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Abstract
Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety
of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In
this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for
industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual
interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to
gather global context from input images and directly produce an image likelihood which is then used as an anomaly score.
We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a
0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects
covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public
defect datasetMVTec-AD Textures, where we outperform previous work by 4–10%, proving the applicability of our method to
other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention
Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that
the inference time for the model is acceptable at 32 ms, achieving real-time performance.

Keywords Quality control · Defect detection · Vision inspection · Anomaly detection · Unsupervised learning

Introduction

The climate-change imperative for more fuel-efficient airlin-
ers has increased demand for more efficient structures and
materials. Subsequently, the use of structures built with car-
bon fiber reinforced plastic (CFRP) has become essential in
the production of modern airliners, and seen an exponen-
tial increase since its introduction (Angerer et al. 2010) (see
Fig. 1).

A notional process flow forVacuumAssistedResin Trans-
fer Moulding (VARTM) is displayed in the following block
diagram (Fig. 2), adapted from the aerospace industry case
studies documented by Björnsson et al. (2015).

Dry fiber textiles are provided on rolls of fabric which are
then placed on to an automated cutting machine that cuts out
individual ply shapes from CAD data. Then the individual
plies are manually handled, stacked, before being manually
placed and draped one by one on the layup tool (mandrel).
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The tool and dry carbon preform are then vacuum bagged,
the resin is heated and injected, and then heat is applied to
cure the part into its final state. While the final cured part can
be inspected with traditional non-destructive techniques (e.g.
thermography, ultrasound), for infusion based processes it is
important to control quality before the resin infusion step
(Heuer et al. 2015).

The assembly of dry carbon fiber textile sheets (plies) into
a preform typically involves manual steps with no integrated
quality control such as preform assembly. In the aerospace
industry with a high variety of complex parts, the lack of
automation inhibits the ability to achieve the required pro-
duction rates in a cost-effectivemanner (Angerer et al. 2010).
Due to limitations in automated machines involved in textile
manufacture, cutting, handling, and layup, a fully automated
inspection systemcapable of high-rates is required to enable a
fully automated dryCFRP production system, as the full ben-
efit of automated handling is only captured when the process
does not need to halt for time consuming manual inspection.

For an overview of various approaches to automated dry
fiber fabric layup we refer readers to work by Elkington
et al. (2017) and for a comprehensive review covering both
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Fig. 1 Aerospace CFRP use
data from Angerer et al. (2010)

Fig. 2 VARTM Process Steps
adapted from Björnsson et al.
(2015)

dry and prepreg handling please see the work by Björnsson
et al. (2015). Both reviews consider quality requirements in
terms of positional accuracy as a major challenge in handling
large carbon fiber plies due to the tight tolerances on place-
ment, and reference several techniques that attempt to address
the problem including 2D Computer Vision (Kühnel et al.
2014), Laser Line Scanning (Gerngross and Nieberl 2016),
and Laser Interferometry Based Robot Tracking (Krebs et al.
2016).

While positional accuracy is a challenge, datumed geo-
metric tolerances are well defined. We do not consider
positional accuracy of automated composite fabric layup

systems in our study, instead focusing on within-textile
inspection tasks based on the FAA recommended criteria
such as weave defects, foreign object debris, and interlayer
or knit thread defects. Manual fabric inspection by textile
experts has been identified as having about 60% accuracy on
wide fast moving fabrics (Goyal 2018). This type of inspec-
tion is also current practice in industrial carbon fiber textile
manufacture, and induces multiple manual inspection points
during the CFRP process chain. Automated optical inspec-
tion of fabrics (e.g. for garment production) has been studied
from the beginning of computer vision, and is widely applied
in industrial textile manufacture.
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There are two unique challenges in optical dry carbonfiber
textile inspection:

– Carbon fibers exhibit highly specular reflection and
extremely high absorption of light, leading to dark images
with poor contrast if gathered with conventional optical
sensor systems

– Reliable detection of defects is a difficult image pro-
cessing problem due to the wide variety of defect types,
variable visual appearance, and extremely limited num-
bers of defect examples

For segmenting fibers under difficult conditions,
approaches such as polarized light filters (Jana 2018) and
photometric stereo have been used. We consider the photo-
metric stereo solution proposed by Zambal et al. (2015) as
our baseline sensor solution and briefly review it in Sect. 2.
Thereafter we focus our efforts on data processing meth-
ods on this data to address challenge 2. Detection of defects
in textiles has been approached in the literature in a num-
ber of different ways, including statistical, spectral, model
based, and structural methods. A comprehensive survey on
the above mentioned textile fabric defect detection tech-
niques in the literature can be found in the work of Kumar
(2008).

Many industrial textile inspection systems with engi-
neered algorithms based on combinations of statistical,
structural, andmodel basedmethods have been proven to reli-
ably detect general weaving defects such asmispicks (Kumar
2008), and address more specific carbon fiber defects such
as fiber orientation (Shi and Wu 2007; Zambal et al. 2015).
A key challenge in dry CFRP manufacture is the wide vari-
ety of defect classes that must be inspected for, ranging from
conventional weaving defects, to foreign objects, to more
subtle interlayer defects. This is compounded by the rarity
of defects - because of the well-optimized baseline process,
defect data is limited and expensive to capture, making engi-
neering of bespoke defect detectors for each defect class
difficult, expensive, and time consuming. It is here that learn-
ingmethods offer a potential solution. As they are data driven
they do not require feature engineering for each defect class,
saving time and effort.However, the demonstrated strongper-
formance of CNNs applied to supervised image classification
(Krizhevsky et al. 2017) is not obviously applicable here as
these methods are data intensive and as a basic requirement
require many examples of both good and defective data to
achieve acceptable real-world accuracy.

