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Abstract
Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low
speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent
accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of dis-
tance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory
environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We
further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range
of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead
to vehicle crashes.

Keywords Automated factory transport · Visual obstacle detection · Autonomous transport

Introduction

Fully automated driving is considered one of the most sig-
nificant contemporary challenges in computer science. The
related problem complexity can be decreased by address-
ing specific use cases thereby limiting the operational design
domain. For example, closed, artificially lit factories pro-
vide a very static and controlled environment. Here, it seems
achievable for automated driving cars to reach a car park from
the production line end. Automating this tedious and repet-
itive job could minimize manpower and most importantly
reduce the risk of accidents (Wenning et al., 2020) and thus
facilitate car manufacturing in general. Further, automated
factory transportation can be extended to Automated Guided
Vehicles (AGV). They play a crucial role in factory andware-
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house logistics by transporting materials or products on the
premises. Regardless of the application, automated systems
in a human environment require a reliable obstacle detection
(OD). This paper focuses on OD with a monocular frontal
camera.

This sensor setup is simple compared to most self-driving
systems that use an expensive LiDAR sensor suite, radar
and multiple cameras (Feng, et al., 2020). Due to manda-
tory driver assistance systems, a monocular camera will soon
belong to the standard car sensor setup. Since most factories
are set-up for (human) vision, computer vision that imitates
the human brain’s image processing is arguably sufficient for
robust OD. Given that the cars are also equippedwith electric
actuators, they can be automated on the factory premises.

To utilize data acquired through optical sensors, suitable
computational strategies are required. In recent years, Con-
volutional Neural Network (CNN)-based algorithms made
monocular OD increasingly viable. In automated driving,
these algorithms have been built to perform complex scene
understanding in public traffic. The simpler use case of
automated factory transport requires only the binary clas-
sification Stop/Go and performs in the limited operational
design domain of a factory. Consequently, we tested whether
a CNN-based algorithm is able to reliably detect a range of
obstacles. To answer this question, we contribute an applica-
tion specific dataset, which consists of photorealistic images
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Fig. 1 Overview of factory environment simulated in Unreal Engine 4

from a virtual factory environment (Fig. 1). The simulation
was built in Unreal Engine 4 and enables the generation of
an arbitrary number of noiseless ground truth segmentations
and depth data in a variety of scenarios that would otherwise
be dangerous or costly to provide. The dataset comprises
safety–critical scenarios, which pose challenges to vision-
guided autonomous vehicles, for example detecting humans
with floor-colored clothing, fire outbreaks, vehicles with
large floor clearance and unknown objects. Using these, we
evaluate the viability of two CNN-based methods including
semantic segmentation (SeS) and monocular depth estima-
tion (DE) for OD. The SeS algorithm classifies each image
pixel into one of two classes, either obstacle or drivable path.
TheDEprovides a distance value for each image pixel. Using
a threshold, the algorithm can deduce a binary output to con-
trol an automated vehicle.

In the following, we present previous work that inves-
tigated why and how DE and SeS CNN models commonly
fail. We then elaborate on both OD algorithms and the virtual
data generationmethod. Next, we introduce six test scenarios
and, based on these, evaluate and discuss both OD methods.
Lastly, we provide a summary and suggest future work.

Related work

Monocular depth estimation

Autonomous navigation is inevitably based on detailed depth
analysis of the surrounding scene. Hence, almost all vehicles
that work autonomously rely on a depth sensor. Monocular
vision-based DE is limited by an inherent ambiguity prob-
lem since there is an infinite number of 3D correspondences
to a 2D image. CNN-based methods deal with the ambiguity
problem by implicitly learning depth cues similar to humans.
Understanding the effects of depth cues on CNNs is vital
for safety–critical DE tasks, as it may resolve potentially
fatal edge cases that can result in fatal failure. Depth cues
that are relevant for CNN-based methods have only recently

become a research focus. Dijk & Croon, 2019 investigated
which high-level depth cues are learned for detecting cars
by varying the appearance and position of road objects as
well as scene color in the KITTI dataset (Geiger & Urtasun,
2012). Here, vertical position, shadow darkness, texture gra-
dient and the distinctiveness of the object drove the inferred
object’s depth accuracy. In a study aimed to identify low-
level features that govern DE accuracy (Hu et al., 2019), Hu
et al. found that CNN models selected edges depending on
their importance for inference of scene geometry, not on their
intensity. In accordancewith vanDijk anddeCroon’s hypoth-
esis, the lower edge of an object establishing the contact point
to the ground seemed to be most important. However, Hu
et al. further argued that depth estimators preferably detect
the boundary and the inside region of each individual object.

