural network and its weight.
emean denotes themeanof all embedded features. The embed-
ded feature and emean are defined by

ei � fe(sr , oi , Mi ; we), i ∈ N (26)

emean � 1

n

∑N

i�1
ei (27)

where fe(·) and we denote the neural network and its weigh.
Mi denotes the occupancymap of obstacle oi and it is defined
by

Mi (a, b, :) �
∑

j∈Ni
δab[x j − xi , y j − yi]·w′

j ,

w
′
j � (vx j , vy j , 1) (28)

where w
′
j is a local state vector of obstacle o j . Ni denotes

other obstacles near the obstacle oi . The indicator function
δab

[
x j − xi , y j − yi

] � 1 if (x j − xi , y j − yi) ∈ (a, b)
where (a, b) is a two-dimension cell.

AW-PER-based A2C and its training strategies

This part elaborates our proposed algorithm. It features the
new encoder (AW) and combined online and offline (batch)
learning approach.We first recall and clarify the definition of
environmental description, and then the proposed algorithm
is given.

The definition of environmental description (environmental
state)

Before introducing our algorithm, it is necessary to clarify all
sorts of descriptions of state. Let’s first recall the definitions
of state in the section of Problem Formulation:
⎧
⎪⎨

⎪⎩

sagent � [
sobs , sh

]
, s ∈ R9

sobs � [
px , py , vx , vy , r

]
, so ∈ R5

sh � [
pgx , pgy , vpre f , θ

]
, sh ∈ R4

(29)

where sagent denotes the state of agent (obstacles or robot).
It consists of its observable state sobs and hidden state sh .
Hence, the source state of the robot in the environment is
descripted by

ssourcerobot � [srobot ,
{
ŝobs0 . . . ŝobsN

}
] (30)

where ŝobsN denotes the observable state of N-th obstacles.
However, the source state cannot be directly used for the
training therefore it is replaced by the robot-centric states
which is transformed from the source state of the robot. The
robot-centric states are defined by

sr � [
dg , vpre f , θ , r , vx , vy

]
, sr ∈ R6 (31)

oi � [
px , py , vxi , vyi , ri , di , ri + r

]
, oi ∈ R7 (32)

where sr denotes new state of the robot while oi denotes
robot-centric observable state of i-th obstacle. Note that i-th
denotes the obstacle’s order which is generated randomly in
the simulator when one episode of the experiment starts. In
the definition of robot-centric observable state oi , the ri + r
denotes the collision constraint of each obstacle to the robot.
The collision constraint varies among obstacles. To some
degree it represents how “danger” the obstacle is. The robot
is easy to learn how to keep a safe distance to each obstacle
with its collision constraint. Otherwise, more data is required
for the robot to learn the safe distance strategy in the trial
and error. Finally, the state of the robot in the environment
(environmental description) from training is defined by

s � [sr , {o0 . . . oN }] (33)

Note that oi in {o0 . . . oN } is the source description of the
obstacles. It is not encoded by any encoders.

AW-PER-based A2C and its training strategies

Our algorithm features the improvements in the descrip-
tion of the environmental state and the convergence speed
by applying the AW encoder and PER to A2C algorithm.

123

Journal of Intelligent Manufacturing (2023) 34:151–180 159

Hence, the robot in the dense and dynamic scenario can better
understand the obstacles nearby via a robust environmen-
tal state which is encoded by AW. Our AW-based A2C also
improves the convergence speed of the baseline algorithm
LSTM-based A2C in the early-stage training. The PER fur-
ther improves the convergence speed of the AW-based A2C
by combining the online learning and batch learning to learn
from data generated by the AW-based A2C itself. There-
fore, we introduce the AW-PER-based A2Cwhich converges
steeply to a better reward without the expert experience. Our
algorithm is shown in detail in the Algorithm 1, while the
Algorithms 2–4 are its subfunctions.

First, episodic actions are executed via the policy net-
workπ (at |st ; θ) to generate experiences< st , at , rt , St+1 >

(lines 4–6). Second, Monte-Carlo returns Rt are computed
according to the stored reward rt from this episode . Episodic

experiences (st , at , Rt) are stored in E which are also stored
in the prioritized replay buffer D if Rt > 0 (lines 7–12).
Third, the AW-based A2C is trained in a combined man-
ner via the online learning and batch learning based on PER
(lines 13–17). Fourth, these three steps repeat until that the
network gets rid of the first-stage training (lines 3–18). Fifth,
the weight of the first-stage training is saved for the net-
work initialization of second-stage training, in which the
AW-based A2C is only trained in an online manner (lines
20–32). Third-stage training is almost the same with the sec-
ond stage-training. Their difference is that the third-stage
training uses a smaller step size (learning rate) which encour-
ages a stable convergence of network. Note that the state st
here refers to the source state s � [sr , {o0 . . . oN }] which
does not use any encoders to encode the state of obstacles
nearby.

123

160 Journal of Intelligent Manufacturing (2023) 34:151–180

The subfunction T rain_A2Conl ine(E) first computes the
probability distribution of the actions and values by the sub-
function NNa2c(s) (line 1). Second, TD-error δ is obtained
by δ � Rt − v(·; θ) which is used for computing the policy
loss and value loss (line 2–4). Third, the weight of AW-based
A2C θ is updated according to the gradient of value loss and
the policy loss (line 5 where η is the learning rate).

Unlike T rain_A2Conl ine(E) in which the network
is trained once in a manner of online learning, the
network in the subfunction T rain_A2Co f f l ine(D) can
be trained for M times (line 1) to further update
the network intensively in a manner of batch learning.
T rain_A2Co f f l ine(D) cannot work independently. It must
work with T rain_A2Conl ine(E) as its supplement. First, a
batch of experienceD is sampled from the prioritized replay

buffer D according to the probability P(j) � pα
j∑

k p
α
k
(line

2). Second, the importance-sampling weight can be obtained

accordingly byw j � (N ·P(j))−β

maxkwk
whereN denotes the number

of experiences< s j , a j , R j , p j , idx> in theD (line 3). Third,
the policy distribution and value are obtained by executing

the subfunction NNa2c(s). The TD-errors δ j and new prior-
ities

(
δ j

)
+ are obtained accordingly by δ j � (R j − v(·; θ))

and (·)+ � max(·, 0) (lines 4–6). Fourth, the policy loss
and value loss in the batch learning of AW-based A2C are
obtained. They are used for updating the network θ (lines
7–9). Fifth, the priority of experiences is updated for the
next training (line 10).

123

Journal of Intelligent Manufacturing (2023) 34:151–180 161

The subfunction NNa2c(s) is about the forward propaga-
tion of AW-based A2C network which consists of two parts:
AW network and A2C network. First, the AW network com-
putes the embedded feature ei and interaction feature hi by
MLP layers fe and fh without the activation function (lines
1–2). Second, the mean weight of embedded feature emean is
obtained according to all embedded features (line 3). Third,
the attention score of the robot to the obstacle oi and its
surrounded obstacles is obtained by a MLP layer fα (line
4). Fourth, the description of surrounding obstacles Saw

o is
obtained by Saw

o � ∑n
i�1[sof tmax(αi)] · hi (line 5). Fifth,

the state of robot and the description of surrounding obstacles
form the full description of environmental state Saw (line 6).
Finally, the policy distribution of actions and the state value
are obtained (line 7) by A2C network fa2c that needs to be
designed to find the optimal configurations in the experiment
for better performance of the AW-based A2C.

Experiments and results

Experimental environment

The experiments are conducted in the simulators with one
robot and multiple obstacles. The behaviors of robot are
controlled by the trained policies, while the behaviors of
obstacles are controlled by ORCA algorithm. The policies
of robot are trained in the circle-crossing simulator. They
are tested in the square-crossing and circle-crossing simula-
tors simultaneously (Fig. 3). Other environment settings: (1)
action space: action space consists of 81 actions that include
no action and 5 speed choices in each direction from 16 mov-
ing directions; (2) time limit and time cost in each step: time
limit of each episode is set to 25 s and one step/action costs
0.25 s.

Design of network architecture

Configurations of layer and node

Before designing the network architecture, we first introduce
our expectations to reach our goals of algorithm training: (1)
as less training data as possible; (2) as short training time as
possible. Note that these goals are achieved under the condi-
tion that the accuracy and reliability of initial algorithms are
not affected. The number of layers should be kept in a rea-
sonable slot. The networkwith large number of hidden layers
is not feasible for our task because the large network requires
more data to converge. Its training process is also time-
consuming. According to principles for the configuration of
the layer and node in each layer, the network with two hid-
den layers is sufficient to solve any non-linear classification
or regression problems. Hence the shortcoming of learning

inefficiency caused by one hidden layer is better avoided
(Brownlee, 2018; Goodfellow et al., 2016; Hornik et al.,
1989; Lippmann, 1988; Reed & MarksII, 1999). However,
the learning efficiency may be improved with the increase
of number of hidden layers, but the consumed training time
may increase accordingly.