In the case of carbon fiber fabric defects, in some cases
certain types of defects that have to be inspected for occur so
rarely that we may only have one or two naturally occurring
examples over a 6 month project observation period. In addi-
tion, defect classes like Foreign Object Debris (FOD) may
exhibit very large intra-class appearance variation (e.g. metal

shavings and stray carbon fiber strands both constitute FOD),
so collecting real data that captures the underlying natural
variation may be impossible. Hence, datasets in this domain
are highly imbalanced and supervised learning approaches
are therefore limited in usefulness. As one cannot hope cata-
logue the visual appearance variation of a class like FOD, an
alternative is to not try to detect FOD specifically at all, but
instead simply determine whether a given sample is novel or
anomalous when compared to a set of ‘normal’ samples.

The literature on anomaly detection methods concerns
techniques to recognize inputs that are significantly different
from ‘normal’,where anomalies are rare and notwell-defined
(Pang et al. 2021). This is an appealing framework to apply
to the carbon fiber textile domain, as such methods learn on
only ‘normal’ data which is in abundance without requir-
ing any abnormal examples. This method of operation also
allows detecting anomalies in novel classes that have never
been seen before, potentially providing a general solution to
the problem.

There are several approaches to anomaly detection in gen-
eral, however most techniques in the literature are concerned
largely with high intra-class variance - examples that are
out of distribution and very different to the normal class. In
contrast, in carbon fabric defect detection we are concerned
with examples that are generally very visually similar to nor-
mal samples except with subtle deviations in small confined
regions. It is only recently that industrial defect detection has
been considered as an explicit sub problem (Bergmann et al.
2019).

In order to be practical, a carbon fiber textile inspection
method must meet the following requirements:

– Require only ‘normal’ data to train
– Achieve extremely high accuracy on real defects
– Allow visual interpretation of results for experts to gain
confidence

– Operate fast enough to not bottleneck the cutting or pre-
form assembly process

We aim to address these limitations with this study by
proposing a real-time novel unsupervised defect detection
method for carbon fiber textiles operating on data produced
by a photometric stereo sensor system.

The main contributions of our work are:

– We introduce a novel unsupervised defect detection
method for dry carbon textiles based on visual transform-
ers and normalizing flows

– We show that when modelling image likelihoods with
a normalizing flow, using a visual transformer as a fea-
ture encoder outperforms a CNN based feature encoding
while eliminating theneed formulti-scale andhighly aug-
mented inputs due to global attention
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– We show that our method achieves state of the art
accuracy on our carbon fiber fabric dataset, correctly
identifying small stray carbon fibers making up less than
1% of image pixels (4 mm2) as anomalous where previ-
ous methods fail

– We show that our method is applicable to other indus-
trial domains by reaching state-of-the-art on the publicly
available MVTec-AD industrial texture defect dataset

– Wepropose anovelmethod for generatingvisual anomaly
maps using transformer attention that allow interpretation
of defect detection results

– We show the method can operate at 30 frames per second

The remainder of this paper is organized as follows. In
Sect. 2, we describe the defects under study and the form of
the data. In Sect. 3 we review relevant literature on anomaly
detection techniques and describe the limitationswith respect
to carbon fiber textiles. In Sect. 4 we describe our anomaly
detection basis and novel additions. The results and discus-
sion are presented in Sect. 5. Finally, Sect. 6 concludes the
paper and discusses future work.

Carbon fiber textile defects and form of the
data

Carbon fiber textile description and defect classes

In aerospace production, textilematerials are usually checked
through a visual inspection by the material supplier and then
again in a second visual inspection by the aerospace man-
ufacturer using the provided material (Schneider 2011). It
is this visual inspection we seek to automate in this study.
Given the stable process and rarity of incoming defects, layup
operators (manual or automated) do not assess a quantitative
measure of fabric quality directly, they notice anomalies out-
side of the expected inherent variation of the fabric, and are
trained using a set of visual reference standards to identify
defects. If a defect is found, they will discard the material
or call for an inspector to disposition rework. For a detec-
tor acting upstream of a qualified human inspector who can
determine the best course of action based on a specific defect
(e.g. type, area, proximity to other defects, location), it is
therefore sufficient to identify the presence of an anomaly at
the image level instead of the pixel level, and no classifica-
tion of anomaly type is required. In a high-ratemanufacturing
context, this use case is emphasized further, as automatically
discarding a potentially defective piece of material entirely
may be preferable to stopping the line to wait for a manual
disposition. This image-level anomaly detection setting is the
focus of our study.

We perform our case study on a T700 2 × 2 Twill carbon
fiber textile from Hexcel (tm), with a bonded interlayer as

Fig. 3 The normal condition of the carbon fiber textile under study

Table 1 Defect Classes

a Broken or Cut Tow Away from Ply Edge

b Float or Mispick

c Frayed Ply Edges

d Fuzz Ball

e Hung, Loose, or Pulled in Fill Tow, Kink

f Interlayer, Missing

g Interlayer, Melted

h Missing Tow at Ply Edge

i Smash

j Stray Fiber

k Tow Distortion

l Visible Foreign Bodies

m Weave Separation

n Wrinkle or Crease

displayed in Fig. 3. The roll width is 1.5 m. The set of fabric
defect classes are taken from the FAA recommended criteria
for carbon fabrics (Ward et al. 2007), with the addition of
two interlayer defect types, (InterlayerMissing and Interlayer
Melted).