While both studies offer valuable insights into the impor-
tance of various depth cues, most current research is limited
to outdoor traffic scenes and provides little insight into DE
behavior in edge cases and the reliability of depth estimators
in a factory setting.

Semantic segmentation

While SeS has been shown to be useful in the field of auto-
mated driving, CNNs in general are still widely considered
to be black-boxes which raises concerns in safety–critical
applications. Eykholt, et al., 2017 demonstrated traffic sign
detector failure upon stop sign modifications with black and
white stickers. Similarly, person detectors failed because of
adversarial designs on clothing (Xu, et al., 2019). The same
principle of adversarial attacks on image classifiers can be
extended to SeS (Bär et al., 2021). While these adversar-
ial attacks are man-made, similar situations could arise in
real-world applications causing critically delayed reactions
of moving vehicles to obstacles.

Research has focused on low-level feature attacks and
their effects on SeS network output. Unlike for DE networks
(see above), for SeS little is known on the effects of high-
level image alterations, for example adding novel objects to
the scene or changing object appearance.

Additionally, the quality of CNNmodels heavily depends
on the quality of training data: For example, the KITTI
(Geiger & Urtasun, 2012) and Cityscapes (Cordts, et al.,
2016) datasets are among the most used datasets for bench-
marking computer visionmodels in traffic settings. However,
Johnson et al. (Johnson-Roberson et al., 2016) pointed out
that vehicles are mostly seen from the same angle and image
regions causing the CNN to underperform in fringe situa-
tions.

When developing a vision-based OD system for safe-
ty–critical applications, simulation testing reduces risks and
minimizes development costs. Some simulated environments
for traffic scenes already exist (Dosovitskiy et al., 2017;
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Fig. 2 Full model pipeline of depth estimation method for obstacle
detection

Johnson-Roberson et al., 2016; Li et al., 2019; Pollok et al.,
2019), but there are no such photorealistic industrial envi-
ronments for testing vehicle automation to the best of our
knowledge. Furthermore, most efforts have been directed
at the neural networks on a low feature level and only
few studies have pointed out vulnerabilities in DE and SeS
models. Therefore, we aim to close this knowledge gap by
investigating the robustness of OD methods in an industrial
environment.

Implementation

Depth estimationmodel

For DE we use DenseDepth (Alhashim & P. Wonka, 2018)
which consists of an auto-encoder architecture. The encoder
part is equipped with a feature extractor, DenseNet-169
(Huang et al., 2016). The model is trained on RGB images
and 8-bit grayscale images as ground truth depth where the
pixel intensity denotes the distance. The recorded depth is
truncated at 15 m and scaled to the values 0–255. While
training DenseDepth, a random subset of data is color aug-
mented as described in the original paper (Alhashim & P.
Wonka, 2018). Due to the overabundance of synthetic data,
the training time can be limited to 20 epochs.

We use an∩ -shaped area extruded along the vertical axis
(Fig. 2) to deduce a binary decision value. If an object enters
the∩ -volume, it should trigger a stop of the vehicle.

When the floor appearance changes (e.g., dark shadows,
dirt), depth estimates can become noisy. These depth uncer-
tainties become higher with larger distances. To guarantee a
robust OD, the∩ -volume needs to be lifted. Different noise
variances can be taken into account by raising the floor toler-
ance for each pixel individually. The values are determined
by taking the maximum errors of all non-obstacle frames of
the training set. Since these tolerance values lead to no false
positives, we lower them by 80%. Thus, the risk of ignoring
low obstacles is reduced without considerable accuracy loss.

Semantic segmentationmodel

We use binary SeS to classify anything that is not part of
the traversable floor. A single RGB image is used as the
CNN’s input. The output is a per-pixel probability distribu-

Fig. 3 Full model pipeline of semantic segmentation method for obsta-
cle detection

tion for obstacles. A subsequent conditional random field
(CRF) that refines the segmentation mask is followed by
the argmax function to produce a binary mask. The vehi-
cle must stop if any part of the obstacle mask enters the (not
extruded)∩ -shaped region, cf. Figure 3. This method is 2D
and thus assumes that only non-overhanging obstacles are
present within the scene since only the obstacle’s contact
points to the floor are considered. This means that the obsta-
cle distance will be overestimated when the point that first
enters the∩ -shape is elevated from the ground.