Given the number of node in each layer reported in liter-
atures (Everett et al., 2018), the grid test is used to find the
optimal or near-optimal number of layer and number of node
in each layer. Let Nlayer denotes the number of the hidden
layer, and the grid test is conducted under Nlayer ∈ {1, 2}.
Let Nnode denotes the number of nodes in each layer, and
the grid test is conducted under Nnode ∈ {64, 128, 256}.
Activation function is required to activate the hidden lay-
ers, and Tanh functions is used in this experiment. Hence,
two types of architecture for A2C are obtained, and they
are shown in Fig. 4. Note that the actor network and critic
network in these two architectures only share the same input
and output. Parameters in the layers cannot be shared in these

123

162 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 3 Circle-crossing and square-crossing simulators. Left and right
figure denotes the circle-crossing and square-crossing simulators
respectively with the random attribute in the experiments. Random
attribute denotes the random generation of the starting points and des-
tinations, but the agents will still follow the basic circle-crossing or

square-crossing rules, which refers to that the agents move from one
side of circle (in circle-crossing simulator) or square (in square-crossing
simulator) to their opposite side

fe �

� so�max

Linear

value

policy

Environmental

state

AW network A2C network

(a)

fe �

� so�max

Linear

value

policy

Environmental

state

AW network A2C network

(b)

fe �

� so�max

Linear

value

policy

Environmental

state

AW network A2C network

(a)

fe �

� so�max

Linear

value

policy

Environmental

state

AW network A2C network

(b)

Fig. 4 Two possible architectures of AW-based A2C network. AW-
based A2C network with three hidden layers (b) is used as the
comparison of two-hidden-layer case (a) for testing the claim that two
hidden layers are sufficient and efficient for creating any classification
regions of desired shape

architectures because networks cannot convergeonce the task
is to solve the continuous control problem (Schulman et al.,

2017). Recall that AW-based A2C consists of AW network
and A2C network. We attempt to keep the configurations
of AW network in (Chen et al., 2019b), and then find the
near-optimal configurations of A2C network. That means the
configurations of AW networks are set to [150, 100], [100,
50] and [100, 100] respectively for MLP layers that consist
of the layer of embedded feature fe, interaction feature fh
and attention score fa . The AW network is included in the
propagation of AW-based A2C network. In other words, AW
network provides two layers (one input layer and one hidden
layer) to the AW-based A2C network. Hence A2C network
just need two layers (one hidden layer and one output layer)
theoretically according to the claim that two hidden layers are
sufficient and efficient for creating any classification regions
of desired shape (Goodfellow et al., 2016; Reed & MarksII,
1999).

Grid test (grid search)

To better select the optimal or near-optimal architecture for
A2C algorithm, we consider seven factors (Table 1) in which
value coefficient, entropy coefficient, optimizer, and discount
factor are set to be stable. The learning rate, input dimension
(Saw dimension or the output dimension of AW network),
and multiple obstacle (complex feature) are set to different
values. Given Nnode ∈ {64, 128, 256}, the first architecture
(Fig. 4a) has three configurations,while the second architec-
ture (Fig. 4b) has nine configurations (Table 2). The grid test
is expected to involve 96(12 × 2 × 2 × 2) experiments. It
is time-consuming to train and evaluate the performance of
all configurations. Hence, we first chose a simple one-robot
one-obstacle case to test the efficiency and efficacy of each
possible configurations before the grid test. Then we select

123

Journal of Intelligent Manufacturing (2023) 34:151–180 163

Table 1 The factors considered in the grid test

Learning rate Input
dimension

Multiple obstacles (complex
feature)

Value
coefficient

Entropy
coefficient

Optimizer Discount
factor

Default/
3e−4

13/56 1/3 0.5 0.001 Adam 0.95

Fig. 5 Initial training results of one-obstacle case without any encoders
before the grid tests. a Denotes the training curves of Architecture-1-1,
Architecture-1-2 and Architecture-1-3. bDenotes the training curves of
Architecture-2-1, Architecture-2-2 and Architecture-2-3. c Denotes the

training curves of Architecture-2-4, Architecture-2-5 and Architecture-
2-6. dDenotes the training curves of Architecture-2-7, Architecture-2-8
and Architecture-2-9. All architectures are tested in the same learning
rate (default � 0.01)

the best configurations for the further tests. The results of
training are shown in Fig. 5.

Thefirst grid test (impact from the learning rate): the learn-
ing rate is themost important hyper-parameters in the training
(Goodfellow et al., 2016). A larger learning rate may lead to
a fast convergence of network to the sub-optimal and the
weight fluctuation of network, while a smaller learning rate
makes the training slow relatively. Hence, it is necessary to
tune the learning rate to find the best trade-off for the training.
However, instead of finding the best learning rate for training,
here our aim is about figuring out the impact of learning rate
to the performance of network convergence by changing the
learning rate from the default larger one to the smaller one

(3e−4). The test results with smaller learning rate are shown
in Fig. 6b, while Fig. 6a denotes the results with a larger
learning rate. The second grid test (impact from the input
dimension): performances of configuration are further tested
by changing the input dimensions from13 to 56 for one-robot
one-obstacle case by applying theAWencoder (AWnetwork)
to describe the environmental state. Figure 6b works as the
benchmark in which its input dimension and learning rate are
13 and 3e−4 respectively. Figure 6c denotes the test results
of configurations with input dimension 56, and its learning
rate keeps 3e−4. The third grid test (impact from the com-
plex feature): number of obstacles changes from 1 to 3 to add
the complexity of the environment. Figure 6d denotes the test

123

164 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 6 Results of grid test. a Denotes the results with default learning
rate, 13 input dimensions and one-obstacle case. b Denotes the results
with learning rate 3e−4, 13 input dimension and one-obstacle case.

c Denotes the results with learning rate 3e−4, 56 input dimensions and
one-obstacle case. d Denotes the results with learning rate 3e−4, 56
input dimensions and three-obstacle case

results of these configurations, and their learning rates also
keep 3e−4.

Efficacy and efficiency analysis of possible architectures

According to Fig. 6, all configurations in the candidate archi-
tectures are qualified to reach the goal of convergence with
high rewards, except for Arc-2-4 in Fig. 6c. Arc-1-2 outper-
forms other configurations in the efficiency of convergence
and the value of converged reward, regardless of the learn-
ing rate, input dimensions and complexity of feature. Hence,
the Arc-1-2 is selected as the network configuration for the
further experiments. Detailed observations of test results
include: (1) small learning rate slows down the convergence
speed slightly but leads to a stable convergence simultane-
ously; (2) large input dimension shows less impact to cases
with less hidden layer (Arc-1-1 and Arc-1-2), while the con-
vergence speed in cases with more hidden layer (Arc-2-1,
Arc-2-4, and Arc-2-7) are slightly slowed down, because a

large input dimension causes a larger number of the learn-
ing unit in configurations, especially for networks with more
layers; (3) a complex feature causes a slow and fluctuated
convergence speed to the configurations with more layers
in the early-stage training, while cases with less layer are
more robust when the number of obstacles in the environ-
ment increases.

Model training

Basic settings of training

The behaviors of robot are controlled by the trained policies,
while the behaviors of obstacles are controlled by ORCA
policy in the training. The simulator for model training
is the circle-crossing simulator, while the square-crossing
simulator is for model evaluation. All algorithms in the
training include LSTM-based A2C, AW-based A2C and AW-
PER-based A2C. We first implement LSTM-based A2C and

123

Journal of Intelligent Manufacturing (2023) 34:151–180 165

Table 2 Possible configurations in two architectures

Name Configurations

Arc-1-1 [input dim, 64] + Tanh + [64, output dim]

Arc-1-2 [input dim, 128] + Tanh + [128, output dim]

Arc-1-3 [input dim, 256] + Tanh + [256, output dim]

Arc-2-1 [input dim, 64] + Tanh + [64, 64] + Tanh + [64, output
dim]

Arc-2-2 [input dim, 64] + Tanh + [64, 128] + Tanh + [128,
output dim]

Arc-2-3 [input dim, 64] + Tanh + [64, 256] + Tanh + [256,
output dim]

Arc-2-4 [input dim, 128] + Tanh + [128, 64] + Tanh + [64,
output dim]

Arc-2-5 [input dim, 128] + Tanh + [128, 128] + Tanh + [128,
output dim]

Arc-2-6 [input dim, 128] + Tanh + [128, 256] + Tanh + [256,
output dim]

Arc-2-7 [input dim, 256] + Tanh + [256, 64] + Tanh + [64,
output dim]

Arc-2-8 [input dim, 256] + Tanh + [256, 128] + Tanh + [128,
output dim]

Arc-2-9 [input dim, 256] + Tanh + [256, 256] + Tanh + [256,
output dim]

then optimize it by applying the AW encoder to describe
the environmental information for the improvements in the
convergence speed and reduction of over-fitting. Finally, the
convergence speed of AW-based A2C is further accelerated
by applying the batch learning with PER and new training
strategy.