The defect classes are listed in Table 1.
A selection of defect examples is displayed in Fig. 4.
While some defects are relatively easy for untrained

humans to identify such asweave pattern errors, some defects
are subtle enough to require significant expertise like inter-
layer melting. Due to the highly specular and dark carbon
fibers and the very faint ‘spiderweb’ interlayer pattern on
top, when humans identify these defects, it is common to
look at the fabric from multiple angles under light to get
contrast. Therefore to achieve reliable automatic anomaly
detection, we adopt a data capture solution that has been
shown to resolve a number of carbon defects industrially
using photometric stereo.
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Fig. 4 Selected Defect
Examples

Photometric stereo

We collect data using a Photometric Stereo system built by
Profactor GmbH described by Zambal et al. (2015).

The system uses eight raw images captured from the same
point of view with differing illumination patterns in combi-
nation with a fiber reflection model based on an infinitesimal
cylindrical perfect mirror. The system provides four indepen-
dent image features for each pixel based on the fiber model
(azimuth angle, polar angle, diffuse component, specular
component). An example of the raw images and the out-
putted images on a 2×2 twill fabric under study is displayed
in Fig. 5. The azimuthal angle image provides a high con-
trast between fibers running perpendicular to eachother and
helps resolve the weave pattern. The diffuse image resolves
the interlayer without the weave pattern background, and
the specular image can be very diagnostic with materials
that do not fit either the carbon or interlayer, such as for-
eign object debris. For details on the photometric stereo
algorithms employed we refer readers to the original work
by Zambal et al. (2015). We note here that by observation,

the specular image implicitly contains information about the
weave pattern edges, the interlayer, and foreign objects.

Industrial applications of this type of system typically
perform defect detection based on image statistics, blob
detection or histogram based segmentation of image features
such as fiber angle and diffuse brightness. While these can
be highly discriminiative, they require engineering for each
defect class. This is time consuming and requires exhaustive
testing due to each defect class being independent. Based on
the reported industrial feature engineering success on these
feature components (fiber angle, diffuse, and specular) and
our observation that the specular image contains relevant
information across each feature component, we use this out-
put without feature engineering as the input to our anomaly
detector.

Data format

The carbon fabric data is saved in HDF5 format, with 8 raw
images, and 4 feature images for each scan area. We per-
form limited postprocessing on the data as follows. Stacking
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Fig. 5 Raw and Feature Images

azimuthal, diffuse, and specular feature channels on top of
eachother as an input tensor will cause a problemwhen using
feature extractors pretrainedonnatural images, as they expect
a 3-channel RGB image as input, and the colour channels in
our false image will not spatially correlate. As previously
noted, the specular image alone to the human eye contains
information present in all three types of feature images. We
therefore use just the specular image converted to a 3-channel
RGB tensor as the input to avoid unnecessary complexity. An
example of the raw tensor fed into the anomaly detector that
makes this clear is displayed in Fig. 6. The edges of theweave
pattern are clearly visible, and the interlayer web appears as
black pixels.

Our normal dataset contains 150 scans, each covering a
50 mm× 50 mm patch of dry carbon textile, sampled from 2
material batches. Our abnormal dataset used for hold-out val-

Fig. 6 Stacked and Normalized Input Tensor

idation contains 34 defect images also covering a 50mm× 50
mm area. The abnormal set consists of naturally occurring
defects from an aerospace production line during surveil-
lance combinedwith existing visual defect standard pieces. It
covers all defect classes and represents fabric from 5material
batches. This is representative of a realistic data environment
where each defect type is outnumbered by normal data by at
least 2 orders of magnitude (in this case, 1 or 2 defect sam-
ples per class compared to 150 normal samples). The mean
defect size in the abnormal sample set was 100 mm2, with a
minimum defect size of 4 mm2 and maximum defect size of
256 mm2. The mean pixel area covered by defects was 4%.
Due to the small size (1% of pixels) and therefore additional
difficulty of stray fiber defects, we consider two carbon fiber
textile datasets - one containing all defect classes, and one
with stray fiber removed.

Defect detection

To meet the requirements established in Sect. 1, we do not
consider approaches in the literature that use defective exam-
ples for training (supervised methods), restricting ourselves
to the unsupervised defect detection task, where defects and
normal data have similar visual appearance. As interpretabil-
ity is critical for industrial systems,methods that do not allow
visual anomaly maps to be produced are included in our
review but not considered as the performance baseline. Due
to the lack of literature considering unsupervised anomaly
detection for carbon fiber textiles, we evaluate performance
using a standard industrial texture defect dataset MVTec-AD
(Bergmann et al. 2019), as a proxy for performance on car-
bon fiber textiles. The MVTec-AD dataset contains defects
with similarly small (1% of pixels) defects in the Carpet, and
Grid classes.
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Anomaly detection

In general, Anomaly Detection models when given a ‘nor-
mal’ dataset and a previously unseen sample, produce an
anomaly score representing anomalousness which is then
thresholded to obtain the desired false positive rate. We can
broadly summarize the literature on unsupervised anomaly
detection techniques into two approaches - generative mod-
els, and the use of pretrained features.

