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Abstract
Since production efficiency and costs are directly affected by the ways in which jobs are scheduled, scholars have advanced a
number of meta-heuristic algorithms to solve the job shop scheduling problem (JSSP). Although this JSSP is widely accepted
as a computationally intractable NP-hard problem in combinatorial optimization, its solution is essential in manufacturing.
This study proposes performance-driven meta-heuristic switching approaches that utilize the capabilities of multi-operator
differential evolution (MODE) and particle swarm optimization (PSO) in a single algorithmic framework. The performance-
driven switching mechanism is introduced to switch the population from an under-performing algorithm to other possibilities.
A mixed selection strategy is employed to ensure the diversity and quality of the initial population, whereas a diversity
check mechanism maintains population diversity over the generations. Moreover, a Tabu search (TS) inspired local search
technique is implemented to enhance the proposed algorithm’s exploitation capability, avoiding being trapped in the local
optima. Finally, this study presents two mixed population structure-based hybrid evolutionary algorithms (HEAs), such as a
predictive sequence HEA (sHEA) and a random sequence HEA (rHEA), and one bi-population inspired HEA, called bHEA.
The comparative impacts of these varied population structure-based approaches are assessed by solving 5 categories of the
standard JSSP instances (i.e., FT, LA,ORB,ABZ andTA). The performance of these hybridized approaches (i.e., sHEA, rHEA
and bHEA) is compared and contrasted with its constituent algorithms (MODE, PSO and TS) to validate the hybridization’s
effectiveness. The statistical analysis shows that sHEA ranked first with mean value 1.84 compared to rHEA (1.96) and
bHEA (2.21). Moreover, the proposed sHEA is compared with 26 existing algorithms and ranked first with a mean value 5.09
compared to the near-best algorithms. Thus, the simulation results and statistical analysis prove the supremacy of the sHEA.

Keywords Job shop scheduling problem · Multi-operator differential evolution · Particle swarm optimization · Evolutionary
algorithm · Local search

Introduction

The job shop scheduling problem (JSSP) is a compli-
catedcombinatorial optimization problem (Sharma et al.,
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2018) that schedules a set of n jobs (n ≥ 1) on a set of m
machines (m ≥ 1) under a set of constraints (Cruz-Chávez
et al., 2019). Although there are many specific performance
measures for JSSP (e.g. throughput time, tardiness, earliness,
makespan and due-date), makespan is the most commonly
used (Zhang et al., 2019). The JSSP has been proven in the
literature to be a challenging NP-hard problem (Ibrahim &
Tawhid, 2022)with (n!)m possible solutions, reflecting a high
computational complexity (Zhao et al., 2018).

An extensive amount of research has been conducted to
find the optimal or near-optimal solutions of this complex
JSSP (Çaliş & Bulkan, 2015); however, the relatively small-
sized 10×10 JSSPdeveloped remained unsolved for a quarter
of a century (Mishra et al., 2017). The realization of com-
plexity and the incapability of exact approaches to solve even
medium-sized JSSP has meant that research has focused on
approximation approaches (Zhao et al., 2016).Many of these
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approximation approaches include classical and emerging
meta-heuristic approaches to be implemented to solve the
JSSP, such as particle swarm optimization (PSO) and genetic
algorithm (GA) (Zhao et al., 2016), differential evolution
(DE) (Wisittipanich & Kachitvichyanukul, 2012), bacterial
foraging algorithm (BFA) (Zhao et al., 2015), teaching-
learning based optimization (TLBO) (Baykasoğlu et al.,
2014), and grey wolf optimization (GWO) (Liu et al., 2020).
However, these stand-alone algorithms could not findoptimal
solutions for many well-known JSSP instances (if known).
The potential reason is that the application of these class
of meta-heuristics in combinatorial optimization is challeng-
ing due to the lack of a fine-tuning property around optima
and premature convergence (Zarandi et al., 2020), which
encourages researchers to develop hybrid approaches for
concurrently exploiting complementary features from two
or more algorithms (Cruz-Chávez et al., 2019).

The DE algorithm is a population-based meta-heuristic
approach that has successfully solved both continuous and
discrete optimization problems. The most significant benefit
of DE is that it has multiple mutation operators, and each
has individual characteristics (Liu et al., 2020). However,
Ponsich and Coello (2013) first implemented DE for JSSP
and claimed that the selection operator of DE is essentially
greedy, resulting in premature convergence and losing the
opportunity to reach global optima. Ren and Wang (2012)
also reported that DE prematurely converges because of fill-
ing similar individuals in the population over the evolution
process, causing a lack of diversity in the population. More-
over, Ponsich et al. (2009) verified that DE alone is incapable
of producing promising results over simple GA, greedy ran-
domized adaptive search procedure (GRASP) or Tabu search
(TS) in combinatorial optimization domains. On the other
hand, PSO has been implemented successfully in different
problem domains. However, Sha and Hsu (2006) conducted
a comparative study for solving JSSP and concluded that
stand-alone PSO could not produce optimal results for large-
sized problems, but hybrid PSOcould. The authors employed
the TS in PSO, which results in better performance. The
initial solution of PSOwas improved by amalgamating a dis-
patching rule and a constructive heuristic, and the variable
neighbourhood search was added to attain optimal solu-
tions consuming less computational time (Marichelvamet al.,
2020)–the authors claimed that hybrid PSO performs much
better than PSO.

The population updating strategy of DE and PSO is dis-
tinct. To illustrate, the new swarm in PSO does not depend
on whether the particle has been improved or not from the
previous swarm (Wang et al., 2019) and, therefore, there
is a chance of allowing the worst particle in the new gen-
eration. This concept is the opposite of DE, where only
the improved individual is allowed for the next generation,
which is why it is called a greedy selection process. This

process can create a population with lower divergence, lead-
ing to premature convergence (Ponsich & Coello, 2013).
These open problems are addressed by designing theDEwith
three popular mutation operators in which “DE/rand/1” and
“DE/best/1” are well-known respectively for the exploita-
tion property and exploration property, respectively and
“DE/current-to-pbest/1” possesses both properties (Liu et
al., 2020). In addition, this multi-operator DE (MODE) can
be integrated with PSO, which may further lead to higher
population diversity and ensure an improved evolutionary
process, increasing the chance of achieving an optimal solu-
tion. An evolutionary process may perform poorly with the
progression of generations, and it is inappropriate to allow
the search method to continue the evolution (Elsayed et al.,
2011). Thus, a population switching strategy (Wisittipanich
& Kachitvichyanukul, 2012) based on the performance of
an algorithm is employed in hybrid evolutionary algorithms
(HEAs) to emphasize higher-performing algorithms. The
lack of a fine-tuning property in meta-heuristics encourages
the embedding of TS into this hybrid scheme to improve the
local search property. TS is one of the strong local search
techniques which has a strong exploitation property and can
avoid becoming trapped in local optima (Sha & Hsu, 2006).
Moreover, the initial population of this proposed algorithm is
generated by implementing amixed selection strategy (MSS)
which considers both fitness value and the diversity of an
individual while selecting schedules, since the initial pop-
ulation impacts the solution quality and the computational
time (Cheng et al., 2016).

The major contributions of this research paper are:

• Diversity of the initial population is ensured by imple-
menting an MSS considering both solution quality and
diversity of a schedule.

• The proposed hybridization schemes of both MODE and
PSO produce better-diverged populations with a better
evolutionary process–to our knowledge, this is the first
application of hybridizingMODE and PSO for these NP-
hard problems.

• A performance-driven switching mechanism (PDSM) is
implemented in theHEAs to escape the evolution process
from the poorly performing search algorithm.

• Instead of ensuring diversity in personal best (pbest) and
global best (gbest) only by considering makespan value
as proposed by Sha and Hsu (2006), diversity in solution
order of pbest and gbest is also ensured with makespan
value to reduce unnecessary evaluations.

The performance of the predictive sequence HEA (sHEA),
random sequence HEA (rHEA) and bi-population inspired
HEA (bHEA) are evaluated along with stand-alone TS, DE
and PSO for solving standard benchmark instances taken
from the link http://jobshop.jjvh.nl/index.php. These are also
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assessed against 26 published algorithms, including the most
popular DE, GA and other recently developed algorithms.
Parametric analysis is performed to set the best combination
of parameters for the HEAs, and then statistical analysis is
conducted for better insights into the results. The compara-
tive analysis shows the dominance of sHEA over all other
algorithms.

The remainder of this article is organized as follows:
“Literature review” section describes the relevant litera-
ture review. “Constituent algorithms” section illustrates the
fundamental of the constituent algorithms, after which the
problem description of JSSP is given in “Problem descrip-
tion of a JSSP” section. The proposed algorithms and
strategies developed in this study are explained in “Pro-
posed algorithms” section, and “Experimental design and
result analysis” section describes the experimental design
and result analysis. Finally, concluding remarks and future
directions of the research are presented in “Conclusion and
recommendation” section.

Literature review

A range of influential studies can be found in the literature,
concentrating on designing algorithms to solve the challeng-
ing NP-hard JSSPs. In early periods, classical techniques
of operations research, which include, but are not limited
to, the shifting bottleneck procedure (Adams et al., 1988),
branch-and-bound technique (Brucker et al., 1994) and the
dispatching rule approach (Kannan & Ghosh, 1993), were
employed to solve JSSPs. These techniques can effectively
solve small-sized instances. However, the complexity analy-
sis of those techniques revealed that finding polynomial-time
algorithms were challenging. Therefore, scholars and prac-
titioners gradually began to pay attention to meta-heuristics,
such as swarm intelligence (SI) and evolutionary algorithms
(EAs). Recently, there has been a trend of exploiting and
improving the SI, EAs and their hybridization to address
JSSPs. This section aims to review the most relevant solution
techniques of the JSSPs.

Wisittipanich and Kachitvichyanukul (2012) developed
two DE algorithms for solving JSSP, considering two sin-
gle objectives (i.e., makespan and total weighted tardiness).
The effectiveness of these two algorithms was enhanced by
dynamically balancing exploration and exploitation ability to
avoid premature convergence. The first approach employed
simultaneously different mutation strategies to compensate
for the weakness of the individual strategy, whereas the sec-
ond approach changed the search behaviour whenever the
solutions did not improve. A local search was embedded
to promote exploitation in the search space. These algo-
rithms yielded promising results using less computational
times and fewer function evaluations than the two-stage PSO

(Pratchayaborirak&Kachitvichyanukul, (2011)). Investigat-
ing other mutation mixes and their robustness limit further
implications to a broader range of scheduling problems.
Baykasoǧlu et al. 2014 implemented the TLBO algorithm
to be testified its search mechanism in solving combinato-
rial optimization problems, adopting a random key based
approach for obtaining a job permutation and Giffler and
Thompson (G&T) algorithm (Giffler & Thompson, 1960)
for active schedules. The authors claimed that this algorithm
produced better results for a few test problems than some
algorithms, such as hybrid GA (Ren & Wang, 2012), two
memetic algorithms (Gao et al., 2011; Hasan et al., 2009) .
Thus, further exploration is required to enhance its effective-
ness in this domain. Qiu and Lau (2014) developed a hybrid
artificial immune system (HAIS), where amodified PSOwas
employed to improve the antibody hypermutation process
to accelerate the search procedure in solving 25 small-sized
JSSPs. Thus, the algorithm’s capabilities for solving complex
JSSPs are required for further investigation. Wang and Duan
(2014) claimed that the classic bio-inspired computational
method, such as biogeography-based optimization (BBO), is
incapable of solving the challenging NP-hard JSSPs, espe-
cially the large-sized instances. Thus, the authors developed
a hybrid BBO (HBBO), employing the chaos theory and
“searching around the optimum” strategy with the basic
BBO. This hybridization expedited the convergence towards
global optimum solutions. The hybridization’s effectiveness
was ensured comparedwith 14 popular algorithms, including
modified PSO (Lin et al., 2010) in solving 44 instances. This
study was limited to comparatively simple JSSPs, and thus
the authors advised to consider novel techniques to enhance
HBBO to handle more complicated problems. However, Lin
et al. (2010) claimed that many algorithms based on heuristic
algorithms, GAs, and PSO algorithms were implemented to
solve JSSPs. Unfortunately, their results are not yet satisfac-
tory.