LSTM-based A2C

Existing LSTM-based algorithms to tackle the complex
indoor motion planning problem are too dependent on the
expert experience in the network initialization (Chen et al.,
2019b; Everett et al., 2018). Otherwise, their networks can-
not converge even in one-obstacle case because of their
incompetent reward function which is designed for networks
initialized by the imitation learning. We first implement the
online A2C with the reward function reported in (Everett
et al., 2018; Chen et al., 2017, 2019b). In the implementa-
tion, the states of the agent are encoded by LSTM encoder to
form a new description of the environment. Then this LSTM-
based description of environmental state is concatenatedwith
the state of the robot as the input of A2C algorithm (Fig. 7).
As a result, the reported reward function leads to the dif-
ficulty in network convergence, hence the reported reward
function is replaced by a new reward function (Eq. 34). The
reward received by the robot is 1 if the robot reaches the
goal (pcurrent � pg where pcurrent denotes the position of
the robot while pg denotes the position of the goal) within

Linear

value

policy

Environmental

state

A2C network

LSTM

Fig. 7 The architecture of LSTM-basedA2C network in which the A2C
network is the same as that of the AW-based A2C in Fig. 4. Number of
recurrent layers in LSTM is set to the default value (default � 1). The
hidden dimension of LSTM is set to 50

Fig. 8 Results of training for the LSTM-based A2C with reported
reward function and modified reward function. Modified reward func-
tion contributes to the convergence of network regardless of learning
rate, while the reported reward function cannot learn anything because
the robot cannot find the goal (success reward) in the early-stage training

the time limit. If 0 < dmin < 0.2 where dmin denotes the
minimum distance of the robot and obstacles, the reward
received by the robot is set to −0.1 + dmin

2 . If the robot col-
lides with the obstacles, the reward is set to -0.25. If the
experimental time reaches the time limit t � tmax and the
robot does not reach the goal pt �� pg, the reward is set to
dstart_to_goal−(pg−pcurrent)

dstart_to_goal
·0.5where dstart_to_goal denotes the

distance of the start to the goal. New reward function acceler-
ates the convergence speed by attaching a reward to the final
position of the robot that are with shorter distance to the goal.
The training results of LSTM-based A2C with reported and
modified reward functions in the case with one obstacle are
shown in Fig. 8.

Note that in current reinforcement learning or deep learn-
ing, the setting of constant or the setting of reward is decided

123

166 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 9 Training curves of LSTM-based A2C in multiple-obstacle cases.
a Denotes the training in cases with two, three and four obstacles.
b Denotes the training in cases with five, ten and fifteen obstacles.

c Denotes a normal training case with ten obstacles and an outlier case
in the overfitting (yellow curve)

Table 3 The
parameters/hyper-parameters
considered in trainings of
LSTM-based and AW-based A2C

Learning
rate

Input
dimension

Multiple
obstacles

Value
coefficient

Entropy
coefficient

Optimizer Discount
factor

3e−4 56(6 + 50) 2/3/4/5/10/15 0.5 0.001 Adam 0.95

according to the intuition and trial and error. Then a param-
eter which leads to better performance will be selected. Here
parameters of reward (e.g., 1, − 0.25 and 0) is the feedback
to the robot when the robot interacts with the environment.
The setting of reward function is from the trial and error.
The rewards will be used in the backpropagation indirectly
to make the neural network update towards the direction of
convergence (global optimum). Otherwise, the network may
not converge or converges towards the local optimum. The
safe distance 0.2 m is set artificially according to the require-
ment of tasks (e.g., case with high-speed obstacles). The safe
distance can be 0.1 m if obstacles move slow.

R(s, a) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i f pcurrent � pg
−0.1 + dmin

2 i f 0 < dmin < 0.2
−0.25 i f dmin < 0
dstart_to_goal−(pg−pcurrent)

dstart_to_goal
· 0.5 i f t � tmax and

pt �� pg
0 otherwise

(34)

The experiments of LSTM-based A2C algorithm are
extended to the multiple-obstacle cases in which the number
of obstacles is N ∈ {2, 3, 4, 5, 10, 15} (Table 3). Motion of
obstacles is controlled by ORCA policy. The circle-crossing
simulator is used in the training. LSTM-based A2C algo-
rithm can successfully accomplish the motion planning tasks
in multiple-obstacle cases. However, the training of robot’s
policy still suffers the suboptimal reward and slower con-
vergence speed with the increase of obstacles nearby as

Fig. 9a, b. Moreover, the LSTM-based A2C is likely to fall
into the problem of the over-fitting because LSTM encodes
the states of the agent according to distances of the obstacle
to the robot. This distance-based encoding method causes
the result that the closer obstacles have larger impacts on the
robot. However, it cannot work always, e.g., a failed training
case in Fig. 9c, because the distance-based encoding method
describes the environmental state partially. Other factors like
the speed and moving direction of obstacles should be con-
sidered as well. Hence, a robust description of environmental
state is needed to better solve the over-fitting, slow con-
vergence speed and suboptimal reward problems. This is
achieved by applying the AW encoder to replace the LSTM
encoder.

AW-based online A2C

New environmental state is descripted or interpreted by the
AW encoder that consists of four versions: basic version,
global state version, occupancy map version and full ver-
sion. Note that the global feature emean � 1

n

∑n
k�1ek and

the occupancy map Mi (a, b, :) are not included in the basic
version, while the full version includes them simultaneously.
The performances of four versions of AW-based A2C in the
multiple-obstacle training are shown in Fig. 10, in which
(a–d) represent the training results of full version, occupancy
map version, global state version and basic version respec-
tively.

According to their training results, they all follow the same
trend: there are less differences in the convergence speed and
converged reward in lesser obstacle cases for four versions of

123

Journal of Intelligent Manufacturing (2023) 34:151–180 167

Fig. 10 Comparisons of AW-based A2C in multiple-obstacle cases. a–d denote the training results of the full version, occupancy map version,
global state version and basic version of AW encoder respectively

AW. Their convergence speeds are fast, and rewards obtained
are high. However, the convergence speeds slow down and
rewards obtained become smaller with the increase of obsta-
cles.

The training curves of AW-based A2C are also compared
with that of LSTM-based A2C (Fig. 11). The criterions for
comparisons are the number of episodes used for early-stage
training and the peak reward within the same number of
episodes. Note that the parameters/hyper-parameters consid-
ered in the training of AW-based A2C is the samewith that of
LSTM-based A2C in Table 3. The early-stage training here
is defined as the moment at which the robot can find its goal
constantly. This means the average accumulative reward and
success rate reach around 0.1 and 40% respectively. Detailed
comparisons of these two algorithms are listed in Table 4.

According to the comparisons, near all versions of AW-
based A2C largely outperform the LSTM-based A2C to get
rid of the early-stage training, not only in cases with less
obstacles but also the cases with dense obstacles. The global
state version works better in cases with dense obstacles,
while the occupancy map version did not take obvious effect

when comparing with the basic version. However, obvious
improvements are easy to be noticed once the global state
and occupation map work together to form the full version
of AW-based A2C. The training curves and peak reward of
AW-based A2C are also slightly better than that of LSTM-
based A2C. The full version of AW-based A2C performs
robust than the rest versions of AW-based A2C. However,
AW-based A2C still converges slowly in cases with dense
obstacles, although it outperforms the convergence speed
of LSTM-based A2C. The convergence speed of AW-based
A2C can be further improved by applying the batch learning
with PER to make the best of experiences discarded in the
online learning.