Generative models

Anomaly detection using generative models such as Gen-
erative Adversarial Networks (GANs) (Akcay et al. 2018)
and Convolutional Autoencoders (Bergmann et al. 2018) is
based on the idea that such models when trained on only
‘good’ data, will be unable to generate anomalies from the
distribution encoded in the latent space. A typical approach
is reconstruction, where the output of a generative model is
compared to an input query image and pixel-wise differences
are used as an anomaly score. In the case of an autoencoder
this is trivial, in the case of a GAN, the input query image is
run through an inverse generator to get the latent code. Pix-
els that are very different between the generated image and
the original image represent regions of the image that the
generative model could not reconstruct, indicating anoma-
lousness. Generative models have been criticized for being
sensitive to anomaly size and domain structure. In particular,
high frequency normal structures or large anomalies may
disproportionately influence the anomaly score (Rudolph
et al. 2020; Bergmann et al. 2019), limiting the usefulness
of such models in industrial defect detection. The studies by
Bergmann et al. (2019, 2021) find that generative anomaly
detectionmodels such as GANomaly (Akcay et al. 2018) and
f-AnoGAN (Schlegl et al. 2019) perform poorly on industrial
textile defects, being unable to reconstruct the required detail
when compared to methods based on pretrained features. We
therefore focus our efforts on methods using pretrained fea-
tures for the task at hand.

Use of pretrained features

There aremanyapproachesmakinguse of the feature space of
a pretrained CNN in different ways. Simple techniques such
as 1-NN distance in feature space from normal examples as
anomaly score (Napoletano et al. 2018), training a 1-class
SVM on extracted features from the normal set (Andrews
et al. 2016), or fitting probability distributions to extracted
features of the normal set (Christiansen et al. 2016). Pre-
trained features from the final convolution layers of VGG
(Simonyan and Zisserman 2014) and AlexNet (Krizhevsky
et al. 2017) have been criticised for their robustness on indus-
trial defects (Rippel et al. 2021), however by statistically

combining features from all levels of EfficientNet (Tan and
Le 2019), the authors in Rippel et al. (2021) are able to
achieve state-of-the-art on some classes, and show that it
is theoretically difficult to learn good features from scratch
using only normal data, suggesting leveraging pretrained fea-
tures wherever possible. However, the method proposed by
Rippel et al. (2021) is not amenable to visual interpreta-
tion,makes significant assumptions around the distribution of
extracted image features that are not guaranteed and therefore
relies heavily on the particular CNN architecture and training
parameters chosen. The authors of DifferNet, Rudolph et al.
(2020), propose a model to learn the distribution of features
extracted from a pretrained CNNon normal data and produce
an image likelihood. This work is reviewed in the following
section.

Normalizing flows

Normalizing flows are a chain of parameterized invertible
mappings that can be applied to transform a data distribu-
tion into a well defined probability distribution. The authors
of Real-NVP, Dinh et al. (2016), proposed a set of invert-
ible and learnable neural network layers to estimate the
probability density of images and allow exact log-likelihood
computation.The authors ofDifferNet,Rudolph et al. (2020),
proposed to use this density to detect anomalies, using the
Real-NVP normalizing flow layers to transform the distribu-
tion of a pretrained feature extractor (AlexNet (Krizhevsky
et al. 2017)) to a multivariate normal distribution, using
the image likelihood as an anomaly score. DifferNet uses
Real-NVP layers with learnable clamping as introduced by
Ardizzone et al. (2018). Training is performed by learning
to map all ‘normal image’ outputs to a multivariate gaus-
sian with zero mean and identity covariance (ensuring each
feature is independent), while penalizing trivial solutions.
The anomaly score is then simply the z-score for a given
input image. This approach gains the benefits of pretrained
features, while enforcing probability distributions over fea-
tures instead ofmaking aGaussian assumption as in the work
by Rippel et al. (2021) which may not be well founded for
all feature extractors. To achieve sensitivity to the scale and
appearance of anomalies, the authors perform a multi-scale
and multi-orientation feature extraction before the normal-
izing flow with 64 feature maps at both train and test time.
The authors of Rudolph et al. (2020) report no significant dif-
ference in performance of their method when replacing the
feature extractor with a more powerful one such as ResNet
(He et al. 2016). The overall performance of this method
is slightly lower than demonstrated in Rippel et al. (2021),
however due to the bijectivity it allows anomaly localization,
a key requirement of our setting. A technical description of
Normalizing Flows and the RealNVP model can be found in
Appendix A.
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Performancemeasure

In non-destructive testing (NDT), a concept called the prob-
ability of detection (POD) arises and is estimated as in Eq. 1
(Raymond et al. 2012):

POD(a) = Md

N
(1)

where a is the defect size,Md is the number of defects of size
a detected, and N is the total number of defects of size a. The
POD measure is used on a defect class basis by introducing
artificial flaws of a certain type in several sizes. An estimation
of POD requires a full enumeration of defect types, and a
large distribution of naturally occurring defects, or creating
artificial defects that could be drawn from the natural defect
distribution. For fabric defects this is highly non-trivial, as
the visual appearance of defects is wide and the detection
probability is a function of much more than size, making
representative data difficult to obtain.

While avoiding the cost and effort of performing a full
PODstudywith artificial defects is a primarymotivator in this
work, and not all defect classes have defined area limits (some
are simply disallowed upon human visual inspection), we
report POD values at 6.5 mm× 6.5 mm as a commonly used
aerospace defect threshold (Roach andRice 2014), and 2mm
× 2 mm as a visual identification threshold for unallowable
defects.

To allow direct comparison to other methods in the lit-
erature and compare performance on a publicly available
dataset, we also report a standard measure of classification
accuracy as follows. In order to arrive at a final judgement

on the anomalousness of a given input, a threshold is applied
to the anomaly score produced by the model. The thresh-
old trades off the True Positive Rate (TPR), which is the
ratio of the cases properly classified as abnormal to the real
abnormal cases, with the False Positive Rate (FPR), which
is the ratio of the cases falsely classified as abnormal to the
real normal cases. The ideal TPR and FPR would be 1 and
0; however this tradeoff of sensitivity and specificity is a
feature of every anomaly detector. To evaluate the general
performance, we therefore construct the receiver operating
characteristics (ROC) curve, that plots the TPR against the
FPR by changing the threshold of the classifier. The area
under the receiver operating characteristics (AUROC) can be
used to interpret how the detector distinguishes the bound-
ary between the anomalousness and normality. An AUROC
of 1.0 means that all abnormalities were classified as abnor-
mal, and no normal samples were classified as anomalous.

