
Journal of Intelligent Manufacturing (2022) 33:2059–2073
https://doi.org/10.1007/s10845-022-01959-4

A hybrid genetic algorithm for parallel machine scheduling with setup
times

A comparative study of metaheuristics on large problem instances

J. Adan1

Received: 19 March 2021 / Accepted: 30 April 2022 / Published online: 1 June 2022
© The Author(s) 2022

Abstract
This paper addresses the unrelated parallel machine scheduling problem with sequence and machine dependent setup times
and machine eligibility constraints. The objective is to minimize the maximum completion time (makespan). Instances of
more than 500 jobs and 50 machines are not uncommon in industry. Such large instances become increasingly challenging to
provide high-quality solutions within limited amount of computational time, but so far, have not been adequately addressed in
recent literature. A hybrid genetic algorithm is developed, which is lean in the sense that is equipped with a minimal number
of parameters and operators, and which is enhanced with an effective local search operator, specifically targeted to solve large
instances. For evaluation purposes a new set of larger problems is generated, consisting of up to 800 jobs and 60 machines. An
extensive comparative study shows that the proposed method performs significantly better compared to other state-of-the-art
algorithms, especially for the new larger instances. Also, it is demonstrated that calibration is crucial and in practice it should
be targeted at a narrower set of representative instances.

Keywords Scheduling · Parallel machines · Makespan · Setup times

Introduction

Scheduling concerns the allocation of tasks, usually called
jobs, to different resources, often referred to as machines,
optimizing a given objective function. Despite the abundant
literature, there is a noticeable gap between theory and the
application of developed methods. The proposed methods
often neglect important real-world aspects and focus on rel-
atively small problem instances. As a consequence manual
scheduling is still relatively common in practice. On the other
side, scheduling is becoming an increasingly complex task,
as technological advancement leads to companies with ever
growing product portfolios.

This work deals with the scheduling of n independent jobs
on m unrelated parallel machines. Each job needs to be pro-
cessed on exactly one machine. Jobs are non-preemptive and

B J. Adan
jelle.adan@protonmail.com

1 School of Industrial Engineering, Eindhoven University of
Technology, PO Box 513, 5600MB Eindhoven, The
Netherlands

require a given process and setup time. In case of identi-
cal machines the processing time of a job is the same on
all machines. Machines are considered unrelated when the
processing time of a job depends on the machine to which
it is assigned. Additionally, not every machine is eligible to
process all jobs. This setting closely resembles real-world
scenarios, where a large machine dependency is common
due to the presence of multiple machines from different ages
and with various technologies. A setup is a set of operations
that must be performed on a machine to prepare it for pro-
cessing a job. In many cases the required operations depend
on the job that was previously processed and on the machine
itself, i.e. setup times are sequence and machine dependent.
Setup times play an important role inmanymodern industrial
and manufacturing environments and need to be explicitly
considered while making scheduling decisions in order to
improve resource utilization.

The optimization criterion most frequently studied for
this scheduling problem is the minimization of the max-
imum completion time, also known as the makespan or
Cmax. Lenstra et al. (1977) demonstrated that minimiza-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01959-4&domain=pdf
http://orcid.org/0000-0002-6431-5146

2060 Journal of Intelligent Manufacturing (2022) 33:2059–2073

tion of the makespan, even for the simple case with
identical parallel machines and no setup times, is a non-
deterministic polynomial (NP) hard problem. Therefore,
it is not surprising that many of the developed solution
methods are based on heuristic and metaheuristic algo-
rithms. In summary, according to the standard notation for
scheduling problems, the problem addressed in this work is
denoted by R/si, j,k, Mj/Cmax (Graham et al. 1979). In the
R/si, j,k, Mj/Cmax scheduling problem there is a set of jobs
J = { j1, j2, . . . , j|J |} to be scheduled on one of k unrelated
parallel machines from the set M = {m1,m2, . . . ,mk}. The
setup time between the subsequent processing of job i and j
on machine m is si, j,m . Each job j is associated with a pro-
cessing time p j,m that depends on the machinem to which it
is assigned, and Mj denotes the specific subset of machines
that is eligible to process job j . The objective is to find the
schedule S = {S1, S2, . . . , Sk} that minimizes the makespan
Cmax = max1≤i≤k Ci ,where Si denotes the process sequence
and Ci is the completion time of the last job on machine mi .
Moreover, as is common in literature that focuses on the same
problem, it is assumed that:

– Jobs are non-preemptive;
– All jobs and machines are available at time zero;
– There are no precedence constraints among jobs;
– The setup time prior to the first job in the sequence is
zero.

Although the parallel machine scheduling problem has
been extensively studied over the past decades, most work
focuses on scenarios with identical machines (Cheng et al.
2004). Moreover, the vast majority of the literature ignores
setup times completely or assumes they are independent
of job sequence and machine (Zhu and Wilhelm 2006;
Allahverdi et al. 2008; Allahverdi 2015; Ezugwu et al. 2018).
In this paper, only the literature that focuses on the more
complex setting with machine dependent processing times,
as well as machine and sequence dependent setup times, is
considered. Moreover, the scope is constrained to work that
considers the objective to minimize the makespan.

Several algorithms have been developed to solve the unre-
lated parallelmachine scheduling problemwith sequence and
machine dependent setup times for makespan minimization,
i.e. R/si, j,k/Cmax. Rabadi et al. (2006) published a set of
synthetic problem instances and proposed a randomized pri-
ority search metaheuristic. Arnaout et al. (2010) provided
an ant colony optimization (ACO) algorithm and Ying et al.
(2012) presented a restricted simulated annealing algorithm
for the same problem. Both showed that this method out-
performs the method of Rabadi et al. (2006) for the same
problem instances. Later, Arnaout et al. (2014) proposed an
enhanced ACO algorithm and showed that this approach out-
performs its predecessor as well as the method proposed by

Ying et al. (2012). Chang and Chen (2011) derived domi-
nance properties and used these heuristics to provide good
initial solutions for a genetic algorithm. Lin and Ying (2014)
provided a hybrid artificial bee colony (HABC) algorithm
and compared its performance with several other algorithms,
including the methods of Rabadi et al. (2006), Chang and
Chen (2011) and Ying et al. (2012). Vallada and Ruiz (2011)
introduced another challenging set of randomly generated
problem instances and proposed a hybrid genetic algorithm
(HGA) with a local search enhanced crossover mechanism.
This set of problems received considerable attention in lit-
erature. Avalos-Rosales et al. (2015) proposed a multi start
algorithm that outperforms the HGA of Vallada and Ruiz
(2011). Also, they provided a novel mixed integer formula-
tion for the problem that allows instances up to 60 jobs and 5
machines to be solved in two to three hours. Cota et al. (2017)
proposed an adaptive large neighborhood search metaheuris-
tic. Their results generally improved the original results of
Vallada and Ruiz (2011), presenting better solutions for most
instances. Santos et al. (2019) proposed various stochastic
local search methods and showed that simulated annealing
significantly outperforms the methods of Vallada and Ruiz
(2011) and Cota et al. (2017). New mixed integer formula-
tions and an algorithm based on mathematical programming
were presented by Fanjul-Peyro et al. (2019). A worm opti-
mization algorithm was applied by Arnaout (2020). Later,
de Abreu and de Athayde Prata (2020) applied a hybdrid
metaheuristic based on a genetic algorithm. Ezugwu and
Akutsah (2018) proposed a firefly algorithm and later Ewees
et al. (2021) proposed a salp swarm algorithm, based on the
firefly algorithm. More recently, a fixed set search method
was proposed by Jovanovic and Voß (2021) and a whale opti-
mization algorithmwas presented by Al-qaness et al. (2021).