Asadzadeh (2015) proposed an agent-based local search
GA (aLSGA) for JSSPs by claiming that hybridization can
enhance the performance and effectiveness of GAs. A multi-
agent system that contains various agents, each with unique
behaviours, was developed to implement the aLSGA. The
experimental results showed its expedited convergence speed
and improved solution quality. Zhao et al. (2015) devel-
oped a chemotaxis-enhanced bacterial foraging optimization
(CEBFO) and added a DE operator, aiming at solving the
tumble failure problem and accelerating the convergence
speed of the original algorithm. An employed local search
boosted exploitation capability. This algorithm proved its
effectiveness in solving 38 instances against the popular
hybrid PSO (Sha & Hsu, 2006) and TS guided shifting
bottleneck (Pezzella & Merelli, 2000) and other classical
algorithms. The authors claimed that transformation from
continuous to discrete space requires much time and affects
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the searching procedure. Akram et al. (2016) hybridized the
fast simulated annealing (FSA) with quenching (HFSAQ),
where the FSA performed global search and the quench-
ing run for trajectory search. These dual roles prevented the
algorithm from becoming trapped in local optima. This algo-
rithm’s effectivenesswas established by solving 88 instances,
among which 45 were solved optimally. This algorithm out-
performed the 18 existing algorithms reviewed, includingGA
and TS (GATA) (Meeran & Morshed, 2014) that claimed
that different features of many techniques are required to
handle this challenging NP-hard problem. Kurdi (2016)
developed an effective new island model GA (NIMGA) for
JSSPs, minimizing the makespan. This study proposed a
nature-inspired evolutionary model and a migration selec-
tion mechanism to improve search diversification and delay
premature convergence. The evolutionary model employed
different evolutionary methods while islands performed self-
adaptation. The migration selection mechanism migrated
worst individuals hoping to find a better chance to live in
a more suitable environment. The author tested this algo-
rithm’s effectiveness in solving 52 instances; however, the
global search capability can be further testified in solving
complex JSSPs, such as Taillard instances (Taillard, 1993).
Zhao et al. (2016) proposed a hybrid DE and estimation
of distribution algorithm (EDA) based on a neighbourhood
search (NS-HDE/EDA). The chaotic strategy was enhanced
the searching ability, whereas the neighbourhood search
improved the solution quality. EDA contributed to enhanc-
ing the global exploitation capability of the hybridization.
Although this algorithm improved solution quality compared
to standard GA and PSO, it was computationally expensive
due to local search.Thus, designing an efficient local search is
challenging but meaningful. Moreover, the greedy selection
process reduces the population diversity (Ponsich & Coello,
2013).

Dao et al. (2018) developed aparallel bat algorithm (PBA),
where random-key encoding scheme and communication
strategy were employed. The PBA aimed to correlate indi-
viduals in swarms and share the computational load. The
authors claimed that the communication strategy ensured the
diversity-enhanced bats among the split population’s groups
to speed up solutions. The algorithm’s effectiveness was
tested against the classical bat algorithm and PSO (Ge et
al., 2008) in solving 43 instances. Notably, Ge et al. (2008)
improved the PSO’s search capability using an artificial
immune system (AIS). Jiang and Zhang (2018) improved the
GWO algorithm by designing a discrete crossover operator,
embedding an adaptive mutation method to keep population
diversity and a local search for exploitation. The analy-
sis showed that the discrete GWO outperformed the varied
GWOs and many existing algorithms, including agent-based
parallel GA (Asadzadeh & Zamanifar, 2010). Zhao et al.
(2018) proposed a hybrid differential-based harmony search

(DHS) algorithm as the population-based harmony search
(HS) algorithm lacks local search capability. The authors
employed the best individual in the pitch-adjustment pro-
cess to expedite convergence and maintained a diversity of
the population using the differential-based enhanced mech-
anism. Moreover, a modified variable neighbourhood search
was employed to find solutions around the current har-
mony vector. Although this algorithm outperformed many
state-of-the-art algorithms, the effectiveness of DHS is not
very obvious while dealing with large-scale JSSPs. Thus,
the authors suggested improving the DHS in this regard.
Moreover, the proposed local search was computationally
expensive, and thus further investigation was recommended.
Although the artificial bee colony (ABC) algorithm effi-
ciently solved many optimization problems, it required
further improvement to solve the complex JSSP (Sharma
et al., 2018). The authors maintained a proper harmony
amid exploration and exploitation capabilities of the ABC
by incorporating position update inspired by the beer froth
(BeF) phenomenon, calling the algorithm BeFABC. The
effectiveness of this algorithm was established against a list
of existing algorithms, including parallel ABC (Asadzadeh,
2016); however, performance could be tested in solving com-
plex machine scheduling problems.

Liu et al. (2020) claimed that WOA has already proved
its effectiveness in solving a range of optimization prob-
lems. However, its performance was further enhanced with
Lévy flight (LF) and DE (WOA-LFDE) to solve JSSP.
The LF improved the abilities of global search and conver-
gence in iteration, whereas the DE algorithm enhanced the
local search and exploitation capabilities, keeping the diver-
sity of solutions to escape local optima. The experimental
results showed its superior performance against state-of-
the-art algorithms, including HBBO (Wang & Duan, 2014),
HAIS (Qiu & Lau, 2014), HFSAQ (Akram et al., 2016) and
BeFABC (Sharma et al., 2018), in solving 88 instances. The
authors directed to test the algorithm’s performance in solv-
ing other combinatorial optimization problems. Mahmud et
al. (2021) developed a two-step communication based EA,
where MODE was employed at the beginning of the search
to exploit the exploration capability of the population-based
algorithm. TheTSwas employed later to utilize a local search
capability. This study developed a decoding heuristic for an
active schedule and enhanced the evolutionary process via
mixed selection and communication strategies. This algo-
rithm showed incapability in solving complex problems due
to a lack of global search capability.

The articles reviewed above considered the JSSP as a
challenging NP-hard problem in the combinatorial optimiza-
tion domain, solving by developing a range of algorithms.
The well-known and recently emerging algorithms were
implemented since those algorithms have better exploration
properties due to a multi-point searching capability (Zhao
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et al., 2018). However, the exploitation incapability leads
to higher computational expenses with poor solution qual-
ity (Zarandi et al., 2020) and the faster decline of diversity
causes a premature convergence (Ren&Wang, 2012). In con-
trast, single-point search methods offer better exploitation;
however, poor exploration and computational complexity
limit their applications (Zhao et al., 2018; Liu et al., 2020).
Thus, many hybrid approaches were developed, combining
the first-rate features of multiple algorithms to optimize the
trade-off between global search and local search capabilities
(Mahmud et al., 2021), as reviewed above, explaining their
strengths and drawbacks. However, the integration of multi-
ple meta-heuristics into a single algorithmic framework can
not be found in the production scheduling domain. Thus, this
integration to enhance evolutionary performance can open
up a new direction in combinatorial optimization problems.
To fill the gap, this research proposes a unified framework
of multiple meta-heuristics with the integration of switching
strategy to emphasize the best performing meta-heuristic to
continue the search process. This algorithm also includes a
mixed selection strategy for the better initial population, a
local search for exploitation property and a mechanism for
ensuring population diversity over the evolutionary process.
Finally, an extensive experiment is conducted by solving a
wide range of standard JSSP instances.

Constituent algorithms

This section discusses the fundamentals of constituent algo-
rithms, i.e., DE and PSO, of our proposed algorithms as a
single-objective optimization problem under study.

Fundamental of a differential evolution (DE)

DE, which is one of the leading EAs in the literature, has
already been applied in combinatorial optimization domains
such as flow shop scheduling (Onwubolu &Davendra, 2006)
and JSSP (Mahmud et al., 2021; Liu et al., 2009). This algo-
rithm is prominent in the research community as it owns
multiple variants, the ability to fast convergence, the sim-
plicity to implement and more importantly, the capability
of solving various optimization problems using the same
parameter values (Sallam et al., 2020). Moreover, in liter-
ature, DE performed better than many other EAs such as GA
for solving different optimization problems (Elsayed et al.,
2012), and its mutation and crossover operators mainly con-
trol its performance (Ponsich & Coello, 2013). Although DE
and GA are both variants of EAs, GA uses different solu-
tion updating mechanisms, including crossover, mutation,
and elitism-preserving techniques. Crossover generates new
solutions by exchanging genes among chromosomes, while
mutation maintains diversity through small perturbation into

the solutions to escape local optima, and elitism ensures the
theorem “survival of the fittest”. Although GA has been suc-
cessfully implemented to handle many complex problems,
it faces more difficulties than DE for handling multi-modal
problems (Sallam et al., 2020).

Since, in this study, DE is the one main component algo-
rithm, this section focuses on explaining DE’s main steps.
DE starts with initializing population and in the evolution
process, includes mutation, crossover and selection. A min-
imization problem is considered in Eq. 1 to explained the
DE, in which Cmax denotes makespan of solution vector x
= {x1, x2, . . . , xD}, D is number of decision variables, and
xmin
k and xmax

k indicate lower and upper bound of kth deci-
sion variable.

minCmax = { f (x)|xmin
k ≤ xk ≤ xmax

k ,

∀k = 1, 2, . . . , D} (1)

Population Initialization This algorithm initializes popu-
lation of sized NP of D-dimension vector at generation
G = 0, such as Popo = [xol,1, xol,2, . . . , xol,k, . . . xol,D]|l =
1, 2, . . . , N P . Each xGl is known as target vector and the kth

position in lth vector is filled usingEq. 2,where rand(0, 1) ∈
[0,1] is a random probability distribution.

xl,k = xmin
k + rand(0, 1) × (xmax

k − xmin
k ),

∀l = {1, 2, . . . , N P}; ∀k = {1, 2, . . . , D} (2)

Mutation In the evolution process, the first step is to generate
a mutant vector (M), where in variant DE/rand/1 as an
example, threemutually exclusive candidate solutions (xGr1 �=
xGr2 �= xGr3 ) are randomly picked from the current generation
G and a mutant vector (MG

l ) is generated by multiplying
a scaling factor (F) to the differential vector of two target
vectors (xGr2 and x

G
r3 ) and resultant is added to the third target

vector(xGr1 ) chosen, as presented in Eq. 3.

MG
l = xGr1 + F × (xGr2 − xGr3) (3)

F is a scale factor that leads to convergence speed and the
population diversity (Liu et al., 2009).
Crossover In general, crossover is applied once mutant vec-
tor is generated. It generates an offspring solution known
as a trial vector (T) and could generally be binomial and
exponential. Each decision variable k is considered in bino-
mial operator if a generated random number is less than the
crossover rate (Cr ), as presented in Eq. 4.

TG
l,k =

{
MG

l,k if rand(k) ≤ Cr or k = krand
xGl,k otherwise

(4)
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In the above equation, rand(k) ∈ [0, 1] and krand ∈
[1, 2, 3, . . . , D].

In exponential, a random integer d that defines the starting
point taken from a target vector for crossover is chosen from
[1, D] and another integer b is chosen from [d, D]. It defines
how many decision variables are selected from the donor
solution. However, the trial vector is generated by Eq. 5,
when both d and b are chosen.

TG
l,k =

{
MG

l,k for k = 〈d〉D, 〈c + 1〉D, 〈c + d − 1〉D
xGl,k otherwise

(5)

In equation, 〈c〉D represents a function of modulus D with
starting point of d (Sallam et al., 2020).
Selection The produced trial vector (TG

l ) is evaluated and
compared with the target vector (xGl ) based on the fitness

value. The trial vector is assigned to the target vector (x(G+1)
l )

for the upcoming generation if the fitness value is lower in
the trial vector for the minimization problem; otherwise, the
current trial vector is mathematically copied into the next
generation, as presented in Eq. 6.

x(G+1)
l =

{
TG
l , if f (TG

l ) < f (xGl )

xGl , otherwise
(6)

Fundamental of a particle swarm optimization (PSO)

PSO is the population-based algorithm developed based on
the social behaviour of the flocks of birds or the schools of
fish, and it comprises a set of particles collectively called a
swarm. A particle (which represents a job sequence) moves
toward the personal best (pbest) obtained so far by itself
and the global best (gbest) obtained by the swarm so far.
The particle movement toward the pbest and gbest depends
on the velocity, which is calculated using Eq. 7 while the
position of a particle is subsequently updated using Eq. 8.
vGl stands for velocity of particle l in generation G and xGl
is the position of a particle l in generation G. w is the inertia
and c1 and c2 control the movement of a particle towards
the pbest and gbest, respectively. The rand1 and rand2 are
variables having value in between 0 and 1.

v(G+1)
l = w × vGl + c1 × rand1 × (pbestGl − xGl )

+c2 × rand2 × (gbestGl − xGl ) (7)

x(G+1)
l = xGl + v(G+1)

l (8)

Because of the simplicity and effectiveness of PSO, its many
variants have been proposed to solve a range of changeling
optimization problems, including in continuous (Wang et
al., 2018) and discrete optimization (Sha & Hsu, 2006).
Moreover, the PSO ensures a supreme quality of solution
convergence (Qian & Li, 2018) and diversity (Islam et al.,

2021), which is essential for such NP-hard problems under
study.

Problem description of a JSSP

A JSSP comprises a finite set J = {J1, J2, J2, . . . , Jn}
of n non-homogeneous jobs indexed by j and a finite set
M = {M1, M2, M3, . . . , Mm} of m machines indexed by i .
Each job j comprises a finite set Oj = {Oj1, Oj2, . . . , Ojm}
of m tasks/operations indexed by t and can be processed
by the m machines to complete the assigned work. Thus,
sequencing and processing the n jobs to the m machines are
the typical aim of any n × m JSSP, considering different
objective functions (Wang et al., 2018; Zhang et al., 2019).
However, the sequence of operations on one job should be
predefined. Each operation Ojt ∈ Oj can be processed by
one ofmmachines and neither this operation nor the assigned
machine will be interrupted by any other job until the current
job’s work is finished. It means that no preemption is allowed
and the assignedmachine are considered available (Liu et al.,
2020). Total operations are n × m, excluding the additional
two dummy operations at the start and end with zero process-
ing time. C j = max{C j1,C j2, . . . ,C jm}, ∀ j indicates job
completion time and the makespan is calculated by setting
Cmax = max{C1,C2,C3, . . . ,Cn}.

