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Abstract
With the ongoing digitization of the manufacturing industry and the ability to bring together data from manufacturing
processes and quality measurements, there is enormous potential to use machine learning and deep learning techniques
for quality assurance. In this context, predictive quality enables manufacturing companies to make data-driven estimations
about the product quality based on process data. In the current state of research, numerous approaches to predictive quality
exist in a wide variety of use cases and domains. Their applications range from quality predictions during production using
sensor data to automated quality inspection in the field based on measurement data. However, there is currently a lack of
an overall view of where predictive quality research stands as a whole, what approaches are currently being investigated,
and what challenges currently exist. This paper addresses these issues by conducting a comprehensive and systematic review
of scientific publications between 2012 and 2021 dealing with predictive quality in manufacturing. The publications are
categorized according to the manufacturing processes they address as well as the data bases and machine learning models
they use. In this process, key insights into the scope of this field are collected along with gaps and similarities in the solution
approaches. Finally, open challenges for predictive quality are derived from the results and an outlook on future research
directions to solve them is provided.

Keywords Industry 4.0 · Predictive quality ·Machine learning ·Deep learning ·Manufacturing ·Quality assurance ·Artificial
intelligence

Introduction

In the present era of Industry 4.0 and the digitization of the
manufacturing industry, new technological possibilities are
emerging that contribute to strengthen companies’ competi-
tiveness. Especially the combinations of new communication
technologies with state-of-the-art methods from the fields
of machine learning (ML) and deep learning (DL) enable
promising applications for data-driven, smarter manufactur-
ing (Shang & You, 2019; Tao et al., 2018). One area that can
strongly benefit from these developments is quality assur-
ance. It involves activities across the product lifecycle to
ensure that the requirements on the quality of produced prod-
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ucts are met (Hehenberger, 2020; Pfeifer & Schmitt, 2021).
ML and DL methods offer ways to support these activities
by enabling data-driven, automated quality analyses. Their
application in this field is referred to as predictive quality
(Nalbach et al., 2018; Schmitt et al., 2020b).

Predictive quality solutions are built upon data from the
manufacturing process. By extracting recurring patterns from
the data and relating them to quality measurements, pre-
dictive quality enables the data-driven estimation of the
product quality based on process data. The estimations serve
as a decision-making basis for quality enhancing measures,
such as adjusting the process parameters for avoiding rejects
(Schmitt et al., 2020b). The common approach to predic-
tive quality includes four main steps: the formulation of
the manufacturing process and target quality, the selection
and collection of process and quality data, the training of a
ML/DL model, and the use of the model for estimations as
a basis for decisions (schematically illustrated in Fig. 1). In
this context, predictive qualitymainly comprisesmethods for
supervised ML.
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Fig. 1 Predictive quality approach: for a selected manufacturing process (1), relevant process and quality data is collected (2) and used as a basis
for training a ML model (3). The trained model is used to perform quality estimations for decision support (4)

In the current manufacturing research, there exist many
examples that demonstrate the feasibility of ML or deep
learning based predictive quality, ranging from inline fault
predictions (Mayr et al., 2019) to automated quality inspec-
tions (Schmitt et al., 2020a). The addressed manufacturing
processes and quality criteria are manifold, such as the pre-
diction of part cracks in deep drawing (Meyes et al., 2019),
the estimation of roughness in laser cutting (Tercan et al.,
2017;Zhang&Lei, 2017), or the detection of porosity defects
in additive manufacturing (Zhang et al., 2019a). Though
these use cases are different, their solution approaches have
similarities in terms of the data and methods used. However,
it is noticeable that often the use cases are considered in isola-
tion, making it difficult to compare the proposed approaches.
Hence, it is not clear where the overall predictive quality
research currently stands, whichmethods are currently inves-
tigated, what the limitations are, and in which directions the
research should go. In this paper, we address these issues
by conducting a systematic review of the publications that
address the field of predictive quality. We see the timing for
such a reviewas appropriate because, on the one hand, there is
a sufficiently large amount of published papers from which
we can draw these insights. On the other hand, there are
currently no adequate papers dealing with this topic in its
entirety. Although studies with similar investigations exist
(see “Related survey paper” section), they either cover a
broader scope (e.g. applications of ML for the production
context in general (Fahle et al., 2020; Sharp et al., 2018) or
they are no longer up-to-date as their publication dates back
several years (Köksal et al., 2011; Rostami et al., 2015).

Due to these observations, we define the primary goal of
this review: providing a comprehensive overview of scien-
tific publications from 2012 to 2021 that address predictive
quality approaches inmanufacturing. Our perspective on this
field focuses on its common concepts depicted in Fig. 1.
After collecting the relevant publications and building a cor-
responding corpus, we extract information about their use
cases, the manufacturing processes and quality criteria they
address and the data bases and ML methods they use. The
goal is to categorize the publications along these concepts
and to answer the following three driving questions

• Q1:What are the addressedmanufacturing processes
and quality criteria?Our goal is on the one hand to dis-
cover the scope of the field and the possible applications
of predictive quality, and on the other hand to identify
similarities and gaps in the domains.

• Q2: What are the characteristics of the data used for
model training? Predictive quality is based on process
data. We aim to find out the common data sources used
in the publications, the variables selected for ML model
training, and the modality of the data.

• Q3: Which machine learning models of supervised
learning are commonly trained? We aim to dis-
cover which supervised learning problems are addressed,
which models of ML and DL are trained for the quality
estimations, and if they are compared with each other in
the publications.

From these questions, we derive key insights and open chal-
lenges for predictive quality and provide an outlook on future
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research directions that we believe will increase its preva-
lence in research and industry.

The paper is structured as follows. In “Predictive qual-
ity” section, we introduce predictive quality by first defining
the term and then describing the underlying machine learn-
ing models and tasks. In “Related survey paper” section,
we provide an overview of related survey papers that deal
with similar topics. We then present the methodology under-
lying our study in “Study methodology” section. Here, we
define the categories by which we evaluate the publications
and formulate the search queries and criteria for selecting
them. “Results” section presents the result of our study with
regard to the stated questions. On the basis of these results,
“Key insights and challenges” section provides key findings
and identified gaps in predictive quality research. In “Future
research directions” section, we envision future research
directions to master them. “Summary” section summarizes
this review.

Predictive quality

Regarding the use of data-driven methods with reference to
product and process quality in production, different terms
and terminologies are used to describe them in the state
of research and technology. Examples are data analytics,
predictive analytics, machine learning for quality prediction
(Mayr et al., 2019) or predictive model-based quality inspec-
tion (Schmitt et al., 2020a). Predictive quality is another term
that covers this broad field of research. The definitions by
Schmitt et al. (2020b) and Nalbach et al. (2018) highlight
two key aspects of predictive quality: product-related qual-
ity as well as the data-driven prediction of it. Schmitt et al.
(2020b) define predictive quality as “enabling the user to
make a data-drivenprediction of product- andprocess-related
quality” with the goal of “acting prescriptively on the basis
of predictive analyses”. Nalbach et al. (2018) take a similar
view – their definition of predictive quality includes methods
that use data to “identify statistical patterns to foresee future
developments concerning the quality of a product”. Although
the termprediction is also very broad, it limits the range of use
cases of data-driven methods. For example, it does not cover
use cases for ML based quality inspection where the goal
is to detect faults that have already occurred in the process
rather than providing future-oriented quality predictions.
With regard to data-drivenmethods, it is also the case that par-
ticularly machine learning and deep learning methods have
been the central focus of research in recent years. In our con-
sideration, we therefore also concentrate on these two fields.

Relying on these definitions, we define the term predictive
quality as the basis for our literature search and specify the
terminologies as well as their scope in the context of this
paper:

Predictive quality comprises the use of machine learn-
ing anddeep learningmethods in production to estimate
product-related quality based on process and prod-
uct data with the goal of deriving quality-enhancing
insights.

The following remarks provide further concretization of
the definition:

• The term estimation includes prediction as well as clas-
sification of quality.

• The product-related quality can be a fixed quality param-
eter as well as known product faults.

• By process and product data, we mean product charac-
teristics, process parameters, process states, and planning
information

By our definition, predictive quality is not limited to the pro-
duction phase of a product, but also is applied in the product
or process planning phase - for example, in the design of
a production process using test trials or a DoE-based fea-
sibility analysis using process simulations. It should also be
noted that our definition does not cover the notions of anoma-
lies and anomaly detection. Anomalies in manufacturing are
events that differ from normal behavior and as such are not
initially associated with a known defect or quality degra-
dation (Lopez et al., 2017). Anomaly detection therefore
involves different methods than the ones considered in the
context of this paper. For the sake of limiting the scope of
our study, we exclude publications that deal with anomalies
and anomaly detection.

As predictive quality involves the detection or predic-
tion of quality, it mainly comprises methods of supervised
learning. Supervised learning has the goal of estimating
a numerical or categorical target variable on the basis of
selected input variables (regression respectively classifi-
cation). For supervised learning, methods of both fields
machine learning and deep learning can be used:

• Machine learning methods such as regression analysis
that detect linear and quadratic correlations and mod-
els that can handle complex and non-linear estimations
such as support vector machine (SVM) and feed-forward
artificial neural network (ANN) (also called multilayer
perceptron (MLP)), and interpretable graphical models
such as decision trees. In addition, a variety of ensemble
methods (e.g. random forest) exist that comprise several
individual models.

• Deep learningmodels that are based on deep ANNs and
that have marked major milestones in the AI research
in recent years. These include, for example, convolu-
tional neural networks (CNNs) which are established in
computer vision and image recognition (Redmon et al.,
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2016; Szegedy et al., 2015), as well as recurrent neu-
ral networks such as long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) or transformer net-
works, which represent the state of the art in natural
language processing areas such as speech recognition or
machine translation (Vaswani et al., 2017; Xiong et al.,
2016).

The learning methods used for predictive quality are
diverse and often depend on the purpose of the applica-
tion. Following the discussions by Köksal et al. (2011) and
Rostami et al. (2015) on the purposes of data-driven quality
assurance, we list three tasks of machine and deep learning
for predictive quality:

• Quality description The identification, evaluation and
interpretation of relationships between process variables
and product quality. The primary goal is to gain insights
about interrelationships in the process.

• Quality prediction The model-driven estimation of a
numerical quality variable on the basis of process vari-
ables. The goal here is the prediction of product quality,
either for decision support or for automation.