Due to a lack of real-world problem instances, the afore-
mentioned studies are all based on artificially generated
problem instances. The majority of these studies focus on
two sets of problem instances. The first set is provided by
Rabadi et al. (2006), where the largest instances consider
scenarios where the number of machines m is 12 and the
number of jobs n is 120. The second set is provided by Val-
lada and Ruiz (2011) and considers scenarios up to m = 30
and n = 250. Nonetheless, significantly larger instances are
frequently encountered in many industrial sectors. Problems
twice the size of the largest instances mentioned above are
not uncommon. Furthermore, another motivation to consider
larger problems is that they provide more potential in cre-
ating efficient schedules. In practice, new sets of jobs are
released repeatedly, for example in weekly buckets. This
way, scheduling remains manageable for manual planning.
If instead, when jobs are released biweekly, the potential
benefit increases, especially in the presence of sequence and
machine dependent setup times. This is illustrated in Fig. 1.
When two sets of jobs are combined into one larger set, a

123

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2061

Fig. 1 For simplicity one
machine is considered. Colored
blocks indicate jobs. When jobs
have the same color it means
their requirements are identical.
Dashed blocks in between
represent setup time. a Two sets
of jobs are subsequently
released and scheduled. b The
two sets are simultaneously
released and scheduled

(a)

(b)

time

time

Combined set of jobs

First set of jobs Second set of jobs

sequence that corresponds to a better overall objective (e.g.
Cmax) may exist.

Recently, Fanjul-Peyro et al. (2019) provided a third set
of larger problem instances, the largest of which considers
n = 1000 and m = 8. The computational time depends
on various factors, such as the CPU, the compiler and the
termination criterion (for metaheuristics). Among the men-
tioned methodologies, the metaheuristics often require a
computational time in the order of magnitude of minutes for
the largest instances considered. Not surprisingly, the exact
methods (Avalos-Rosales et al. 2015; Fanjul-Peyro et al.
2019) require computational times in the order of magni-
tude of hours. Yilmaz Eroglu and Ozmutlu (2017) proposed
a hybrid genetic algorithm to solve the unrelated parallel
machine scheduling problem with sequence dependent but
machine independent setup times, that incorporates machine
eligibility constraints, i.e. R/s j,k, Mj/Cmax. The algorithm
is used to solve a real-world, large-scale loom scheduling
problem where m = 133 and n = 1100. However, a compu-
tational time in the order of magnitude of numerous hours is
reported to solve this problem. This large computational time
is most likely caused by the local search constituent of the
algorithm. Local search neighborhoods are known to scale
non-linearly with the number of machines m and jobs n. For
practical applications, computational times of thismagnitude
may be infeasible due to the fact that frequent re-scheduling
is required, e.g. due to unforeseen disturbances. Hence, there
is a need formethods that can efficiently handle large industry
sized problem instances.

In this work, a new hybrid genetic algorithm is proposed
to solve the unrelated parallel machine scheduling problem,
including sequence and machine dependent setup times, as
well as machine eligibility constraints: as is the setting in
many real-world scenarios. The main novelty of this algo-
rithm is that it is lean, as it employs a minimal number of
parameters and operators, which eases parameter calibration,
and it is enhanced with an effective local search proce-
dure, specifically designed to solve large problem instances.
The balance between exploration and exploitation is clearly
defined through a limited number of parameters. A new set of

larger challenging problem instances is generated based on
the same principle as the existing set from Vallada and Ruiz
(2011). This new set of instances contains problems with
up to 60 machines and 800 jobs and is made publicly avail-
able to encourage future research. Furthermore, an extensive
and accurate comparative study is done by implementing the
methods of Vallada and Ruiz (2011), Avalos-Rosales et al.
(2015) and Santos et al. (2019). Additionally, the proposed
algorithm is applied to the real-world instance published by
Yilmaz Eroglu and Ozmutlu (2017).

The remainder of this paper is structured as follows: the
proposed hybrid genetic algorithm is presented in “Hybrid
genetic algorithm” section. The computational experiments
are presented in “Computational experiments” section. The
problem instances are described in “Instances” section. In
“Calibration” section the parameters of the algorithm are
calibrated. The comparative studies are discussed in “Com-
parative study (R/si, j,k/Cmax)” section. Finally, conclusions
and recommendations for further research are given.

Hybrid genetic algorithm

A genetic algorithm (GA) is a bio-inspired metaheuristic
optimization method that simulates the process of natural
evolution. The basic principles of this technique were first
laid down by Holland (1992). Nowadays, the technique is
widely used to obtain high quality solutions for optimization
problems (Goldberg 1989; Blum et al. 2011; Binitha et al.
2012).

In a genetic algorithm a population of candidate solutions
within the search space, so-called individuals, evolves toward
better solutions through an iterative evolutionary process.
The population in each iteration is referred to as a gener-
ation. In each generation, the fitness of the individuals is
evaluated, which is usually the value of the objective function
in the optimization problem. Then, a subset of the individ-
uals is selected (the parents) and a cross-over mechanism is
applied to obtain a new generation of individuals (the off-

123

2062 Journal of Intelligent Manufacturing (2022) 33:2059–2073

spring). Moreover, a mutation operator may be applied to
maintain genetic diversity.

The performance of any search algorithm depends on
the balance between two conflicting objectives: exploiting
the best solutions found so far (local search) and at the
same time exploring the search space for other promising
solutions (global search). Genetic algorithms have proven
to perform well as a global search technique, i.e. they can
rapidly determine the region in which the global optimum
exists. However, they can take a relatively long time to deter-
mine the exact local optimum in the region of convergence
(Booker et al. 2005). Application of local search techniques
within a GA can improve its exploiting ability. Such hybrid
genetic algorithms (HGAs) were first introduced by Corne
et al. (1999) and can be viewed as a hybridization of a genetic
algorithm with an individual learning procedure.

As for any metaheuristic method, the parameter setting
of the genetic algorithm is important to its performance.
Parametric tuning is itself a tough optimizatiom problem.
In essence, it is a hyperoptimization problem, i.e. the opti-
mization of optimization. Eiben and Smit (2011) provided a
comprehensive summary of existing studies on parametric
tuning. Clearly, the effort required to calibrate the algo-
rithm considerably increases with the number of parameters.
Hence, in the design of the genetic algorithm in the current
paper, an attempt is made to keep the number of parameters
limited, i.e. to develop a lean algorithm.

Initialization (P)

Selection

Crossover

Termination

Insertion neighborhood (dins)

Swap neighborhood (dswap)

Nearest neighbor (dnn)

Fig. 2 Hybrid genetic algorithm flow chart. The diamonds represent
conditional decisions. The parameter P denotes the population size and
the parameters dins , dswap and dnn define the extent of the respective
local search operators, as will be explained in “Local Search”

In Fig. 2 a schematic overview of the proposed algorithm
is shown. After initialization, an evolutionary cycle begins
with selection of the parents. Then, based on the parents, the
crossover mechanism generates two offspring. Three local
search methods are applied to the offspring sequentially. Key
features of these local search operators are that they are fast
yet effective, and that they scale well with the problem size.
If one of these local search methods improved the offspring,
all three local search operators are repeated. This search con-
tinues until a local minimum is reached. The offspring are
accepted into the population if (i) there are no identical indi-
viduals already in the population, i.e. they are unique, and (ii)
they are fitter than theweakest individual in the population. If
they are accepted, the offspring replaces the weakest individ-
uals, otherwise they are discarded. These evolutionary cycles
are repeated as long as the termination criterion remains
unsatisfied. Contrary to other algorithm designs, in each
evolutionary cycle the same operations are performed. No
probabilities are required to select these operations. More-
over, amutation operator is not included. Asmentioned, such
operator is often applied to maintain genetic diversity, i.e.
exploration. However, preliminary experimentation showed
that this framework provides sufficient exploratory capabil-
ities through the diversity of the population itself and the
crossover mechanism, hence it was decided not to include a
mutation operator. A mutation operator is often applied with
a certain probability, and requires the number of mutations to
be specified.Thus, not including amutation operator prevents
the need for two additional parameters to be specified. Fur-
thermore, the selection and crossover operators used in this
framework rely completely on randomness and do not require
any parameters to be set, contrary to other well-known alter-
natives. The only design parameters in this algorithm are the
population size P , and three parameters (dins , dswap and dnn)
that specify the extent of three different local search meth-
ods (“localsearch” section). These parameters specify the
balance between exploration (population size) and exploita-
tion (local search). This limited number of parameters allows
facile calibration, as will be demonstrated in “Calibration”
section. In the subsequent sections, a detailed description of
the components of this hybrid genetic algorithm is presented.