AW-PER-based A2C and its training strategy

The batch learning with PER steeply improves the conver-
gence speed of AW-based A2C in the early-stage training,
but the network of AW-based A2C eventually converges to
a suboptimal reward since the distribution of experiences
collected from the dense and dynamic environment for the

123

168 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 11 LSTM-based A2C and AW-based A2C in multiple-obstacle cases. a–f Denote their comparisons in cases with 2, 3, 4, 5, 10 and 15 obstacles

123

Journal of Intelligent Manufacturing (2023) 34:151–180 169

Table 4 Training analysis of
AW-based A2C and
LSTM-based A2C

Algorithm Episode used for early-stage training in
2/3/4/5/10/15 obstacle cases

Peak reward

LSTM-based A2C 5000/8000/15000/15000/33000/70000 4.5/4.4/3.6/3.4/2.7/2.7

Basic version 2500/2800/3500/5500/30000/65000 4.8/4.4/3.7/3.2/3.1/2.9

Global state version 2500/3000/4000/13000/20000/45000 4.9/4.5/4.1/3.0/2.5/2.7

Occupancy map version 2500/5000/3500/6500/30000/95000 4.9/4.2/4.1/3.3/2.5/1.2

Full version 2500/2000/3000/7500/25000/45000 4.7/4.4/3.9/3.6/3.2/2.7

Bold values indicate the best performance

batch learning changes in the training. This may cause the
result that the final converged policy or network is slightly
different from that of online AW-based A2C, and some unex-
pected collisions follow.Hence,we choose a training strategy
that consists of three training stages: (1) AW-based A2C is
trained in a manner of online learning and batch learning
in the early-stage training; (2) the model from the first-stage
training is trained in an online learningmanner; (3) themodel
from the second-stage training continues to be trained online
with a smaller learning rate. A suboptimal model is obtained
from the first-stage training with less dataset. The model
then converges from the suboptimal to near-optimal in the
second-stage training. The performance of model can be fur-
ther improved slightly in the third-stage training by applying
a smaller learning rate.

The experiments of AW-PER-based A2C include cases
with 5 and 10 obstacles to represent two levels of den-
sity of obstacles: normal density, and high density. The
parameters/hyper-parameters considered in the trainings of
AW-PER-based A2C are shown in Table 5.

The results of the first and second-stage trainings with
10 obstacles are shown in Fig. 12. We find that the batch
learning is sensitive to the large learning rate (1e−2) in the
training, hence contributing less to the convergence speed.
This problem is better solved by applying a smaller learning
rate (1e−4) in the training (Fig. 12a). According to the train-
ing results, AW-PER-based A2C costs near 10,000 episodes
to get rid of the early-stage training. However, online AW-
based A2C and LSTM-based A2C spend around 25,000 and
32,000 episodes respectively in the first-stage training. For
the second-stage training of AW-PER-based A2C in which
the model is initialized by a model trained with 10,000
episode, 15,000 episodes are used to reach a near-optimal
reward. However, AW-based A2C and LSTM-based A2C
cost 47,000 and 53,000 episodes respectively to reach that
level.

The results of first and second-stage trainings with 5
obstacles are shown in Fig. 13. According to that, it is obvi-
ous to notice that the AW-PER-based A2C takes near 2000
episodes to get rid of the early-stage training, while AW-
based A2C and LSTM-based A2C take 8000 and 15,000

episodes respectively to achieve that result. The model of
AW-PER-based A2C trained with 2000 episodes continues
to be trained in an online manner. A near-optimal model is
obtained after 18,000 episodes. However, AW-based A2C
and LSTM-based A2C cost around 30,000 episodes respec-
tively to reach almost the same result.

The results of third-stage training in cases with 5 and 10
obstacles are shown inFig. 14. The performance ofAW-PER-
based A2C can be further improved by applying a smaller
learning rate in the training. The performance of model
improved a lot in the case with 5 obstacles in the third-stage
training (near 0.06 in the reward), while the reward increased
a little in the case with 10 obstacles (around 0.03). It is hard
to see further improvement after 10,000 episodes for cases
with 10 and 5 obstacles, hence the third-stage models after
10,000 episodes are saved for the model evaluations that will
be shown in the next section.

Model evaluations

We selected five evaluation indicators that consist of training
evaluations, quantitative evaluations, qualitative evaluations,
computational evaluations, and robustness evaluations to
evaluate the performance of algorithms. These indicators
are widely used in reinforcement learning. Many works just
select one or two to evaluate their algorithms. It is not enough.
Hence, we summarize mentioned indicators frommany rein-
forcement learning works. Then, these indicators are used
to evaluate our algorithms to give readers a comprehensive
understanding.

This section first summarizes the results of training (train-
ing evaluations). Then the trained models are evaluated from
four perspectives: (1) quantitative evaluations; (2) qualitive
evaluations; (3) computational evaluations; (4) robustness
evaluations. Note that our experiments did not involve many
fine-tunings of three algorithms in the training. We believe
that there still some spaces for further enhancement in the
performance of three algorithms.

123

170 Journal of Intelligent Manufacturing (2023) 34:151–180

Ta
bl
e
5
T
he

pa
ra
m
et
er
s/
hy
pe
r-
pa
ra
m
et
er
s
co
ns
id
er
ed

in
th
e
tr
ai
ni
ng
s
of

A
W
-P
E
R
-b
as
ed

A
2C

Pa
ra
m
et
er
s/
hy
pe
r-
pa
ra
m
et
er
s
of

on
lin

e
le
ar
ni
ng

L
ea
rn
in
g
ra
te

In
pu

td
im

en
si
on

M
ul
tip

le
ob

st
ac
le
s

V
al
ue

co
ef
fic
ie
nt

E
nt
ro
py

co
ef
fic

ie
nt

O
pt
im

iz
er

D
is
co
un

tf
ac
to
r

–

3e
−4 3e

−5
(2
nd
)

3e
−6

(3
rd
)

56
(5
0
+
6)

5/
10

0.
5

0.
00
1

1e
−5

(2
nd
)

1e
−6

(3
rd
)

A
da
m

0.
95

–

Pa
ra
m
et
er
s/
hy
pe
r-
pa
ra
m
et
er
s
of

ba
tc
h
le
ar
ni
ng

B
at
ch

si
ze

Pr
io
ri
ty

co
ef
fic

ie
nt

Im
po

rt
an
ce
-s
am

pl
in
g
co
ef
fic
ie
nt

T
ra
in
in
g
ba
tc
he
s

L
ea
rn
in
g
ra
te

V
al
ue

co
ef
fic
ie
nt

V
al
ue

w
ei
gh

tc
oe
ffi
ci
en
t

E
nt
ro
py

co
ef
fic
ie
nt

20
0

0.
6

0.
1

2
1e

−4
0.
1

0.
01

1e
−5

123

Journal of Intelligent Manufacturing (2023) 34:151–180 171

Fig. 12 The first and second-stage training of AW-PER-based A2C in the cycle-crossing simulator with 10 obstacles. a Denotes the worse impact
of a larger learning rate to the convergence speed. b, c Denote the results of first and second stage respectively

Fig. 13 The first and second-stage training of AW-PER-based A2C in the cycle-crossing simulator with five obstacles

Fig. 14 All-stage training of AW-PER-based A2C in the cycle-crossing simulator with 10/5 obstacles. Left figure denotes the training results of the
case with 10 obstacles, while right figure denotes that of the case with 5 obstacles

123

172 Journal of Intelligent Manufacturing (2023) 34:151–180

Table 6 Comparisons of three algorithms in the training

algorithms Episode cost
(1st stage, 10/5
obs.)

Reward
(1st stage,
10/5 obs.)

Episode cost
(2nd stage, 10/5
obs.)

Reward
(2nd stage,
10/5 obs.)

Episode cost
(3rd stage, 10/5
obs.)

Reward
(3rd stage,
10/5 obs.)

Overall episode
cost
(10/5 obs.)

LSTM-based
A2C

32,000/15000 0.1/0.1 28,000/15000 0.23/0.32 15,000/15000 0.31/0.36 75,000/45000

Our AW-based
A2C

25,000/8000 0.1/0.1 35,000/22000 0.23/0.35 15,000/15000 0.33/0.38 75,000/45000

Our
AW-PER-based
A2C

10,000/2000 0.1/0.1 15,000/18000 0.27/0.36 10,000/10000 0.30/0.42 35,000/30000

Bold values indicate the best performance

Training evaluations

This part considers the converged average accumulative
reward and the number of episodes spent in three train-
ing stages. Note that LSTM-based A2C and AW-based
A2C don’t have 2nd-stage training. They are first trained
with 60,000 episodes. Then they are retrained with 15,000
episodes for a stable convergence. However, we still use the
2nd-stage training in these two algorithms for clear com-
parisons with AW-PER-based A2C. Detailed compassions
of three algorithms are shown in Table 6. According to
the results, our AW-based A2C and AW-PER-based A2C
outperform the LSTM-based A2C, especially the AW-PER-
based A2C which costs merely around 30%/15% of data
(10,000/2000 episodes) to get rid of the 1st-stage training
when comparing to that of LSTM-based A2C (32,000/15000
episodes). In the 2nd-stage training, AW-based A2C con-
verges slightly slower than LSTM-based A2C, but the
convergence speed of AW-PER-based A2C is faster than that
of LSTM-based A2C, especially in cases with 10 obstacles.
In the 3rd-stage training, AW-PER-based A2C outperforms
the rest two algorithms not only in the convergence speed but
also in the converged reward in cases with 5 obstacles, while
its converged reward (0.30) is slightly lower than that of the
rest two algorithms in caseswith 10 obstacles (0.31 and 0.33).
Overall, AW-PER-based A2C takes near 50%/30% of data
(35,000/30000) to converge. Its converged reward is almost
the same with that of the rest two algorithms in cases with 10
obstacles, but it is better than that of the rest two algorithms
in cases with 5 obstacles.