• Quality classification Analogous to quality prediction,
this involves model-driven estimation of categorical
(binary or nominal) quality variables. An example is the
prediction of certain product defect types.

In this paper, we study publications that primarily address
these three tasks, focusing especially on quality prediction
and classification. The use of such model estimations can
be very diverse and range from pure knowledge gain for the
user to automated feedback into the system. Generally, a pro-
cess improvement is initiated which leads to the fulfillment
of the specified product quality or its improvement. Possi-
ble improvements include the reduction of the reject rate
through early intervention in the production process, the sta-
bilization of the process for production in tighter tolerances
(Schmitt et al., 2020a), or the optimization of process param-
eters (Weichert et al., 2019).

Related survey paper

A review similar to ours is provided by Köksal et al. (2011).
The authors conducted an extensive literature review of
data mining applications for quality improvement tasks in
manufacturing and categorized them according the stated
predictive quality tasks. Rostami et al. (2015) proposed a
similar approach with a focus on applications of SVMs. Both
studies date back several years and thus do not cover recent
advances in this field. More recently, Weichert et al. (2019)
reviewed machine learning applications for production pro-

cess optimization with regard to product- or process-specific
metrics. The study shows that optimization approaches are
mostly based on root-cause analysis and fault diagnosis in
production plants or by the combination ofMLmethods with
optimization methods. Although the study has overlaps with
our work, the authors mainly address approaches to process
optimization. In our study, we focus as previously described
on approaches for quality estimation and evaluate thembased
on the data and methods used.

In the course of our literature search, we also identified
survey papers that conduct similar investigations on machine
learning applications but with a different scope. For example,
there already exist extensive studies on the use of artificial
intelligence and machine learning techniques in the produc-
tion and manufacturing context (Fahle et al., 2020; Mayr et
al., 2019; Shang &You, 2019; Sharp et al., 2018). Shang and
You (2019) provided an overview of recent advances in data
analytics for different application task areas such process
monitoring and optimization. They also discussed the works
in terms of usability and interpretability for control tasks.
Fahle et al. (2020) and Mayr et al. (2019) studied machine
learning applications in different task scenarios such as pro-
cess planning and control. Sharp et al. (2018) focused on
cross-domain applications in the product lifecycle. There are
also surveys that deal with related research fields such as
ML-based predictive maintenance (Dalzochio et al., 2020;
Zonta et al., 2020), conditionmonitoring (Serin et al., 2020b)
and machine fault diagnosis (Ademujimi et al., 2017). Our
paper clearly differs from the mentioned papers as it reviews
approaches that primarily address the quality of the products
produced.

Studymethodology

Our review is based on the guiding questions defined in
“Introduction” section. First, we translated the questions into
several categories which we used to categorize and summa-
rize the publications. The categories are listed in Table 1.

In the next step, we performed a literature search in the
databases of Web of Science and ScienceDirect. As shown
in “Predictive quality” section, there are different terms and
terminologies for predictive quality that are used in publica-
tions. The same holds for the very broad application domain
of manufacturing. In order to cover this broad scope in the
search, we used different terms for the search queries and
divided them into three categories: the predictive quality ter-
minology, the machine learning field, and the manufacturing
domain. Table 2 lists all defined search terms. We formu-
lated search queries to find publications that contain at least
one term from each of the three categories. In addition, we
filtered the results based on the publication year from 2012
to 2021 (we performed the search on June 29, 2021). This
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Table 1 Categories by which the publications are reviewed

Question Category Description

Q1 Use case Main use case of paper and purpose of predictive quality

Process Addressed manufacturing process (e.g. laser welding, deep drawing)

Category Category of process according to DIN 8580 (e.g. cutting, forming)

Criterion Estimated quality criterion (e.g. product dimensions, OK/NOK quality)

Q2 Data source Main source of process data (e.g. running production, simulation)

Input variables Data parameters used for the model training (e.g. sensor data)

Data modality Data types of gathered data (e.g. time series, categorical data)

Data amount Number of observations used for model training

Q3 Learning task Formulated learning task (e.g. classification, regression)

Prime model Primarily used (or best performing) ML/DL model (e.g. SVM, CNN)

Baselines ML/DL-models used for comparison to prime model (e.g. SVM, CNN)

Table 2 Terms used for
literature search

Category Search terms

Predictive Quality Predictive quality, predictive analytics, fault prediction, fault classification,
defect prediction, quality prediction, smart manufacturing

Learning Deep learning, neural network, machine learning

Domain Manufacturing, production, industrial, engineering, automation, assembly

Fig. 2 Methodology of the literature search

literature search resulted in a large list of 1.261 (potentially
relevant) publications for our review (see Fig. 2).

With the aim of identifying only publications that fit the
scope of the paper, we first screened the publications based
on their title and abstract. In the course of this screening,
many publications were discarded as they lay in the fields
of predictive maintenance, fault diagnosis, remaining useful
lifetime prediction, software defect prediction, water qual-
ity prediction, process engineering or civil engineering. The
result of this pre-selection were 144 remaining publications.

We then read through the remaining publications in detail
and categorized them according to the defined categories in
Table 1. During this process, we excluded publications from
our consideration that met the following exclusion criteria:

• Publications that do not contain information about the
addressed manufacturing process or the data basis

• Survey papers and literature studies

• Publications that do not performanydevelopment, imple-
mentation or evaluation of methods

• Publications that are not accessible to us

After all, there were 81 publications which were selected
and considered for our study. Table 10 in Appendix A lists
all of them, sorted by publication year. The majority (69%)
are published in journals. 31% are published in the scope of
scientific conferences. Figure 3 shows the number of pub-
lications per year. It clearly illustrates that the number of
publications has been constantly increasing over the last
years. It can also be assumed that this trend will continue
in the further course of 2021 and 2022.

Results

In this chapter, we present the results of our study along
the guiding questions formulated in “Introduction” section.
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Fig. 3 Number of publications per year. The literature search was per-
formed on June 29, 2021

First, we begin by categorizing the publications according to
the manufacturing processes and quality criteria addressed
(“Manufacturing process types and quality criteria” section).
Then, we look at the data bases used for quality estimations
(“Data Bases and Characteristics” section) and what learn-
ing models are trained and investigated (“Machine learning
methods” section).

Manufacturing process types and quality criteria

Predictive quality approaches are being investigated in awide
variety of manufacturing processes. We therefore perform a
categorization of the processes based on DIN 8580:2003-09
(2003). In the norm, the processes are divided into six main
groups: primary shaping, forming, cutting, joining, coating
and changing of material properties. Since there are also
publications dealing with additive manufacturing, assembly
processes or multi-stage processes, we add these three cat-
egories to our review. Considering how much each process
category is represented in predictive quality research, there
are significant differences and a large imbalance between
them. Figure 4 shows the number of publication per cat-
egory. While cutting comprises the largest group with 26
publications, there is no publication that primarily addresses
processes for changing material properties. In the following,
we will focus the categories in detail. For each of the cate-
gories, we also analyze which quality criteria are used in the
publications as the estimated target variables.

Cutting Cutting includes a variety of manufacturing pro-
cesses in which a commonly metallic workpiece is fractured
by separating a portion from it. Table 3 lists the addressed
cutting processes and quality criteria. It can be seen that
most research aims to determine quality characteristics that
reflect the shape of the finished product, while the surface
roughness represents the overwhelming majority of them.
In turning applications, for example, some approaches used
ML methods such as multivariate regression or ANNs to

Fig. 4 Number of publications for each manufacturing process type

estimate the roughness based on gathered sensor data (Du
et al., 2021; Elangovan et al., 2015; Moreira et al., 2019)
and/or machine parameters (Acayaba & de Escalona, 2015).
Tušar et al. (2017) developed an automated quality control of
a turning and soldering process, predicting both the rough-
ness as well as several soldering defects based on recorded
camera images. Vrabel et al. (2016) also proposed an inline
process monitoring of the surface roughness quality. Other
applications of predicting the roughness are found in the field
ofmilling (Hossain&Ahmad, 2014; Serin et al., 2020a), hon-
ing (Gejji et al., 2020; Klein et al., 2020), diamond wire saw
cutting (Kayabasi et al., 2017), or laser cutting (Tercan et al.,
2016, 2017; Zhang & Lei, 2017). An important quality crite-
rion in drilling processes is the hole diameter, which can also
be predicted based on sensor data (Neto et al., 2013; Schorr et
al., 2020a, b). Other than that, Nguyen et al. (2020) predicted
the waviness of the kerf in laser cutting by training an MLP
on process parameters (e.g. gas pressure and laser power).
Furthermore, it was shown that ML is capable of predicting
the material removal rate in cylindrical grinding of hardened
steel (Varma et al., 2017) and chemical mechanical polishing
(Yu et al., 2019).

Joining Joining processes comprise the second largest
field of addressed manufacturing processes (14 publica-
tions) . Table 3 shows that mainly applications in welding
were investigated. In laser welding, machine learning mod-
els (commonly ANNs) were trained on welding parameters
(e.g. laser power, welding speed) or sensor data (e.g. light
intensity) to predict quality values such as the tensile strength
(Yu et al., 2016), weld bead dimensions (Ai et al., 2016; Lei
et al., 2019), residual stress (Dhas & Kumanan, 2014) or to
classify quality types captured with camera images (Yu et al.,
2020). Similar approaches were conducted in spot welding
(Hamidinejad et al., 2012; Martín et al., 2016) and ultra-
sonic welding (Li et al., 2020b; Natesh et al., 2019). Li et al.
(2020a) and Gyasi et al. (2019) presented ANN-based inline
quality control systems in welding processes. Goldman et al.
(2021) conducted interpretability analysis of CNNs trained
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Table 3 Considered cutting and
joining processes and quality
criteria (in parenthesis: number
of publications)

Category Process Quality criteria

Cutting Turning (6) Surface roughness (Acayaba & de Escalona, 2015; Du et
al., 2021; Elangovan et al., 2015; Moreira et al., 2019;
Tušar et al., 2017), machinability (Lutz et al., 2020)

Drilling (6) Diameter (Neto et al., 2013), Schorr et al. 2020a, 2020b,
surface roughness (Vrabel et al., 2016), hole defects
(Jiao et al., 2020), surface gap (Bustillo et al., 2018)

Laser cutting (4) Surface roughness (Tercan et al., 2016, 2017; Zhang &
Lei, 2017), kerf waviness (Nguyen et al., 2020)