Solution representation

In parallel machine scheduling problems, solutions are typ-
ically represented by an array of jobs for each machine
that reflects the processing sequence of the jobs assigned
to that machine. The population consists of P individuals,
where each individual is composed of |M | arrays of jobs.
This way, each array can be viewed as a chromosome con-
stituent of the individuals genome. In the context of this
optimization problem, the fitness of an individual refers to the
makespan.

123

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2063

Initialization

Although it is common to randomly generate the initial
population, there is a recent trend to include some strong
individuals that are generated by some heuristic. In this algo-
rithm, the initial population is generated by first creating a
random permutation of the list of jobs to be assigned through
the Fisher-Yates shuffle mechanism (Fisher and Yates 1953).
Then, all jobs in the list are subsequently scheduled as
follows: for each job all possible insertion positions are evalu-
ated, respecting machine eligibility constraints. The position
that is most favorable in terms of the fitness function is
selected. All initial individuals are generated according to
this heuristic. This way, an initial population that is both
strong and diverse is obtained.

Selection

The selection operator selects two individuals from the pop-
ulation: the parents. Various selection mechanisms are often
applied in genetic algorithms, e.g. random, roulette-wheel

and tournament selection. After short experimentation with
several operators none proved significantly more effective.
Therefore, in this algorithm the simplest and computationally
most efficient method is applied, namely random selection.

Crossover

Once parents are selected, the crossover mechanism is
applied. Many crossover operators are reported in literature,
one of the most common being the one-point crossover tech-
nique. Here, a local search enhanced one-point crossover
operator is applied, cf. Vallada and Ruiz (2011). In Fig. 3
an example is given for a simple case with 10 jobs and 2
machines. After two parents are selected, one point is ran-
domly determined in the job sequence of each machine of
parent 1 (a). Jobs to the left-hand side of this point are copied
to offspring 1 and jobs to the right are copied to offspring 2
(b). Then, for each machine of parent 2, the jobs that are not
yet assigned to the offspring are inserted (c). This is moment
where the local search procedure comes into play: when a
missing job is inserted into the offspring, it is inserted in

Fig. 3 Local search enhanced
one-point crossover mechanism,
cf. (Vallada and Ruiz 2011) 10 8 4 1 7

3 6 9 2 5

2 10 6 4 1

7 8 3 9

Machine 1Machine 1

Machine 2 Machine 2

Parent 1 Parent 2
(a) Selected parents and crossover points.

Machine 1Machine 1

Machine 2 Machine 2

Parent 2 Parent 2

(b) Copied jobs from parent 1.

Machine 1Machine 1

Machine 2 Machine 2

Offspring 1 Offspring 2

(c) Missing jobs from parent 2.

Machine 1Machine 1

Machine 2 Machine 2

Offspring 1 Offspring 2

(d) The offspring.

5

3 6 9

2 4 1

7

5 10 6

8 3 9

10 8 4 1 7

2 5

3 6 9

10 4 1 7

2 5

8 2 145

7

10 6

398

10 6

8 3 9

2 4 1

7

5

123

2064 Journal of Intelligent Manufacturing (2022) 33:2059–2073

every position at the same machine, and finally it is placed at
the position that results in the earliest completion time (d).
Although in the work of Vallada and Ruiz (2011) machine
eligibility constraints are not considered, it is important to
note that this mechanism is perfectly applicable in scenarios
with machine eligibility constraints without any necessary
modifications.

Local search

The genetic algorithm is combined with a fast local search
operator to speed up the search towards a local optimum.
Arguably, two common local search neighborhoods for par-
allel machine scheduling problems are the insertion and
swap neighborhood. Both have been proven powerful for
the considered problem (Wesley Barnes and Laguna 1993;
Avalos-Rosales et al. 2015; Cota et al. 2017). The proposed
local search operator includes variants of both neighbor-
hoods. As stated earlier, when the size of the problem
increases, the size of search neighborhoods (and thus the
computational effort) usually increases stronger. Therefore,
with increasing problem size, the design of effective search
strategies becomes critical. Before describing the specifics
of this local search operator, it is important to stress several
aspects of the problem at hand:

– Only improvements on the busiest machine improve the
makespan.

– Attempting to move a job from a machine with an
early completion time to a busier machine is unlikely
to decrease the makespan.

With this in mind, three local search neighborhoods are
developed to exploit the search space. The insertion and swap
neighborhoods focus mainly on machine assignments, i.e.
inter-machine movements of jobs. The third neighborhood
attempts to improve the job sequence at a single machine,
i.e. intra-machine movements of jobs.

Insertion neighborhood search

An insertion move removes one job from a machine and
inserts it into another machine. Thus, the entire insertion
neighborhood consists of all solutions obtained when each
job is extracted from its current position and inserted in all
possible positions on all other eligible machines. Given the
size of this neighborhood is O(n2), it is divided into smaller
sub-neighborhoods. Specifically, a sub-neighborhood is
defined for eachmachine. The sub-neighborhood of machine
i consists of all solutions obtained when each job in the
sequence of machine i is extracted from its current position
and inserted in all positions on all other eligible machines
that have an earlier completion time. Recall that attempting to

move a job from a machine with an early completion time to
a busier machine is unlikely to decrease the makespan. Thus,
the size of the sub-neighborhood of the busiest machine is
expected to be O(n/m ·(n−n/m)), while the size of the least
busy machine is 0. Furthermore, the sub-neighborhoods are
evaluated starting with the busiest machine, then the second
busiest, and so on. The total number of sub-neighborhoods
that are evaluated is constrained by a certain fraction of
the machines that signifies the degree of exploitation and
is denoted by the parameter dins . This way, the number of
sub-neighborhoods that are evaluated scales with the prob-
lem size, i.e. the number of machines.

During the search in a sub-neighborhood, it needs to
be decided when a move is accepted, applying a certain
acceptance criterion. At the start, all machine are placed in
descending order according to their completion times. Let
G = {m1,m2, . . . ,mk} denote the ordered set of machines,
where the machine indices are renumbered according to their
position in the set, starting with the busiest machinem1. The
sub-neighborhood of a certain machine at position i in G is
evaluated by picking up each job from its current position
and inserting it at all other possible positions on all other
eligible machines m j , where j > i . Let Ci and C j denote
the completion time of machine mi and m j respectively. A
movement is accepted (though not implemented yet) if the
maximum completion time of mi and m j does not increase,
i.e.

max
(
Cbef ore
i ,Cbef ore

j

) ≥ max
(
Ca f ter
i ,Ca f ter

j

)
(1)

Note that implicitly this ensures that a move never wors-
ens Cmax. Since multiple movements may be accepted, a is
defined as the value of the move, i.e.

a = (
Cbef ore
i − Ca f ter

i

) + (
Cbef ore

j − Ca f ter
j

)
(2)

After all moves in the sub-neighborhood of machine mi

are evaluated, the move that corresponds to the minimum
value of a is finally implemented. This acceptance strategy
resembles a steepest descent method. Among several pre-
liminary experiments with different acceptance criteria and
strategies, e.g. with any descent, this combination yielded
the best results. After a move is implemented the same
machine is searched again. The search within this sub-
neighborhood continues until no more improvements can be
found at machinemi , i.e. until a local minimum. Then, while
i + 1 < �k · dins�, the sub-neighborhood of the machine at
position i + 1 in G is explored.