The constraints which must be followed while building a
JSSP are as follows:

• A job cannot be processed more than once on the same
machine.

• A job must satisfy its precedence relations, if any.
• Each machine can process only one job at a time.
• A job cannot be processed in multiple machines at the
same time.

• Release time and due dates are not specified.

The generated solution of this problem is a schedule, which is
a sequence of operations to machines with deterministic pro-
cessing times. This complex combinatorial NP-hard problem
is optimized in this study, minimizing the makespan value.

Proposed algorithms

As previously described, since no single algorithm and/or
search strategy can solve a wide range of optimization prob-
lems, multi-operator and/or multi-method based approaches
have been emerging to handle this difficulty. In this work,
MODE and PSO algorithms are proposed and implemented
in a single algorithmic framework with distinct multi-
populated strategies to solve a wide range of JSSPs. This
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section presents the proposed algorithms (i.e., sHEA, rHEA
and bHEA).

bHEA

The idea of simultaneous multi-search is implemented in the
proposed hybrid optimization framework bHEA, in which
the equally divided sub-populations evolve in MODE and
PSO and exchange information to strengthen the searching
power (Cruz-Chávez et al., 2019). The quality of the evo-
lution process of both algorithms are measured, and if one
algorithm performs better than another, the best performing
algorithm continues the search process until both become
under-performing. Then, the sub-populations are switched
between these two algorithms after enhancing the quality
of pbest and gbest through evolving in a local search. The
Algorithm 1 presents the main steps of the proposed bHEA.

Algorithm 1 The framework of the proposed bHEA
1: Define N P; FES ← 0; MAXFES ; Count1 ← 0; Count2 ← 0; G ← 0, PreMax ;
2: Generate an initial population of size 4 × N P as described in Sect. 5.3;
3: Convert the generated population to preference list as explained in Sect. 5.4 and calculate fitness value

using Algorithm 3;
4: Compute goodness score using Equation 11 and select initial population of size N P with higher score

as illustrated in Sect. 5.5;
5: Initialize the pbest and gbest;
6: Set FES ← (FES + 4 × N P);
7: Create two sub-populations for two search algorithms {SPalg|alg=1,2} of size {nAlg1 = nAlg2 = N P

2 }

and ; Divide SP1 into three sub-SP for three MODE variants {SSPop|op=1,2,3} of each size
nAlg1

3 ;
8: while FES ≤ MAXFES do
9: for l = 1 : N P

2 do

10: if l ≤ nAlg1
3 && Count1 ≤ PreMax then

11: Generate mutant vector, {MG
l,op|op=1,2,3} from SSP1,SSP2 and SSP3 using Equations 12, 13

and 19, respectively;
12: Generate trial vector, {TG

l,op|op=1,2,3} of the {M
G
l,op|op=1,2,3} using Equation 4;

13: end if
14: if Count2 ≤ PreMax then
15: Update velocity vector vG+1

lik and position of a solution order vector SG+1
lik corresponding to

xl in SP2 using Algorithm 4;
16: end if
17: end for
18: Update SP1 using Equation 6 and Algorithm 5, set Count1 ← (Count1 + 1) using Equation 20;

regroup {SSPop|op=1,2,3};
19: After evaluating SP2, update solution using Algorithm 5 and set Count2 ← (Count2 + 1) using

Equation 20;
20: if Count1 == Count2 == PreMax then
21: Apply local search (Algorithm 6) on a randomly selected pbest from {SPalg|alg=1,2} and update

solutions using Algorithm 5;
22: Apply population switching; Create the {SSPop|op=1,2,3} from SP1 as explained before; finally,

set Count1 and Count2 ← 0;
23: FES ← (FES + FESLS);
24: else if Count1||Count2 == PreMax then
25: FES ← (FES + N P

2 );
26: else
27: FES ← (FES + N P);
28: end if
29: G ← (G + 1);
30: end while

Initially, a population of 4 × N P candidate solutions are
generated using the Latin Hypercube Design (LHD), as it
efficiently covers the search space (Sallam et al., 2017), as
described in the Sect. 5.3. Then, the generated continuous
random solution strings are converted to integer strings as
explained in the Sect. 5.4 and then, a population of size N P
is chosen with giving priority to both diversity and fitness
value in the selection procedure, known as MSS, to ensure
better-searching experience and to avoid premature conver-
gence (see the Sect. 5.5). The population is then divided
into two sub-populations, i.e., SP1 and SP2, to receive ben-

efits from multi-method. The SP1 is further grouped into
three, i.e., SSPop|{op=1,2,3}, and searches in parallel with cho-
sen operators of DE. The choices are made meticulously to
ensure diversity and convergence simultaneously, as illus-
trated in Sect. 5.6.1. In order to avoid premature convergence,
a regrouping is introduced in each generation (Tasgetiren
& Suganthan, 2006). The performance of each evolution
method ismeasured based on the capability of updating gbest
(line 18 and 19 in Algorithm 1 and Eq. 20). If either MODE
or PSO fails to improve the gbest to a specified number
of times (PreMax), the corresponding evolution process is
halted until the same scenario arises in another one. Then, a
proportion of pbest is sent to a local search to overcome
the problem created in MODE-PSO since local search is
more capable of producing solutions around local optima
than MODE and PSO. It works by creating neighbour solu-
tions of the candidate pool. The pbest and gbest are updated
in every generation in such a way that each of pbest will
have a distinct makespan and solution order to assure bet-
ter evolution of PSO, described in Algorithm 5. Whenever
the local search terminates, the sub-populations of MODE
and PSO switch between them. The population switching
between algorithms solely depends on the performance of
the search process, and therefore it is named PDSM. This
HEA is named bHEA since it is designed based on the bi-
population concept. The bHEA terminates when the current
number of fitness evaluations (FES) reaches the maximum
number of fitness evaluations (MAXFES).

rHEA and sHEA

Population is commonly believed to be one of the most cru-
cial features of EAs and enables explorations to different
parts of the search space via a set of individuals. Thus, divid-
ing the population into smaller sub-populations may lose
search uniformity and exploration. However, having a larger
population sizemay not always be helpful (Chen et al., 2012).
Thus, this study, as shown in Algorithm 2, integrates both
scenarios in a single algorithmic framework through a popu-
lation switching strategy. If any algorithm shows an adequate
performance over the generations, no other algorithms evolve
to solve the problem. Otherwise, the population among the
algorithms switches depending on the performance measure.

In Algorithm 2, the randomly generated population is fil-
tered based on the fitness value and the diversity of a schedule
by employing a developed MSS, as described in Sect. 5.5.
The initial population is then divided into three smaller sub-
populations, i.e., SPop|{op=1,2,3} of each sized N P

3 before
evolving in the MODE, in which each sub-population uses
their mutation and the defined crossover. Over the evolu-
tion process, the algorithm may perform poorly, and it is
inappropriate to carry out the search process (Elsayed et
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Algorithm 2 The framework of the proposed sHEA (rHEA)
1: Define N P; FES ← 0; MAXFES ;Count1 ← 0; Count2 ← 0; G ← 0; PreMax ;
2: Generate an initial population of size 4 × N P as described in Sect. 5.3;
3: Convert the generated population to preference list as explained in Sect. 5.4 and calculate fitness value

using Algorithm 3;
4: Compute goodness score using Equation 11 and select initial population of size N P with higher score

as illustrated in Sect. 5.5;
5: Initialize the pbest and gbest ;
6: Set FES ← (FES + 4 × N P);
7: Create three sub-populations {SPop|op=1,2,3} of each sized N P

3 for MODE operators ; Set Sel ← 1;
8: while FES ≤ MAXFES do
9: if Sel == 1 then
10: for l = 1 : N P

3 do
11: Generate mutant vector, {MG

l,op|op=1,2,3} from {SPop|op=1,2,3 } using Equations 12, 13 and
19, respectively;

12: Generate trial vector, {TG
l,op|op=1,2,3} of the {M

G
l,op|op=1,2,3} using Equation 4;

13: end for
14: Update {SPop|op=1,2,3} using Equation 6 and Algorithm 5; set Count1 ← (Count1 + 1) using

Equation 20; regroup {SPop|op=1,2,3};
15: else if Sel == 2 then
16: for l = 1 : N P do
17: Update velocity vector vG+1

lik and position of a solution order vector SG+1
lik corresponding to

xlG using Algorithm 4;
18: end for
19: After evaluating, update solution using Algorithm 5 and set Count2 ← (Count2 + 1) using

Equation 20;
20: end if
21: if Count1 == PreMax then
22: Apply local search (Algorithm 6) on a randomly selected pbest from {SPop|op=1,2,3} and update

solution using Algorithm 5;
23: Sel ← 2 (for rHEA, randomly assign 1 or 2 to Sel);Count1 ← 0; FES ← (FES+FESLS);
24: else if Count2 == PreMax then
25: Apply local search (Algorithm 6) on a randomly selected pbest and update solution using Algo-

rithm 5;
26: Sel ← 1 (for rHEA, randomly assign 1 or 2 to Sel);Count2 ← 0; FES ← (FES+FESLS);
27: else
28: FES ← (FES + N P);
29: end if
30: Set G ← (G + 1);
31: end while

al., 2011). Thus, the population is switched from an under-
performing algorithm to another, emphasizing the better
performing algorithm. A performance indicator that counts
the inability of the current search process to improve the
global best (gbest) solution over the evolution process is
designed to control the switching decision and compared
with the PreMax . The algorithm with low performance
quickly reaches PreMax , and then the population switches
to another algorithm. If the MODE can satisfy the popula-
tion switching condition, a certain proportion of pbest is
sent to a local search. Similarly, the local search perfor-
mance is measured and compared with Tabu termination
criteria. The inferior performance of the local search allows
the entire population to select the PSO that evolves using
its operator and follows the same termination criteria of the
MODE. The population switching between algorithms solely
depends on the performance of the search process. This HEA
is called sHEA as it follows a specific sequence. Instead of
switching population between algorithms sequentially, the
implemented PDSM with a random algorithm selection is
developed, named rHEA and highlighted in Algorithm 2.

Population initialization

The LHD is employed to generate an initial distinct
continuous-based population as it is capable of producing
more efficiently scatter points across the solution space (Sal-

0.92 0.75 0.25 0.75 0.82 0.53 0.44 0.62 0.55Random string

Integer string 1 2 3 2 1 3 2 3 1

ROV 1 2 3 2 1 3 3 1 2

J1 J2 J3 J2 J1 J3 J2 J3 J1
Preferred job  

schedule

Fig. 1 The mapping of the algorithm from continuous to discrete

lam et al., 2017).

xl,k = xmin
k + (xmax

k − xmin
k ) × lhd(1, N P)

∀l = {1, 2, . . . , N P},∀k = {1, 2, . . . , D(= n × m)} (9)

lhd in Eq. 9 is a function of the LHD to produce random real
numbers.

Solution representation, encoding and decoding
schemes

Solution representation has a significant impact on designing
algorithms and achieving the highest degree of performance
(Cheng et al., 2016). Ponnambalam et al. (2001) compared
among several solution representations (e.g. operation-based
representation, job-based representation, preference-based
representation, and priority rule-based representation) and
concluded that the preference-based representation provides
the best solution quality, which is therefore implemented
in this study. An example of n × m JSSP is considered to
illustrate the representation, where a string consists ofm sub-
strings, each for onemachine. Each sub-string length is n, and
each number in a sub-string identifies an operation that has
to be processed on the relevant machine. The sub-string only
prescribed the preference list of the corresponding machine,
not the actual operation sequence.

To illustrate the preference-based representation with
encoding, a random string is [(0.92, 0.75, 0.25), (0.75, 0.82,
0.53), (0.44, 0.62, 0.55)], where each string consists ofm = 3
sub-string of dimension 1× n (n = 3), as depicted in Fig. 1.
The values in each sub-string are real numbers generated at
random in interval [0,1]. These real numbers are then trans-
formed into an integer series based on ranked-order-value
(ROV) (Zhao et al., 2018), which results in integer string
[(1, 2, 3), (2, 1, 3), (2, 3, 1)] known as the preference list.
The first sub-string (1, 2, 3) is the preference sequence of
machine M1, the second sub-string (2, 1, 3) is for machine
M2, and the third sub-string (2, 3, 1) is for machine M3. An
active schedule, where no operation can be drawn into with-
out delaying any other operations (Ahmadian et al., 2021), is
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Table 1 Data set for 3×3 JSSP

Job Machine sequence Job processing time

O1 O2 O3 M1 M2 M3

1 M1 M3 M2 5 4 6

2 M1 M2 M3 3 6 3

3 M3 M1 M2 7 4 5

deduced from this preference list. This schedule can only pro-
vide the optimal and feasible solution (Pongchairerks, 2019).
Therefore, the most popular algorithm, known as G&T (Gif-
fler & Thompson, 1960), is employed to decode a preference
list of jobs to an active schedule. The Algorithm 3 explains
the procedure and the corresponding notations are as follows:

(i, j): the operation of job j that need to be processed on
machine i ,

S: the partial schedule that contains scheduled operations,
�: the set of operations without predecessors,
Si j : the earliest start time at which (i, j) ∈ � could be

started,
Pi j : the processing time of (i, j),
Ci j : the earliest time at which (i, j) ∈ � could be

completed:Ci j = Si j + Pi j

Algorithm 3 Decoding Algorithm
1: Define Preference list; Job sequence; Processing time;
2: Initialize S = ∅; � is initialized to contains all operations without predecessors;
3: while True do
4: Determine C∗ = min(i, j)∈�{Ci j } and the machine m∗ on which C∗ could be realized;
5: Identify the operations (io, jo) ∈ � with associated starting time Sio jo in such a way that (io, jo)

requires machine m∗, and Sio jo < C∗;
6: Choose (i, j) among the operation set (io, jo) with higher preference;
7: Add (i, j) to partial schedule set S;
8: Assign Si j as the starting time of (i, j) and Ci j = Si j+Pi j ;
9: if all the operations are not assigned to S then
10: Delete (i, j) from � and includes its immediate successor in �;
11: else
12: Stop
13: end if
14: end while
15: C j = max{C j1,C j2, . . . ,C jm}, ∀ j ;
16: Cmax = max{C1,C2,C3, . . . ,Cn};

The decoding algorithm is applied on the exemplified pref-
erence list with the JSSP data set of Table 1, and thus an active
schedule with makespan 22 is achieved, as depicted in Fig.
2i (each step is explained from Fig. 2a–i).