Milling (3) Surface roughness (Hossain & Ahmad, 2014; Serin et
al., 2020a), geometric deviation (de Oliveira Leite et
al., 2015)

Honing (2) Curface roughness (Gejji et al., 2020; Klein et al., 2020)

C. M. polishing (1) Material removal rate (Yu et al., 2019)

Diamond wire cutting (1) Surface roughness (Kayabasi et al., 2017)

Grinding (1) Surface roughness (Varma et al., 2017)

Laser micro grooving (1) Groove geometry (Zahrani et al., 2020)

Laser machining (1) Dimensions (McDonnell et al., 2021)

Joining Laser welding (4) Weld bead dimensions (Ai et al., 2016; Lei et al., 2019),
tensile strength (Yu et al., 2016), quality types (Yu et
al., 2020)

Resistance spot welding (3) Tensile shear strength (Hamidinejad et al., 2012), tensile
shear load bearing (Martín et al., 2016), welding
deformation (Li et al., 2020a)

Ultrasonic welding (3) Quality types (Goldman et al., 2021; Li et al., 2020b),
tensile strength (Natesh et al., 2019)

Gas metal arc welding (2) Weld penetration (Gyasi et al., 2019), weld bead
dimensions (Wang et al., 2021)

Gluing (1) Glue volume (Dimitriou et al., 2020)

Welding (1) Residual stress (Dhas & Kumanan, 2014)

onwelding sensor data. In contrastWang et al. (2021) trained
a CNN on line camera images for quality estimation. Other
than welding, Dimitriou et al. (2020) estimated the glue vol-
ume based on 3D laser topology scans in a gluing process.

Primary shaping Primary shaping involves processes in
which a body with a defined shape is produced from a
shapeless material. Ten publications deal with this field (see
table 4). The ones that lie in the field of casting proposed
approaches for detecting casting defects on the product, such
as by training CNNs on X-ray images (Ferguson et al., 2018)
orMLPs on sensor data (Kim et al., 2018; Lee et al., 2018). In
injection molding, data from machine parameters (e.g. tem-
perature, packing pressure) was used for predicting quality
values such as the product dimensions (Ke & Huang, 2020)
or product weights (Ge et al., 2012). Alvarado-Iniesta et al.
(2012) used a recurrent neural network to make warpage
estimations for new parameter combinations. Garcia et al.
(2019) predicted future product geometries of plastics tubes
in a plastics extrusion process. Furthermore, two works lie in
the field of spinning, where the goals were to predict the yarn
quality in form of the count-strength-product (Nurwaha &

Wang, 2012) or the leveling action point (Abd-Ellatif, 2013)
with MLPs.

Forming Forming involves manufacturing processes in
which raw parts are transformed into a different shape
withoutmaterial being added or removed.Among the 10 pub-
lications that lie in this field (see table 4), the ones addressing
metal rolling processes noticeably differ from the works
mentioned so far, as most of them aimed at in-line quality
estimations in the rolling process. For example, Yun et al.
(2020), Li et al. (2018) and Liu et al. (2021) proposed CNN-
based quality inspection systems by detecting and classifying
surface defects in line camera images. Ståhl et al. (2019) used
inline geometry measurements to train LSTM networks and
Lieber et al. (2013) made inline NOK quality predictions
based on ultrasonic measurements. In sheet metal forming,
Meyes et al. (2019) investigated LSTMs on sensor data for
the inline prediction of part defects, while Essien and Gian-
netti (2020) trained them to estimate the machine speed. In
contrast, Dib et al. (2020)made use of simulated experiments
for ML-based part defect estimation. Other approaches were
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Table 4 Considered primary
shaping, forming and additive
manufacturing processes and
quality criteria (in parenthesis:
number of publications)

Process type Process Quality criteria

Primary shaping Casting (3) Casting defects (Ferguson et al., 2018;
Kim et al., 2018; Lee et al., 2018)

Injection molding (3) Product dimensions (Ke & Huang, 2020),
product weight (Ge et al., 2012),
warpage (Alvarado-Iniesta et al., 2012)

Plastics extrusion (2) Product geometry (Garcia et al., 2019),
yield stress (Mulrennan et al., 2018)

Spinning (2) Yarn strength (Nurwaha & Wang, 2012),
sliver evenness (Abd-Ellatif, 2013)

Forming Metal rolling (5) Surface defects (Li et al., 2018; Lieber et
al., 2013; Liu et al., 2021; Yun et al.,
2020), slab geometry (Ståhl et al., 2019)

Sheet metal forming (3) Part defects (Dib et al., 2020; Meyes et al.,
2019), machine speed (Essien &
Giannetti, 2020)

Forging (1) Process feasibility (Ciancio et al., 2015)

Textile draping (1) Shear deformation (Zimmerling et al.,
2020)

Additive manuf. Laser powder bed fusion (4) Geometric deviation (Zhu et al., 2020),
inherent strain (Li & Anand, 2020),
structural defects (Bartlett et al., 2020),
single-track width (Gaikwad et al.,
2020)

Direct metal deposition (1) Volume porosity (Zhang et al., 2019a)

Fused deposition modeling (2) Tensile strength (Zhang et al., 2018,
2019b)

PLA 3D printing (1) Surface roughness (Li et al., 2019)

investigated in simulations of impression-die forging (Cian-
cio et al., 2015) or textile draping (Zimmerling et al., 2020).

Additive manufacturing Eight publications deal with
predictive quality in additive manufacturing processes (see
table 4). As additive manufacturing enables rapid prototyp-
ing, two of them are located in the design phase of products.
Here, process simulations were used to train ANNs for fast
predicting the inherent strain (Li & Anand, 2020) or geomet-
ric deviations (Zhu et al., 2020) of the product. Beyond that,
ML can also be used in the realization phase, for example
to make quality predictions based on optical measurements
(Gaikwad et al., 2020; Bartlett et al., 2020) or machine sen-
sors (e.g. IR, vibration) (Li et al., 2019; Zhang et al., 2018,
2019b). An in-line capability of quality monitoring in the
process was demonstrated by Zhang et al. (2019a).

Assembly Regarding the 5 publications dealing with
assembly (see Table 5), it becomes apparent that they are
mainly concernedwithML-based classification of successful
and unsuccessful assembly tasks. Examples are the detection
of functioning products in manual assembly (Wagner et al.,
2020) or correct positioning in SMT assembly (Schmitt et
al., 2020a) by using virtual quality inspection systems. The
assembled products as well as the data used may also be very
different. While Sarivan et al. (2020) used acoustic signals to

make a quality prediction for the connection of wire plugs,
Martinez et al. (2020) used line camera images for detect-
ing correctly fastened screws. Lastly, Doltsinis et al. (2020)
detected successfull operations on the basis of robotic force
signatures and machine sensors.

Coating In coating (4 publications, Table 5), manufac-
turing processes are involved to apply an adhesive layer of
shapeless material to the surface of a certain workpiece. In
dispensing, for example. Oh et al. (2019) proposed a SVM-
based defect detection method for realtime visual quality
inspection. Hsu and Liu (2021) trained CNNs on machine
sensor data for OK/NOK classification of electric wafer
quality. In contrast, some approaches are trained only on
parameterizations of the process, which was shown for lac-
quering (Thomas et al., 2018) and car bodywork painting
(Kebisek et al., 2020).

Multi-stage There are also publications which are not
concerned with a single manufacturing process but multi-
stage processes that comprise several types (4 publications,
see Table 5). From a machine learning perspective, the chal-
lenge here is handling the increased complexity and number
of data sources. For example, Liu et al. (2020b) investigated
DL-methods (e.g. LSTMs) for quality prediction of a larger
production line based on multimodal sensor data. The data
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Table 5 Considered assembly, coating and multi-stage processes and quality criteria (in parenthesis: number of publications)

Process type Process Quality criteria

Assembly Manual assembly (2) Operation success (Wagner et al., 2020; Sarivan et al., 2020)

Screw fastening (1) Operation success (Martinez et al., 2020)

SMT assembly (1) Component position (Schmitt et al., 2020a)

Snap-fit assembly (1) Operation success (Doltsinis et al., 2020)

Multi-stage Battery-cell manufacturing (1) Battery capacity and state of health (Turetskyy et al., 2021)

Metal forming and machining (1) Product dimensions (Papananias et al., 2019)

Production line (1) Quality types (Liu et al., 2020b)

Textile manufacturing (1) Fabric defects (Jun et al., 2021)

Coating Chemical vapor deposition (1) quality types (Hsu & Liu, 2021)

Lacquering (1) Defect types (Thomas et al., 2018)

Painting (1) Paint structure (Kebisek et al., 2020)

Primer-sealer dispensing (1) Defect types (Oh et al., 2019)

was captured in different stages of the production. Similar
work was also conducted in metal processing (Papananias et
al., 2019) or multi-stage battery-cell manufacturing (Turet-
skyy et al., 2021), where the authors combined the model
training with extensive feature selection to find suitable data
inputs.

Data bases and characteristics

Data plays a central role in the context of predictive quality.
Therefore, it is important to address the question of which
data is used in the publications for training and evaluation
of the predictive quality models. In the following, we aim
to answer the second guiding question by categorizing the
publications according to the source of the data, the amount
of data used, the parameters used as input variables for the
models, and the modality of the data.

Data set sources and amount

We have basically identified three source of data from which
the publications obtain their data for model training: real
data from a manufacturing process, virtual data from sim-
ulations, or from freely available data sets that have been
generated for benchmarks or in the context of competitions.
Real data is data that is gathered from the physical man-
ufacturing process in which the corresponding product is
produced on amachine or production line. Thus it is obtained
during the manufacturing of a product. Depending on the use
case and the manufacturing process, different measurement
techniques and sensors are used for gathering real data. In
contrast, virtual data is created during simulation runs of the
manufacturing process. The data is generally created before
the product is physically manufactured. Furthermore, in the
case of real manufacturing data, we distinguish between two

types of publications: those that take their data froma running
production, and those that generate their data experimentally
using predefined experimental designs. Table 6 lists all publi-
cations according to the data sources.While few publications
exist that primarily use simulation data (10%) or benchmark
data (6%), the majority of them make use of real manufac-
turing data (65% with experimental data and 14% with data
from running production). In addition, there are four publica-
tions (Abd-Ellatif, 2013; Ge et al., 2012; Nurwaha & Wang,
2012; Tušar et al., 2017) where the data source is not clear
and therefore we cannot clearly assign them to one of the cat-
egories. In the following, we briefly discuss the data sources
and also look at how large the data sets used for model train-
ing are.