For SeS, we employed the U-Net (Ronneberger et al.,
2015) architecture with additional dropout layers (Adams,
2021). Dropout layers reduce over-fitting by dropping a dif-
ferent randomsub-set of nodes at each training epoch (Hinton
et al., 2012). For enhancing the generalization power, a light
data augmentation is applied to 50% of training images per
epoch. The augmentation sequence consists of small vary-
ing degrees of desaturation, color channel intensity variation,
darkening/lightening, Gaussian blurring as well as perspec-
tive transformation, horizontal flipping (i.e. mirroring), and
horizontal translation. The training comprises 20 epochs as
with the DE model.

Virtual training data

A virtual camera recorded the data along a pre-generated
trajectory with a constant pitch of -30°. The traversable path
went around the center assembly area. It was marked by yel-
low tape on either side. To ensure that the camera captured
a unique view and emulated autonomous vehicle motion, a
Bézier curve was generated by placing the control points
semi-randomly along the traversable path with bias to the
path center. Lastly, the curve was converted into a set of
approx. 2150 equidistant points representing each labelled
image capturing position. A point distance of about 4 cm and
a theoretical frame rate of 60 fps corresponded to a vehicle
speed of 8.6 km/h. The vehicle speed determines the size of
the∩ -shape since faster vehicle speeds require longer decel-
eration distances. Given high quality images, the obstacle
detection capabilities are independent from vehicle speed for
the employed algorithms.

We used UnrealCV (Qiu & Yuille, 2016) to capture RGB
images, segmentation masks and depth images (Fig. 4). The
object mask consisted of only two classes: floor and obstacle.
Depth and object masks were saved as 8-bit grayscale png

123



2160 Journal of Intelligent Manufacturing (2022) 33:2157–2165

Fig. 4 Ground truth data output of UnrealCV used for training of SeS
and DE model: RGB (left), object mask (center), depth (right)

Obstacles Camouflaged Objects Overhanging Objects

Dirty Floor Novel Objects Visual Obstructions

Fig. 5 Testing scenarios in industrial environment posing challenges to
visual obstacle detection

images at 640*480 pixels. RGB imageswere compressed and
saved as jpg of the same size. We generated 15,170 training
and 4370 testing images.

Test cases

We devised six test scenarios representing safety and robust-
ness requirements (Fig. 5). The scenarios used the same
camera trajectory for control purposes. Some tests were less
extensive and were performed only on certain segments of
the training course. The scenarios were detailed as follows:

Obstacles: This run was a benchmark for further tests. It
contained 15 obstacles of different shapes and sizes that can
be commonly found in factories such as humans, chairs, fire
extinguishers, barriers, and boxes.

Camouflaged objects: A major challenge for computer
vision models is detecting objects similar to the background.
For this purpose, six gray obstacles were placed on the path,
including a person and a vehicle with the same texture as the
floor.

Overhanging objects: These were objects elevated above
the floor such as forklifts with raised cargo or large vehicles
with clearance. Even for laser scanner-equipped AGVs these
obstacles can be difficult to detect based on their frontal,
floor-based focus (Ullrich & Albrecht, 2019). This run con-
tained six challenging objects.

Dirty floor: Dirt and tire marks accumulate on factory
floors. This test investigated vision model robustness to
changes in floor appearance. Here, previous scenarios were

Table 1 Software and libraries employed

Main libraries Software

Data generation Factory Data
Generator

UnrealCV 0.4.0

Unreal Engine 4.25
with UnrealCV
plugin

Windows 10Office Scene
Scanned 3D People
Pack

Open World Demo
Collection

Factory Environment
Collection

Vehicle Variety Pack

Evaluation U-Net Ubuntu 18.04

DenseDepth

employed with additional dirt, tire marks and three floor
decals. The test case did not contain obstacles.

Novel objects: Depending on their purpose, most objects
found in a factory are often square-shaped, made of wood
or metal and are clearly visible. This run aimed to test per-
formance on novel objects that are absent from training data
such as animals, plants, and mythical creatures.

Visual obstructions: Visual obstructions pose a high risk
to visual object detection. Benefitting from the wide range of
applications that simulations allow to test for, this run aimed
to test themodels’ ability to detect objects obstructed by rain,
light smoke, heavy smoke, and sparks.