Mixed selection strategy (MSS)

The selection operator in each algorithm is responsible for
the searching power of the next generation. Most of the algo-
rithms prioritize the optimization of the fitness value, i.e.
the probability of selecting an individual is proportional to
the fitness value (Ren & Wang, 2012). This phenomenon
leads to faster premature convergence as a result of filling the
population with similar individuals (Goldberg, 2006). The
MSS based on fitness value and similarity index is proposed

to avoid premature convergence. Let us assume two solu-
tion orders such as SG1 =[(1, 3, 2), (1, 2, 3), (2, 1, 3)] and SG2
=[(2, 3, 1), (1, 2, 3), (1, 3, 2)]. The first sub-string of both
solution orders are [(1, 3, 2)] and [(2, 3, 1)], which shows
that only the second position has a similar operation and the
remainder are different. This scenario is defined by the posi-
tional similarity degree, and the sum of the similarity degree
(SPS) is 1 (0 + 1 + 0). The SPS for the rest of the two
sub-strings will be 3 and 0, respectively. Therefore, the co-
positional similarity degree between SG1 and SG2 denoted as
SG(SG1 ,SG2 ) will be 0.44 ( 1+3+0

3∗3 ), where the number of jobs
(n) and the number of machines (m) are both 3. If the popula-
tion comprises of N P solution orders, then the concentration
value of the SG1 is calculated based on Eq. 10.

c(SG1 ) = ∑ (N P−1)
l=1

S(SG1 ,SGl )

(N P−1) (10)

The goodness value Gs(SG1 ) which consists of concentra-
tion value and the fitness value f (SG1 ) of the corresponding
solution order is calculated using Eq. 11. The fitness value
is a makespan that is calculated using G&T algorithm, as
explained in Sect. 5.4. The higher the value of Gs(SG1 ), the
better diversification and fitness value can be achieved. W is
for priority between the diversity and fitness value.

Gs(SG1 ) = W × max( f (SG)) − f (SG1 )

max( f (SG)) − min( f (SG))

+(1 − W ) × (1 − c(SG1 )) (11)

Evolution process

The strategies employed in the HEAs (i.e., sHEA, rHEA and
bHEA) are discussed in this section.

Multi-operator differential evolution (MODE)

DE is conventionally represented byDE/a/b/c, inwhichDE is
for differential evolution, a denotes the vector to be perturbed,
b stands for the number of differential for the perturbation of
a, and c stands for the type of crossover to be used such as
bin: binomial, exp: exponential. The evolutionary process of
this algorithm comprises mutation, crossover and selection.
This algorithm has eight types of mutation operators pre-
sented from Eqs. 12–19, which have individual traits (Liu et
al., 2020). The threemutation operators which are selected in
this MODE are “DE/rand/1”, “DE/best/1” and “DE/current-
to-pbest/1” shown in Eqs. 12, 13, and 19, respectively.
“DE/rand/1” is recognized to have the best exploration prop-
erty (Zhao et al., 2016) whereas, “DE/best/1” has the best
exploitation property (Wisittipanich & Kachitvichyanukul,
2012). The balance between these two characteristics in the
evolutionary process is ensured by “DE/current-to-pbest/1”
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Decoding to an active schedule of 3×3 JSSP

(Liu et al., 2020). These three mutation operators are com-
bined in DE and known as MODE in this study.

DE/rand/1: MG
l = xGr1 + F × (xGr2 − xGr3) (12)

DE/best/1: MG
l = xGbest + F(xGr1 − xGr2) (13)

DE/current/1: MG
l = xGl + F(xGr1 − xGr2) (14)

DE/current-to-best/1: MG
l = xGl + F(xGbest − xGl )

+F(xGr1 − xGr2) (15)

DE/rand/2: MG
l = xGr1 + F(xGr2 − xGr3)

+F(xGr4 − xGr5) (16)

DE/best/2: MG
l = xGbest + F(xGr1 − xGr2)

+F(xGr3 − xGr4) (17)

DE/current-to-rand/1: MG
l = xGl + F(xGr1 − xGl )

+F(xGr2 − xGr3) (18)

DE/current-to-pbest/1: MG
l = xGl + F(xGbest,p − xGl )

+F(xGr1 − x̃Gr2) (19)

It is noted that in Eq. 12, xr1 �= xr2 �= xr3 are randomly
selected from the current population and these operators are
also different from the target vector xGl . x

G
best,p in Eq. 13 is

chosen from the top 15% of individuals belonged to the cur-
rent population and x̃Gr2 in Eq. 19 is taken from the union of
current population and archive of pbest . F is scale factor,
which leads to convergence speed and the population diver-
sity (Sallam et al., 2020). Moreover, the trial vector TG

l is
obtained by recombining a mutant vector MG

l and a target
vector xGl , as shown in Eq. 4. The produced trial vector is
evaluated and compared with the target vector based on the
fitness value. The trial vector is assigned to the target vector
if the fitness value is lower in the trial vector for the mini-
mization problem, as depicted in Eq. 6.

The performance of this algorithm greatly depends on its
search operators (mutation and crossover) and control param-
eters. It is claimed that having a higher value of Cr is the
most suitable, and the setting of F value is quite tricky for all
instances (Ponsich & Coello, 2013). However, these param-
eters are tuned in Sect. 6.2.
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Particle swarm optimization (PSO)

Although the PSO algorithm is designed for a continuous
search space, this paper employs it in a discrete combinato-
rial optimization domain by converting the continuous-based
population to discrete. The preference-based representation
illustrates particles, as discussed in Sect. 5.4, while parti-
cle movement is described in terms of a swap operation. For
instance, if vGlik = 0 for an operation at position k onmachine
or sub-string i in a solution order SGlik of a swarm, the opera-
tion can move to the pbest or gbest depending on the value
of c1 and c2 respectively. The steps of particle movements
are illustrated in Algorithm 4.

Algorithm 4 Velocity update and particle movement
1: Define c1; c2;
2: set i ← 1;
3: while i ≤ m do
4: set k ← 1;
5: while k ≤ n do
6: Choose a location k in SGlik ;
7: Identify and denote the corresponding located job by J1;
8: if 0 ≤ rand(1) ≤ c1 then
9: Find out the job J1 in pbest and its corresponding location denoted by k

′
. Denote the job at

location k
′
in SGlik by J2;

10: else if c1 < rand(1) ≤ c1 + c2 then
11: Find out the job J1 in gbest and its corresponding location denoted by k

′
. Denote the job at

location k
′
in SGlik by J2;

12: end if
13: if vlik and vlik′ == 0 then
14: Swap J1 and J2 in SGlik ;
15: Set vlik ← 0;
16: else
17: Set vlik ← (w − 1);
18: end if
19: Set k ← (k + 1);
20: end while
21: set i ← (i + 1);
22: end while

If the pbest of all particles becomes the same over the
generations, the evolutionary process will become trapped in
local optima, and therefore a diversity check mechanismwas
developed to keep the makespan of pbest solutions different
(Sha & Hsu, 2006). Besides keeping the makespan of pbest
different, it is also significant to keep the schedules different
to reduce unnecessarymovements. Thus, thepbest and gbest
are updated in every generation considering both makespan
and their corresponding solution order using Algorithm 5.

Algorithm 5 Diversity check mechanism
1: Define gbest; pbest; SGl ;
2: if f (SGl ) < f (gbest) then
3: set pbestworst ← gbest and gbest ← SGl ;
4: else if f (SGl ) > f (gbest) && f (SGl ) < f (pbestl) then
5: Set pbestworst ← pbestl , and pbestl ← SGl , provided that f (S

G
l ) can not be equal to any f (pbest);

6: else if f (SGl ) == f (pbest) then
7: Set pbest ← SGl , provided that solution orders are different;
8: else if f (SGl ) == f (gbest) then
9: Set gbest ← SGl , provided that solution orders are different;
10: else if f (SGl ) > f (gbest) && f (SGl ) < f (pbestworst ) then
11: Set pbestworst ← SGl , provided that f (SGl ) can not be equal to any f (pbest);
12: end if

Local search

The local search capability of population-based algorithms
such as PSO and DE are sufficiently lower than the global
search capability, and thus these algorithms suffer from pre-
mature convergence and are easily trapped in local optima
(Gao et al., 2019; Lin et al., 2010). Thus, a local search is
implemented to improve further the makespan value of a
schedule obtained from the MODE-PSO combination. TS
has been employed as it can generate solutions around the
optima (Peng et al., 2015). This technique improves the solu-
tion quality iteratively and escapes the evolution of being
trapped in local optima. In this study, the pbest solutions,
which are found from the MODE and PSO, are passed onto
the TS when the evolutionary process in MODE-PSO is
incapable of updating the best solution obtained so far. It
improves the pbest and gbest, which directly enhance the
searching capability of MODE-PSO. The main steps of the
implemented local search are explained in Algorithm 6.

Algorithm 6 Local search
1: Create pbest pool (5% of NP); Define parameters (see Sect. 6.2); Set Count3 ← 0; Set FESLS ← 0;
2: Set l ← 1;
3: while l ≤ |pbestpool | do
4: Assign Sl ← pbestl as a candidate solution;
5: while (Count3%TabuT ermination �= 0) do
6: Find a critical path of Sl and create neighbour solutions using Figure 3;
7: Evaluate neighbour solutions; FESLS ← (FESLS + nNeighbour Solution);
8: Choose the best admissible candidate based on the Tabu restrictions and aspiration criteria and

assign as Sl ; Update the Tabu list;
9: if any( f (Sl ) < [ f (pbestl ); f (gbest); f (pbestworst )]) then
10: Update pbestl , gbest or pbestworst using Algorithm 5;
11: if any([ f (pbestl ); f (gbest); f (pbestworst )]<previous([ f (pbestl ); f (gbest); f (pbestworst )]))

then
12: Stop;
13: end if
14: end if
15: if f (gbest) < f (Sl ) then
16: Count3 ← (Count3 + 1);
17: end if
18: end while
19: Set l ← (l + 1);
20: end while

Neighbourhood structure A small perturbation in the pbest
can produce a set of solutions known as neighbour. In this
study, these neighbour solutions are generated by implement-
ing the N7 neighbourhood structure (Zhang et al., 2007),
depicted in Fig. 3. In this approach, the randomly selected
critical path, as a solution that could have multiple critical
paths, is divided into several blocks, making moves in each
block for new neighbours.
Tabu list Tabu list helps the algorithm to resist visiting the
same solution recurrently, avoiding becoming trapped in
local optima. Instead of storing solution attributes such as
makespan, the sequence of operations and their correspond-
ing position in a machine are stored in a Tabu list for a
certain number of iterations, called Tabu tenure. The Tabu
tenure dynamically adjusts based on the problem size of JSSP
instances (see Table 3). The aspiration criterion is allowed to
accept the best solution obtained so far even after the solution
is in the Tabu list.
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first operation

moving as a last operation

moving as an internal operationcritical block

part of a critical block

part of a critical block

last operation

Fig. 3 The outline of the N7 neighbourhood

Performance-driven switchingmechanism (PDSM)

As previouslymentioned, in the evolution process, three evo-
lution strategies such as MODE, PSO and local search (LS)
are used in a single algorithmic framework. So, the proposed
algorithms dynamically choose themost appropriate strategy
at a different level of evolution depending on the perfor-
mance of the evolution strategies, named PDSM. It offers two
benefits:(1) if any algorithm performs adequately over the
generations, no other algorithms evolve to solve the problem.
It will increase the flexibility in the recently emerged multi-
method approaches to solve complex problems in which a
single method is incapable; and (2) Over the evolution pro-
cess, an algorithmmay performpoorly, and it is inappropriate
to carry out the search process. This approach overcomes
the drawback. Equation 20 controls the switching decision.
If any algorithm performs poorly, Countalg|{alg=1,2.3} will
reach quickly to PreMax or Tabu termination, and the pop-
ulation switches to another search strategy.