Swap neighborhood search

A swap move interchanges the machine assignment of two
jobs, maintaining the positions on these machines. An exam-

123

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2065

Fig. 4 An example of a swap
move. Swapping jobs j7 and j5
on the left (a), while
maintaining the positions of all
other jobs, results in the
schedule on the right (b)

j3 j7 j2

j8 j4 j5

m1

m2

time

m1

m2

time

j3 j5 j2

j8 j4 j7

(b)(a)

ple of a swap move is shown in Fig. 4. Similarly, the swap
neighborhood is divided into smaller sub-neighborhoods.
The sub-neighborhood of machine mi consists of all solu-
tions obtained when each job in the sequence of machine
mi is swapped with every job on all other eligible machines
that have an earlier completion time. Given the sequence
dependency of the setup times, the position of the jobs after
the swap move may not be optimal. Therefore, the search
is further intensified by placing the job at machine m j at
the best position in terms of completion time. The swap
sub-neighborhoods are evaluated in the same sequence as
for the insertion sub-neighborhoods: first the machines are
ordered in descending way according to their completion
times. Then, the sub-neighborhoods are searched starting
with the busiest machine, then the second busiest, and so
forth. As for the insertion neighborhood search, the total
number of sub-neighborhoods that are evaluated is con-
strained by a certain fraction of themachines that signifies the
degree of exploitation and is denoted by the parameter dswap.
The same acceptance strategy using Equations (1) and (2) is
applied to determine which move is finally implemented.
After a move is implemented, the same sub-neighborhood is
searched again before continuing to the sub-neighborhood of
the next machine.

To reduce the computational effort as much as possible,
the number of calculations needed to generate a neighbor
should be kept to a minimum. This can be achieved through
computation of the changes that occur due to a move, instead
of reevaluating the entire sequence. When a job is removed
from a sequence, the change of its completion time can be
calculated with three subtractions and one addition (or two
subtraction when the job is first or last in the sequence). The
processing time of this job and the setup time with both adja-
cent jobs must be subtracted. Then, the setup time between
its predecessor and successor must be added. In case the
removed job is last in the sequence, only the processing time
of this job and the setup time with its predecessor must be
subtracted. When the removed job is first in the sequence,
only the processing time of this job and the setup time with
its successor must be subtracted. Similarly, when a job is
inserted into a given sequence, the change can be calculated
with only one subtraction and three additions, or two addi-
tions when the job is inserted at the end of the sequence.

This fast calculation method is applied to both moves in the
insertion and swap neighborhood.

Nearest neighbor search

The third neighborhood structure focuses on intra-machine
movements. It attempts to optimize the job sequence of a cer-
tain machine by evaluating its so-called nearest neighbors.
Given a machinemi with a certain job sequence Si , a nearest
neighbor sequence is generated as follows: one job from Si is
taken as the start of the neighbor sequence. Then, all the jobs
in Si that are not yet in the neighbor sequence are inserted at
all positions. At each position the change in total setup time
of the neighbor sequence is evaluated. Finally, the job that
results in the smallest change in total setup time is inserted
into the neighbor sequence at the corresponding position.
This greedy procedure continues until all jobs are inserted
into the neighbor sequence. Another neighbor is generated
by taking a different job as the start of the neighbor sequence
and assigning the remaining jobs in the same greedy manner.
All jobs are taken as a start once, thus, the number of neigh-
bors is equal to the number of jobs in the sequence. Finally,
the neighbor with the minimum total setup time replaces the
original sequence if its total setup time is smaller. Note that in
the current problem the processing time of a job only depends
on the machine to which it is assigned and does not depend
on the process sequence. Hence, intra-machine movements
can only change the total setup time of a sequence and never
alter the total processing time. Also note that the number of
calculations needed to determine the best position to insert
a job is even smaller than for the insertion and swap neigh-
borhoods because the processing time can be omitted. This
way, a neighbor sequence can be generated with minimal
computational effort. Similar as for the insertion and swap
neighborhoods, this nearest neighbor search is only applied to
a fraction of themachines. First, themachines are arranged in
descending order according to their completion times. Then,
the nearest neighbor search is applied to the busiest machine,
then the second busiest, and so forth. The total number of
machine sequences that are optimized in this manner is con-
strained by a certain fraction of the machines denoted by the
parameter dnn .

123

2066 Journal of Intelligent Manufacturing (2022) 33:2059–2073

Local search operator

The offspring generated by the crossover mechanism is sub-
jected to a local search operator that combines the developed
search neighborhoods (Fig. 2). Within this operator, the
three search neighborhoods are exploited sequentially, as
described in Algorithm 1. The nearest neighbor search is
exploited first, then the insertion neighborhood and finally
the swap neighborhood. When one of the neighborhoods
improves the fitness of the individual the iteration is repeated,
and when neither of the neighborhoods is able to improve the
solution the operator is terminated. As stated before, the off-
spring is accepted into the population when (i) there are no
identical individuals already in the population, i.e. they are
unique, and (ii) they are fitter than the weakest individual in
the population. If they are accepted, the offspring replaces
the weakest individuals, otherwise they are discarded.

The reason that the neighborhoods are evaluated in this
particular sequence is related to the computational effort
required to evaluate a move. Moves in the nearest neigh-
bor search can be evaluated with minimal computational
effort, followed by moves in the insertion neighborhood and
movements in the swap neighborhood are the most expen-
sive. Given the steepest descent acceptance strategy, when
a move in a swap sub-neighborhood is accepted, the entire
sub-neighborhood is searched again. To limit the number of
relatively more expensive moves, the swap neighborhood is
searched last. Furthermore, the degree bywhich each individ-
ual neighborhood is exploited can be tuned by the parameters
dnn , dins and dswap that were introduced before. Together,
these parameters define the degree of exploitation of theHGA
as a whole. On the other hand, the degree of exploration is
defined by a single parameter, namely the population size P .
In “calibration” section the calibration of these parameters
will be discussed elaborately.

Algorithm 1 Local search operator
1: � ← −1
2: while � < 0 do
3: b ← Fitness individual
4: Apply insertion neighborhood search
5: Apply swap neighborhood search
6: Apply nearest neighbor search
7: a ← Fitness individual
8: � ← a − b

Computational experiments

A detailed description of the instances used in this work is
given in the next section. Thereafter, the parameters of the
proposed algorithm are calibrated. Then, in “Comparative

study (R/si, j,k/Cmax)” section, the calibration is validated
and the algorithm is benchmarked against methods pre-
viously reported in the literature for the problem without
eligibility constraints. To make a fair comparison between
different methods, all algorithms are coded in C# 6.0 and
all experiments are run on a computer with an Intel Core i5-
540M (2.53 GHz) processor and 4 GB of memory. Finally, in
“Real-world instance (R/si, j,k, Mj/Cmax)” section the algo-
rithm is applied to a large real-world instance of the problem
that includes eligibility constraints.

Instances

Recently, Yilmaz Eroglu and Ozmutlu (2017) provided a
large-scale real-world instance of the R/si, j,k, Mj/Cmax

problem. Here, m = 133, n = 2111, setup times
range between 1 and 1440 minutes, processing times range
between 38 and 10 955 minutes and eligibility constraints
restrict the number of machines that can be used to pro-
cess certain jobs. The most technically constrained machine
can only process 211 of the jobs, while the least con-
strained machine can process 1740 jobs. In “Real-world
instance (R/si, j,k, Mj/Cmax)” section an attempt to solve
this instance is made. This is one of the very few instances
available in the literature that include machine eligibility
constraints. Hence, although the algorithm proposed here is
capable to solve the generalized R/si, j,k , Mj/Cmax problem,
the main part of this work focuses on synthetic instances of
the more widely studied R/si, j,k/Cmax problem. Two sets of
instances are used: large and extra large.