Simulation Eight publications use simulations in which
the respectivemanufacturing processes are simulated and the
targeted quality variables are calculated. The generated data
sets serve as a training basis for the machine learning mod-
els. The typical objective here is either to demonstrate the
feasibility of ML-driven predictive quality using simulation
data (Ciancio et al., 2015; Zhu et al., 2020), or to gener-
ate fast ML models from simulations in order to save cost
and time in process design (Dib et al., 2020; Tercan et al.,
2016, 2017). The most publications perform a certain set
of experiments for data generation, either by varying pro-
cess parameters (Alvarado-Iniesta et al., 2012; Ciancio et
al., 2015; Dib et al., 2020; Tercan et al., 2016, 2017) and/or
product design parameters (Li & Anand, 2020; Zhu et al.,
2020; Zimmerling et al., 2020). On average, the publications
use 9, 864 of simulated experiments, where the result of each
experiment serves as a data sample for model training. The
number of data samples vary widely across the publications:
while Ciancio et al. (2015) used only 30 simulated data sam-
ples for training and testing, Tercan et al. (2017) generated
over 22, 000. Zhu et al. (2020) additionally performed data
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Table 6 Main sources of
process data to train machine
learning models

Data source Publications

Simulation Alvarado-Iniesta et al. (2012), Ciancio et al. (2015), Dib et al.
(2020), Li and Anand (2020), Tercan et al. (2016, 2017), Zhu
et al. (2020), Zimmerling et al. (2020)

Benchmark/competition Ferguson et al. (2018), Jun et al. (2021), Liu et al. (2020b,
2021), Yu et al. (2019)

Real data (running production) Essien and Giannetti (2020), Goldman et al. (2021), Kebisek et
al. (2020), Lee et al. (2018), Li et al. (2018), Meyes et al.
(2019), Oh et al. (2019), Schmitt et al. (2020a), Ståhl et al.
(2019), Wagner et al. (2020), Yun et al. (2020)

Real data (experimental) Acayaba and de Escalona (2015), Ai et al. (2016), Bartlett et al.
(2020), Bustillo et al. (2018), Dhas and Kumanan (2014),
Dimitriou et al. (2020), Doltsinis et al. (2020), Du et al.
(2021), Elangovan et al. (2015), Gaikwad et al. (2020), Garcia
et al. (2019), Gejji et al. (2020), Zahrani et al. (2020), Gyasi
et al. (2019), Hamidinejad et al. (2012), Hossain and Ahmad
(2014), Hsu and Liu (2021), Jiao et al. (2020), Kayabasi et al.
(2017), Ke and Huang (2020), Kim et al. (2018), Klein et al.
(2020), Li et al. (2019, 2020a, 2020b), Lutz et al. (2020),
Mulrennan et al. (2018), Lei et al. (2019), de Oliveira Leite et
al. (2015), Lieber et al. (2013), Martín et al. (2016), Martinez
et al. (2020), McDonnell et al. (2021), Moreira et al. (2019),
Natesh et al. (2019), Neto et al. (2013), Nguyen et al. (2020),
Papananias et al. (2019), Sarivan et al. (2020), Schorr et al.
(2020a, 2020b), Serin et al. (2020a), Thomas et al. (2018),
Turetskyy et al. (2021), Varma et al. (2017), Vrabel et al.
(2016), Wang et al. (2021), Yu et al. (2016, 2020), Zhang et
al. (2018, 2019a, 2019b), Zhang and Lei (2017)

augmentation techniques to increase the data amount from
originally 102 samples to 1980.

Benchmark Weidentifiedfivepublications that use freely
available data sets as a training and evaluation basis for pre-
dictive quality. Three of them lie in the field of image-based
defect classification, such as the GRIMA X-Ray casting
data (Mery et al., 2015) used by Ferguson et al. (2018), the
NEU-DETdata set (He et al., 2020) for surface defects in hot-
rolling (Liu et al., 2021), and the Xuelang manufacturing AI
challenge data set (Tianchi, 2021) used for fabric defect clas-
sification (Jun et al., 2021). Besides that, Liu et al. (2020b)
used the large-scale Kaggle Bosch Production Line Perfor-
mance data set and Yu et al. (2019) used the 2016 PHMData
Challenge data set formaterial removal rate prediction (PHM
Society, 2020). On average, the data sets contain 5, 722 sam-
ples or images, with the NEU-Det data set being the smallest
with 1, 800 images and the Kaggle dataset being the largest
with over 16, 000 samples. Yet again, the works which use
image sets (Ferguson et al., 2018; Jun et al., 2021; Liu et al.,
2021) performeddata augmentation on the images to increase
the training data sizes.

Real data (experimental) Most research on predictive
quality in conducted on real manufacturing, meaning that
the data basis for model training is retrieved from a phys-
ical process in which a certain product is produced on a
machine or production line. The majority of these publica-

tions (83%) conduct predefined experiments on the process
to generate the training data. Thereby a selected set of pro-
cess parameters is varied under fixed boundary conditions
and mostly for fixed workpieces. In some cases, well-known
design of experiments are used for that, such as full factorial
(Du et al., 2021; Elangovan et al., 2015; Gaikwad et al., 2020;
Hamidinejad et al., 2012; Ke & Huang, 2020; Nguyen et al.,
2020; Varma et al., 2017; Zhang et al., 2018, 2019b), half
factorial (Gejji et al., 2020), fractional Box-Behnken (Hos-
sain &Ahmad, 2014), central composite (Hamidinejad et al.,
2012; Serin et al., 2020a), or Taguchi (Ai et al., 2016; Cian-
cio et al., 2015; Moreira et al., 2019) design method. The
numbers of parameters that are varied (if known) are two
(Bustillo et al., 2018; Gaikwad et al., 2020; Ke & Huang,
2020; Moreira et al., 2019; Vrabel et al., 2016), three (Du
et al., 2021; Kayabasi et al., 2017; Mulrennan et al., 2018;
Li et al., 2020a, 2019; McDonnell et al., 2021; Natesh et
al., 2019; Nguyen et al., 2020; Varma et al., 2017; Yu et al.,
2020; Zhang & Lei, 2017), four (Ai et al., 2016; Elangovan
et al., 2015; Gejji et al., 2020; Hamidinejad et al., 2012; Jiao
et al., 2020; Li et al., 2020b; Neto et al., 2013), five (Zhang
et al., 2019a), six (Dhas & Kumanan, 2014), seven(Zahrani
et al., 2020), or eight (Lei et al., 2019). Only a few pub-
lications vary other conditions besides process parameters,
which are material batches (Lutz et al., 2020) or product
specimens (Neto et al., 2013; Papananias et al., 2019). The
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Fig. 5 Distribution of publications according to the number of data
samples used for model training and evaluation

small number of parameter variations is also reflected in the
small amount of data used for model training and evaluation.
Figure 5 illustrates the distribution of the publications based
on the number of data samples they use. The blue bars repre-
sent the publicationswith experimental data. It shows that the
majority of publications use around 100 samples. The aver-
age number is about 5, 600 and the median 144. Note that the
number of data samples is not always equal to the number
of experiments. For example, the top-4 publications that use
more than 10, 000 samples either perform data augmentation
(Dimitriou et al., 2020; Hsu&Liu, 2021) or conduct multiple
measurements per experiment (Wang et al., 2021; Zhang et
al., 2019a):

Real data (running production) In contrast to experi-
mentally generated training data, there are eleven publica-
tions that take data from a running manufacturing process.
In these cases, the manufacturing of the products and the col-
lection of the data took place over a longer period of time,
such as three months in an aluminum casting process (Lee
et al., 2018), six months of steel rolling production (Ståhl et
al., 2019), eleven months in a deep drawing process (Meyes
et al., 2019), twelve months of aluminum can bodymaking
(Essien & Giannetti, 2020), or 20 months in a car bodywork
shop (Kebisek et al., 2020). Based on this data acquisition,
historical data sets were generated on which the ML models
are trained and evaluated. The data sets here are generally
larger than in the publications that obtain the data experi-
mentally (see red bars in Fig. 5). On average, the data sets
contain 73, 984 data samples. The largest data set used by
Essien and Giannetti (2020) contains 525, 600 samples from
sensor data (machine speed) that is recorded every minute
over the course of one year.

Input variables

The quality of a manufactured product depends on many fac-
tors. Among them are the design and parameterization of the

manufacturing process and the interplay of the manufactur-
ing steps. A predictive quality model trained on process data
correlates these input factors with the quality. We therefore
pose the question of what types of input variables are used in
the publications. We have identified three major types in the
course of our research: process parameters, sensor data, and
product measurements. As it turns out, in most publications
only one type is selected as the basis formodel training. Table
7 provides an overview of all publications. Four publications
(Abd-Ellatif, 2013; Liu et al., 2020b;Wagner et al., 2020; Yu
et al., 2019) are not included as we cannot clearly determine
which types of variables they use.

Process parameters The first type of input variables are
process and machine parameters. These are set for the pro-
duction of a particular product and are usually not changed
during production. A predictive quality model built on pro-
cess parameters can be used to determine product quality
under new, previously unknown parameter spaces. Depend-
ing on the manufacturing process, different parameters are
essential for the product quality and thusly are selected in
the publications. While in cutting processes the feed rate
(Acayaba & de Escalona, 2015; Bustillo et al., 2018; Hos-
sain & Ahmad, 2014; Jiao et al., 2020; Varma et al., 2017)
or cutting and rotation speed (Acayaba & de Escalona, 2015;
Bustillo et al., 2018; Hossain & Ahmad, 2014; Jiao et al.,
2020; Nguyen et al., 2020; Serin et al., 2020a; Varma et al.,
2017; Zahrani et al., 2020; Zhang&Lei, 2017) are frequently
used, the laser power (Ai et al., 2016; Lei et al., 2019;Nguyen
et al., 2020; Yu et al., 2020; Zahrani et al., 2020; Zhang
& Lei, 2017; Zhu et al., 2020) or focal position (Ai et al.,
2016; Tercan et al., 2016, 2017) are often selected in laser-
based applications. In plastics manufacturing, on the other
hand, process times and temperatures (Alvarado-Iniesta et
al., 2012; Ge et al., 2012; Mulrennan et al., 2018) are fre-
quently occurring in the data. Worth mentioning here is the
work in additive manufacturing by Li and Anand (2020) who
useddesignparameters such as hatch patterns asmodel inputs
and Zhu et al. (2020) for adding product design parameters
such as product size and geometry to the data basis.