Countalg|{alg=1,2.3} =
{
Countalg|{alg=1,2.3} + 1 if f (gbestG) < f (xGl ),∀l = 1, 2, 3, . . . , N P

Countalg|{alg=1,2.3} otherwise
(20)

Experimental design and result analysis

The section illustrates the computing environment, parameter
analysis to achieve the best performance of the proposed
algorithms, and detailed result analysis.

Experimental setting

The computing environment used in this research is Intel(R)
Core (TM) i7-3770 CPU @3.40GHz with RAM 32.0 GB
in Windows 10, and the proposed algorithms (i.e., sHEA,
rHEA and bHEA) are coded in MATLAB R2020b. The
feasibility and effectiveness of these algorithms are inves-
tigated through a set of comparative experiments with the
TS, DE and PSO and against the 26 popular algorithms by
solving 130 standard instances of the JSSP, including rect-
angular problems and the most difficult square problems
(Cruz-Chávez et al., 2019). The selected instances include:
3 from Fisher and Thompson (FT) (Fisher, 1963); 40 from
Lawrence (LA) (Lawrence, 1984); 3 from Applegate and
Cook (ORB) (Applegate & Cook, 1991); 4 from Adams,
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Balas and Zawack (ABZ) (Adams et al., 1988); 80 from Tail-
lard (TA) (Taillard, 1993), considering problems with varied
sizes. Each instance is executed 30 times independently, and
the corresponding results are recorded.

Parameter setting

Parameter calibration is essential to achieve the best perfor-
mance of an algorithm. This section discusses the parameter
tuning of the developed algorithms: the sHEA, rHEA and
bHEA. The algorithms rHEA and sHEA are distinct only
by population switching decision, as illustrated in Sect. 5.2,
which does not imply parameter calibration, and therefore,
parameter tuning is performed similarly in each algorithm.
However, bHEA, unlike rHEA and sHEA, is designed with a
bi-population structurewhere the initial population is divided
into two sub-populations and executed in MODE and PSO
independently, as described in Sect. 5.1. Thus, the parameters
N P , MaxGen(=MAXFES

N P ), and PreMax may have a differ-
ent impact on the bi-population structure of bHEA compared
to rHEA and sHEA, and therefore, calibration is performed
separately for bHEA.

The parameters of MSS, PSO and MODE, which are
designed in a similarway for sHEA, rHEAand bHEA, should
be appropriately tuned in the first step, which is conducted by
choosing a complex square-sized instance LA40. The chosen
parameters with their levels are depicted in Table 2. Although
the parametric analysis can be performed using trial-and-
error technique (Goli et al., 2021), this study adopted the
orthogonal array, L2735, to design the experimental runs
as it reduces the computational complexity through less-
ening the number of experiments (Rahman et al., 2020).
However, each treatment is executed for 30 times, keeping
the N P , MaxGen and PreMax constant. These parame-
ters significantly impact achieving preferredmakespanwhile
the algorithm solves instances. The analyzed results are
depicted in Table 2 as a response for means. Figure 4a
also shows that the makespan decreases with increasing Cr ,
and therefore, further conducted experiments shows average
makespan of 1260.4 and 1260.8 for Cr value rand0.81−1.0

and rand0.85−1.0, respectively. Thus, the statistical inference
on the optimal setting of these parameters is W = 0.5, w =
1, c1 = 0.5, c2 = 0.5, Cr = rand0.81−1.00, F = rand0.91−1.30.
The values rand0.81−1.00 and rand0.91−1.30 indicate that the
parameters adopt randomly generated values in the given
range following a uniform distribution.

The parameters of the integrated frameworks ( i.e., rHEA
and sHEA) are also tuned. The five significant parameters
of the rHEA and sHEA are set into three levels, as reported
in Table 3, and designed using the orthogonal array, L2735.
Each of the 27 treatments is run 30 times, and the average
makespan of LA40 is recorded. The analysed results, includ-
ing the delta value and rank of parameters, are reported in

the above table. Following the table, MaxGen is ranked
first, whereas, Tabu termination (i.e., local search termina-
tion criteria) is ranked the second most crucial factor. The
PreMax (i.e., terminating PSO andMODEat a defined level
if the best value is not updated) is ranked third. Tabu tenure
and N P are the less significant parameters ranked fourth
and fifth, respectively. However, more analysis is needed as
makespan improves with increasing N P and MaxGen and
with decreasing PreMax as depicted in Fig. 4b, and these
three parameters significantly influence the computational
expenses. However, Tabu tenure is excluded to lessen the
complexity as it is a less significant parameter. In addition,
this analysis offers to set optimal parameters for bHEA, as
illustrated previously.

The further impact of N P , MaxGen and PreMax on
the performance of rHEA and sHEA are determined through
sensitivity analysis. This experiment uses both rectangular-
and square-sized instances (e.g., L A17, L A30 and L A40).
For each selected instance, parameters N P , MaxGen and
PreMax are varied with possible values N P = {50, 75, 100,
125}; MaxGen = {1000, 1500, 2000, 2500}, and PreMax
= {20, 16, 12, 10}. For each parameter combination, 10 inde-
pendent runs are performed, and the relative percentage error
(RPE) of each algorithm’s best solution (EBS) found and
RPE of themean value of themakespan fmean are calculated
based on the reference makespan known as the best known
solution (BK S), as depicted in Fig. 5a. The value of RPE
and mean RPE are calculated by Eq. 21. RPE = 0 indicates
that the instance is solved optimally. From the Fig. 5a, the
algorithms sHEA and rHEA show almost consistent perfor-
mance from parameter combinations 3 to 7 for each of the
instances, and therefore, N P ,MaxGen and PreMax are set
to 100, 1000 and 20, respectively. These settings minimize
the number of fitness evaluation meant to less computational
expenses. For bHEA, a similar experiment is performed as
depicted in Fig. 5b and the performance for each experi-
mental setup and for each instance shows that parameter
combinations 3 to 8 offer relatively consistent and better per-
formance. Therefore, the parameter combination 3, which is
similar to sHEA and rHEA, is recommended for bHEA for
fair comparison. According to this parametric analysis, the
optimal parameter setting for sHEA, rHEA and bHEA are
as follows: N P = 100; MaxGen = 1000; PreMax = 20,
Tabu termination=15, and Tabu tenure= Lmin = [10+ m

n ] to
Lmax = 1.4Lmin .

Comparison with constituent algorithms

This section aims to validate the hypothesis that integrating
multiple algorithms’ capabilities into a single algorithmic
framework can find the best possible solutions. Thus, sev-
eral experiments are conducted to verify the hypothesis,
implementing the sHEA, rHEA, bHEA, and their con-
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Table 2 The parameters tuning of the MSS-MODE-PSO

Parameters settings Response for means

Parameters Level Level Delta Rank

1 2 3 1 2 3

MSS W 0.2 0.5 0.8 1265 1260 1264 5 2

PSO w 0 1 2 1265 1261 1263 4 3

c1(c2) 0.2 (0.8) 0.5 (0.5) 0.8 (0.2) 1265 1262 1262 4 4

MODE Cr rand0.30−0.50 rand0.51−0.80 rand0.81−1.00 1263 1267 1259 8 1

F rand0.20−0.90 rand0.91−1.30 rand1.31−2.00 1264 1262 1264 2 5

Table 3 Parameters tuning of rHEA and sHEA

Parameter settings Response for means

Parameters Level Level Delta Rank

1 2 3 1 2 3

NP 50 75 100 1230 1230 1227 3 5

MaxGen 500 750 1000 1234 1228 1226 8 1

PreMax 20 30 40 1227 1229 1232 5 3

Tabu Termination 5 10 15 1234 1227 1227 7 2

Tabu Tenure Lmin = 5 + n
m Lmin = 7 + n

m Lmin = 10 + n
m 1231 1231 1227 4 4

Lmax = 0.4Lmin Lmax = 0.4Lmin Lmax = 0.4Lmin
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Fig. 4 Main effects plot for means

stituent algorithms, such as PSO, DE and TS, to solve the
computationally intractable NP-hard JSSPs. The statistical
convergence curves of the two varied-sized instances (LA36
(15 × 15) and TA20 (20 × 20)) are depicted in Fig. 6.

The convergence of the original PSO and DE is faster at
the very beginning for both LA36 and TA21 instances, as
illustrated in Fig. 6a and b, respectively. However, the solu-

tion is not improved later due to the greedy nature of DE
and the poor population quality. TS inspired local search has
experienced a fast convergence rate over the iterations and
found near-optimal solutions for both instances by avoid-
ing becoming trapped in local optima. However, the single
point searching process is computationally expensive. Thus,
TS is employed in hybrid MODE-PSO to improve the local
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Fig. 5 Optimal parameter setting through sensitivity analysis
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Fig. 6 Convergence curve of the six implemented algorithms

search capability. The integrated approaches (sHEA, rHEA
and bHEA), where PSO, MODE and TS are merged with
the help of the switching strategy, shows that the searching
power of the evolutionary process is improved substantially
in terms of global search capability at the early stage and
local search capability at the later stage, leading to higher
solution quality with mature convergence.

Performance of the proposed HEAs (i.e., sHEA, rHEA
and rHEA) against original TS, DE and PSO is further eval-
uated by solving 12 standard JSSP instances. The recorded
results are reported in Table 4, where the best performance of

each instance ismarked as bold. The Table includes instances
name, their size, BKS, EBS, RPE, BKS of each algorithm
found (BKS found) and the ratio of the number of BKS to
the number of benchmark instances solved (NIS) (Ratio(%)).
RPE(%) and Ratio(%) are calculated by Eqs. 21 and 22,
respectively.

The Table shows that all the algorithms implemented have
solved 12 instances with different sizes from 6 × 6 JSSP to
20×20 JSSP.Out of the 12 instances solved, TS,DE andPSO
obtain 8, 7 and 8 BKS, respectively, whereas sHEA, rHEA
and bHEA obtain 10, 10 and 8 BKS, respectively. Although
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Table 4 Comparison among implemented algorithms (PSO, DE, TS, and HEAs) for JSSP

Instance Size (m×n) BKS sHEA rHEA bHEA TS DE PSO

EBS RPE EBS RPE EBS RPE EBS RPE EBS RPE EBS RPE

FT06 6×6 55 55 0 55 0 55 0 55 0.00 55 0.00 55 0.00

FT10 10×10 930 930 0 930 0 930 0 930 0.00 930 0.00 930 0.00

FT20 20×5 1165 1165 0 1165 0 1165 0 1165 0.00 1165 0.00 1165 0.00

LA01 10×5 666 666 0 666 0 666 0 666 0.00 666 0.00 666 0.00

LA06 15×5 926 926 0 926 0 926 0 926 0.00 926 0.00 926 0.00

LA11 20×5 1222 1222 0 1222 0 1222 0 1222 0.00 1222 0.00 1222 0.00

LA16 10×10 945 945 0 945 0 945 0 945 0.00 945 0.00 945 0.00

LA21 15×10 1046 1046 0 1046 0 1046 0 1046 0.00 1052 0.57 1046 0.00

LA36 15×15 1268 1268 0 1269 0.08 1269 0.08 1275 0.55 1285 1.34 1287 1.50

TA01 15×15 1231 1231 0 1231 0 1235 0.32 1248 1.38 1253 1.79 1259 2.27

TA11 20×15 1357 1359 0.15 1357 0 1361 0.29 1374 1.25 1386 2.14 1374 1.25

TA21 20×20 1642 1645 0.18 1646 0.24 1649 0.43 1696 3.29 1709 4.08 1713 4.32

BKS found 10 10 8 8 7 8

Ratio (%) 83.33 83.33 66.67 66.67 58.33 66.67

Table 5 Improvement
comparison among
implemented algorithms (PSO,
DE, TS, and HEAs)

Algorithm NIS OA(%) sHEA rHEA bHEA

aRPE(%) RPI (%) aRPE(%) RPI (%) aRPE(%) RPI (%)

PSO 12 0.78 0.03 96.47 0.03 96.55 0.09 87.97

DE 12 0.83 0.03 96.67 0.03 96.75 0.09 88.66

TS 12 0.54 0.03 94.90 0.03 95.02 0.09 82.63

the implemented algorithms show similar performance for
small-sized instances, a significant improvement of hybrid
approaches is noticed for large-sized problems. Moreover,
the improvement comparison between the HEAs and the
other algorithms (i.e., original TS, DE and PSO) are given in
Table 5 that presents NIS, average RPE (aRPE(%)) of both
other algorithms (OA(%)) and proposed algorithms calcu-
lated by Equation 23, and relative performance improvement
(RPI(%)) calculated by Eq. 24. If RPI(%) is negative, the
proposed algorithm can not outperform the other algorithms.
Following RPI, bHEA dominates significantly compared to
PSO by 87.97%, DE by 88.66% and TS by 82.63%, whereas
rHEA shows superior performance to PSOby 96.55%,DEby
96.75% and TS by 95.02%. The sHEA dominates PSO, DE
and TS by 96.47%, 96.67% and 94.90%, respectively. Thus,
the considered hypothesis is true, i.e., integrating multiple
algorithms’ capabilities into a single algorithmic framework
can find the best possible solutions.