The large instances are available at http://soa.iti.es and
consider the following combinations of number of machines
m and jobsn:m ∈ {10, 15, 20, 25, 30} andn ∈ {50, 100, 150,
200, 250}. Processing times are integer values uniformly dis-
tributed between 1 and 99. The setup times are integer values
uniformly distributed between four ranges: 1–9, 1–49, 1–
99, 1–124. There are 10 instances for each combination of
machines, jobs and setup times, yielding a total of 1000 large
instances.

The extra large instances were newly generated in an
identical manner. The following combinations of number of
machines m and jobs n were considered: m ∈ {20, 40, 60}
and n ∈ {400, 600, 800}. The same process and setup time
rangeswere used. Similarly, 5 instances for each combination
of machines, jobs and setup times were generated, yielding a
total of 240 new instances. These instances aremade publicly
available at https://git.io/JvCnC.

Furthermore, a separate set of instances is used to calibrate
the parameters of the algorithm (“Calibration” section). The
use of a separate set for calibration prevents a bias in the final
results. As mentioned, this research is specifically targeted to
solve new extra large problem instances. Hence, the param-
eters are calibrated on a set of extra large instances. This set

123

http://soa.iti.es
https://git.io/JvCnC

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2067

j1m1 j2 j3

s1,2,1 s2,3,1

time

j1 j3

s1,3,1

m1

time

(b)(a)

Fig. 5 In the synthetic problem instances the setup times between jobs are completely random. If job j2 is removed from the favourable sequence
on the left (a), this may result in an extremely large setup time between job j1 and j3 as is shown on the right (b). Such occurrences are unrealistic
in practice

consists of two instances for each combination of the number
of machines, number of jobs, processing time and setup time
range. Thus, the calibration set consists of 72 instances in
total, which are also made publicly available at https://git.io/
JvCnC.

It is important to make a remark concerning these syn-
thetic instances. In practice, the sequence dependency of the
setup times often arises from the fact that certain settings on a
machine need to be changed before a job can be processed. In
Fig. 5 an example is given of three jobs on onemachine. If all
three jobs require similar settings, the setup times between
the jobs will be small. In the synthetic instances it is well
possible that s1,3,1 is much larger than s1,2,1 + s2,3,1. How-
ever, this is very unlikely in the real world. In practice, there
is often a clear explainable relation between s1,2,1, s2,3,1 and
s1,3,1, and in particular the setup times will obey the trian-
gular inequality s1,3,1 ≤ s1,2,1 + s2,3,1 (Kim et al. 2002).
This randomness makes it more difficult for any scheduling
algorithm to find favourable clusters of jobs that are alike. On
top of this, consider moving such a favourable cluster of jobs
entirely from one machine to another. Although the setup
times may change to some extent, in practice, this remains
a somewhat favourable cluster. In these synthetic instances,
this may change completely. Though the instances clearly do
not reflect practical aspects in a correct manner, there are two
important reasons to use them, namely (i) the limited avail-
ability of real-world instances and (ii) other studies focused
on the same instances so they provide a way to benchmark
with other algorithms.

Calibration

The performance of any metaheuristic algorithm depends
largely on the setting of its parameters. Calibration of these
parameters is itself a very tough optimization problem (Yang
2020). Here, the parameter calibration is done using Design
of Experiments (DOE), similar as in Chang and Chen (2011)
and Vallada and Ruiz (2011). The performance of the pro-
posed algorithm for a given problem instance is evaluated by
means of the relative proportional deviation (RPD), which is

computed according to:

RPD = A − B

B
· 100% (3)

where A is the objective value found for a certain problem
instance with a specific method and B is the best solution
known for this problem instance. Note that in essence the
RPD measure is similar to the optimality gap that is gener-
ally reported byoptimization software.Here the lower bound,
or best possible solution, is the best solution ever found for
a particular instance. The population size, the depth of the
nearest neighbor search, and the depth of the insertion and
swap neighborhoods are identified as tuneable parameters in
the proposed algorithm. The calibration of these parameters
is done as follows: first, for each of the parameters two levels
(low and high) are considered, as is shown in Table 1. Rather
than setting extreme values for these two levels, the choice
of these levels is based on insights obtained through manual
experimentation. From several experiments with a hand-full
of problem instances, values for each of the parameters were
found that result in acceptable performance. The lower and
upper levels are chosen slightly below and above these val-
ues, respectively. As stated before, calibrating over the same
set of instances that are later used to test the tuned algorithm
results in a unrealistic estimate of the performance. For this
reason, a separate set of instances is used to calibrate the
parameters. This set contains two instances for each combi-
nation of the number ofmachines, number of jobs, processing
time and setup time range, and is limited to the extra large
combinations only. This results in a selection of 72 instances.
The termination criterion is set to a maximum elapsed com-
putational time of n · m · 50 milliseconds. This way, the
computational time scales with both the number of jobs n and
the number of machines m. Furthermore, for each instance
5 independent runs are performed. Thus, the computational
time required to evaluate one parameter configuration is 30
hours. To evaluate all the possible parameter configurations
30 · 24 = 480 hours are required. Instead of using a full
factorial experimental design, a properly chosen fractional
factorial design is often sufficient (Montgomery et al. 2009).
Since there are four parameters, a half-fraction design suf-

123

https://git.io/JvCnC
https://git.io/JvCnC

2068 Journal of Intelligent Manufacturing (2022) 33:2059–2073

Fig. 6 Pareto chart that displays
the effects in decreasing order of
significance. The vertical dashed
line indicates the significance
level α, after standardization.
Effects above α are statistically
significant

0 5 10 15

P × dswap + dins × dnn

P × dins + dswap × dnn

P × dnn + dswap × dins

dins

dswap

dnn

P

Standardized effect

fices to estimate the main effects. Interaction effects cannot
be independently estimated. However, it is still possible to
sense the presence of interaction effects. If these interactions
appear to significantly affect the performance, additional
experiments can be performed at a later stage to identify
these effects individually.

For each parameter configuration the average RPD over
all instances is calculated. The results are analysed by means
of analysis of variance (ANOVA). In Fig. 6 a Pareto chart
is provided that shows the effects in decreasing order of sta-
tistical significance. The length of each bar is proportional
to the value of a t-statistic calculated for the corresponding
effect. Any bars beyond the vertical dashed line are statisti-
cally significant at the selected significance level α, which is
set to 5%. When effects are not independently estimated this
is indicated by a ‘+’ sign in Fig. 6. In this case all 4 main
effects appear to be significant. The combined interaction
effect between the population size and the depth of the near-
est neighbor search, and the depths of the swap and insertion
neighborhood appears to be significant as well. However,
from these results it is not possible to conclude whether one
or both of the interactions are significant. As mentioned, to
identify individual interaction effects additional experiments
are required. Due to the fact that the significance of the com-
bined effect is rather small, these steps are left outside the
scope of this research.

Figure 7 shows how each of the 4 parameters affect the
averageRPD.The lines indicate the estimated change in aver-
age RPD as each parameter is moved from its low to its
high level, with all other parameters held constant at a value
midway between their lows and their highs. Note that the
parameters with a higher significance have a larger impact
on the average RPD than the others. For each parameter the

level that yields the lowest RPD is selected. In Table 1 these
values are indicated in bold face. In order to validate the cal-
ibration, in the next section the algorithm is applied to the
set of test instances using the calibrated parameters values as
well as the values found through manual experimentation.