Limitations of existingmodels

TheMVTec-AD (Bergmann et al. 2019) Texture dataset pro-
vides an excellent baseline for industrial material inspection
tasks, and a good proxy for performance on carbon fabric.
The dataset contains five texture classes, Grid, Leather, Tile,
Carpet, and Wood (See Fig. 7).

While achieving good results on average, DifferNet
(Rudolph et al. 2020) performs poorly on Grid and Carpet
relative to other classes. Grid and Carpet exhibit sometimes
subtle and small defects on top of a large region of normality,
which to the human eye provides a clear backdrop on which
to assess anomalousness. When testing on our carbon fabric

Fig. 7 MVTec-AD Texture
Defect Examples
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Table 2 DifferNet performance
(%AUROC) on small subtle
defects on regular backgrounds

Dataset DifferNet
(Rudolph et al. 2020)

MVTec-AD Texture (Average) 94.6

MVTec-AD Carpet 92.9

MVTec-AD Grid 84.0

Carbon Fabric Without Stray Fibers (Minimum Defect Size 25 mm2) 100

Carbon Fabric (Minimum Defect Size 4 mm2) 97.5

Fig. 8 DifferNet failure modes
for small subtle anomalies

defect dataset, we find that DifferNet performs well in all
defect classes except for those including stray fibers, where
similarly to Grid and Carpet, small and subtle defects are
present on a large ‘normal’ background (See Table 2 and Fig.
8). CNN features have been criticized for the receptive field
size for image level anomaly detection (Rippel et al. 2021).
While the model uses multi-scale multi-orientation feature
extraction to improve sensitivity to defect scale and aggre-
gate context, this is clearly insufficient for these datasets.
We hypothesize that the lack of global context for the CNN
features is the primary cause of this limitation.

Methodology

Visual transformers

Transformers (Vaswani et al. 2017), first proposed for
machine translation, achieve state of the art results across
a variety of natural language processing (NLP) tasks. The
key difference between transformers and other architectures
such as Recurrent Neural Networks (RNNs) or Convolu-
tional Neural Networks (CNNs), is that while CNNs have
a receptive field and RNNs have a context window, limiting
what input information can be used to calculate a particular
output, transformers can simultaneously gather information
from their entire input - so called global attention. Thismech-
anism is very general, and it has been shown that amulti-head
self-attention layer with sufficient number of heads can be
at least as expressive as any convolutional layer (Cordon-
nier et al. 2019). Recently introduced Visual transformers
(Dosovitskiy et al. 2020) (ViT) apply the transformer archi-

tecture on images by breaking up an input image into a
grid of small image patches, each 16 × 16. These models
achieve state of the art classification results, beating CNNs
like ResNet (He et al. 2016) when trained on an extremely
large dataset (Google‘s JFT-300M (Hinton et al. 2015)). As
the self-attention layers in each transformer encoder allow
the network to use global context to inform its output for
every image patch, the authors show that the Visual Trans-
former can learn relevant context to ignore irrelevant parts
of images and therefore outperform CNNs. Applications
of Visual Transformers outside of classification are so far
uncommon, although wide application of Visual Transform-
ers and similar models where CNNs are currently used is
likely. A technical description of Transformermodels in gen-
eral and Visual Transformers is available in Appendix A.

Proposedmodel

We propose that using a Visual Transformer encoder instead
of a CNN to extract image features for texture anomaly
detection will improve performance due to global context.
In Rippel et al. (2021), the authors comment that different
types of anomalies show different variabilities across feature
scales, and that the pretrained CNN layers may not surface
relevant information at the last layer. We hypothesize that
compared to the CNN used in DifferNet, the global attention
mechanism of the ViT model should eliminate the need for
multi-scale and highly augmented inputs. In particular, for
texture anomalies where the image itself is made of a ‘nor-
mal’ background with an ‘abnormal’ region, we hypothesize
that based on the classification attention maps produced by
Dosovitskiy et al. (2020), the pretrained self-attention mech-
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anism will naturally attend to anomalous regions as they
are more object-like than the background, making the trans-
former features more powerful than CNN features for texture
anomalies and improving performance.

While the ViT architecture was designed for classifica-
tion, we propose to use the output of a pretrained visual
transformer encoder as input to a normalizing flow for image
likelihood calculation and then anomaly detection.

The proposed model architecture is displayed in Fig. 10.
It is based on the same core idea as DifferNet. That is, we
estimate the likelihood of image features y ∈ Y from the
anomaly-free training images x ∈ X . This is performed using
the same RealNVP-based normalized flow as in DifferNet,
mapping all normal samples x to a multivariate gaussian dis-
tribution.

We use theViT-Base 16× 16model as described byDoso-
vitskiy et al. (2020) with 12 transformer layers pretrained on
JFT-300M with the MLP head removed, taking a 384x384
image as input and producing a 768 dimensional feature vec-
tor.

A diagram of the normalizing flow blocks used is dis-
played in Fig. 9.We use 8 coupling blocks with 2048 neurons
each and a clamping parameter of α = 3. The weights of the
ViT encoder are fixed during training.

The NF is trained to map all non-anomalous samples x as
close to z = 0 as possible using the negative log likelihood
of a standard normal distribution as the loss function L(x)
(see Eq. 2).