Settings for model evaluations

Settings of the experiment for model evaluations are simply
listed in Table 7. Models of three algorithms are evaluated
in simulators with 10 and 5 obstacles. All the experiments
for evaluations are conducted in the circle-crossing simula-
tor, except for the experiments of robust evaluations which
are conducted in the square-crossing simulator. Obstacles

in the simulators are controlled by the ORCA policy, while
the robot is controlled by the trained policies of three algo-
rithms. Total number of the test for each algorithm is set to
500 episodes.

Quantitative evaluations

Six criterions are selected for the quantitative comparisons of
three algorithms. These criterions include the success rate,
average time to goal, collisions rate, timeout rate, mean dis-
tance to obstacles, and accumulative discounted rewards.
Detailed comparisons are shown in Table 8. According to
the comparisons, the accumulative rewards received by these
three algorithms are almost the same as that in the train-
ing. Robots based on these three algorithms learnt how to
keep a safe distance to the obstacles (in success cases). The
AW-based A2C and AW-PER-based A2C outperform the
LSTM-based A2C in the success rate and timeout rate. This
means these two algorithms are easy to find their goals within
the time limit (25 s), but AW-PER-based A2C seems likely
to suffer more collisions in cases with 10 obstacles. There
is less difference for the robots based on these three algo-
rithms on the time spent to reach their goal in cases with 10
obstacles, while the robot controlled byAW-PER-basedA2C
outperforms the robots based on the rest two algorithms on
the time to goal in cases with 5 obstacles.

Qualitative evaluations

The qualitative evaluation is about how good the policy is
or what strategies the robot learnt. This is achieved by
observing the trajectories of the robot. The policies based
on AW-PER-based A2C are shown Fig. 15, while Fig. 16
presents the trajectory comparisons of LSTM-based A2C,
AW-based A2C and AW-PER-based A2C.

According to Fig. 15, the robot is likely to learn a“Recede-
Wait-Forward” strategy in the environmentwith high-density
obstacles: the robot first moves out of the crowded obsta-
cles and keeps a distance to them [Fig. 15a (a1–a5)]; the

123

Journal of Intelligent Manufacturing (2023) 34:151–180 173

Table 7 Environmental settings in the model evaluations

Algorithms Number of
obstacles

Simulators Policy Number of
episodes

LSTM-based A2C (Everett
et al., 2018; Mnih et al., 2016)
Our AW-based A2C
Our AW-PER-based A2C

10/5 Circle-crossing/square-crossing ORCA (obstacles)/trained
policy (robot)

500

Table 8 Comparisons of three algorithms in the test according to six criterions

Algorithms Success
rate
(10/5 obs.)

Time to goal
(10/5 obs.)

Collision
rate
(10/5 obs.)

Timeout
rate
(10/5 obs.)

Mean distance to obs. (10/5
obs.)

Rewards
(10/5 obs.)

LSTM-based A2C 0.77/0.88 18.25 s/17.05 s 0.04/0.05 0.19/0.07 0.14 m/0.13 m 0.3068/0.3588

Our AW-based A2C 0.84/0.90 18.17 s/15.65 s 0.03/0.03 0.13/0.07 0.13 m/0.13 m 0.3288/0.3844

Our AW-PER-based
A2C

0.84/0.93 18.28 s/15.09 s 0.09/0.04 0.07/0.03 0.13 m/0.14 m 0.2941/0.4205

Bold values indicate the best performance

robot then waits for a while until the obstacles start to move
away [Fig. 15a (a6–a7)]. The last, the robot moves right
forward towards the goal with the highest speed [Fig. 15a
(a8–a10)]. However, the robot in the normal-density envi-
ronment is expected to learn a “Wait-Forward” strategy: the
robot first waits for a short timeslot until the obstacles starts
tomove away [Fig. 15b (b1–b4)]. Then it directly forwards to
its goal with the fastest speed [Fig. 15b (b5–b10)].More rele-
vant experiments are conducted to further prove the strategies
learnt by the robot, and the results are shown in Fig. 15c, d,
in which learnt strategies are illustrated by the trajectory of
the robot instead of the separate states of the environment.

According to Fig. 16, in cases with 10 obstacles, the
robot controlled byAW-PER-basedA2C learnt a fixed policy
(Recede-Wait-Forward) as that shown in Fig. 15. How-
ever, this fixed policy did not appear on the robot based
on AW-based A2C and LSTM-based A2C. AW-based A2C
and LSTM-based A2C seem to generate flexible policies,
in which most of them are good except for few cases like
the second trajectory in Fig. 16a. It is hard for the robot
based on LSTM-based A2C to handle the obstacle right
approaching the robot. Then the robot gets stuck at the begin-
ning. However, the robot based on AW-based A2C behaves
smarter by performing a “Forward-Avoid-Forward” policy
(the second trajectory in Fig. 16b) to reach a high reward.
In cases with 5 obstacles, AW-PER-based A2C generates a
“Wait-Forward” policy as that shown in Fig. 15. However,
AW-based A2C and LSTM-based A2C generate different
“Recede-Wait-Forward” policies. Their difference is that the
robot based on LSTM-based A2C recedes too far, while the
robot based on AW-based A2C just recedes a short distance.
Hence, the robot based on AW-based A2C is expected to

achieve higher reward than that of the robot based on LSTM-
based A2C.

Computational evaluations

This part considers the time cost in the training. Detailed
comparisons of time cost (hour) are shown in Table 9. Note
that just single thread is used in these three algorithms for
data collection. According to the results, AW-PER-based
algorithmconverges great faster (0.1 h) than the rest two algo-
rithms (near 1 h) in the 1st-stage training, while LSTM-based
A2C is more time-efficient than the rest two algorithms in
the 2nd and 3rd-stage training. LSTM-based A2C performs
almost the same as the AW-PER-based A2C in the time cost
of entire training process, but it costs more than 2/1.5 times
episodes to converge in cases with 10/5 obstacles when com-
paring with that of AW-PER-based A2C. AW-based A2C
costs the most time in its training either for the case of 10
obstacles or for the case of 5 obstacle, when comparing with
the rest two algorithms.

Robustness evaluations (extreme tests)

This part considers evaluating the performance of three
algorithms in different environment (the square-crossing
environment) to test the robustness of these algorithms. Note
that the behaviors of the obstacle in the square-crossing envi-
ronment are far different from that in the circle-crossing
environment. Much noise is also added to further increase
the random attribution of the obstacle in the square-crossing
environment. Policies of three algorithms are trained in the
circle-crossing environment. These policies are tested in the

123

174 Journal of Intelligent Manufacturing (2023) 34:151–180

Fig. 15 The strategies the robot learnt. a, b show examples of AW-
PER-based A2C in one episode, while c, d present trajectories of the
robot based on AW-PER-based A2C in different test cases with 10/5
obstacles. Note that distances of robot-obstacle are assumed to be sig-
nificantly larger than the radius of the robot and obstacles. Obstacles

refer to walking pedestrians in indoor scenario of real world. All envi-
ronment parameters (e.g., radius and speed of obstacles and the robot,
the distance of the start to goal) are set according to the real values or
real geometry of the robot and obstacles in indoor scenario. Hence, the
trained model is easy to transfer to real world

123

Journal of Intelligent Manufacturing (2023) 34:151–180 175

Fig. 16 Trajectory comparisons of three algorithms in the same test cases. a–c Denotes the cases with 10 obstacles, while d–f denote the cases with
5 obstacles

Table 9 Time cost of three
algorithms in the training for the
case of single thread

Algorithms 1st stage
(10/5 obs.)

2nd stage
(10/5 obs.)

3rd stage
(10/5 obs.)

Overall
(10/5 obs.)