Comparative study (R/si,j,k/Cmax)

The proposed algorithm is benchmarked against several
methods previously reported in literature for the same
problem and the same optimization objective. The first com-
parison is made with the hybrid genetic algorithm proposed
by Vallada and Ruiz (2011). A second comparison is made
with the multi-start algorithm (MS) proposed by Avalos-
Rosales et al. (2015), which is in essence local search with
restarts. Thirdly, a comparison is made to the simulated
annealing method proposed by Santos et al. (2019). These
methods all focus on the R/si, j,k/Cmax problem. All meth-
ods (i.e. the logic of these methods) have been implemented
using the guidelines and descriptions of the original papers.
Themethods are all coded inC# 6.0 andmake use of the same
data structures. In this comparative evaluation, all threemeth-
ods are applied to the large and the extra large instances. As
in the original papers, in all cases the termination criterion is
set to a maximum elapsed computational time of n · m · 50
milliseconds. For each instance 5 independent runs, with dif-
ferent random seeds, are performed (which appeared to be
enough as the variability of Cmax over the runs proved to be
sufficiently low). The results are averaged over the runs and
instances for each n × m combination. Recall that there are
10 large and 5 extra large instances for each combination of
size and setup time range. There are 4 different setup time
ranges. Thus, for each large instance size the average value

123

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2069

Fig. 7 The estimated effect of
each of the four tuneable
parameters on the average RPD

P dnn dins dswap

3

4

5

R
P

D

Table 1 Tuneable parameters in
the proposed algorithm and
tested values for the calibration

Parameter Low level Manual High level

Population size (P) 15 20 25

Depth nearest neighbor (dnn) 0.6 0.7 0.8

Depth insertion neighborhood (dins) 0.6 0.7 0.8

Depth swap neighborhood (dswap) 0.1 0.15 0.2

The best parameter combination is shown in bold face

is computed over 10× 4× 5 = 200 executions, and for each
extra large instance size it is calculated over 5×4×5 = 100
executions. The results obtained for the large and extra large
instances are shown in Tables 2 and 3 respectively. The algo-
rithms are in chronological order based on publication date,
starting with the earliest on the left and the current method
on the right.

It can be seen that the genetic algorithm of Vallada and
Ruiz (2011) is clearly outperformed by the MS algorithm.
Furthermore, both are significantly outperformed by SA and
HGAI. This holds for both the large and the extra large
instances.Both theVRandespecially theMSalgorithmmake
use of relatively large local search neighborhood structures.
As stated before, with increasing problem size, the size of
these search neighborhoods tends to grow stronger. Conse-
quently, both algorithms do not scale well with the problem
size, as can be seen by comparing the average RPD for the
large instances with the extra large instances. On the con-
trary, both SA and HGAI appear to scale much better with
the problem size.

A crucial difference between the HGA proposed here and
the one of Vallada and Ruiz (2011) is the local search compo-
nent. The results obtained with HGAI indicate that a hybrid
genetic algorithm can be a powerful method, if however, the
local search operator is designed effectively. Specifically, VR
applies local search to the entire schedules, whereas HGAI
only applies it to the sequences that dictate the objective,
which proves to be much more effective.

For relatively small sized instances SA performs better
than the other algorithms. This is especially the case for the
instances with 50 jobs. It is important to note that for these

instances the objective values lie around 20 time units. As a
result, a small absolute difference translates to a large RPD.
As the size of the problem increases, the dominance of sim-
ulated annealing diminishes and for instances with 200 jobs
and more the HGAI outperforms the other algorithms. For
the large instances, HGAI outclasses the other algorithms in
14 of the 25 cases (as is shown in bold face), and for the extra
large instances, it outperforms the other methods in 7 of the
9 cases.

Another interesting observation is that the RPD tends to
increase as the expected number of jobs per machine (n/m)
decreases. This is true for all algorithms except for SA,where
the opposite is true. In fact, the instances where SA per-
forms better than HGAI are all cases where the n/m ratio
is relatively low. However, this difference diminishes with
increasing problem size, which is an indication that HGAI
is more suitable to solve larger problems. The contrasting
response related to the n/m ratio is likely due to a different
balance between intra- and inter-machine movements in the
local search constituents of these algorithms. In both algo-
rithms this balance is largely defined by the setting of its
parameters.

Lastly, the calibrated algorithm (HGAII) is compared to
the non-calibrated algorithm (HGAI). As mentioned in “Cal-
ibration” section, the calibration procedure is targeted at
the extra large problems. It appears that the algorithm with
the calibrated parameters performs significantly better on
average when compared to the non-calibrated algorithm (–
0.76%). Even so, this is not the case for all instance sizes.
The calibration procedure prescribes that if, for example, a
certain parameter setting significantly minimizes the RPD

123

2070 Journal of Intelligent Manufacturing (2022) 33:2059–2073

Table 2 Average relative proportional deviation (RPD) for the non-
calibrated (HGAI) compared to three other methods: VR (Vallada and
Ruiz 2011),MS (Avalos-Rosales et al. 2015) and SA (Santos et al. 2019)
for the large instances

Instance (m × n) GA MS SA HGAI

50 × 10 8.99 4.85 2.42 2.17

50 × 15 14.48 5.67 1.83 2.74

50 × 20 22.14 8.37 1.10 4.64

50 × 25 27.54 11.68 0.69 8.82

50 × 30 32.48 16.15 0.90 13.16

Average 21.13 9.34 1.39 6.31

100 × 10 10.34 8.01 4.11 1.97

100 × 15 15.86 10.86 3.47 3.26

100 × 20 22.25 12.47 2.98 4.06

100 × 25 27.76 14.15 2.19 5.69

100 × 30 36.41 16.88 1.83 7.48

Average 22.52 12.47 2.92 4.49

150 × 10 13.21 9.41 4.85 1.50

150 × 15 17.52 12.72 4.67 2.30

150 × 20 23.16 14.97 4.00 3.39

150 × 25 29.39 16.76 3.13 4.63

150 × 30 36.14 18.02 2.48 5.18

Average 23.88 14.38 3.83 3.40

200 × 10 14.73 9.47 5.24 1.22

200 × 15 19.81 13.35 5.50 1.84

200 × 20 24.50 15.89 4.72 2.65

200 × 25 31.46 17.80 3.92 3.68

200 × 30 37.57 20.30 2.86 4.69

Average 25.61 15.36 4.45 2.82

250 × 10 16.26 10.28 4.80 1.80

250 × 15 21.75 13.82 5.89 1.63

250 × 20 27.81 16.11 5.45 2.08

250 × 25 32.90 18.24 4.67 2.78

250 × 30 38.49 20.74 3.35 3.45

Average 27.44 15.84 4.83 2.35

For each instance size the best RPD values are in bold face

for 800× 60 instances, while the RPD of 400× 40 instances
slightly worsens, this parameter setting is regarded better.
The observation that for some instance sizes the calibrated
parameters worsen the performance indicates that a certain
instance size requires different parameters. Hence, a better
performance can be achieved by tuning the parameters for a
smaller selection of instance sizes. In practice, the number
of machines will probably remain constant for a long time
and the amount of jobs that are scheduled will probably vary
within a certain range. Therefore, for practical applications, it
is advised to calibrate the parameters for a narrower selection
of problem instances.