Software

Table 1 gives an overview on the employed software. Addi-
tionally, we provide the training and test data and the factory
environment simulated in Unreal Engine 4.

Evaluation

To evaluate the OD capability of both models introduced in
Sect. 3, we processed all test cases’ images. Frames were
marked as stopwhen any pixel of the ground truth depth was
within the∩ -volume. False negatives (FN) comprised close
obstacles that were not detected. Contrarily, false positives
(FP) comprised close but undetected obstacles. A true pos-
itive (TP) was a correctly classified frame with an obstacle.
Using the f1-score, the results on each test case can be con-
densed to one number per model:

f1 � T P

T P + 0.5 ∗ (FP + FN )

Table 2 sums up the models’ results. In addition to the
f1-score, we provide the maximum number of consecutive
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Table 2 Performance metrics of Depth Estimation (DE) and Semantic
Segmentation (SeS) on test cases

Test set Model f1-score Max. FN series

Obstacles DE 0.97 7

SeS 0.97 16

Camouflaged Objects DE 0.98 2

SeS 0.96 8

Overhanging Objects DE 0.86 29

SeS 0.76 41

Dirty floor DE –* –*

SeS –* –*

Novel objects DE 0.93 25

SeS 0.92 26

Visual obstructions DE 0.75 1

SeS 0.81 16

Boldfaced numbers indicate a better performance
*Note that the Dirty Floor set lacks obstacles

frames that were classified as FNs as these could result in
a crash. Since each frame is taken approx. 4 cm apart and
the∩ -shaped detection area is 2.5 m long, a FN series of>62
translates to a full-speed crash. Considering a braking dis-
tance of 1 m due to signal processing delays and vehicle
inertia, the maximum FN series decreased to 37 frames. This
threshold was exceeded in the Overhanging Objects set and
nearly approached in several fringe cases.

For further analysis, we plotted the frame-wise errors of
stop/go predictions for each model and run. FPs only caused
the vehicle to stop unnecessarily while an FN can lead to a
collision. The former are indicated in orange and the latter
in red. Long red areas indicate a major obstacle detection
failure. The graph identifies obstacles that were particularly
challenging for specificmodels. The ground truth labels were
determinedwith the same stopping criterion based on ground
truth depth and semantic images. Imageswith the framenum-
ber indicated in the bottom right are provided as context for
the stop/go graph.

Obstacles

Based on Fig. 6, both models detected the obstacles. For
both, the person at frame 209 was detected with a seven-
frame delay due to the protruding arm (Fig. 7, top). Here, the
vehicle could still stop in time with the given framerate and
speed of the camera (4 cm/frame). The models differ most
around frame 1200. Here, a canvas barrier slouched towards
the camera (Fig. 7, bottom). Despite the complex geometry,
the DEmodel was able to detect it sufficiently early. The SeS
model detected it slightly later due to the overhanging cloth.

Fig. 6 Truthfulness of predictions in chronological order of Obstacles
set

Depth EstimationSemantic Segmentation Ground Truth

1200

209

Fig. 7 Slightly late detected person (top); detecting a slouching canvas
barrier (bottom)

Fig. 8 Truthfulness of predictions in chronological order of the Over-
hanging Obstacles set

Overhanging obstacles

Obstacles with overhanging parts have shown to be the main
source of FN in the previous tests and are the most challeng-
ing to detect, even for depth-aware models. The SeS model
lacks depth awareness and consequently failed onmost obsta-
cles. Here, the focus of the experiment is on the DE. Figure 8
shows that DE improved the detection of elevated and over-
hanging obstacles, however, many late detections indicate
a low reliability. Further, many frames were only classified
correctly because of the dark shadows cast by overhanging
objects. The shadows caused true positive detections in both
models. However, shadows depend on the lighting and are
not reliable indicators for object detection. Importantly, late
detections and shadow-causedTPs reflect a limited reliability
of the DE.

The run startedwith a forklift in a highly elevated position.
Only the cargowas visiblewhile the vehicle itself lied outside
of the frame making this a particularly difficult obstacle to
detect. Indeed, both models overlooked this obstacle. The
predicted depth image displayed in Fig. 9 (top) suggests that
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Ground Truth DepthDepth Estimation RGB

456

157

36

Fig. 9 Incorrectly predicted depth of a raised pallet (top); accurate pre-
dictions of a table (center) and back of a truck (bottom)

Fig. 10 Truthfulness of predictions in chronological order of Camou-
flaged Obstacles set

the position of the pallet was estimated further back in the
image where its bottom edge crossed over to the floor.