Sensor data The second type of input data is sensor data,
which is taken from the process or machine during the manu-
facturing process. Sensor data values therefore represent the
actual state of the process or the condition of the machine.
A model trained on sensor data can, for example, provide an
estimate of the product quality as it is being manufactured.
As with process parameters, sensor data is highly dependent
on the particular manufacturing process. While in welding
processes, for example, welding current is often captured
(Goldman et al., 2021; Li et al., 2020a, b), in shaping pro-
cesses it is temperature and pressure data (Garcia et al., 2019;
Kim et al., 2018; Lee et al., 2018). In cutting processes, on the
other hand, there are often vibration, torque or force sensors
used (Du et al., 2021; Moreira et al., 2019; Neto et al., 2013;
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Table 7 Types of input
variables used for predictive
quality models (in parenthesis:
number of publications)

Variable type Publications

Process parameters
(30)

Acayaba and de Escalona (2015), Ai et al. (2016), Alvarado-Iniesta et al.
(2012), Bustillo et al. (2018), Ciancio et al. (2015), Dhas and Kumanan
(2014), Dib et al. (2020), Ge et al. (2012), Gejji et al. (2020), Zahrani et
al. (2020), Hamidinejad et al. (2012), Hossain and Ahmad (2014), Jiao
et al. (2020), Kayabasi et al. (2017), Kebisek et al. (2020), Mulrennan et
al. (2018), Lei et al. (2019), Li and Anand (2020), Martín et al. (2016),
McDonnell et al. (2021), Natesh et al. (2019), Nguyen et al. (2020),
Serin et al. (2020a), Tercan et al. (2016, 2017), Varma et al. (2017), Yu
et al. (2020), Zhang and Lei (2017), Zhu et al. (2020), Zimmerling et al.
(2020)

Sensor Data (22) Essien and Giannetti (2020), Doltsinis et al. (2020), Du et al. (2021),
Garcia et al. (2019), Goldman et al. (2021), Gyasi et al. (2019), Hsu and
Liu (2021), Kim et al. (2018), Lee et al. (2018), Li et al. (2019, 2020a,
2020b), Lieber et al. (2013), Meyes et al. (2019), Moreira et al. (2019),
Neto et al. (2013), Nurwaha and Wang (2012), Papananias et al. (2019),
Sarivan et al. (2020), Schorr et al. 2020a, 2020b, Turetskyy et al. (2021)

Sensor data +
process parameters
(9)

Elangovan et al. (2015); Ke and Huang (2020), Klein et al. (2020), Lutz et
al. (2020), Thomas et al. (2018), Vrabel et al. (2016), Yu et al. (2016),
Zhang et al. (2018, 2019b)

Product
measurements (16)

Bartlett et al. (2020), Dimitriou et al. (2020), Ferguson et al. (2018),
Gaikwad et al. (2020), Jun et al. (2021), de Oliveira Leite et al. (2015),
Li et al. (2018), Liu et al. (2021), Martinez et al. (2020), Oh et al.
(2019), Schmitt et al. (2020a), Ståhl et al. (2019), Tušar et al. (2017),
Wang et al. (2021), Yun et al. (2020), Zhang et al. (2019a)

Schorr et al., 2020a, b). A special case are assembly pro-
cesses.While Doltsinis et al. (2020) used sensor signals from
the robots used in snap-fit assembly, Sarivan et al. (2020) used
acceleration and audio measurements from wearables worn
by operators.

Sensor data + process parameters There are also pub-
lications that obtain data from both process parameters and
sensors (see Table 6). For example, Elangovan et al. (2015)
showed for a turning process that the addition of sensor vari-
ables (e.g. vibration signals) can significantly improve the
performance model in contrast to the sole use of process
parameters (e.g. cutting speed). Similar approaches can be
found in other work on cutting processes, where common
process parameters are combined with sensor data such as
force or flank wear width (Klein et al., 2020; Lutz et al.,
2020; Vrabel et al., 2016), or additive manufacturing, where
data from IR sensors are gathered together with tempera-
ture and speed parameters (Zhang et al., 2018, 2019b). Also
mentionable are the investigations by Lutz et al. (2020) by
additionally incorporating data from material batches and
tool types and analyzing the deviations of prediction results
across them.

Product measurements The third category is measure-
ment data of the product itself during its production or in the
course of visual inspection.Models trained on thesemeasure-
ments are often used to automatically detect product defects
in them. In more than half of the publications that fall in
this category, the measurements are images captured by a

(line) camera. They lie in the field of additive manufactur-
ing (Bartlett et al., 2020; Gaikwad et al., 2020), assembly
(Martinez et al., 2020), turning (Tušar et al., 2017), metal
rolling (Li et al., 2018; Liu et al., 2021; Yun et al., 2020),
welding (Wang et al., 2021) or textile manufacturing (Jun et
al., 2021). Other measurement data than camera images are
geometric measurements (Ståhl et al., 2019), thermal images
(Oh et al., 2019), X-ray images (Ferguson et al., 2018), melt
pool images (Zhang et al., 2019a) or laser topology scans
(Dimitriou et al., 2020).

As mentioned, many publications focus on one type of
input variables for predictive quality. This shows that even for
the samemanufacturing process different data can be used for
quality estimations. A good example are turning processes,
where on the one hand there are approaches based on set-
ting parameters of the turning machine (e.g. cutting speed
and cut depth) (Acayaba & de Escalona, 2015; Elangovan et
al., 2015) and approaches using sensor data of the machine
(e.g. vibration signals) on the other hand (Du et al., 2021;
Lutz et al., 2020; Moreira et al., 2019). However, our analy-
ses also show that there are also major differences between
the respective manufacturing processes. Figure 6 shows how
many times the three types of input variables appear in the
publications for the nine most frequently addressed manu-
facturing processes. For instance, while turning and drilling
applications use parameters and sensor data, laser cutting
applications only use process parameters. It is also notice-
able that in four out of five publications dealing with metal
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Fig. 6 Number of occurrences of the input variable types in the
addressed manufacturing processes. Note that only publications using
real data (experimental or running production) are considered here

rolling (Li et al., 2018; Liu et al., 2021; Ståhl et al., 2019;
Yun et al., 2020), the quality estimation is solely based on
product measurements.

Data modality

From the described input variables, the data sets for train-
ing themachine learningmodels are finally created. Thereby,
the data is transformed into a form on which the models can
be used. In the reviewed publications, four data types respec-
tively data modalities are identified. Table 8 lists the data
types and their occurrences in the publications.

The least common type is categorical data. These are
mostly non-numeric representations of process entities, e.g.,
a tool type and material batch (Lutz et al., 2020), composi-
tional elements of a batch (Lee et al., 2018), or component
counts (Thomas et al., 2018). Eight of the nine publications
that perform time-series-based quality estimation obtain it
from sensor data (Essien & Giannetti, 2020; Goldman et al.,
2021; Gyasi et al., 2019; Hsu & Liu, 2021; Meyes et al.,
2019; Sarivan et al., 2020; Zhang et al., 2018, 2019b), one
publication from product measurements (Ståhl et al., 2019).
The data can be univariate time series (Essien & Giannetti,
2020; Meyes et al., 2019; Ståhl et al., 2019) or multivariate
time series (Goldman et al., 2021; Hsu & Liu, 2021; Sarivan
et al., 2020).

Another important data type used is image data. The
majority of these are 2D images, which are drawn from the
described product measurements (Bartlett et al., 2020; Dim-
itriou et al., 2020; Ferguson et al., 2018; Jun et al., 2021; Li
et al., 2018; Liu et al., 2021; Martinez et al., 2020; Oh et
al., 2019; Wang et al., 2021; Yun et al., 2020; Zhang et al.,

2019a). Dimitriou et al. (2020) used 3D point clouds which
are generated by topology scan. In most cases, the generated
images are enrichedusing data augmentation techniques such
as adding noise or using random cropping (Dimitriou et al.,
2020; Ferguson et al., 2018; Jun et al., 2021; Li et al., 2018;
Liu et al., 2021; Martinez et al., 2020), resulting in a larger
database for deep learning model training. In addition, Yun
et al. (2020) used a variational auto encoder to generate syn-
thetic image data.

The vast majority of publications almost exclusively use
numerical/continuous datawith scalar values formodel train-
ing. These are values of parameter settings on the one hand,
and quantities obtained from sensors and measurements on
the other hand. In fact, 23 of the 31 publications (74%)
that gather their data from sensors transform the values into
scalar numerical quantities. Commonly, either statistical fea-
ture extraction (e.g., minimum value, maximum value, mean
value) is conducted (Doltsinis et al., 2020; Du et al., 2021;
Elangovan et al., 2015; Garcia et al., 2019; Lee et al., 2018;
Li et al., 2019; Lieber et al., 2013; Papananias et al., 2019;
Turetskyy et al., 2021; Vrabel et al., 2016; Yu et al., 2016) or
expert-driven aggregation is performed (Ke & Huang, 2020;
Klein et al., 2020; Schorr et al., 2020a, b).

Machine learningmethods

In the third part of our publication review, we look at the
learning tasks and machine learning models that are used for
predictive quality. In general, the learning task results from
the described quality goals and the quality variable to be esti-
mated (e.g., error detection, quality forecasting). On the one
hand, this involves classification, which accounts for 30 of 81
publications, and numerical prediction, i.e. regression, which
is conducted in 51 publications. Besides from the learning
task, the choice of an appropriate ML or DL model for pre-
dictive quality results from the data modality (e.g., images)
and the complexity of the relationships between input and
output (e.g., linear, non-linear). Many different models are
trained and experimentally evaluated in the publications. The
review reveals that in 49% of all publications (40 out of 81)
the evaluation is performed only for a single model or for
different variants of the samemodel (e.g. changes of hyperpa-
rameters, architectures, optimization methods). In contrast,
51% (41 of 81) of the publications compare several mod-
els in experiments. In the following, the model which is the
focus of a publication (because it is the single model) or
which performs best in a model comparison is referred to as
the prime model. All other models used for comparison are
called baseline models.