Table 3 Average relative proportional deviation (RPD) for the non-
calibrated (HGAI) and calibrated algorithm (HGAII) compared to three
other methods (VR, MS and SA) extracted from literature for the extra
large instances

Instance (m × n) VR MS SA HGAI HGAII

400 × 20 31.51 17.59 6.09 2.49 1.29

400 × 40 49.91 23.68 3.31 3.20 4.19

400 × 60 56.72 27.33 1.95 5.11 6.18

Average 46.05 22.87 3.78 3.60 3.88

600 × 20 32.35 16.24 3.63 3.39 1.88

600 × 40 51.29 23.43 6.03 3.62 2.22

600 × 60 56.32 25.87 4.37 2.67 3.48

Average 46.65 21.84 4.68 3.23 2.52

800 × 20 30.70 13.70 2.31 3.10 1.84

800 × 40 49.90 25.08 5.41 5.10 2.70

800 × 60 58.61 26.21 6.83 4.66 2.52

Average 46.40 21.66 4.85 4.29 2.35

The best RPD values are in bold face

Tables 2 and 3 indicate the average performance of the
algorithms, however, these values do not provide much
insight in the distribution of the results. To visualize how
the results are distributed, the results are summarized in a
box-and-whisker plot. Figure 8 displays a box plot for all
of the large problem instances (i.e. all instances and runs),
whereas Fig. 9 shows a box plot for the extra large instances.
An RPD value that is larger than 1.5 times the interquartile
range is defined as an outlier, which are indicated by the soli-
tary data points. For the large instances the variation appears
to follow the same trend as the average performance, i.e. it
is high for VR and MS algorithms, and significantly lower
for SA and HGAI. The same is observed for the extra large
instances: the better the average performance, the lower the
variability.

There are two main causes for the observed variations,
namely (i) the randomness in the algorithms themselves and
(ii) the observation that particular instances or groups of
instances are more difficult to solve compared to others. For
example, in case of the large instances (Fig. 8), a number
of the results obtained with SA as well as with HGAI are
marked as outliers. In case of the former, the vast majority of
the outliers correspond to instances with 250 jobs, whereas
in case of the latter the outliers are dominated by instances
with 50 jobs.

Based on Fig. 8 alone, SA and HGAI appear similar in
terms of the first quartile, median and the third quartile.
However, HGAI is clearly worse in terms of outliers. It is
important to make a remark regarding the RPD performance
measure. This work focuses on the RPD as it is a common
measure in related literature (Vallada and Ruiz 2011; Avalos-
Rosales et al. 2015; Santos et al. 2019). For small instances,

123

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2071

VR MS SA HGAI

0

20

40

60

80
R

P
D

Fig. 8 Box-and-whisker plot for the non-calibrated (HGAI) compared
to three other methods: VR (Vallada and Ruiz 2011), MS (Avalos-
Rosales et al. 2015) and SA (Santos et al. 2019) for the large instances

VR MS SA HGAI HGAII

0

20

40

60

80

R
P

D

Fig. 9 Box-and-whisker plot for the non-calibrated (HGAI) and cali-
brated algorithm (HGAII) compared to three other methods (VR, MS
and SA) extracted from literature for the extra large instances

say all instances with 50 jobs, the average RPD for SA and
HGAI is 1.39% and 6.31%, respectively (see Table 2). This
appears as a major difference in performance. However, for
these small instances, where the best known solution B (see
Equation (3)) is small, the average absolute deviation from
B for SA and HGAI is 0.87 and 2.04, respectively, which
is only a minor difference. On the contrary, for all instances
with 250 jobs, the difference in terms of RPD appears to
be small: 4.82% and 2.35% for SA and HGAI respectively.
Although this is aminor difference in terms of RPD, the aver-
age absolute deviation from the best known solution is much
more pronounced, namely 9.15 and 3.68, for SA and HGAI
respectively. Figure 10 shows a box-and-whisker plot of the
absolute deviation for all of the large problem instances (i.e.

VR MS SA HGAI

0

50

100

150

A
bs

ol
ut

e
de

vi
at

io
n

Fig. 10 Box-and-whisker plot for the non-calibrated (HGAI) compared
to three other methods: VR (Vallada and Ruiz 2011), MS (Avalos-
Rosales et al. 2015) and SA (Santos et al. 2019) for the large instances

1 − 124 1 − 99 1 − 49 1 − 9

1

2

3

4

5

6

2.60

3.87

Setup time range

R
P

D

Fig. 11 Average RPD values of HGAII versus the setup time ranges
for the large instances (red) and the extra large instances (blue)

all instances and runs). This shows a different picture com-
pared to the box-and-whisker plot of the RPD in Fig. 8, and
hence caution is required when the RPD is the only measure
taken into consideration.

Another observation, which is not visible in the box plots,
nor in Tables 2 and 3, is the following: if instead of averaging
over all instances of the same size, the average is taken over
all instances with the same setup time range, an interesting
trend is observed. Given the 4 different setup time ranges,
for the large instances the average is now calculated over
900 executions, whereas for the extra large instances it is
computed over 450 executions. For HGAII the results are
depicted in Fig. 11. The average RPD values for the large
and extra large instances from Tables 2 and 3 respectively
are indicated by the dashed lines. It can be seen that prob-

123

2072 Journal of Intelligent Manufacturing (2022) 33:2059–2073

lems with a wide setup time range (i.e. a large variation) are
much harder to solve compared to ones where the range is
narrow, as anticipated in “Instances” section. The same trend
is observed for all other algorithms. Such observations are
valuable insights, as they reaffirm the earlier statement, that
certain instances demand specific parameter settings in order
to maximize performance.

In summary, this comparative study shows that the pro-
posed HGA outperforms other state-of-the-art algorithms in
most cases. This is mainly due to the local search constituent
of the HGA. Also, calibration has proven to be important
since it enables a significant decrease of the average RPD.
Although the overall performance increase is positive, some
instances clearly demand different parameters. Hence, it is
advisable that for practical applications the calibration is tar-
geted at a narrower set of representative instances.

Real-world instance (R/si,j,k,Mj/Cmax)

Thus far, the proposed algorithm is applied to hypotheti-
cal instances of the R/si, j,k/Cmax problem. However, as
discussed in “Instances” section, these instances are not
necessarily an accurate representation of real-world man-
ufacturing environments. Additionally, machine eligibility
constraints often appear in real-world environments.Asmen-
tioned, the proposed HGA is capable to solve the generalized
R/si, j,k, Mj/Cmax problem. Here, the proposed HGA is
applied to the real-world loom (jacquard) scheduling instance
recently provided by Yilmaz Eroglu and Ozmutlu (2017).
Recall, this problem instance consists of 2111 jobs and 133
machines, refer to “Instances” section for further details.
Additionally, the authors proposed ahybrid genetic algorithm
to solve this problem and reported that a computational time
of 2.69 days is required to solve this large-scale instance.
Furthermore, the best solution found by Yilmaz Eroglu and
Ozmutlu (2017) has a maximum completion time of 784
hours. Although this method is not implemented here, the
authors also coded it in C# 6.0 and ran it on a similar com-
puter as the one used in this experimentation.

Here, the calibrated HGA (HGAII) is applied to this real-
world instance. Initially, the termination criterionwasn·m·50
milliseconds, as for the other experiments in this work. For
this problem instance, this corresponds to around 234 min-
utes. Preliminary experiments indicated that this appears to
be unnecessary. Hence, in this case the termination crite-
rion is set to n · m · 5 milliseconds. In total 5 independent
executions are performed, all of which resulted in a final
solution with Cmax = 650 hours. Although one instance is
not sufficient to draw any definitive conclusion, at least it
appears that the HGA is able to solve this particular real-
world instance very efficiently and robust. In fact, despite
its size, this instance contains eligibility constraints and real
setup times. Eligibility constraints clearly simplify the prob-

lem as the possibilities are limited. Real setup times are far
less random compared to the setup times in the synthetic
instances, which makes it easier for the HGA to converge.