Interestingly, the table (frames 167 – 248) and truck
(frames 490 – 588) were very accurately predicted, thus
triggering almost frame-perfect stops. The truck prediction
is especially surprising considering that there was no clear
contact point to the ground visible in the image, Fig. 9 (bot-
tom). There was, however, a dark shadow directly under both
objects, which seemed to have a positive effect on prediction
accuracy.

Camouflaged obstacles

Both models detected all objects based on the frame-wise
predictions in Fig. 10. However, some segmentation outputs
were sparse and others overcomplete (e.g., frames 40–50).
Notably, even incompletely segmented obstacles were never
fully overlooked since therewas always some part (e.g. edges
or lighting) distinguishable from the floor.

SeS further failed to segment the dark rocker panel and
bottom tire of theSUV inFig. 11, possibly due to its similarity
to a shadow indicating a risk of late detection for objects with
dark lower bottomedges. In contrast,DEworked surprisingly
well for connecting the rocker panel to the vehicle.

Depth EstimationSemantic Segmentation Ground Truth

363

Fig. 11 When detecting the car the dark rocker panel is mistaken for a
shadow

Fig. 12 Truthfulness of predictions in chronological order of Novel
Objects set

Depth EstimationSemantic Segmentation Ground Truth

1618

91

Fig. 13 Running chicken ignored by SeS (top left) and barely caught
by DE (top center); overhanging tree branch ignored by both models
(bottom)

The final obstacle (frames 496 – end), a human wearing
gray shoes and trousers, posed difficulties to the SeS in few
frames. Here, the shoes have little texture, are relatively flat
and thus were harder to distinguish from the floor compared
to the trousers that have quite pronounced texture and shad-
ows.

Novel objects

As seen in Fig. 12, both models detected the novel objects
similarly well in most instances. At frames 90 and 91 the
SeSmodel completely failed to segment the running chicken,
which is also barely registered by the DE model (Fig. 13,
top). The reasons for this are unclear; possibly the tire marks,
small dimensions and/or low contrast decreased the accuracy
of both CNNs.

Furthermore, an analysis of frames 1600 – 1685 (passing
under a tree branch) revealed that the SeS model classified
dark shadows falsely as obstacles and thus confirms the dif-
ficulty of detecting overhanging obstacles. Although both
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Fig. 14 Truthfulness of predictions in chronological order of Dirty
Floor set

0

381

Depth EstimationSemantic Segmentation Baseline

Depth EstimationSemantic Segmentation Ground Truth

Fig. 15 False detection of white decal in bothmodels (top); high robust-
ness against dirty floor (bottom). The baseline image shows the floor
conditions during training

models triggered a stop (Fig. 12 frames 1600 – 1685), this is
caused by shadows and the tree trunk. The actual obstacle,
the branch, goes completely unnoticed (Fig. 13, bottom).

Dirty floor

In this test no obstacleswere present. However, Fig. 14 shows
that a changed floor appearance caused many FP detections
in both models.

The test revealed that bothmodels treated decals that differ
greatly from the learned floor appearance (present in frames
130 – 191, 389 – 491) as obstacles. It is also noteworthy that
bright yellow decals are mostly ignored by the SeS, unlike
white ones (Fig. 15, top). It is the oppositewith theDEmodel.
The reasons for this, however, are unclear.

Notably, both models are robust to additional markings
applied during normal usage of the floor (i.e., dirt and tire
marks). This indicates a good transferability as light dirt and
tire marks are represented in the training set. Figure 15 (bot-
tom) depicts a comparison between the floor as seen in the
training data and a dirty floor.

Visual obstructions

Figure 16 shows that both models performed poorly to detect
obstacles when facing visual obstructions. The DE model
estimated all pixels too close, thus initiating a break at every
visual obstruction except light smoke (Fig. 17, bottom). This

Fig. 16 Truthfulness of predictions in chronological order of Visual
Obstructions set

Depth EstimationSemantic Segmentation Ground Truth

491

231

Fig. 17 Thick smoke causes the SeS to not detect the person. The DE
detects the smoke as an obstacle (top). Thinner smoke around a latter
still shows similar results in the SeS and less (bottom)

suggests that it performs reliably up to a certain smoke den-
sity.