L(x) = ‖z‖22
2

− log

∣
∣
∣
∣
det

∂z

∂x

∣
∣
∣
∣

(2)

In Eq. 2, z is the z-score of x from a standard normal
distribution, and x is a given non-anomalous sample.

Unlike Rudolph et al. (2020) our model does not require
optimizing over multiple transformations of an input image,
nor do we need to aggregate features extracted at multiple
scales or use data augmentation, resulting in a significantly
simpler pipeline.

For more details on the normalizing flow construction we
refer readers to the work by Rudolph et al. (2020) and Ardiz-
zone et al. (2018).

While the invertibility of the normalizing flow allows us
to retrieve the image gradient with respect to the output as
a kind of interpretable anomaly map, the complicated self-
attention mechanism of transformers means that we cannot
treat the feature extractor as a fixed set of filters and so cannot
expect good anomaly localization. We therefore propose to
use gradients through the normalizing flow combined with
self-attention rollout maps aggregated across all layers of the
transformer encoder to provide interpretable anomaly maps
for each image. This allows a human to visually introspect the
parts of an image that were most influential in determining
its anomalousness. While not a complete explanation of the
output, it is easily interpretable by a human and valuable in
production use. The details are presented in Sect. 5.1.2.

Anomaly localization

Attention rollout

Abnar and Zuidema (2020) show that the raw attention
weights from transformer layers are not useful to explain
transformer outputs because the self-attention mechanism
combines information from one layer to the next, mixing
inputs in complicated ways. To compute the relevance of
inputs with respect to the output of the transformer, they pro-
pose a simple method to model the information flow through
a transformer called Attention Rollout. Attention Rollout
considers the weight of each edge between nodes as the pro-
portion of information flowing between those nodes, and then
multiplies the edgeweights along all possible paths in the net-
work to determine howmuch the information at a given input
node is propogated to a given output node.

To compute the attentions from li to l j , Attention Rollout
recursively multiplies the attention weights matrices in all
the layers below as in Eq. 3.

Ã(li ) =
{

A(li ) Ã(li−1) if i > j
A(li ) if i = j

(3)

Fig. 9 Normalizing Flow Block from DifferNet (Rudolph et al. 2020)
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Fig. 10 Proposed Anomaly Detection Architecture

where Ã is the Attention Rollout Matrix, A is the RawAtten-
tion Weights Matrix and j = 0 is set to compute attention
from the input layer.

Training setup

We train the model for 48 epochs with a batch size of 8
on an NVIDIA V100 GPU. The model is built in PyTorch
(Paszke et al. 2019), based on open source implementations
ofDifferNet (Rudolph et al. 2020) andViT (Wightman2019).
Learning is done using the AdamOptimizer (Kingma and Ba
2014) with a learning rate of 2e-5. The final model tested is

themodel with the best validation accuracy across all epochs.
The training takes approximately 20 minutes.

Results and discussion

We report the performance of our anomaly detector on our
carbon fiber textile defect dataset and, separately, a publicly
available industrial texture dataset fromMVTec-AD to allow
comparison with other approaches. The same pretrained ViT
encoder is used for all datasets, and the normalizing flow is
trained from scratch on each dataset, and then evaluated. As
the training occurs upfront only once on ‘normal’ data, and

Fig. 11 Zero-Shot attention on
anomalous regions
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Fig. 12 Anomaly maps
produced through self-attention
rollout and gradient weighting

industrial deployment of the model in a given data domain
does not require retraining, the relevant performance metric
is inference time. The inference time of our model 32 ms per
image, allowing 30 FPS realtime deployment on a modern
GPU.

Carbon fiber fabric performance

Zero shot attention performance on carbon fabric

We hypothesized that the pretrained transformer would use
global context to infer texture anomalies by attending to
‘interesting’ object-like parts of the image, rather than the
background. Using Attention Rollout, we find that this is
indeed true for texture anomalies in our dataset (See Fig.
11). However, Attention rollout is performed without any
regard to the classification of the input image and so by itself
is not an interpretable view of an anomaly detector.

Anomaly maps on carbon fabric

Attention rollout allows us to look at what parts of the image
most contributed to the information flow from the image to
the outputted features. Inverting the normalizing flow and
the feature extractor to retrieve the raw image gradient with
respect to the output as in DifferNet is less useful with a
transformer than a CNN as the locality of features is vio-
lated, however the gradient is still useful to weight regions

Table 3 Performance on Carbon Fiber Fabric (%AUROC)

Dataset DifferNet Ours
(Rudolph et al. 2020)

Carbon Fabric (Minimum
Defect Size 4 mm2)

97.5 100

Without Stray Fibers
(Minimum Defect Size 25
mm2)

100 100

of global attention, as anomalies are usually local. We there-
fore propose to create an anomaly map by multiplying the
gradient through the normalizing flowwith the attention roll-
out of the ViT. We find it produces a more convincing and
interpretable anomaly map than either alone (See Fig. 12).