RPE(%) = EBS − BK S

BK S
× 100 (21)

Ratio(%) = BK S f ound

N I S
× 100 (22)

aRPE(%) =
∑

RPE

N I S
(23)

RP I (%) = OA − aRPE

OA
× 100 (24)

Comparison with well-know algorithms

The section assesses the effectiveness of the sHEA, rHEA
and bHEA against existing algorithms in the literature by
solving small-sized and large-sized JSSP instances. First, 13
popular algorithms in the literature are considered. These
algorithms include widely accepted variants of DE, such
as DE with strategy switching (DESS) (Wisittipanich &
Kachitvichyanukul, 2012), hybrid DE and estimation of dis-
tribution algorithm with neighbourhood search known as
(NS-HDE/EDA) (Zhao et al., 2016), and whale optimization
algorithm enhanced with lévy flight and DE (WOA-LFDE)
(Liu et al., 2020). In addition to DE variants, some other
considered algorithms are filter-and-fan approach (F&F)
(Rego & Duarte, 2009), TLBO (Baykasoğlu et al., 2014),
chemotaxis-enhanced bacterial foraging algorithm (CEBFO)
(Zhao et al., 2015), parallel artificial bee colony algorithm
(pABC) (Asadzadeh, 2016), GWO (Jiang & Zhang, 2018)
and parallel bat algorithm (PBA) (Dao et al., 2018). The
developed algorithms are further evaluated by comparing
with the variants of GA, such as memetic algorithm (MA)
(Gao et al., 2011), a local search GA (aLSGA) (Asadzadeh,
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Table 6 Comparison of the 13 algorithms with HEAs for JSSP

Instance Size (n × m) BKS F&F MA DESS TLBO MGA

EBS RPE EBS RPE EBS RPE EBS RPE EBS RPE

FT06 6×6 55 55 0 55 0 55 0 55 0 55 0

FT10 10×10 930 930 0 930 0 949 2.04 938 0.86 930 0

FT20 20×5 1165 1165 0 1165 0 1204 3.35 1165 0 1165 0

LA01 10×5 666 666 0 666 0 666 0 666 0 666 0

LA02 10×5 655 655 0 655 0 655 0 655 0 655 0

LA03 10×5 597 597 0 597 0 597 0 597 0 597 0

LA04 10×5 590 590 0 590 0 590 0 607 2.88 590 0

LA05 10×5 593 593 0 593 0 593 0 593 0 593 0

LA06 15×5 926 926 0 926 0 926 0 926 0 926 0

LA07 15×5 890 890 0 890 0 890 0 890 0 890 0

LA08 15×5 863 863 0 863 0 863 0 864 0.12 863 0

LA09 15×5 951 951 0 951 0 951 0 951 0 951 0

LA10 15×5 958 958 0 958 0 958 0 958 0 958 0

LA11 20×5 1222 1222 0 1222 0 1222 0 1222 0 1222 0

LA12 20×5 1039 1039 0 1039 0 1039 0 ∼ ∼ 1039 0

LA13 20×5 1150 1150 0 1150 0 1150 0 ∼ ∼ 1150 0

LA14 20×5 1292 1292 0 1292 0 1292 0 ∼ ∼ 1292 0

LA15 20×5 1207 1207 0 1207 0 1207 0 ∼ ∼ 1207 0

LA16 10×10 945 947 0.21 945 0 945 0 946 0.11 945 0

LA17 10×10 784 784 0 784 0 784 0 ∼ ∼ 784 0

LA18 10×10 848 848 0 848 0 848 0 ∼ ∼ 848 0

LA19 10×10 842 846 0.48 842 0 851 1.07 ∼ ∼ 842 0

LA20 10×10 902 907 0.55 902 0 907 0.55 ∼ ∼ 902 0

LA21 15×10 1046 1052 0.57 1055 0.86 1083 3.54 1091 4.30 1053 0.67

Instance CEBFO aLSGA NS-HDE/EDA NIMGA pABC
EBS RPE EBS RPE EBS RPE CT EBS RPE CT EBS RPE

FT06 55 0 55 0 55 0 2.31 55 0 1 55 0

FT10 937 0.75 930 0 937 0.75 328.60 930 0 76 930 0

FT20 1171 0.52 1165 0 1178 1.12 418.03 1173 0.69 84.64 1165 0

LA01 666 0 666 0 666 0 2.66 666 0 1 666 0

LA02 655 0 655 0 655 0 22.09 655 0 13 655 0

LA03 597 0 606 1.51 597 0 1835.00 597 0 15 597 0

LA04 590 0 593 0.51 590 0 24.08 590 0 19 590 0

LA05 593 0 593 0 593 0 0.12 593 0 2 593 0

LA06 926 0 926 0 926 0 0.39 926 0 2 926 0

LA07 890 0 890 0 890 0 5.08 890 0 2 890 0

LA08 863 0 863 0 863 0 1126.00 863 0 2 863 0

LA09 951 0 951 0 951 0 4.49 951 0 2 951 0

LA10 958 0 958 0 958 0 0.15 958 0 1 958 0

LA11 1222 0 1222 0 1222 0 1.63 1222 0 2 1222 0

LA12 1039 0 1039 0 1039 0 2.11 1039 0 2 1039 0

LA13 1150 0 1150 0 1150 0 8.66 1150 0 2 1150 0

LA14 1292 0 1292 0 1292 0 0.07 1292 0 2 1292 0

LA15 1207 0 1207 0 1207 0 13.87 1207 0 3 1207 0

LA16 945 0 946 0.11 956 1.16 90.87 946 0.11 50.07 945 0

LA17 785 0.13 784 0 784 0 81.59 784 0 30 784 0
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Table 6 continued

Instance CEBFO aLSGA NS-HDE/EDA NIMGA pABC
EBS RPE EBS RPE EBS RPE CT EBS RPE CT EBS RPE

LA18 848 0 848 0 855 0.83 102.82 848 0 33 848 0

LA19 844 0.24 852 1.19 852 1.19 103.20 842 0 14 842 0

LA20 907 0.55 907 0.55 907 0.55 92.16 907 0.55 73.69 907 0.55

LA21 ∼ ∼ 1068 2.10 1058 1.15 504.17 1058 1.15 100.33 1046 0

Instance GWO PBA WOA-LFDE sHEA
EBS RPE CT EBS RPE EBS RPE CT EBS Avg. RPE CT

FT06 55 0 6.60 55 0 55 0 ∼ 55 55.00 0 2.85

FT10 940 1.08 62.20 930 0 930 0 ∼ 930 932.90 0 61.23

FT20 1178 1.12 76.10 1165 0 1165 0 ∼ 1165 1165.00 0 60.25

LA01 666 0 13.80 666 0 666 0 ∼ 666 666.00 0 7.12

LA02 655 0 14.50 655 0 655 0 ∼ 655 655.00 0 14.25

LA03 597 0 14.30 597 0 597 0 ∼ 597 597.00 0 8.20

LA04 590 0 12.90 590 0 590 0 ∼ 590 590.00 0 15.23

LA05 593 0 13.60 593 0 593 0 ∼ 593 593.00 0 14.23

LA06 926 0 36.10 926 0 926 0 ∼ 926 926.00 0 12.25

LA07 890 0 34.90 890 0 890 0 ∼ 890 890.00 0 18.01

LA08 863 0 38.10 863 0 863 0 ∼ 863 863.00 0 6.29

LA09 951 0 35.90 951 0 951 0 ∼ 951 951.00 0 7.36

LA10 958 0 34.00 958 0 958 0 ∼ 958 958.00 0 9.65

LA11 1222 0 71.30 1222 0 1222 0 ∼ 1222 1222.00 0 4.56

LA12 1039 0 72.00 1039 0 1039 0 ∼ 1039 1039.00 0 7.56

LA13 1150 0 71.40 1150 0 1150 0 ∼ 1150 1150.00 0 3.99

LA14 1292 0 67.50 1292 0 1292 0 ∼ 1292 1292.00 0 4.75

LA15 1207 0 74.60 1207 0 1207 0 ∼ 1207 1207.00 0 7.69

LA16 956 1.16 61.10 945 0 945 0 ∼ 945 945.60 0 69.21

LA17 790 0.77 60.30 784 0 784 0 ∼ 784 784.00 0 68.29

LA18 859 1.30 58.90 848 0 848 0 ∼ 848 848.00 0 65.09

LA19 845 0.36 61.20 842 0 842 0 ∼ 842 842.00 0 75.51

LA20 937 3.88 60.80 902 0 902 0 ∼ 902 909.97 0 71.91

LA21 1090 4.21 153.40 1046 0 1046 0 ∼ 1046 1066.43 0 110.30

Instance rHEA bHEA
EBS Avg. RPE CT EBS Avg. RPE CT

FT06 55 55.00 0 3.12 55 55.00 0 2.35

FT10 930 942.67 0 68.25 930 944.43 0 78.20

FT20 1165 1165.00 0 52.31 1165 1165.00 0 55.23

LA01 666 666.00 0 6.25 666 666.00 0 5.25

LA02 655 655.00 0 13.85 655 656.10 0 9.25

LA03 597 597.00 0 12.29 597 597.47 0 12.28

LA04 590 590.00 0 17.12 590 590.00 0 13.15

LA05 593 593.00 0 14.65 593 593.00 0 12.85

LA06 926 926.00 0 10.61 926 926.00 0 8.65

LA07 890 890.13 0 8.85 890 890.53 0 9.26

123



Journal of Intelligent Manufacturing (2022) 33:1939–1966 1957

Table 6 continued

Instance rHEA bHEA
EBS Avg. RPE CT EBS Avg. RPE CT

LA08 863 863.00 0 7.98 863 863.00 0 3.29

LA09 951 951.00 0 8.95 951 951.00 0 6.59

LA10 958 958.00 0 9.86 958 958.00 0 7.29

LA11 1222 1222.00 0 6.23 1222 1222.00 0 5.26

LA12 1039 1039.00 0 4.58 1039 1039.00 0 4.98

LA13 1150 1150.00 0 4.97 1150 1150.00 0 7.62

LA14 1292 1292.00 0 5.25 1292 1292.00 0 4.91

LA15 1207 1207.00 0 4.78 1207 1209.10 0 4.37

LA16 945 958.30 0 82.31 945 969.33 0 78.26

LA17 784 784.77 0 81.61 784 784.80 0 69.89

LA18 848 848.00 0 74.38 848 848.87 0 72.25

LA19 842 842.27 0 79.20 842 844.60 0 64.36

LA20 902 908.80 0 76.12 902 910.00 0 72.26

LA21 1046 1067.77 0 125.12 1046 1081.63 0 102.85

Instance Size (n × m) BKS F&F MA DESS TLBO MGA
EBS RPE EBS RPE EBS RPE EBS RPE EBS RPE

LA22 15×10 927 927 0 927 0 956 3.13 ∼ ∼ 927 0

LA23 15×10 1032 1032 0 1032 0 1032 0 ∼ ∼ 1032 0

LA24 15×10 935 941 0.64 940 0.53 978 4.60 ∼ ∼ 941 0.64

LA25 15×10 977 982 0.51 984 0.72 1016 3.99 ∼ ∼ 978 0.10

LA26 20×10 1218 1218 0 1218 0 1267 4.02 ∼ ∼ 1218 0

LA27 20×10 1235 1242 0.57 1261 2.11 1306 5.75 1256 1.70 1262 2.19

LA28 20×10 1216 1225 0.74 1216 0.00 1273 4.69 ∼ ∼ 1216 0

LA29 20×10 1152 1176 2.08 1190 3.30 1249 8.42 ∼ ∼ 1163 0.95

LA30 20×10 1355 1355 0 1355 0 1386 2.29 ∼ ∼ 1355 0

LA31 30×10 1784 1784 0 1784 0 1784 0 1784 0 1784 0

LA32 30×10 1850 1850 0 1850 0 1850 0 ∼ ∼ 1850 0

LA33 30×10 1719 1719 0 1719 0 1719 0 ∼ ∼ 1719 0

LA34 30×10 1721 1721 0 1721 0 1749 1.63 ∼ ∼ 1721 0

LA35 30×10 1888 1888 0 1888 0 1888 0 ∼ ∼ 1888 0

LA36 15×15 1268 1281 1.03 1281 1.03 1313 3.55 1332 5.05 1283 1.18

LA37 15×15 1397 1418 1.50 1431 2.43 1451 3.87 ∼ ∼ 1424 1.93

LA38 15×15 1196 1213 1.42 1216 1.67 1284 7.36 ∼ ∼ 1218 1.84

LA39 15×15 1233 1250 1.38 1241 0.65 1283 4.06 ∼ ∼ 1251 1.46

LA40 15×15 1222 1228 0.49 1233 0.90 1289 5.48 1241 1.55 1233 0.90

ORB01 10×10 1059 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ 1064 0.47

ORB05 10×10 887 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ 889 0.23

ORB10 10×10 944 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ 944 0

ABZ5 10×10 1234 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ6 10×10 943 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
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Table 6 continued

Instance Size (n × m) BKS F&F MA DESS TLBO MGA
EBS RPE EBS RPE EBS RPE EBS RPE EBS RPE

ABZ8 20×15 665 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ9 20×15 679 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
NIS 43 43 43 20 46