Conclusions

In this work a hybrid genetic algorithm is proposed for
the unrelated parallel machine scheduling problem with
sequence and machine dependent setup times and machine
eligibility constraintswith the objective tominimize themax-
imum completion time Cmax. The algorithm incorporates
a local search operator specifically designed to solve large
problem instances. The number of operators and parameters
is kept to a minimum to allow facile calibration. This param-
eter calibration is done by means of Design of Experiments.
The results indicate that the calibration is effective. An exten-
sive comparison with other state-of-the-art algorithms shows
that the proposed HGA outperforms other algorithms for the
largest problems considered. Furthermore, the results also
indicate that the proposed method scales well with the size
of the problem.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Al-qaness, M. A., Ewees, A. A., & Abd Elaziz, M. (2021). Modi-
fied whale optimization algorithm for solving unrelated parallel
machine scheduling problems. Soft Computing, 25(14), 9545–
9557.

Allahverdi, A. (2015). The third comprehensive survey on scheduling
problemswith setup times/costs.European Journal of Operational
Research, 246(2), 345–378.

Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A
survey of scheduling problemswith setup times or costs.European
journal of operational research, 187(3), 985–1032.

Arnaout, J. P. (2020). A worm optimization algorithm to minimize
the makespan on unrelated parallel machines with sequence-
dependent setup times. Annals of Operations Research, 285(1),
273–293.

Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony
optimization algorithm to minimize the makespan on unrelated
parallel machines with sequence-dependent setup times. Journal
of Intelligent Manufacturing, 21(6), 693–701.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent Manufacturing (2022) 33:2059–2073 2073

Arnaout, J. P., Musa, R., & Rabadi, G. (2014). A two-stage ant colony
optimization algorithm to minimize the makespan on unrelated
parallel machines-part ii: enhancements and experimentations.
Journal of Intelligent Manufacturing, 25(1), 43–53.

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. (2015). Efficient
metaheuristic algorithm and re-formulations for the unrelated
parallel machine scheduling problem with sequence and machine-
dependent setup times. The International Journal of Advanced
Manufacturing Technology, 76(9), 1705–1718.

Binitha, S., Sathya, S. S., et al. (2012). A survey of bio inspired opti-
mization algorithms. International journal of soft computing and
engineering, 2(2), 137–151.

Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid meta-
heuristics in combinatorial optimization: A survey. Applied Soft
Computing, 11(6), 4135–4151.

Booker, L., Forrest, S., Mitchell, M., & Riolo, R. (2005). Perspectives
on Adaptation in Natural and Artificial Systems (Vol. 8). Oxford:
Oxford University Press.

Chang, P. C., & Chen, S. H. (2011). Integrating dominance properties
with genetic algorithms for parallel machine scheduling problems
with setup times. Applied Soft Computing, 11(1), 1263–1274.

Cheng, T. E., Ding, Q., & Lin, B. M. (2004). A concise survey of
scheduling with time-dependent processing times.European Jour-
nal of Operational Research, 152(1), 1–13.

Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R.,
& Price, K. V. (1999). New Ideas in Optimization. London, UK:
McGraw-Hill Ltd.

Cota, L. P., Guimarães, F. G., deOliveira, F. B.,&Souza,M. J. F. (2017).
An adaptive large neighborhood search with learning automata for
the unrelated parallel machine scheduling problem. In: 2017 IEEE
Congress on Evolutionary Computation (CEC), IEEE, pp 185–
192.

de Abreu, L. R., & de Athayde, P. B. (2020). A genetic algorithm with
neighborhood search procedures for unrelated parallel machine
scheduling problemwith sequence-dependent setup times. Journal
of Modelling in Management, 15(3), 809–828.

Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring
and analyzing evolutionary algorithms. Swarm and Evolutionary
Computation, 1(1), 19–31.

Ewees, A. A., Al-qaness, M. A., & Abd Elaziz, M. (2021). Enhanced
salp swarm algorithm based on firefly algorithm for unrelated par-
allel machine scheduling with setup times. Applied Mathematical
Modelling, 94, 285–305.

Ezugwu, A. E., & Akutsah, F. (2018). An improved firefly algo-
rithm for the unrelated parallel machines scheduling problem with
sequence-dependent setup times. IEEE Access, 6, 54459–54478.

Ezugwu, A. E., Adeleke, O. J., &Viriri, S. (2018). Symbiotic organisms
search algorithm for the unrelated parallel machines schedul-
ing with sequence-dependent setup times. PLoS ONE, 13(7),
e0200030.

Fanjul-Peyro, L., Ruiz, R., & Perea, F. (2019). Reformulations and an
exact algorithm for unrelated parallel machine scheduling prob-
lems with setup times. Computers & Operations Research, 101,
173–182.

Fisher, R. A., & Yates, F. (1953). Statistical Tables for Biological,
Agricultural andMedical Research. NewYork: Hafner Publishing
Company.

Goldberg,D.E. (1989).GeneticAlgorithms in Search,Optimization and
Machine Learning. Boston: Addison-Wesley Longman Publishing
Co., Inc.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5, 287–
326.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. Cambridge: MIT Press.

Jovanovic, R., & Voß, S. (2021). Fixed set search application for
minimizing the makespan on unrelated parallel machines with
sequence-dependent setup times. Applied Soft Computing, 110,
107521.

Kim,D.W., Kim,K.H., Jang,W.,&Chen, F. F. (2002). Unrelated paral-
lelmachine schedulingwith setup timesusing simulated annealing.
Robotics and Computer-Integrated Manufacturing, 18(3–4), 223–
231.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1, 343–
362.

Lin, S. W., & Ying, K. C. (2014). Abc-based manufacturing schedul-
ing for unrelated parallel machines with machine-dependent and
job sequence-dependent setup times. Computers & Operations
Research, 51, 172–181.

Montgomery, D. C., Runger, G. C.,&Hubele, N. F. (2009).Engineering
Statistics. Hoboken: Wiley.

Rabadi, G., Moraga, R. J., & Al-Salem, A. (2006). Heuristics for the
unrelated parallel machine scheduling problem with setup times.
Journal of Intelligent Manufacturing, 17(1), 85–97.

Santos, H. G., Toffolo, T. A., Silva, C. L., & Vanden Berghe, G. (2019).
Analysis of stochastic local search methods for the unrelated par-
allel machine scheduling problem. International Transactions in
Operational Research, 26(2), 707–724.

Vallada, E.,&Ruiz,R. (2011).Agenetic algorithm for the unrelated par-
allel machine scheduling problem with sequence dependent setup
times. European Journal of Operational Research, 211(3), 612–
622.

Wesley Barnes, J., & Laguna, M. (1993). Solving the multiple-machine
weighted flow time problem using tabu search. IIE Transactions,
25(2), 121–128.

Yang, X. S. (2020). Nature-Inspired Optimization Algorithms. Cam-
bridge: Academic Press.

Yilmaz Eroglu, D., & Ozmutlu, H. (2017). Solution method for a
large-scale loom scheduling problem with machine eligibility and
splitting property. The Journal of The Textile Institute, 108(12),
2154–2165.

Ying, K. C., Lee, Z. J., & Lin, S.W. (2012). Makespanminimization for
scheduling unrelated parallel machines with setup times. Journal
of Intelligent Manufacturing, 23(5), 1795–1803.

Zhu, X., & Wilhelm, W. E. (2006). Scheduling and lot sizing with
sequence-dependent setup: A literature review. IIE Transactions,
38(11), 987–1007.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A hybrid genetic algorithm for parallel machine scheduling with setup times
	A comparative study of metaheuristics on large problem instances
	Abstract
	Introduction
	Hybrid genetic algorithm
	Solution representation
	Initialization
	Selection
	Crossover
	Local search
	Insertion neighborhood search
	Swap neighborhood search
	Nearest neighbor search
	Local search operator

	Computational experiments
	Instances
	Calibration
	Comparative study (R/si,j,k/Cmax)
	Real-world instance (R/si,j,k,Mj/Cmax)

	Conclusions
	References