Table 9 lists all prime models used in the publications. On
the one hand, it can be seen that some models are commonly
used for both classification and regression, such as the MLP.
On the other hand, the popularity ofmodels based on artificial
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Table 8 Occurring modalities
of data sets used for training the
ML and DL models

Variable Type Publications

Categorical/discrete Lee et al. (2018), Liu et al. (2020b), Lutz et al. (2020), Thomas et al. (2018)

Time Series Essien and Giannetti (2020), Goldman et al. (2021), Gyasi et al. (2019), Hsu and
Liu (2021), Meyes et al. (2019), Sarivan et al. (2020), Ståhl et al. (2019), Zhang
et al. (2018), Zhang et al. (2019b)

Image Bartlett et al. (2020), Dimitriou et al. (2020), Ferguson et al. (2018), Jun et al.
(2021), Li et al. (2018), Liu et al. (2021), Martinez et al. (2020), Oh et al.
(2019), Wang et al. (2021), Yun et al. (2020), Zhang et al. (2019a)

Continuous/numerical Abd-Ellatif (2013), Acayaba and de Escalona (2015), Ai et al. (2016),
Alvarado-Iniesta et al. (2012), Bustillo et al. (2018), Ciancio et al. (2015), Dhas
and Kumanan (2014), Dib et al. (2020), Doltsinis et al. (2020), Du et al. (2021),
Elangovan et al. (2015), Gaikwad et al. (2020), Garcia et al. (2019), Ge et al.
(2012), Gejji et al. (2020), Zahrani et al. (2020), Hamidinejad et al. (2012),
Hossain and Ahmad (2014), Jiao et al. (2020), Kayabasi et al. (2017), Ke and
Huang (2020), Kebisek et al. (2020), Kim et al. (2018), Klein et al. (2020),
Mulrennan et al. (2018), Lee et al. (2018), Lei et al. (2019), de Oliveira Leite et
al. (2015), Li et al. (2019, 2020a, 2020b), Li and Anand (2020), Lieber et al.
(2013), Liu et al. (2020b), Lutz et al. (2020), Martín et al. (2016), McDonnell et
al. (2021), Moreira et al. (2019), Natesh et al. (2019), Neto et al. (2013),
Nguyen et al. (2020), Nurwaha and Wang (2012), Papananias et al. (2019),
Schmitt et al. (2020a), Schorr et al. (2020a, 2020b), Serin et al. (2020a), Tercan
et al. (2017), Tercan et al. (2016), Thomas et al. (2018), Turetskyy et al. (2021),
Tušar et al. (2017), Varma et al. (2017), Vrabel et al. (2016), Yu et al. (2016,
2019, 2020), Zhang and Lei (2017), Zhu et al. (2020), Zimmerling et al. (2020)

neural networks and CNNs becomes evident. This also holds
true for the most recent publications. Looking at the share
of prime models in the publications of 2020 and 2021 (see
Fig. 7), both models account for 68% of the publications.
In contrast, other models such as SVM, random forest, and
decision tree are more often used as baseline models (see
Fig. 8). In the following, we will categorize the publications
based on the prime models used and also briefly discuss the
baseline comparisons.

Multilayer perceptron (MLP) Themost frequently used
primemodel is theMLPwith 30 publications. The popularity
ofMLPs continues into 2020 and 2021, and their versatility is
demonstrated in a wide variety of use cases. On the one hand,
MLPs are used for classification, be it for prediction of certain
fault types (Yu et al., 2020; Lee et al., 2018; Dib et al., 2020),
binary classification of OK/NOK states (Wagner et al., 2020)
or the classification ofmultiple quality classes (Bustillo et al.,
2018; Kebisek et al., 2020; Ke &Huang, 2020). On the other
hand, MLPs are used (much more frequently) for the regres-
sion of numerical qualitymetrics, such as the aforementioned
estimations of surface roughness (Acayaba & de Escalona,
2015; Du et al., 2021; Kayabasi et al., 2017; Serin et al.,
2020a; Vrabel et al., 2016), tensile strength (Hamidinejad et
al., 2012; Natesh et al., 2019; Yu et al., 2016) or dimensions
(McDonnell et al., 2021; Lei et al., 2019; Neto et al., 2013;
Papananias et al., 2019). Regarding the baseline models with
which MLPs are experimentally compared, the publications
often use other popular MLmodels such as SVM (Ciancio et
al., 2015; Dib et al., 2020; Lee et al., 2018; Lutz et al., 2020;

Nurwaha &Wang, 2012;Wagner et al., 2020), random forest
(Dib et al., 2020; Lee et al., 2018; Li et al., 2020b; Lutz et al.,
2020; Turetskyy et al., 2021), linear regression (Acayaba &
deEscalona, 2015;Hamidinejad et al., 2012; Turetskyy et al.,
2021), decision tree (Lee et al., 2018; Wagner et al., 2020),
k-nearest neighbor (K-NN) (Dib et al., 2020; Wagner et al.,
2020) and/or AdaBoost (Bustillo et al., 2018). In addition,
MLPs are compared tomethods such as adaptive neuro-fuzzy
inference system (ANFIS) (Neto et al., 2013), gene expres-
sion programming (GEP) (Nurwaha & Wang, 2012), or an
elman network (Papananias et al., 2019).

Convolutional neural network (CNN) CNNs are the
second most frequently used models (14 publications), that
is for numerical estimation or regression of quality val-
ues (Dimitriou et al., 2020; Wang et al., 2021; Zhu et al.,
2020; Zimmerling et al., 2020), binary OK/NOK classifica-
tion (Goldman et al., 2021; Hsu & Liu, 2021; Martinez et
al., 2020; Sarivan et al., 2020) or multiclass classification
(Ferguson et al., 2018; Jun et al., 2021; Li et al., 2018; Liu
et al., 2021; Yun et al., 2020; Zhang et al., 2019a). They are
well suited for pattern recognition in higher dimensional and
spatial data and are therefore applied to 2D images (Fergu-
son et al., 2018; Jun et al., 2021; Li et al., 2018; Liu et al.,
2021; Martinez et al., 2020; Wang et al., 2021; Yun et al.,
2020; Zhang et al., 2019a), 3D point clouds (Dimitriou et al.,
2020) and also time series data (Goldman et al., 2021; Hsu
& Liu, 2021; Sarivan et al., 2020). Because of this char-
acteristic, the CNN architectures used in the publications
are often empirically compared with other CNN variations.
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Table 9 Overview of addressed learning tasks and used prime models in all publications

Learning task ML-model Publications

Classification CNN Ferguson et al. (2018), Goldman et al. (2021), Hsu and Liu (2021), Jun et al. (2021), Li et al.
(2018), Liu et al. (2021), Martinez et al. (2020), Sarivan et al. (2020), Yun et al. (2020), Zhang et
al. (2019a)

Decision tree Tercan et al. (2016, 2017)

Ensemble model Gejji et al. (2020), Kim et al. (2018), Thomas et al. (2018)

K-NN Lieber et al. (2013)

MLP Bustillo et al. (2018), Dib et al. (2020), Ke and Huang (2020), Kebisek et al. (2020), Lee et al.
(2018), Wagner et al. (2020), Yu et al. (2020)

Naive Bayes Bartlett et al. (2020)

Random forest Zahrani et al. (2020)

RNN Liu et al. (2020b), Meyes et al. (2019)

SVM Doltsinis et al. (2020), Oh et al. (2019), Schmitt et al. (2020a)

Regression ANFIS Hossain and Ahmad (2014), Moreira et al. (2019), Varma et al. (2017), Zhang and Lei (2017)

CNN Dimitriou et al. (2020), Wang et al. (2021), Zhu et al. (2020), Zimmerling et al. (2020)

Ensemble model Li et al. (2019)

Extra tree Schorr et al. (2020a)

EML Nguyen et al. (2020)

GA-BPNN Ai et al. (2016)

Linear regression Elangovan et al. (2015)

MLP Abd-Ellatif (2013), Acayaba and de Escalona (2015), Ciancio et al. (2015), Du et al. (2021), Gyasi
et al. (2019), Hamidinejad et al. (2012), Jiao et al. (2020), Kayabasi et al. (2017), Lei et al.
(2019), de Oliveira Leite et al. (2015), Li et al. (2020a, 2020b), Li and Anand (2020), Lutz et al.
(2020), McDonnell et al. (2021), Natesh et al. (2019), Neto et al. (2013), Nurwaha and Wang
(2012), Papananias et al. (2019), Serin et al. (2020a), Turetskyy et al. (2021), Vrabel et al. (2016),
Yu et al. (2016)

NN-GA-PSO Dhas and Kumanan (2014)

Quadratic regression Martín et al. (2016)

Random forest Klein et al. (2020), Mulrennan et al. (2018), Schorr et al. (2020b), Tušar et al. (2017), Yu et al.
(2019)

Relevance vector machine Ge et al. (2012)

RNN Alvarado-Iniesta et al. (2012), Essien and Giannetti (2020), Ståhl et al. (2019), Zhang et al. (2018),
Zhang et al. (2019b)

SeDANN Gaikwad et al. (2020)

SVM Garcia et al. (2019)

Fig. 7 Proportions of ML models (prime) used in publications in 2020
and 2021

For example, Jun et al. (2021) showed that a combination of
CNNs with convolutional variational autoencoders (CVAE)
provides better performances for class-imbalanced data than
variations without CVAE. Yun et al. (2020) included well-
known deep learning models such as AlexNet, VGG-16, and
ResNet-50 in their comparisons. Liu et al. (2021) also devel-
oped their own architecture called TruingDet based on a
Faster R-CNN and deformable convolutions and compared
it to other state-of-the-art R-CNN models. In addition, other
methods used for comparison with CNNs areMLP and SVM
(Li et al., 2018), several computer vision algorithms (Jun et
al., 2021), and shapelet forests (Hsu & Liu, 2021).