BKS found 29 33 24 12 34

Ratio (%) 67.44 76.74 55.81 60.00 73.91

Instance CEBFO aLSGA NS-HDE/EDA NIMGA pABC
EBS RPE EBS RPE EBS RPE CT EBS RPE CT EBS RPE

LA22 ∼ ∼ 956 3.13 952 2.70 640.03 937 1.08 101.42 927 0

LA23 ∼ ∼ 1032 0 1038 0.58 292.30 1032 0 25 1032 0

LA24 ∼ ∼ 966 3.32 973 4.06 662.72 947 1.28 72.34 935 0

LA25 ∼ ∼ 1002 2.56 1000 2.35 701.42 992 1.54 99.19 977 0

LA26 ∼ ∼ 1223 0.41 1229 0.90 894.96 1218 0 119 1218 0

LA27 ∼ ∼ 1281 3.72 1287 4.21 972.42 1269 2.75 131.83 1235 0

LA28 ∼ ∼ 1245 2.38 1275 4.85 975.70 1247 2.55 123.18 1216 0

LA29 ∼ ∼ 1230 6.77 1220 5.90 998.91 1241 7.73 124.61 1157 0.43

LA30 ∼ ∼ 1355 0 1371 1.18 956.76 1355 0 84 1355 0

LA31 ∼ ∼ 1784 0 1784 0 296.60 1784 0 6 1784 0

LA32 ∼ ∼ 1850 0 1850 0 671.69 1850 0 10 1850 0

LA33 ∼ ∼ 1719 0 1719 0 184.71 1719 0 10 1719 0

LA34 ∼ ∼ 1721 0 1721 0 917.05 1721 0 55 1721 0

LA35 ∼ ∼ 1888 0 1888 0 604.61 1888 0 27 1888 0

LA36 ∼ ∼ ∼ ∼ 1315 3.71 697.07 1293 1.97 110.98 ∼ ∼
LA37 ∼ ∼ ∼ ∼ 1465 4.87 654.04 1439 3.01 138.27 ∼ ∼
LA38 ∼ ∼ ∼ ∼ 1244 4.01 628.99 1222 2.17 138.48 ∼ ∼
LA39 ∼ ∼ ∼ ∼ 1291 4.70 749.59 1251 1.46 137.20 ∼ ∼
LA40 ∼ ∼ ∼ ∼ 1277 4.50 720.32 1246 1.96 138.78 ∼ ∼
ORB01 ∼ ∼ 1092 3.12 ∼ ∼ ∼ 1059 1.96 ∼ ∼ ∼
ORB05 ∼ ∼ 901 1.58 ∼ ∼ ∼ 893 1.96 ∼ ∼ ∼
ORB10 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ5 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ6 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ8 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
ABZ9 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
NIS 23 40 43 45 38

BKS found 18 25 22 28 36

Ratio (%) 78.28 62.50 51.16 62.22 94.74

Instance GWO PBA WOA-LFDE sHEA
EBS RPE CT EBS RPE EBS RPE CT EBS Avg. RPE CT

LA22 970 4.64 154.30 933 0.65 927 0 ∼ 927 941.07 0 106.23

LA23 1032 0 150.90 1032 0 1032 0 ∼ 1032 1032.00 0 89.62

LA24 982 5.03 155.80 941 0.64 935 0 ∼ 935 953.43 0 106.98

LA25 1008 3.17 160.50 977 0 977 0 ∼ 977 991.97 0 115.26

LA26 1239 1.72 324.50 1218 0 1218 0 ∼ 1218 1218.00 0 135.23

LA27 1290 4.45 314.80 1247 0.97 1235 0 ∼ 1235 1269.33 0 162.32
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Table 6 continued

Instance GWO PBA WOA-LFDE sHEA
EBS RPE CT EBS RPE EBS RPE CT EBS Avg. RPE CT

LA28 1263 3.87 325.00 1216 0 1216 0 ∼ 1216 1216.00 0 125.32

LA29 1244 7.99 313.20 1179 2.34 1161 0.78 ∼ 1152 1209.30 0 155.32

LA30 1355 0 316.40 1355 0 1355 0 ∼ 1355 1355.00 0 139.62

LA31 1784 0 877.20 1784 0 ∼ ∼ ∼ 1784 1785.80 0 68.36

LA32 1850 0 837.20 1850 0 ∼ ∼ ∼ 1850 1850.23 0 56.95

LA33 1719 0 856.50 1719 0 ∼ ∼ ∼ 1719 1723.30 0 59.62

LA34 1721 0 833.20 1721 0 ∼ ∼ ∼ 1721 1721.40 0 62.75

LA35 1888 0 842.60 1888 0 ∼ ∼ ∼ 1888 1888.00 0 61.85

LA36 1311 3.39 387.50 1279 0.87 ∼ ∼ ∼ 1268 1300.47 0 231.98

LA37 ∼ ∼ ∼ 1411 1.00 ∼ ∼ ∼ 1397 1443.50 0 218.25

LA38 ∼ ∼ ∼ 1208 1.00 ∼ ∼ ∼ 1203 1235.70 0.59 213.25

LA39 ∼ ∼ ∼ 1236 0.24 ∼ ∼ ∼ 1235 1252.67 0.16 209.32

LA40 ∼ ∼ ∼ 1225 0.25 ∼ ∼ ∼ 1222 1247.37 0 231.58

ORB01 ∼ ∼ ∼ ∼ ∼ 1059 0 ∼ 1059 1069.35 0 69.25

ORB05 ∼ ∼ ∼ ∼ ∼ 887 0 ∼ 887 892.80 0 75.24

ORB10 ∼ ∼ ∼ ∼ ∼ 944 0 ∼ 944 956.25 0 71.29

ABZ5 ∼ ∼ ∼ ∼ ∼ 1234 0 ∼ 1234 1242.52 0 85.25

ABZ6 ∼ ∼ ∼ ∼ ∼ 943 0 ∼ 943 948.25 0 95.62

ABZ8 ∼ ∼ ∼ ∼ ∼ 669 0.60 ∼ 669 681.10 0.60 326.24

ABZ9 ∼ ∼ ∼ ∼ ∼ 683 0.59 ∼ 685 692.23 0.88 335.24

NIS 39 43 40 50

BKS found 23 34 37 46

Ratio (%) 58.97 79.07 92.50 92.00

Instance rHEA bHEA
EBS Avg. RPE CT EBS Avg. RPE CT

LA22 927 937.47 0 113.74 927 949.77 0 99.69

LA23 1032 1032.00 0 89.95 1032 1032.00 0 85.02

LA24 935 951.13 0 113.63 935 960.77 0 103.51

LA25 977 992.87 0 111.98 977 1003.30 0 105.13

LA26 1218 1222.53 0 85.36 1218 1243.07 0 91.36

LA27 1235 1268.30 0 109.38 1235 1299.80 0 150.23

LA28 1216 1230.83 0 125.36 1216 1268.90 0 165.32

LA29 1152 1213.87 0 150.98 1152 1256.23 0 162.12

LA30 1355 1355.23 0 135.62 1355 1358.33 0 112.61

LA31 1784 1789.60 0 72.12 1784 1785.97 0 65.23

LA32 1850 1851.80 0 68.36 1850 1852.87 0 42.85

LA33 1719 1722.33 0 55.29 1719 1724.20 0 55.98

LA34 1721 1722.73 0 71.95 1721 1747.23 0 85.36

LA35 1888 1894.20 0 68.36 1888 1894.50 0 92.39

LA36 1269 1304.70 0.08 228.23 1269 1317.60 0.08 212.32

LA37 1397 1441.00 0 221.74 1401 1461.20 0.29 185.14

LA38 1202 1235.20 0.50 195.20 1203 1251.47 0.59 196.56
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Table 6 continued

Instance rHEA bHEA
EBS Avg. RPE CT EBS Avg. RPE CT

LA39 1234 1254.43 0.08 216.17 1239 1278.13 0.49 225.15

LA40 1222 1237.20 0 265.32 1225 1257.93 0.25 218.29

ORB01 1059 1072.52 0 85.25 1059 1075.25 0 91.24

ORB05 887 896.25 0 75.25 887 898.35 0 74.52

ORB10 944 957.62 0 65.25 944 962.25 0 68.25

ABZ5 1234 1243.25 0 79.36 1234 1247.25 0 87.25

ABZ6 943 947.85 0 85.54 943 954.25 0 75.65

ABZ8 670 682.21 0.75 298.35 669 683.52 0.60 315.24

ABZ9 683 691.24 0.59 341.20 685 693.39 0.88 326.41

NIS 50 50

BKS found 45 43

Ratio (%) 90.00 86.00

[bold] indicates that the proposed algorithms obtained the best possible results compared to the comparison algorithms.

Table 7 Improvement
comparison of HEAs with 13
algorithms

Algorithm NIS OA(%) sHEA rHEA bHEA

aRPE(%) RPI (%) aRPE(%) RPI (%) aRPE(%) RPI (%)

F&F 43 0.28 0.02 93.86 0.02 94.57 0.04 86.18

MA 43 0.33 0.02 94.73 0.02 95.34 0.04 88.15

DESS 43 1.71 0.02 98.98 0.02 99.10 0.04 97.71

TLBO 20 0.83 0.01 98.49 0.00 99.52 0.02 98.01

MGA 46 0.27 0.02 94.05 0.01 94.74 0.04 86.61

CEBFO 23 0.10 0.02 81.72 0.02 83.82 0.04 58.85

aLSGA 40 0.82 0.00 100.00 0.00 100.00 0.00 100.00

NS-HDE/EDA 43 1.29 0.02 98.55 0.02 98.71 0.04 96.73

NIMGA 45 0.75 0.02 97.80 0.01 98.05 0.04 95.04

pABC 38 0.03 0.00 100.00 0.00 100.00 0.00 100.00

GWO 39 1.23 0.00 100.00 0.00 99.84 0.00 99.84

PBA 43 0.19 0.02 90.62 0.02 91.69 0.04 78.88

WOA-LFDE 40 0.05 0.04 24.68 0.03 31.99 0.04 24.68

2015), modified GA (MGA)(Thammano & Teekeng, 2015)
and new island model GA (NIMGA) (Kurdi, 2016).

The reported optimization results of these 13 algorithms
and the optimization results of the proposed algorithms
for solving 50 benchmark instances of JSSP are presented
in Table 6. This table reports the average makespan of
30 independent runs of the developed algorithms to show
the repeatability and mark the best performance for each
instance. At the bottom of Table 6, NIS, BKS found, Ratio
(%) are reported for each algorithm. BKS to NIS ratio for
sHEA, rHEA and bHEA are 92.00%, 90.00%, 86.00%,
respectively, while the highest ratio of finding BKS to NIS
is 94.74% for Asadzadeh (2016); however, the authors have
only solved a smaller set of 38 problems. The second best
BKS to NIS is 92.50% for Liu et al. (2020) who have solved
44 of 50 problems. However, sHEA, rHEA and bHEA can

optimally solve 46, 45 and 43 out of 50 problems, respec-
tively, and the instances that can not be solved to their BKS
values are widely considered hard, and a few researchers
were able to solve.

To explicitly demonstrate the proposed algorithms’ per-
formance, the respective RPI(%) for proposed algorithms is
calculated by only considering respective EBS for reported
instances for each algorithm. The RPI(%), as reported in
Table 7, clearly shows that proposed algorithms (i.e., sHEA,
rHEA and rHEA) outperform the 13 published approaches,
specially pABC (Asadzadeh, 2016) andWOA-LFDE (Liu et
al., 2020), which show best-performing algorithms in terms
of ratio of finding BKS to NIS.

To reinforce the competitiveness of the HEAs (i.e., sHEA,
rHEA and bHEA), additional 9 published approaches are
considered. These algorithms are on the basis of heuristics
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Table 8 Comparison of HEAs with another 9 approaches based on aRPE

Instance Number of instances Size Average relative percentage error (aRPE)

SB GRASP Parallel GRASP MA1 MA2 MA3 CULT UPLA GPSO sHEA rHEA bHEA

ft06 1 6 × 6 0 0 0 ∼ ∼ ∼ 0 0 0 0 0 0

ft10 1 10 × 10 0 0.86 0 ∼ ∼ ∼ 0 0 0 0 0 0

ft20 1 20 × 5 1.12 0.34 0 ∼ ∼ ∼ 0 0 0 0 0 0

la01-la05 5 10 × 5 0.8 0.23 0 0 0 0 0 0 0 0 0 0

la06-la10 5 15 × 5 0.02 0 0 0 0 0 0 0 0 0 0 0

la11-la15 5 20 × 5 0 0 0 0 0 0 0 0 0 0 0 0

la16-la20 5 10 × 10 1.73 0.13 0 0.11 0.11 0 0.11 0 0 0 0 0

la21-la25 5 15 × 10 1.79 3.54 0.76 2.14 0.7 0.41 0.78 0.35 0 0 0 0

la26-la30 5 20 × 10 3.08 6.15 1.58 3.18 1.34 1.06 1.01 1.02 0.83 0 0 0

la31-la35 5 30 × 10 0 0.37 0 0 0 0 0 0 0.04 0 0 0

la36-la40 5 15 × 15 3.36 4.62 1.46 3.23 1.3 0.68 1.32 1.01 1.5 0.15 0.13 0.34

[bold] indicates that the proposed algorithms obtained the best possible results compared to the comparison algorithms.