We achieve perfect performance on our carbon fabric
dataset, solving the task for these defect classes in this set-
ting (See Table 3). Our model is able to perfectly distinguish
anomalies without any false positive rate tradeoff even on
challenging stray fiber defects. We hypothesized that the
ViT model would improve performance due to global atten-
tion allowing greater context on texture anomalies, especially
when anomalies are small and subtle.We indeed report better
performance and our anomaly maps indicate our sensitivity
to small defects. Examples of subtle stray fiber anomalies
scored as such by our model are presented in Fig. 13.
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Fig. 13 Stray fibers clearly
scored by our model that are
ambiguously scored by
DifferNet

Table 4 Performance on Carbon Fiber Fabric (POD)

Model POD 43 mm2 POD 4 mm2

DifferNet (Rudolph et al. 2020) 1.0 0.0

Ours 1.0 1.0

Industrial textures

Our method reaches sate of the art on all MVTec-AD texture
classes except Wood where we have comparable perfor-
mance. Overall, classes excluding grid perform above 99%
AUROC. Of note, our method improves detection on dif-
ficult classes like Grid and Carpet by 7-10%, and 4% on
average, validating that the performance improvement from
our proposed method is observed on other industrial texture
anomaly detection problems. In Table 5 we reproduce the
MVTec-AD results of the anomaly detection techniques pre-
sented byBergmann et al. (2019) andRudolph et al. (2020) to
allowdirect comparison against our results.We replicated the
experiments for DifferNet shown in Rudolph et al. (2020) as
the previous state-of-the-art, the other results are reproduced
directly from the tables in thework ofBergmann et al. (2019).

Limitations of themethod and future
research

Ourmethod is designed for the imbalanced data settingwhere
very few examples of defects are available. It has been shown

to perform well in terms of AUROC and POD on industrial
data, however our POD estimations are based on a rela-
tively small sample size. Future work could collect naturally
occurring defects off a high-rate production line over a long
period of time to collect further diversity in defect sizes and
improve the POD estimate while not introducing artificially
sized unrealistic data to the distribution.

Conclusion

In this paper, we present an unsupervised defect detec-
tion method for carbon fiber textiles that meets four key
criteria for industrial applicability: data needs, accuracy,
interpretability, and speed. Building on previouswork,we for
the first time combine Visual Transformers and Normalizing
Flows to gather global context from input images and directly
produce an image likelihood score. As defect samples are
expensive and difficult to collect, our method requires only
normal examples to train. We demonstrate that our method
correctly detects 100% of anomalies with a 0% false positive
rate on a industrial carbon fabric dataset with 34 real defect
samples, including subtle stray fiber defects where previous
methods have been shown to fail. We validate these results
on the public defect dataset MVTec-AD Textures, where we
also achieve state of the art results, outperforming previous
work by 4% overall and 10% on challenging classes with
small defects, proving the applicability of ourmethod to other

Table 5 Comparative Performance on MVTec-AD Texture Defects Dataset (%AUROC)

Class GANomaly OCSVM 1-NN DifferNet Ours
Akcay et al. (2018) Andrews et al. (2016) Napoletano et al. (2018) Rudolph et al. (2020)

Grid 70.8 41.0 55.7 84.0 92.2

Leather 84.2 88.0 90.3 97.1 100

Tile 79.4 87.6 96.9 99.4 99.6

Carpet 69.9 62.7 81.1 92.9 99.3

Wood 83.4 95.3 93.4 99.8 99.6

Average 76.2 71.9 83.9 94.6 98.1
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domains. Additionally, we propose a method to extract inter-
pretable anomaly maps from Visual Transformer Attention
Rollout and Image Likelihood Gradients that produces con-
vincing explanations for detected anomalies, enhancing trust
in the model for industrial use. Finally, we show that the
inference time for the model is acceptable at 32 ms, allow-
ing 30 frames per second evaluation and achieving real-time
performance.
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Appendix A

A.1 Transformers

A.1.1 Attention

Learning dependencies between distant input regions is facil-
itated by the concept of ‘attention’, as way to focus on certain
elements in the input and output while retaining information
about the surrounding context (Luong et al. 2015). Attention
in neural networks is typically a vector of learned weights
that encode the correlation or interdependence between either
the input and output elements or within the input elements
(called ‘self-attention’) (Bahdanau et al. 2015). When mak-

ing a prediction, the attention vector is used to weight the
contributions of the elements.

A.1.2 Multi-head self attention

The Transformer (Vaswani et al. 2017) architecture uses a
mechanism called scaled dot-product attention, based on an
information retrieval concept using a query to index into a
set of keys each of which is assigned a value. The dot product
of the Query Matrix Q and Key Matrix K is taken to assign a
weight to the Value Matrix V. Keys that are most similar to
the query will be proportionally weighted higher, and then
the output is simply the weighted sum of the values (See
Eq. 4). The Transformer uses self-attention, which means
the queries, keys, and values all come from the same input
(usually embedded in some way before being turned into the
input Q, K, and V matrices). (4):

Attention(Q, K , V ) = softmax
(

QK�/
√
d
)

V (4)

The Transformer gathers information across its global
inputs with an approach called Multi-head Self Attention
(MHSA), using h self-attention ‘heads’ evaluated in parallel.
This is done for each head with a separate linear projection
so each head can focus on different information at different
positions.

A.1.3 The transformer architecture

The Transformer architecture combines MHSA, Layer Nor-
malization (LN) (Ba et al. 2016), feed-forward networks
(FFNs), and skip connections (He et al. 2016) into two
types of Transformer Blocks: The Encoder, and the Decoder.
Copies of these blocks are then stacked to create the final
encoder and decoder modules. For sequence-to-sequence
learning like machine translation for which the Transformer
was originally designed, an encoder-decoder framework is
used, where the encoder reads the input and outputs a
representation which is then fed to the decoder which autore-
gressively generates the output sequence. For tasks where
the output does not need to be an autoregressively generated
sequence, just the encoder output can be used.

The overall transformer architecture is displayed in Fig.
14.

A.1.4 Vision transformers

Recently introduced Vision Transformers (Dosovitskiy et al.
2020) (ViT) apply the transformer architecture on images
by breaking up an input image into a grid of small image
patches, each 16× 16, and encoding those pixels into a patch
embedding. The global self-attention in the ViT architecture
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Fig. 14 The Transformer Architecture (Vaswani et al. 2017)

means that it does not suffer from limited receptive fields like
CNN models, as it can gather information from all locations
in the image at once to make its prediction.