LSTM-based A2C 2.20/0.65 1.80/0.55 0.80/0.5 4.80/1.70

Our AW-based A2C 3.40/0.55 4.70/1.45 2.00/0.95 10.10/2.95

Our AW-PER-based A2C 1.25/0.10 1.90/1.15 1.25/0.70 4.40/1.95

Bold values indicate the best performance

square-crossing environment. Six criterions are considered
in the robustness evaluations of three algorithms. They con-
sist of the success rate, time to goal, collision rate, timeout
rate, mean distance to obstacles and received accumulative
reward, like that in the quantitative evaluations. Detailed
evaluations are shown in Table 10. According to the results,

AW-based A2C outperforms the rest two algorithms on near
all criterions, except for the time to goal and timeout rate
which are slightly worse than that of AW-PER-based A2C.
The performance of AW-PER-based A2C drops faster than
the rest two algorithms in the success rate and collision rate.
This also causes the subsequent low accumulative rewards

123

176 Journal of Intelligent Manufacturing (2023) 34:151–180

Table 10 Comparison of three algorithms in the square-crossing simulator (the extreme tests)

Algorithm Success
rate
(10/5 obs.)

Time to goal
(10/5 obs.)

Collision
rate
(10/5 obs.)

Timeout
rate
(10/5 obs.)

Mean distance to obs. (10/5
obs.)

Rewards
(10/5 obs.)

LSTM-based A2C 0.29/0.49 16.65 s/15.51 s 0.48/0.39 0.23/0.12 0.12 m/0.11 m 0.0478/0.1473

Our AW-based A2C 0.39/0.54 16.20 s/13.16 s 0.39/0.34 0.22/0.12 0.12 m/0.11 m 0.1362/0.1562

Our AW-PER-based
A2C

0.21/0.41 15.39 s/13.33 s 0.63/0.46 0.16/0.13 0.11 m/0.11 m 0.0187/0.0687

Bold values indicate the best performance

Table 11 Experience cost and the reward received in the 2nd-stage train-
ing

Algorithms Episode cost
(2nd-stage, 10/5 obs.)

Reward
(2nd-stage, 10/5
obs.)

LSTM-based A2C 28,000/15000 0.23/0.32

Our AW-based A2C 35,000/22000 0.23/0.35

Our AW-PER-based
A2C

15,000/18000 0.27/0.36

received. The relatively lower robustness of AW-PER-based
A2C is caused by the PER. The PER requires less data to
make the A2C converged, but it also leads to the less explo-
rations for finding more potential actions. These actions may
be useless to improve the performance in the circle-crossing
environment but useful in the square-crossing environment,
hence resulting in a relatively low performance of the robot
in a completely new environment.

Discussion and future work

This section first analyzes the problems found in the experi-
ment. Then some future research directionswill be discussed.
Some problems came up during the experiments, for exam-
ple, the slow convergence speed of AW-based A2C in the
2nd-stage training and the distribution drift caused by PER.

Problem 1

Let’s recall some results of 2nd-stage training from Table 6
that is partially shown in Table 11. LSTM-based A2C and
AW-based A2C reach the same reward 0.23 (0.1 to 0.23) in
cases with 10 obstacles. LSTM-based A2C spends 28,000
episodes to reach that, while AW-based A2C costs more
episodes (35,000). Experiments of LSTM-based A2C and
AW-based A2C in cases with 5 obstacles also follow the
same trend. We guess this problem may relate to the archi-
tecture of AW network which consists of four layers with

a complex connection among layers (Fig. 4), while LSTM
network consists of merely one recurrent layer. More layers
with complex connections in the neural network sometimes
cause the vanishing gradient problem in the backpropagation
process (Kolbusz et al., 2017). This means the early layers
next to the input layer are expected to receive less gradient to
update their weight, hence causing the slow update or even
zero update of weight. The more layers are, the less the gra-
dient is received for the early layers in the backpropagation
process. However, AW-PER-based A2C better reduces the
impact from the vanishing gradient problem by providing a
pretrainedmodel which leads to a high success rate (near 0.4)
in the motion planning of the robot in the 2nd-stage training.
A better success rate means a higher reward and gradient,
therefore a higher gradient is received in the early layers of
AW-based A2C, although these layers are slightly impacted
by the vanishing gradient.

Problem 2

Distribution drift problem is reflected in the way of weight
update which causes three consequences: (1) weight update
is sensitive to a larger learning rate; (2) the final converged
policy is slightly unpredictable; (3) relatively low robustness
of AW-PER-based A2C.

The first consequence is shown in Fig. 17, in which a
pretrained model is retrained in the 2nd-stage training. A
lager learning rate (3e−4) is applied in this period of training.
However, the AW-PER-based model (green line) converges
from a worse point (reward � − 0.9), instead of the training
result of pretrainedmodel (reward� 0.1). The larger learning
rate is then replaced by a smaller one (3e−5), therefore this
problem is better solved.

The second consequence is shown in the 3rd-stage reward
received by AW-based A2C and AW-PER-based A2C in
Table 6 that is also partially shown in Table 12. In the 2nd and
3rd-stage training, AW-PER-based A2C updates its weight
in an online manner like that of AW-based A2C. Intuitively,
these two algorithms may converge to a same reward. How-
ever, results of 3rd-stage training show that their converged
rewards are slightly different. Learnt policies by the robot

123

Journal of Intelligent Manufacturing (2023) 34:151–180 177

Fig. 17 The effect of the distribution drift on the received reward (left) and success rate (right)

Table 12 The reward received by the robot in 3rd-stage training

Algorithms Reward
(3rd-stage, 10/5 obs.)

Our AW-based A2C 0.33/0.38

Our AW-PER-based A2C 0.30/0.42

Table 13 The success rate and collision rate in the extreme test

Algorithms Success rate
(10/5 obs.)

Collision rate
(10/5 obs.)

LSTM-based A2C 0.29/0.49 0.48/0.39

Our AW-based A2C 0.39/0.54 0.39/0.34

Our AW-PER-based A2C 0.21/0.41 0.63/0.46

differ slightly as well. For example, the robot using AW-
PER-based A2C is expected to choose the “Recede” and
“Wait” strategies in the early-stage of motion planning with
10 obstacles. However, the robot based on AW-based A2C is
apt to select “Follow” and “Wait” strategies. In cases with 5
obstacles, the robot based on AW-PER-based A2C is likely
to choose the “Wait” strategy at the beginning, while the
robot using AW-based A2C likes “Recede” strategy. Higher
reward is expected to be received once the “Follow” strat-
egy is selected by the robot, while it is hard to obtain better
reward if the robot recedes at the beginning.

The third consequence is shown in Table 10 which is
partially shown in Table 13. The performance of AW-PER-
based A2C drops slightly faster than the AW-based A2C and
LSTM-based A2C in the success rate and collision rate of
robustness evaluations (extreme tests). We find that these
three consequences are caused by PER which introduces the

bias to the process of weight update in the training by chang-
ing the data distribution, therefore changing the solution or
policy the network should converge to in the online learn-
ing (Schaul et al., 2016). The importance-sampling weight
reduces the impact caused by the distribution drift, but it
cannot eliminate it, therefore slight changes are found in the
converged policies of AW-based A2C and AW-PER-based
A2C. Moreover, the AW-PER-based A2C costs less data
(35,000/30000 episodes) to converge, while AW-based A2C
andLSTM-basedA2Cspend75,000/45000 episodes to reach
the convergence. This means less explorations are done in
the AW-PER-based A2C when comparing with the rest two
algorithms, therefore the convergedpolicyofAW-PER-based
A2C slightly lacks flexibility and robustness in the qualita-
tive evaluations and robustness evaluations respectively. In
summary, algorithms based on PER converge faster and less
data is consumed. However, the flexibility and robustness of
their converged policies drop slightly especially in challeng-
ing scenarios. We believe all algorithms based on the PER in
other fields share the same consequence caused by the PER
in the flexibility and robustness of the policy. Hence, how to
find a better trade-off between the advantage and disadvan-
tage of PER matters.

Future research directions

Future works are expected to focus on four aspects: (1) meth-
ods for better feature interpretation; (2) methods to reduce
the distribution drift; (3) combination of global path plan-
ning algorithms with local motion planning algorithms; (4)
3-dimension real-world implementation.