Recurrent neural network (RNN) Sevenpublication use
a recurrent neural network architecture as a prime model for
quality estimations. Since RNNs are suitable for application
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on time-dependent or sequential data, they are commonly
applied on gathered time series data (Meyes et al., 2019;
Essien & Giannetti, 2020; Ståhl et al., 2019; Zhang et al.,
2018, 2019b). Some of the publications use them for the
binary classification of defects (Liu et al., 2020b; Meyes et
al., 2019), others for the regression of quantities such as
material warpage (Alvarado-Iniesta et al., 2012), machine
speed (Essien & Giannetti, 2020), or tensile strength (Zhang
et al., 2018, 2019b). Regarding the type of RNNs, the focus
of the publications is clearly on LSTM network architec-
tures (Essien & Giannetti, 2020; Liu et al., 2020b; Meyes
et al., 2019; Ståhl et al., 2019; Zhang et al., 2018, 2019b).
For example, Meyes et al. (2019) used bidirectional LSTM
which allows a time series to be processed in a forward run
and a backward run to gain better classification results. Essien
and Giannetti (2020) used a convolutional LSTM encoder-
decoder architecture to forecast future values of the series.
The authors therefore compared their approach with another
CNNarchitecture andwith anARIMAmodel. Other baseline
models used for the comparison with RNNs are SVM (Liu
et al., 2020b; Ståhl et al., 2019; Zhang et al., 2018, 2019b),
random forest (Ståhl et al., 2019; Zhang et al., 2018, 2019b),
XGBoost (Liu et al., 2020b), polynomial regression (Zhang
et al., 2018) and/or logistic regression (Ståhl et al., 2019).

Non-linear ML models Some publications used tradi-
tional machine learning methods that are well suited for
nonlinear decisionmaking. These include SVMs for the clas-
sification of defects (Oh et al., 2019) and operation success
(Doltsinis et al., 2020; Schmitt et al., 2020a) as well as for
the numerical estimation of product geometries (Garcia et
al., 2019), relevance vector machine (RVM) for estimating
product weights (Ge et al., 2012), decision trees (Tercan et

al., 2016, 2017) and quadratic regression (Martín et al., 2016)
for interpretable quality estimations, and both K-NN (Lieber
et al., 2013) and naive bayes (Bartlett et al., 2020) for defect
classification. With regard to their evaluation, these models
are typically compared to each other (Garcia et al., 2019;
Lieber et al., 2013; Oh et al., 2019; Schmitt et al., 2020a) and
with other models such as MLPs (Oh et al., 2019; Garcia et
al., 2019;Martín et al., 2016), gradient boosted trees (Schmitt
et al., 2020a), or generalized additivemodels (GAM) (Martín
et al., 2016).

Ensembles Ensemble methods involve the combination
of multiple learning models, thereby aggregating their deci-
sions to make a prediction. In some cases, extensive compar-
isons were conducted to show that ensembles can perform
better than single models (Gejji et al., 2020; Kim et al., 2018;
Thomas et al., 2018; Li et al., 2019). Probably the most pop-
ular ensemble method is the random forest, which is used for
classification (Zahrani et al., 2020) and regression (Klein et
al., 2020; Mulrennan et al., 2018; Schorr et al., 2020b; Tušar
et al., 2017; Yu et al., 2019). The random forest is compared
with single decision trees (Tušar et al., 2017), bagged trees
(Mulrennan et al., 2018) and models such as MLP, CNN and
SVM (Schorr et al., 2020b).

Variants andhybridmodelswithneuralnetworks Some
publications used methods that are hybrids or variants of
artificial neural networks. These include ANFIS, which
were proposed to estimate the surface roughness in cut-
ting processes (Hossain & Ahmad, 2014; Moreira et al.,
2019; Varma et al., 2017; Zhang & Lei, 2017), ANN vari-
ants such as sequential decision analysis neural network
(SeDANN) (Gaikwad et al., 2020) and extreme machine
learning (Nguyen et al., 2020), and hybrid models of neu-

Fig. 8 Occurrences of ML
models as baselines in all
publications
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ral networks and evolutionary computation methods such
as genetic algorithm optimized neural network (GA-BPNN)
(Ai et al., 2016) and neuro evolutionary hybrid model
with genetic algorithm and particle swarm optimization
(NN-GA-PSO) (Dhas & Kumanan, 2014). Accordingly, the
approaches were also frequently compared with regular
MLPs (Hossain &Ahmad, 2014; Nguyen et al., 2020; Varma
et al., 2017; Zhang & Lei, 2017). Gaikwad et al. (2020) addi-
tionally compared the SeDANNmodelwith other established
models such as CNN, LSTM, CART, and general linear
model (GLM).

Key insights and challenges

The previous chapter presented the results of our extensive
literature review on predictive quality in manufacturing, in
whichwe categorized the publications along the three dimen-
sions of manufacturing processes and criteria, data basis
for model training, and learning models used. Based on the
obtained results, we will provide in the following our main
findings and identified gaps with respect to the posed driving
questions.

Scenarios andmanufacturing domains

Applications of predictive quality All in all, the reviewed
publications show that machine and deep learning meth-
ods prove to be versatile and powerful tools for data-driven
quality estimations. In this context, the methods are very
often validated with respect to their prognostic quality and
accuracy for the particular use cases. The results show that
predictive quality has great potential value for quality assur-
ance and manufacturing process improvement. Although
many publications do not clearly formulate how the pro-
posed methods are intended to be used in the manufacturing
process,we have identified three application scenarios of pre-
dictive quality. The first is process design support and process
optimization based on simulation data or process parameters.
Here, predictive qualitymethods are used to estimate product
quality based on setting parameters. The estimates could then
be used either to gain knowledge for the process designer or,
in combination with optimization methods, to automate the
design of the process. The second scenario is in-line qual-
ity prediction during the manufacturing of a product based
on process and sensor data. The predictions could then be
used to initiate a quality-improving action in the manufactur-
ing process to avoid faults or meet manufacturing tolerances.
Third, predictive quality is being investigated for visual qual-
ity inspection using ML/DL methods. The methods are used
to detect rare product defects in image data or to classify
certain defect types. They therefore offer great potential to
automate manual and costly visual inspections.

Manufacturing processes Looking at the study results
in terms of the manufacturing processes and quality scenar-
ios addressed, there are many similarities (e.g. prediction
of the same quality criteria, similar research of approaches
for defect detection), but also large imbalances between the
manufacturing process groups. While cutting and joining
processes account for half of the publications, there are pro-
cess groups which are hardly dealt with (e.g. coating) or
not at all (i.e. changing of material properties). Furthermore,
there are also large differences within the process groups.
While, for example, many different domains are covered in
cutting (e.g. turning, drilling, milling, laser cutting), join-
ing processes are largely covered only by welding processes.
Other important branches such as riveting, gluing or solder-
ing are hardly to be found. One reason for this imbalancemay
be the different degrees of digitization in the domains. The
availability of process and quality data in the manufacturing
process is an essential requirement for predictive quality. It is
noticeable that many of the reviewed publications lie in man-
ufacturing domains in which solutions for process and tool
condition monitoring already exist, such as machining pro-
cesses (Mohanraj et al., 2020; Serin et al., 2020b) or additive
manufacturing processes (Lin et al., 2022; Montazeri & Rao,
2018). Accordingly, in these domains it is easier to collect
data from the process.

Process integration As mentioned before, the learning
models used in the publications show very promising results
for their use in real manufacturing scenarios. In most cases,
however, the approaches are not integrated into the manufac-
turingprocess. Though somepublications use real production
data for quality inspection (Li et al., 2018; Oh et al., 2019;
Ståhl et al., 2019; Wagner et al., 2020; Schmitt et al., 2020a;
Yun et al., 2020) or quality prediction (Goldman et al., 2021;
Essien & Giannetti, 2020; Lee et al., 2018; Kebisek et al.,
2020; Meyes et al., 2019), the training and evaluation as well
as the use of the models mostly happen offline or away from
the actual process. There are a few works that implement
and deploy predictive quality approaches as part of a larger
framework (Kebisek et al., 2020; Lee et al., 2018; Li et al.,
2020a; Martinez et al., 2020; Oh et al., 2019; Schmitt et al.,
2020a). In addition, some publications discuss aspects such
as inline capability and real-time capability of themodel esti-
mations (Doltsinis et al., 2020; Li et al., 2018; Martinez et
al., 2020; Moreira et al., 2019; Sarivan et al., 2020; Schmitt
et al., 2020a; Zhang et al., 2019a). However, no discussions
are given on the implementation of predictive quality in real
quality assurance processes. Furthermore, there is a lack of
evaluation of the approaches in terms of their impact on pro-
cess quality by using quality-orientedmetrics (e.g., reduction
of rejects, yield rate).
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Data bases and characteristics

Input variables The publications show that predictive qual-
ity models can be trained on very different data sources and
types. The majority of publications use data taken from the
physical manufacturing process. This can be process param-
eters, which are set for the manufacturing of the product,
as well as measurements and sensor data, which are gath-
ered during themanufacturing process.Many of the proposed
approaches are based on the use of a few input variables of the
same type. However, using parameters in combination with
sensor data can significantly improve performance, which
was shownbyElangovan et al. (2015). In addition,wenoticed
that other important variables that influence product quality
in manufacturing, such as product design or material prop-
erties, are not considered in the publications at all. In most
cases, MLmodels are studied for only one product type. The
common approach is to train a model on data (parameters or
sensors) for a single product with specific characteristics and
material compositions. The question of how a model trained
for a single product can be used for other products remains
open.

Common data processing steps The pre-processing of
raw data is an important step before training machine learn-
ing models. In particular when using measurement data and
sensor data, many publications perform data cleansing (e.g.,
filling missing data, removing noise and outliers) and data
scaling (e.g. normalization or standardization) methods prior
to model training. In addition, we noticed two other process-
ing steps that occur frequently. One is the transformation of
temporal sensor data into scalar features using feature extrac-
tionmethods (Doltsinis et al., 2020; Du et al., 2021; Gaikwad
et al., 2020; Garcia et al., 2019; Li et al., 2019, 2020b; Lieber
et al., 2013; Neto et al., 2013). This involves extracting sta-
tistical features from the data (e.g., minimum, maximum,
mean values) or transforming the data using signal process-
ing methods. On the other hand, when using image data,
data augmentation methods are used to significantly enrich
the data set (Dimitriou et al., 2020; Ferguson et al., 2018; Hsu
& Liu, 2021; Li et al., 2018; Jun et al., 2021; Liu et al., 2021;
Martinez et al., 2020; Yun et al., 2020; Zhu et al., 2020).
These methods generate additional image variants by adding
noise, rotating the images or randomly cropping them.