A.1.5 The vision transformer architecture

The Vision Transformer was proposed as a classification
model, and as such it does not need or use an encoder-decoder
framework. Instead it uses only the encoder portion of a trans-
former to produce an image encoding that is then classified by
anMLP head. Because Transformers are designed to process
sequences of inputs, the image is re-shaped into a sequence
of flattened 2D patches before being linearly embedded and
then fed into a standard transformer encoder. A class token
is prepended to the sequence of image patches as in BERT
(Devlin et al. 2018), to add an additional readout that is
independent of the other patch embeddings. The class token
output will contain all the information required for the down-
stream classification head, taking into account all areas of the
image. The class token output (only) is then fed through an
MLP to make the final prediction. As opposed to the original
Transformer model, the positional encoding is learned, not
fixed.

The overall Visual Transformer (ViT) architecture is dis-
played in Fig. 15.

Fig. 15 The Visual Transformer Architecture (Dosovitskiy et al. 2020)

A.2 Normalizing flows

Normalizing Flows, introduced by Tabak and Turner (2013),
andfirst usedwith neural networks byRezende andMohamed
(2015), map a simple distribution (say, a standard Gaussian
for easy sampling and density evaluation) to an arbitrary
complex distribution (learned from data). This is achieved
by applying a sequence of invertible transformation func-
tions fi in succession to the simple distribution. In practice,
the latent distribution pZ (z) is commonly chosen to be a
standard Gaussian. As the probability density function of a
transformed variable can be computed using the change of
variables formula (See Eq. 5), by applying this repeatedly
between each pair of successive transformations we form a
chain and eventually obtain a probability distribution of the
complex target variable. This chain f = f K ◦ f K−1◦. . .◦ f 1

is called a Normalizing Flow. Given observed data x ∈ X , a
pZ on a latent variable z ∈ Z , and a bijection f : X → Z ,
the change of variable formula defines a distribution on X :

pX (x) = pZ
(

f (x)
)

∣
∣
∣
∣
∣
det

(

∂ f (x)

∂xT

)∣
∣
∣
∣
∣

(5)

log (pX (x)) = log
(

pZ
(

f (x)
))

+ log

(∣
∣
∣
∣
det

(
∂ f (x)

∂xT

)∣
∣
∣
∣

)

(6)

where ∂ f (x)
∂xT

is the Jacobian of f at x .

123



2090 Journal of Intelligent Manufacturing (2022) 33:2075–2092

Fig. 16 A RealNVP coupling
layer

Therefore, with initial distribution z0 and normalizing
flow f we have:

x = zK = f K ◦ f K−1 ◦ . . . ◦ f 1(z0) (7)

log(p(x)) = log(pZK (zK ))

= log(pZ0(z0)) −
K

∑

i=1

log | det ∂ fi
∂zi−1

| (8)

To train the normalizing flow, we then directly maximize
the log-likelihood (See Eq. 8) of the training data x with
respect to the parameters θ that parameterize the series of
invertible transformations f . We can then sample from the
resulting distribution simply by drawing a z and computing
its inverse image x = f −1(z). Similarly, To compute the
likelihoodof a given x ,we simply compute f (x) andmultiply
it by the determinant of the Jacobian.

For for this to be possible, two conditions must hold on
fi :

– fi must be invertible
– Computing the determinant of the Jacobian of fi needs

to be easy.

A.2.1 RealNVP

The RealNVP (Dinh et al. 2016) (Real-valued Non-Volume
Preserving) model used Normalizing Flows to successfully
model natural images through sampling and log-likelihood
evaluation. To achieve this, RealNVP builds a Normalizing
Flowout of a sequence of bijective affine coupling layers faff.
The input dimension is first split into two parts, with the first
d ∈ D dimensions left untouched, and the second d+1 to D
dimensions undergo a scale s(·), and translation t(·) affine
transformation, where the scale and translation parameters
are taken from the first d dimensions of the input x .

The transformation performed by each layer for input x
and output y is given in Eq. 9.

f −1
aff (x1:d, xd+1:D) = (y1:d, yd+1:D),
{

y1:d = x1:d
yd+1:D = (xd+1:D + t(x1:d)) � exp(s(x1:d))

(9)

where the scale and shift functions s(·) and t(·) are imple-
mented by a neural network. In the case of RealNVP for
image modelling this is a CNN, however this can be any
feed-forward neural network and MLPs are used to demon-
strate RealNVP on other types of data.

A visual representation of a single coupling layer is shown
in Fig. 16.

Passing the input through several of these layers in an
alternating pattern, such that the components that are left
unchanged in one coupling layer are updated in the next
allows a complex, nonlinear mapping to be learned.

These affine coupling layers are easily inverted because
the part of the input vector that determines the scaling and
translation is preserved, and computing the inverse does not
require computing the inverse of s or t, so these functions can
be arbitrarily complex.

Likewise, because computing the Jacobian determinant
does not involve computing the Jacobian of s(·) or t(·) the
required Jacobian computation is also tractable:

log

∣
∣
∣
∣
∣
det

∂ f −1
aff

∂x

∣
∣
∣
∣
∣

=
dim(xd+1:D)

∑

i=1

s(x1:d)i . (10)

In some Normalizing Flow models using affine coupling
layers, the split of the input is based on a fixed permutation,
and not on an index, but all of the above still applies to this
case. For a more detailed introduction to normalizing flows
based on coupling layers, please see the work by Kobyzev
et al. (2020).
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