Recent relation graph performs robust as well in the
description of environmental states (Chen et al., 2019a).
Impact from the distribution drift problem is likely to be
further reduced by changing the way to store and sample

123

178 Journal of Intelligent Manufacturing (2023) 34:151–180

the data in the replay buffer (Bu & Chang, 2020). How-
ever, algorithms discussed in this paper are better to solve
the local motion planning problems. It cannot replace the
global path planning algorithms for the outdoor path plan-
ning tasks. It would be interesting to combine our local
motion planning with global path planning algorithms for
more challenging tasks, such as path/motion planning in large
and complex airport like Daxin airport in Beijing. Our work
does not consider the complex3-dimention case. 3-dimention
implementation would be more challenging because of the
irregular or complex shapes and geometries of obstacles.
If our algorithm is applied into 3-dimention case directly,
this will cause many potential problems. For instance, colli-
sion detection. Our work simplifies the obstacle shape as the
circle with dynamic radius. The constraint of collision detec-
tion is obtained by computing the minimum distance of two
agents (dmin � rrobot + robstacle). If the distance of the robot
and obstacle D < dmin , the robot and obstacle collide. It is
not enough in the 3-dimention case. Our future work in 3-
dimention implementation will consider fusing other method
(Redon et al., 2005; Husty et al., 2007; Barton et al., 2009;
Choi et al., 2009) to ensure an accurate collision detection
constraint. In real-world implementation, unexpected fault,
influence of disturbances, and other uncertainties in real sys-
tem are challenges that cannot be ignored. Future work will
also consider the uncertainties of real-world implementation,
especially the fault detections (Cheng et al., 2021;Dong et al.,
2020).

Conclusion

This paper first implements the LSTM-based A2C without
the expert experience by making the modification on the
reward function, but LSTM-based A2C suffers slow con-
vergence speed and over-fitting in the training. It is followed
by applying the AW encoder to replace the LSTM encoder to
better describe the environmental state, hence the problems
in LSTM-based A2C are reduced. The convergence speed
of AW-based A2C is then further improved by combining
the online learning and batch learning which is based on the
PER. As the results, AW-PER-based A2C takes only near
15% and 30% of data to get rid of the early-stage training.
It spends around 45% and 65% of data to reach the con-
vergence when comparing with LSTM-based A2C in cases
with 10 and 5 obstacles. AW-PER-based A2C converges to
almost the same reward as that of LSTM-basedA2C andAW-
based A2C in cases with 10 and 5 obstacles (even better in
cases with 5 obstacles) at the expenses of slightly sacrificing
its robustness in the extreme test (robustness evaluations).
Our AW-PER-based A2C and AW-based A2C are easy to
be applied into the real motion planning tasks once the fea-
tures of the agent (the robot and obstacles) are acquired by

the sensors [e.g., light detection and ranging (liDAR), depth
camera and encoder]. For example, position, velocity and
moving direction are obtained by the liDAR and encoder.
Radius is obtained by the depth camera, while goal’s posi-
tion and preferred velocity are set artificially.

Author contributions CZ,PF,HH,BH: conceptualization;CZ:method-
ology; CZ: formal analysis and investigation; CZ: writing—original
draft preparation; PF, BH, HH: writing—review and editing; CZ, HH,
BH, PF: funding acquisition, resources; PF, BH: Supervision.

Funding Open access funding provided by University of Eastern Fin-
land (UEF) including Kuopio University Hospital. The authors did not
receive support from any organization for the submitted work.

Data availability Our source code is available on the website (https://
github.com/CHUENGMINCHOU /AW-PER-A2C).

Declarations

Conflict of interest All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest
or non-financial interest in the subject matter or materials discussed in
this manuscript.

Consent to participate Not applicable.

Consent to publish Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bai, Z., Cai, B., Shangguan, W., & Chai, L. (2019). Deep learning
based motion planning for autonomous vehicle using spatiotem-
poral LSTM network. In Proceedings 2018 Chinese Automation
Congress, CAC 2018 (pp. 1610–1614). https://doi.org/10.1109/
CAC.2018.8623233

Baird, L. (1995). Residual algorithms: Reinforcement learning with
function approximation. Machine Learning Proceedings, 1995,
30–37. https://doi.org/10.1016/b978-1-55860-377-6.50013-x

Barton, M., Shragai, N., & Elber, G. (2009). Kinematic simulation
of planar and spatial mechanisms using a polynomial constraints
solver. Computer-Aided Design and Applications, 6(1), 115–123.
https://doi.org/10.3722/cadaps.2009.115-123

123

https://github.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CAC.2018.8623233
https://doi.org/10.1016/b978-1-55860-377-6.50013-x
https://doi.org/10.3722/cadaps.2009.115-123

Journal of Intelligent Manufacturing (2023) 34:151–180 179

Bas, E. (2019). An introduction to Markov chains. Basics of Probabil-
ity and Stochastic Processes. https://doi.org/10.1007/978-3-030-
32323-3_12

Brownlee, J. (2018). Better deep learning: train faster, reduce over-
fitting, and make better predictions. Machine Learning Mastery.
Retrieved from https://machinelearningmastery.com/better-deep-
learning/.

Bry, A. & Roy, N. (2011). Rapidly-exploring random belief trees for
motion planning under uncertainty. In Proceedings—IEEE inter-
national conference on robotics and automation. https://doi.org/
10.1109/ICRA.2011.5980508.

Bu, F. & Chang, D. E. (2020). Double prioritized state recycled
experience replay. In 2020 IEEE international conference on
consumer electronics—Asia, ICCE-Asia 2020. https://doi.org/10.
1109/ICCE-Asia49877.2020.9276975.

Chen, Y. F., Liu, M., Everett, M. & How, J. P. (2017). Decentral-
ized non-communicatingmultiagent collision avoidancewith deep
reinforcement learning. In Proceedings—IEEE international con-
ference on robotics and automation (pp. 285–292). https://doi.org/
10.1109/ICRA.2017.7989037.

Chen, C., Hu, S., Nikdel, P., Mori, G. & Savva, M. (2019a). Relational
graph learning for crowd navigation. ArXiv. http://arxiv.org/abs/
1909.13165.

Chen, C., Liu, Y., Kreiss, S., & Alahi, A. (2019b). Crowd-robot inter-
action: Crowd-aware robot navigation with attention-based deep
reinforcement learning. In Proceedings—IEEE international con-
ference on robotics and automation (pp. 6015–6022). https://doi.
org/10.1109/ICRA.2019.8794134

Cheng, P., Wang, H., Stojanovic, V., He, S., Shi, K., Luan, X., Liu, F.,
& Sun, C. (2021). Asynchronous fault detection observer for 2-D
Markov jump systems. IEEE Transactions on Cybernetics. https://
doi.org/10.1109/TCYB.2021.3112699

Choi, Y. K., Chang, J. W., Wang, W., Kim, M. S., & Elber, G. (2009).
Continuous collision detection for ellipsoids. IEEE Transactions
on Visualization and Computer Graphics, 15(2), 311–324. https://
doi.org/10.1109/TVCG.2008.80

Dong, X., He, S., & Stojanovic, V. (2020). Robust fault detection filter
design for a class of discrete-time conic-type non-linear Markov
jump systemswith jump fault signals. IETControl Theory&Appli-
cations, 14(14), 1912–1919. https://doi.org/10.1049/iet-cta.2019.
1316

Everett, M., Chen, Y. F., & How, J. P. (2018). Motion planning among
dynamic, decision-making agents with deep reinforcement learn-
ing. IEEE International Conference on Intelligent Robots and
Systems, Iii. https://doi.org/10.1109/IROS.2018.8593871

Farouki, R. T., & Sakkalis, T. (1994). Pythagorean-hodograph space
curves. Advances in Computational Mathematics, 2(1), 41–66.
https://doi.org/10.1007/BF02519035

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics & Automation
Magazine, 4(1), 23–33. https://doi.org/10.1109/100.580977

Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K.,
Gerdes, C., Langer, D., Hernandez, M., Müller-Bessler, B., &
Huhnke, B. (2012). Up to the limits: AutonomousAudi TTS. IEEE
Intelligent Vehicles Symposium, 2012, 541–547. https://doi.org/10.
1109/IVS.2012.6232212

González, D., Pérez, J., Lattarulo, R., Milanés, V. & Nashashibi, F.
(2014). Continuous curvature planning with obstacle avoidance
capabilities in urban scenarios. In 2014 17th IEEE interna-
tional conference on intelligent transportation systems, ITSC 2014
(pp. 1430–1435). https://doi.org/10.1109/ITSC.2014.6957887.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learn-
ing. MIT press, Cambridge, MA. Retrieved from http://www.
deeplearningbook.org.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the
heuristic determination ofminimumcost paths. IEEETransactions

on Systems Science and Cybernetics, 4(2), 100–107. https://doi.
org/10.1109/TSSC.1968.300136

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-
forward networks are universal approximators. Neural Networks,
2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

Husty,M.L., Pfurner,M.,&Schröcker,H.-P. (2007).Anewandefficient
algorithm for the inverse kinematics of a general serial 6R manip-
ulator.Mechanism and Machine Theory, 42(1), 66–81. https://doi.
org/10.1016/j.mechmachtheory.2006.02.001

Inoue, M., Yamashita, T., & Nishida, T. (2019). Robot path planning by
LSTM network under changing environment. Advances in Intel-
ligent Systems and Computing, 759, 317–329. https://doi.org/10.
1007/978-981-13-0341-8_29

Jiang, M., Grefenstette, E. & Rocktäschel, T. (2020). Prioritized level
replay. ArXiv. http://arxiv.org/abs/2010.03934.