The SeS model is relatively robust to rain and classified
sparks as obstacles. More importantly, thick smoke caused
obstacles to go largely undetected (Fig. 17, top). This is likely
due to the loss of contrast. The entire scene took on a gray
tone similar to the floor and thus detected the person at frames
207 – 277 far too late.

Discussion

The main findings are as follows: Firstly, the two evaluated
methods are capable of reliably detecting obstacles under
normal circumstances. However, some fringe cases pose
problems for safe operation of the AGV. Secondly, over-
hanging obstacles were most difficult to detect. Shadows
facilitated the detection and caused an overly optimistic per-
formance in our dataset.Bad lighting conditions could further
reduce obstacle detection capabilities. Moreover, the task
became increasingly difficult when the object-floor contact
point was occluded. In this case the depth estimator viewed
the elevated object as lying on the floor further in the back-
ground. Distinct shadows from elevated objects significantly
improved DE accuracy. Both findings support van Dijk’s and
de Croon’s hypotheses (Dijk & Croon, 2019). Additionally,
accuracy decreased for complex objects, especially for parts
without direct connection to the floor.
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Thirdly, the SeS model was slightly affected by camou-
flaged objects and tended to produce incomplete segments.
Rare cases of objects small and flat that do not cast a shadow
on themselves require additional research. Based on our
investigation, however, it is unlikely that floor-like objects
cause crashes. In reality every object has at least a slight tex-
ture and casts a shadow on itself or has different reflective
properties that distinguish it from the floor.

Fourthly, both methods are robust to novel objects. This is
unsurprising for SeS because binary classification classified
all regions dissimilar to the floor as obstacles. For accurate
DE this is more noteworthy since it requires consideration
of the geometry to produce an accurate depth image. This
indicates that DE heavily relies on low-level cues which can
be learned from training on different objects.

Fifthly, when relying solely on the SeS model, smoke
can cause a vehicle crash. It reduced feature contrasts and
tinted the entire scene in gray similar to the floor. The DE
model reacted to thick smoke by treating it as a close object,
therefore coming to an early halt. Although a certain level of
robustness to visual obstructions is desirable, a smoke break-
out inside a factory should trigger a halting of all automated
vehicles to ensure a safe evacuation. The SeS model fails in
this regard.

Finally, introducing floor decals, which are not included
in the training set will cause unwanted stops. Additional dirt,
on the other hand, is tolerable to a degree. Conclusively, the
models must be retrained when floor appearance is changed
significantly.

Conclusion and future work

In this paper, we propose two methods for obstacle detec-
tion (OD) of automated vehicles in an industrial environment
based on CNNs for semantic segmentation and depth esti-
mation, respectively. Additionally, we devise a 3D virtual
environment for generating RGB images as well as ground
truth segmentation and depth images. Thus, we contribute an
application-specific dataset, which addresses the OD chal-
lenges in industrial environments. The test data includes six
scenarios featuringnormal, camouflaged, overhanging, novel
obstacles, visual obstructions and an altered floor appear-
ance. Both models were able to detect obstacles reliably
in most circumstances. However, overhanging obstacles in
particular were shown to pose a safety threat due to being
common and difficult to detect even for the depth estimation
model.

Futurework should address a better detection of overhang-
ing obstacles that are a source of high risk. One possible
approach is to add more similar obstacles to the training
data of the depth estimator. Drone research, for instance,
has resolved this problem. Here, often a single camera is

employed for navigation. A model ensemble that combines
SeS, DE and feature expansion (Beyeler et al., 2009; Mori &
Scherer, 2013) for the upper image region could be a solu-
tion. Another promising approach is that of Mancini et al.
(Mancini et al., 2018) who argue that object detectors implic-
itly learn sizes and proportions of objects belonging to the
training domain. By utilizing this knowledge, it is possible
to create more robust depth estimators.

The two CNNs tested in this paper are not representative.
In future work, new ODmodels should be tested on our here
presented application-specific dataset. The results provided
in this paper can be used for benchmarking. By reproduc-
ing the results on real world data, the simulation should be
validated and, if algorithms provide satisfying results in the
simulation, fine-tuned.

While training and testing of machine learning algorithms
already require large amounts of data, the statistical proof
of safety require significantly more data (Kalra & Paddock,
2016). Here, an automated generation of new test scenarios
as presented by (Pollok et al., 2019) could be a solution to
enable more comprehensive studies.
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