Data amount The availability of representative data in a
sufficiently large quantity is a fundamental requirement for
ML and DL and consequently also for predictive quality.
This is a major challenge in a domain like manufacturing
where generating data can be cumbersome and costly. The
study results show that many approaches are developed and
evaluated on a small amount of experimentally generated
data, where the experiments often involve the variation of a
few process parameters. While experiments offer the advan-
tage over running productions that they can include boundary

conditions and edge cases, they provide in general a less
representative data basis. Since many publications also use
data sets that contain fewer than 100 data points, their results
purely serve to demonstrate the potential and the feasibility of
predictive quality. Therefore, solutions have to be researched
and developed to improve the data representation and to
increase the data quantity. Data augmentation is a promising
approach for this. Though it used in some of the reviewed
publications (as mentioned above), the focus here lies only
on image data.

Benchmark data As mentioned, the generation and use
of manufacturing process data is usually expensive and
requires time and effort. The use of this data to investi-
gate predictive quality is therefore an investment that cannot
always be made. It is therefore all the more important to
have freely available benchmark data sets that can be used
for investigations. The literature review shows that the vast
majority of the publications do not use freely available bench-
mark datasets, except from (Ferguson et al., 2018; Jun et al.,
2021; Liu et al., 2021, 2020b; Yu et al., 2019), nor do they
provide their own data base or source code. Thus, on the
one hand, there is a lack of comparability between differ-
ent approaches for similar predictive quality tasks. On the
other hand, reproducibility and further development of exist-
ing research results is hardly possible.

Machine learningmethods

Prime models 68% of publications from 2020 and 2021 use
anMLP or CNN as their primemodel. This clearly shows the
popularity and potential of these models for predictive qual-
ity. They are well suited to identify complex patterns and
relationships in process data. MLPs in particular are used
in a wide variety of use cases and data sets. Many publica-
tions show that MLPs are superior to other machine learning
models such as SVMs or random forests in terms of their
prediction performance. CNNs are by far the most widely
used deep learning models for predictive quality. As they are
very well suited for pattern recognition in image data, they
are often used in visual quality inspection. Regarding other
deep learning models, only LSTMs are currently studied in a
few publications. It is noteworthy that other popular models
such as transformer networks are not found in the reviewed
publications.

Baseline models Conducting experimental comparisons
of different models or model variants is an important part
in machine learning. About 50% of publications compare
their prime model with other baseline models. These are
mainly other machine learning models that are established
for nonlinear learning problems, such as SVM, random for-
est, decision tree, and k-nearest neighbor. Although these
models do not achieve the same performances as MLPs in
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most experiments, they also show strong versatility for dif-
ferent predictive quality use cases.

Models and data modalities The selection of an appro-
priate ML or DLmodel for a particular predictive quality use
case depends onmany factors. One of them is the datamodal-
ity. Looking at the publications with respect to which model
is used for which data modality, some common approaches
become apparent. If the data basis consists of images, most
publications (9 out of 11) use a CNN-based approach (Dim-
itriou et al., 2020; Ferguson et al., 2018; Jun et al., 2021;
Li et al., 2018; Liu et al., 2021; Martinez et al., 2020; Yun
et al., 2020; Wang et al., 2021; Zhang et al., 2019a). For
numerical/continuous data, an MLP is used in about half of
the corresponding publications, followed by random forest,
SVM, and other models. For time series data, no common
model is established yet. As mentioned above, the common
approach for raw time series data coming from sensors is
to transform them first into numerical/continuous variables
using feature extraction and training then a machine learning
model on it. However, of the few publications that train mod-
els on the time series directly, five publications use LSTMs
(Essien & Giannetti, 2020; Meyes et al., 2019; Ståhl et al.,
2019; Zhang et al., 2018, 2019b) and three publications use
CNNs (Goldman et al., 2021; Hsu & Liu, 2021; Sarivan et
al., 2020).

Future research directions

Based on the obtained results and conclusions, we provide
an outlook on future directions of predictive quality research.
We believe that these research directions can address the
identified gaps as well as boost the prevalence of predictive
quality in research and industry.

Synthetic data generation Machine learning and espe-
cially deep learning models typically require large amounts
of training data. Therefore, solutions have to be researched
and developed to increase the data quantity and to overcome
the identified data sparsity in predictive quality scenarios.
One promising approach is to generate synthetic training data
using generative deep learningmodels. It has been shown that
they are suitable for generating realistic data in large quanti-
ties at low cost (Mao et al., 2019;Nikolenko, 2021; Pashevich
et al., 2019). In the predictive quality context, they could be
used with manufacturing simulations to synthetically repli-
cate data for rare process variations and product defects. In
addition, we propose the establishment and further devel-
opment of data augmentation methods for manufacturing
process data, in particular sensor and time series data. We
thus refer to research on data augmentation for time series
problems (Iwana & Uchida, 2021; Wen et al., 2021).

Benchmark data sets We see great potential in research
to make results and data sets more accessible to other sci-

entists. Therefore, we recommend establishing benchmark
data for predictive quality to be used for the evaluation of
new approaches. This could be data for the classification of
product defects or for the numerical prediction of quality
values based on sensor data. In addition, we recommend sci-
entists to use already existing data sets for their own research
work. At this point, we refer to publications that provide an
overview of datasets and repositories, such as for surface
defect detection (Chen et al., 2021) or for machine learning
in production (Kraußet al., 2019).

Novel deep learning methods The review results show
that among the existingdeep learningmodels, onlyCNNsand
LSTM-based models are investigated for predictive quality.
However, in the state of the art of deep learning, new types of
methods have already been established. Among them is the
Transformer network, an attention-based method that per-
forms very well on sequential data (Vaswani et al., 2017)
and image data (Khan et al., 2021). Though applications
of Transformer networks for predictive quality are not yet
known to us, there are already applications in the predictive
maintenance context (Liu et al., 2020a;Mo et al., 2021). Also
strongly researched in the deep learning field are graph neu-
ral networks (Zhou et al., 2020), which are suitable for graph
data and can therefore be useful for pattern recognition in
CAD or simulation data. We therefore see the potential for
these methods to be equally well suited for predictive quality
scenarios.

Time series classification and forecasting While deep
learning on image data has gained acceptance in predictive
quality (via CNNs), there is still a large research potential
for training models on raw sensor data or time series data.
In current deep learning research, there are already a num-
ber of different model approaches for performing time series
classification (Ismail Fawaz et al., 2019) or forecasting (Lim
& Zohren, 2021). Considering predictive quality scenarios,
these approaches could be suitable to perform quality pre-
diction based on temporal sensor data in the manufacturing
process.

Transfer learning and continual learning The current
works in predictive quality are mainly based on the assump-
tion that the training data basis is representative for the
given problem. However, this assumption is often not valid
in industrial production, since manufacturing processes are
subject to continuous changes (e.g. the production of new
products). Process changes mean that previously trained
learning models no longer work sufficiently well, which is
why a lot of new training data has to be generated at great cost.
The emerging fields of transfer learning and continual learn-
ing can overcome this challenge by training data-efficient and
cost-effective models over process variants. In the current
state of research, some efforts for the use of transfer learn-
ing (Maschler & Weyrich, 2021b; Maschler et al., 2021a;
Tercan et al., 2018, 2019) and continual learning (Tercan et
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al., 2021) in manufacturing exist. We see great potential in
further research of these fields for predictive quality.

Integration and deployment With regard to an estab-
lishment of predictive quality in industrial manufacturing
systems, further research work has to be done. On the one
hand, we see the need to evaluate predictive quality solu-
tions in real quality assurance processes. This includes the
development of strategies for automated feedback of model
decisions to humans and systems as well as the evaluation
of approaches in terms of their impact on process quality
by using quality-oriented metrics (e.g. yield rate). Another
important aspect is the operationalization and automation of
model training andmodel use. In the current state of research,
first approaches ofMLOPs (machine learningoperationaliza-
tion) exist to continuously monitor, integrate and deliver ML
models in business environments (Cardoso Silva et al., 2020;
Garg et al., 2021). We see great potential of MLOPs strate-
gies for continuous integration of predictive quality models.
Furthermore, there is a need for certification of predictive
quality processes that guarantees the reliability of the ML
models and thus enables their use in industrial manufacturing
processes. To the best of our knowledge, there are currently
no established approaches for certifying machine learning
methods in industries.

Summary

This review paper provided a comprehensive overview of 81
scientific publications between 2012 and 2021 that address
predictive quality in manufacturing processes. The publica-
tions were categorized and evaluated based on three guiding
questions. The first question was to discover which manu-
facturing processes and quality criteria are addressed in the
publications. The categorization was done according to the
DIN 8580. On the one hand, the results show that predictive
quality is used in a wide variety of manufacturing processes,
estimating various quality metrics or defect types. On the
other hand, an imbalance in the process groups is evident.
While a lot of research is done in process groups such as
cutting and joining, hardly any publications lie in the fields
of coating and changing material properties.

The second question dealt with the data used in the publi-
cations for training and evaluating the learning models. Here
it was shown that for a large part of the publications, process
parameters or sensor data were gathered from a real manu-
facturing process and merged with the quality values. The
generation of the data was often carried out experimentally
by varying a few parameters or boundary conditions. With
regard to data modality, it appeared that numerical quantities
as well as image data (e.g. from product measurements) are
playing an increasingly important role.

The third question addressed the machine learning and
deep learning models used for predictive quality. The results
of the review showed that especially models based on arti-
ficial neural networks (MLPs) and deep learning (mainly
CNNs) were very much in focus.While theMLPwas used in
versatile ways, CNNswere commonly used on image data. In
about half of the publications, themodelswere also compared
experimentally with other models. Here, it was observed that
popular machine learning methods such as SVMs and ran-
dom forests were frequently used for comparison.

Based on the obtained results, central challenges for pre-
dictive quality research were derived, which need to be
addressed in future work. On the one hand, these include the
tackling of sparse data sets in the manufacturing context and
the generation of benchmark data for more comparability in
research. On the other hand, there is a lack of approaches to
integrate and deploy sustainable and robust predictive quality
solutions in real production processes.

In conclusion, predictive quality is a very heterogeneous
and highly researched field in the manufacturing world. The
relevance and popularity of the field will likely continue to
increase in the coming years. The current state of research
highlights the great potential that data-driven methods of
machine learning and deep learning bring to quality assur-
ance and inspection. Yet the use cases, approaches, and
results are still viewed in a very isolated way. As such, there
is still much to be done in research to overcome this isolated
view and enable greater prevalence of predictive quality in
the future.
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