Kolbusz, J., Rozycki, P., & Wilamowski, B. M. (2017). The study
of architecture MLP with linear neurons in order to eliminate
the “vanishing gradient” problem BT—artificial intelligence and
soft computing. In L. Rutkowski, M. Korytkowski, R. Scherer, R.
Tadeusiewicz, L. A. Zadeh, & J. M. Zurada (Eds.), International
conference on artificial intelligence and soft computing 2017:
Artificial intelligence and soft computing (pp. 97–106). Springer.
https://doi.org/10.1007/978-3-319-59063-9_9

Konda, V. R. & Tsitsiklis, J. N. (2000). Actor-critic algo-
rithms. In Advances in neural information processing systems
(pp. 1008–1014).

Li, A. A., Lu, Z. & Miao, C. (2021). Revisiting prioritized experi-
ence replay: A value perspective. ArXiv. http://arxiv.org/abs/2102.
03261.

Lin, Z., Feng, M., Dos Santos, C. N., Yu, M., Xiang, B., Zhou, B. &
Bengio, Y. (2017). A structured self-attentive sentence embedding.
In 5th international conference on learning representations, ICLR
2017—conference track proceedings (pp. 1–15).

Lippmann, R. P. (1988). An introduction to computing with neural nets.
ACMSIGARCHComputerArchitectureNews, 16(1), 7–25. https://
doi.org/10.1145/44571.44572

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D. & Riedmiller, M. (2013). Playing atari with deep
reinforcement learning, pp. 1–9. ArXiv, http://arxiv.org/abs/1312.
5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D.
(2015). Human-level control through deep reinforcement learning.
Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous meth-
ods for deep reinforcement learning. In M. F. Balcan & K.
Q. Weinberger (Eds.), Proeedings of machine learning research
(Vol. 48, pp. 1928–1937). PMLR. http://proceedings.mlr.press/
v48/mniha16.pdf

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. G. (2016).
Safe and efficient off-policy reinforcement learning. Advances in
Neural Information Processing Systems, Nips, 26, 1054–1062.

Oh, J., Guo, Y., Singh, S., & Lee, H. (2018). Self-Imitation Learning.
35th International Conference on Machine Learning, ICML, 9(2),
6214–6223.

Redon, S., Lin, M. C., Manocha, D., & Kim, Y. J. (2005). Fast
continuous collision detection for articulated models. Journal
of Computing and Information Science in Engineering, 5(2),
126–137. https://doi.org/10.1115/1.1884133

Reed, R. &MarksII, R. J. (1999).Neural smithing: Supervised learning
in feedforward artificial neural networks. MIT Press. Retrieved
from https://mitpress.mit.edu/books/neural-smithing.

123

https://doi.org/10.1007/978-3-030-32323-3_12
https://machinelearningmastery.com/better-deep-learning/
https://doi.org/10.1109/ICRA.2011.5980508
https://doi.org/10.1109/ICCE-Asia49877.2020.9276975
https://doi.org/10.1109/ICRA.2017.7989037
http://arxiv.org/abs/1909.13165
https://doi.org/10.1109/ICRA.2019.8794134
https://doi.org/10.1109/TCYB.2021.3112699
https://doi.org/10.1109/TVCG.2008.80
https://doi.org/10.1049/iet-cta.2019.1316
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1007/BF02519035
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/IVS.2012.6232212
https://doi.org/10.1109/ITSC.2014.6957887
http://www.deeplearningbook.org
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.mechmachtheory.2006.02.001
https://doi.org/10.1007/978-981-13-0341-8_29
http://arxiv.org/abs/2010.03934.
https://doi.org/10.1007/978-3-319-59063-9_9
http://arxiv.org/abs/2102.03261
https://doi.org/10.1145/44571.44572
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
http://proceedings.mlr.press/v48/mniha16.pdf
https://doi.org/10.1115/1.1884133
https://mitpress.mit.edu/books/neural-smithing

180 Journal of Intelligent Manufacturing (2023) 34:151–180

Reeds, J. A., & Shepp, L. A. (1990). Optimal paths for a car that goes
both forwards and backwards. Pacific Journal of Mathematics,
145(2), 367–393. https://doi.org/10.2140/pjm.1990.145.367

Schaul, T., Quan, J., Antonoglou, I. & Silver, D. (2016). Prioritized
experience replay. In 4th international conference on learn-
ing representations, ICLR 2016—conference track proceedings
(pp. 1–21).

Schulman, J., Levine, S., Moritz, P., Jordan, M. & Abbeel, P. (2015).
Trust region policy optimization. In 32nd international conference
on machine learning, ICML 2015, (vol. 3, pp. 1889–1897).

Schulman, J.,Wolski, F.,Dhariwal, P., Radford,A.&Klimov,O. (2017).
Proximal policy optimization algorithms. (pp. 1–12) ArXiv.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. & Riedmiller,
M. (2014). Deterministic policy gradient algorithms. In 31st inter-
national conference on machine learning, ICML 2014, (vol. 1,
pp. 605–619).

Stathakis, D. (2009). Howmany hidden layers and nodes? International
Journal of Remote Sensing, 30(8), 2133–2147. https://doi.org/10.
1080/01431160802549278

Van Den Berg, J., Lin, M., & Manocha, D. (2008). Recip-
rocal velocity obstacles for real-time multi-agent naviga-
tion. Proceedings—IEEE International Conference on Robotics
and Automation, 2(4), 100–107. https://doi.org/10.1109/ROBOT.
2008.4543489

Van Hasselt, H., Guez, A. & Silver, D. (2016). Deep reinforcement
learning with double Q-Learning. In 30th AAAI Conference on
Artificial Intelligence, AAAI 2016, (pp. 2094–2100).

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De
Frcitas, N. (2016). Dueling network architectures for deep rein-
forcement learning. 33rd International Conference on Machine
Learning, ICML 2016, 4(9), 2939–2947.

Wang, Z., Mnih, V., Bapst, V., Munos, R., Heess, N., Kavukcuoglu,
K. & De Freitas, N. (2017). Sample efficient actor-critic with
experience replay. In 5th international conference on learning
representations, ICLR 2017—conference track proceedings, 2016.
Retrieved from https://static.aminer.cn/upload/pdf/239/1521/964/
58d82fc8d649053542fd5854.pdf.

Xu, W., Wei, J., Dolan, J. M., Zhao, H., & Zha, H. (2012). A real-time
motion planner with trajectory optimization for autonomous vehi-
cles. IEEE International Conference on Robotics and Automation,
2012, 2061–2067. https://doi.org/10.1109/ICRA.2012.6225063

Zha, D., Lai, K. H., Zhou, K. & Hu, X. (2019). Experience replay
optimization. In IJCAI international joint conference on arti-
ficial intelligence (Vols. 2019-Augus). https://doi.org/10.24963/
ijcai.2019/589

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.2140/pjm.1990.145.367
https://doi.org/10.1080/01431160802549278
https://doi.org/10.1109/ROBOT.2008.4543489
https://static.aminer.cn/upload/pdf/239/1521/964/58d82fc8d649053542fd5854.pdf
https://doi.org/10.1109/ICRA.2012.6225063
https://doi.org/10.24963/ijcai.2019/589

	Attention-based advantage actor-critic algorithm with prioritized experience replay for complex 2-D robotic motion planning
	Abstract
	Abbreviations
	Introduction
	Research background
	Preliminary of RL
	Markov decision process
	Value function
	Policy function

	Related works
	Algorithm level
	Input quality level

	Problem formulation

	Methods
	Principles to design networks for RL
	Principles of configuration for number of layer and node
	Strategies in configuration of layer and node

	Combination of online A2C and offline A2C with PER
	Online A2C
	Offline A2C and the combination of online/offline A2C

	LSTM and AW encoders
	AW-PER-based A2C and its training strategies
	The definition of environmental description (environmental state)
	AW-PER-based A2C and its training strategies

	Experiments and results
	Experimental environment
	Design of network architecture
	Configurations of layer and node
	Grid test (grid search)
	Efficacy and efficiency analysis of possible architectures

	Model training
	Basic settings of training
	LSTM-based A2C
	AW-based online A2C
	AW-PER-based A2C and its training strategy

	Model evaluations
	Training evaluations
	Settings for model evaluations
	Quantitative evaluations
	Qualitative evaluations
	Computational evaluations
	Robustness evaluations (extreme tests)

	Discussion and future work
	Problem 1
	Problem 2
	Future research directions

	Conclusion
	References