Table 9 Comparison of the 4
algorithms with the proposed
algorithms for JSSP (Taillard’s
instances)

Instance Size NIS Average relative percentage error (aRPE)

NS-HDE/EDA PSO GA MCDE/TS sHEA rHEA bHEA

Ta01-10 15 × 15 10 4.49 13.98 12.07 2.66 0.85 0.89 1.62

Ta11-20 20 × 15 10 8.82 16.24 16.07 3.65 2.95 3.01 3.72

Ta21-30 20 × 20 10 9.91 18.27 16.2 4.07 3.73 3.62 4.35

Ta31-40 30 × 15 10 6.54 18.1 15.71 5.25 4.29 4.43 5.98

Ta41-50 30 × 20 10 7.65 18.38 14.55 7.54 6.14 6.01 9.14

Ta51-60 50 × 15 10 2.91 16.95 13.97 0.82 0.65 0.71 1.35

Ta61-70 50 × 20 10 4.36 16.48 14.27 3.40 2.89 2.76 3.43

Ta71-80 100 × 20 10 3.01 15.61 14.38 0.68 0.61 1.01 1.19

[bold] indicates that the proposed algorithms obtained the best possible results compared to the comparison
algorithms.

approach such as shifting bottleneck heuristic (SB) (Adams
et al., 1988), cultural algorithm (CULT) (Cortés Rivera et
al., 2007); adaptive search approach such as greedy random-
ized search procedure (GRASP) (Binato et al., 2002), parallel
version of GRASP (parallel GRASP) (Aiex et al., 2003);
strong memetic algorithms (MAs) such as MA1 (Hasan et
al., 2009), MA2 (Raeesi & Kobti, 2011), MA3 (Raeesi N &
Kobti, 2012); hybrid approach such as PSO with GA opera-
tors (GPSO) (Abdel-Kader, 2018); two-level meta-heuristics
approach such as upper-level algorithm and lower-level algo-
rithm (UPLA) (Pongchairerks, 2019). The comparison of
HEAs with these algorithms are performed for solving 43
problems, and aRPE of the equal-sized problem is reported
in Table 8. Boldface indicates the better performance of the
algorithms. The proposed approaches also show competitive
results over the 9 reported algorithms.

Zhao et al. (2016) tested their proposed NS-HDE/EDA
against standalone PSO and GA by solving the 80 Tal-
lard’s instances of JSSP. These results are adopted for testing
our proposed algorithms against these baseline algorithms,

including a multi-operator communication-based DE with
sequential TS (MCDE/TS) algorithm (Mahmud et al., 2021).
Table 9 shows that the proposed algorithms, specially sHEA
and rHEA, outperform the listed algorithms.

Statistical analysis

The section identifies the statistical significance among the
varied population structured-based HEAs (i.e., sHEA, rHEA
and bHEA) before comparing between the best perform-
ing and existing algorithms. Since according to the Table
6 and Equation 23, the aRPE of the sHEA, rHEA and
bHEA for solving 50 problems are 0.044%, 0.040% and
0.063%, respectively, which are pretty similar, no firm evi-
dence can justify the supremacy of one population structure
over another. Thus, two non-parametric tests (Friedman test
and Wilcoxon sign-test) are first conducted to reinforce the
decision, reflecting any statistical distinction in them. The
Friedman test results are reported in Table 10, explicitly
reflecting through the mean rank of the sHEA (1.84), rHEA
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Table 10 Rank measurement of sHEA, rHEA and bHEA using the
Friedman test

Algorithm bHEA rHEA sHEA

Mean Rank 2.21 1.96 1.84

(1.96) and bHEA (2.21) that the sHEA dominates bHEA
and rHEA (i.e., having lower mean rank compared to the
other two). The Wilcoxon signed test is also implemented
to analyse the differences between the best and near-best
results according to Table 10. The results at 5% confidence
level are reported in Table 11. The obtained Z values are:
ZsHE A−r H E A = −0.946 and ZsHE A−bHE A = −3.063 and
the p-values of these pairs are 0.344 and 0.002, respectively.
Since the p-value of pair (sHEA-bHEA) is lower than 0.05, it
illustrates the supremacy of sHEA over bHEA. However, no
significant statistical difference can be found between sHEA
and rHEA (since the p-value is higher than 0.05).

To further compare the robustness among these three
algorithms to solve the varied-sized instances, a descriptive
statistical analysis can be performed through a boxplot that
is adopted to show the five-number summary (i.e., minimum,
first quartile, second quartile, third quartile and maximum).
The reported average makespan results of 30 replications in
Table 6 are taken as samples for this test. The five-number
summary of RPE (= Avg.−BK S

BK S ) in Fig. 7 shows that the mini-
mum and the first and second quartiles of sHEA coincide at 0
RPE, i.e., the algorithm can find the BKS in every replication
for 50% of the varied-sized instances considered (standard
deviations among the replications are zero). Although the
interquartile range (IQR) of sHEA and rHEA are almost
equal, bHEA’s results are highly dispersed. The maximum
value of sHEA is lower than both algorithms (rHEA and
bHEA). Thus, sHEA is more robust in solving varied-sized
instances than rHEA and bHEA.

Since the sHEA performs better than rHEA and bHEA,
these two non-parametric tests are conducted again between
sHEA and 11 other algorithms, excluding the CEBFO and
TLBO algorithms. These algorithms are excluded because
solving less than 30 instances is statistically insignificant
for these tests. The Friedman test results are reported in
Table 12, reflecting that sHEA is highly competitive and
consistent among all statistically dispersed results. The
Wilcoxon signed- test is performed to determine any sub-
stantial dominance of pABC and WOA-LFDE over sHEA.
The p-values of sHEA-pABC and sHEA-WOA-LFDE are
0.157 and 0.891, respectively. Both values are significantly
higher than 0.05, and thus, neither pABC nor WOA-LFDE
is better than sHEA. Meanwhile, the Z -value of these pairs
are: ZsHE A−pABC = −1.414 and ZsHE A−WOA−LFDE =
−0.137. Therefore, sHEA is highly competitive and not out-
performed by any other algorithms.

However, this JSSP resembles many real-life problems,
such as multi-product assembly of the apparel industries
(Guo et al., 2006), vehicle production in automobile indus-
tries (Zhang et al., 2013), assembly fixtures in aeronautic
industries (Da Silva et al., 2014) and customized products in
furniture industries (Vidal et al., 2011). Several schedulers
exist and are used in industries that mainly sequence cus-
tomer orders considering demand, material availability, and
due date. However, the proposed algorithm (i.e., sHEA) can
optimize workflows for each job/customer order (that com-
prises a set of operations) by correctly mapping interrelated
resources, resulting in a holistic system overview of the pro-
duction insight. A schedule includes the start and the finish
time of each job/customer order, their sequences inmachines,
and machine idle times. This predictive visibility and insight
delivered by the JSSP explanations allow decision-makers
adequate time and maneuverability to improve operational
decisions to leverage benefits, integrating these JSSP results
to material acquisition (Sawik, 2016), due date assignment
(Steiner & Zhang, 2011), order acceptance (Sarvestani et
al., 2019), and delivery planning problems (Ullrich, 2013).
Overall, it can create and foster a responsive relation between
supply chain stages.

Conclusion and recommendation

This paper developed HEAs, in which different popula-
tion structures in a multi-algorithmic framework with a
performance-driven switching mechanism are proposed to
solve the computationally intractable NP-hard JSSPs. Algo-
rithms may perform poorly over generations, and continuing
evolution in those algorithms is unrealistic. Thus, the capabil-
ities ofmultiple algorithmswere integrated into a single algo-
rithmic scheme, and a performance-driven meta-heuristic
switching approach was proposed to emphasize the best-
performing algorithms. The initial population impacts the
evolutionary process, and thus this study employed the MSS
with equally prioritizing diversity and solution quality of
schedules and the population diversity was maintained over
the evolutions by implementing the diversity check mecha-
nism. EAs explore a search space utilizing a population, and
dividing the population into sub-populations may destroy the
search uniformity and exploration capability. Thus, this study
developed three approaches (i.e., sHEA, rHEA and bHEA)
to illustrate the impacts of different population structures.
These algorithms’ exploitation property was enhanced by
employing the TS inspired local search techniques. This local
search utilized the N7 neighbourhood structure and recorded
themoves for a specific tenure to avoid reevaluating the same
solutions and becoming trapped in local optima.

An extensive experiment was conducted to test the perfor-
mance of our three developed hybrid approaches against their
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Table 11 Wilcoxon signed rank
test between the best and
near-best algorithms (sHEA,
rHEA and bHEA)

Ranks Test statistics

N Mean rank Sum of ranks Z p-value

sHEA–rHEA Negative ranks 3 10.67 32.00 − 0.946 0.344

Positive ranks 10 5.90 59.00

Ties 45 ∼ ∼
Total 58 ∼ ∼

bHEA–sHEA Negative ranks 0 0 0 − 3.063 0.002

Positive ranks 12 6.50 78.00

Ties 46 ∼ ∼
Total 58 ∼ ∼
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Fig. 7 Robustness of the developed algorithms

component algorithms (i.e., TS, DE and PSO), as well as rel-
evant 26 popular algorithms. The bHEA could not produce
promising results compared to rHEA and sHEA. However,
the computational results and the statistical analysis have
shown that rHEA and sHEA are highly competitive com-
pared to any algorithms reviewed in this paper. Although
there is no statistically significant difference between rHEA
and sHEA, the computational results showed that sHEA is
1.1% better than rHEA based on Equation 24. Thus, sHEA
is the most competitive proposed approach in this paper. The
strategy implemented in sHEA showed better exploration
property at the start of the evolutionary process and better
exploitation property at the later stage, increasing the chance
of finding global optima. Moreover, the statistical analysis
showed that the proposed sHEA ranked first with the mean
value of 5.09 compared to the near-best algorithms of the
existing 26 algorithms.

Although the proposed sHEA produces promising results,
beinghighly competitivewith other algorithms, there is scope
for improvement. Thus, the main limitations of the current
work and some suggestions for future works include the fol-
lowing:

• MODE variants were selected based on their character-
istics, which may not be the best combinations. Thus,
mutation operators can be investigated more definitively.

• The solution quality controlled the switching from
an under-performing algorithm to other possibilities,
excluding the population diversity, although the pop-
ulation diversity is ensured using the diversity check
mechanism. Both population diversity and solution qual-
ity can be considered together while switching decision
is made.

• Although the proposed algorithms’ effectiveness was
assessed against a list of existing algorithms, the switch-
ing strategy’s contribution can be further assessed com-
pared with the most popular reinforcement learning.

• The Tabu list and diversity check mechanism was
introduced to prevent revisiting the identical solutions.
Although Tabu list overcame the problem to some
extent; however, it can not record all the moves. Thus,
the memory-based approach, where every move can
be recorded for a few generations, can be an exciting
approach to be explored. It would prevent revisiting the
same solution and becoming trapped in local optima,
reducing computational expenses.

• The classical JSSP can be extended to supply chain
scheduling, including the vehicle routing problems and
supply portfolio decisions and then the effectiveness of
the proposed algorithm can be assessed.

The authors are currently pursuing a number of these direc-
tions in other works.
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Table 12 Rank measurement between proposed and state-of-the-art algorithms using Friedman test

Algorithm F&F MA DESS MGA aLSGA NS-HDE/EDA NIMGA pABC GWO PBA WOA-LFDE sHEA

Mean rank 6.18 5.73 8.20 5.64 7.59 8.23 6.82 5.29 8.53 5.56 5.15 5.09

Author Contributions All authors havewritten this paper and have done
the research which support it.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abdel-Kader, R. F. (2018). An improved PSO algorithm with genetic
and neighborhood-based diversity operators for the job shop
scheduling problem. Applied Artificial Intelligence, 32, 433–462.

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck
procedure for job shop scheduling.Management Science, 34, 391–
401.

Ahmadian,M.M., Salehipour, A.,&Cheng, T. (2021). Ameta-heuristic
to solve the just-in-time job-shop scheduling problem. European
Journal of Operational Research, 288, 14–29.

Aiex, R. M., Binato, S., & Resende, M. G. (2003). Parallel GRASP
with path-relinking for job shop scheduling. Parallel Computing,
29, 393–430.

Akram, K., Kamal, K., & Zeb, A. (2016). Fast simulated annealing
hybridized with quenching for solving job shop scheduling prob-
lem. Applied Soft Computing, 49, 510–523.

Applegate, D., & Cook, W. (1991). A computational study of the job-
shop scheduling problem. ORSA Journal on computing, 3, 149–
156.

Asadzadeh, L. (2015). A local search genetic algorithm for the job
shop scheduling problem with intelligent agents. Computers &
Industrial Engineering, 85, 376–383.

Asadzadeh, L. (2016). A parallel artificial bee colony algorithm for the
job shop scheduling problem with a dynamic migration strategy.
Computers & Industrial Engineering, 102, 359–367.

Asadzadeh, L., & Zamanifar, K. (2010). An agent-based parallel
approach for the job shop scheduling problem with genetic algo-
rithms.Mathematical and Computer Modelling, 52, 1957–1965.
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