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Abstract
Process force determines productivity, quality, and safety in milling. Current approaches of process design often focus on
a priori optimization. In order to enable online optimization, the establishment of active force controllers is required. Due
to fast-changing engagement conditions of the tool in conjunction with the slower machine dynamics, classic control is not
suited. A promising approach is the application of model predictive control (MPC) for force control, which is proposed in this
contribution. The model predictive force controller (MPFC) explicitly takes into account a model to predict the immediate
future. It consists of a model of the machine tool and a separate model of the process. The process model describes the
relation between feed velocity of the tool, force, and geometric properties of the tool, such as the radial deviation, and of the
tool/workpiece engagement. The feedback loop of the controller is closed by an online identification of the process model to
account changes in the material properties or of the tool wear state. For this identification an ensemble Kalman filter (EnKF)
is applied. The MPFC solves an optimization problem on the future behavior in each sampling step to determine the optimal
controller output enabling high dynamic control. The proposed control system is validated experimentally and compared with
a conventionally designed process with constant feed. It can be shown that the manufacturing time is reduced by 50%. The
system enables a paradigm shift in the design of milling processes operating the manufacturing process at its technological
limit.

Keywords Model predictive control · Ensemble Kalman filter · Milling · Force control · Manufacturing control · Model
identification

Introduction

Milling is a flexible and highly productive manufacturing
process. A rotating cutting movement of a tool is overlaid by
a linear feed movement resulting in a cyclically intermittent
cut with a defined edge. The productivity, workpiece quality,
and safety of themilling process strongly depend on the force
acting on the tool. A high mechanical tool load usually signi-
fies productivity but may deflect the tool causing a violation
of the desired dimensional accuracy of the workpiece, which
is a measure of quality. Further, large peaks in the force may
boost tool wear and ultimately provoke tool failure (process
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safety). As a result, running the process at its productivity
optimum while ensuring process safety and workpiece qual-
ity requires to maintain a specific process force at any time.

The great advances in construction and design of machine
tools and their controllers cannot overshadow the defect that
machine tool setpoints (e.g. tool position) are controlled
rather than process variables (e.g. force) (Thombansen et al.
2018). Past research on controlling process variables used
classic controllers, which were unable to prevent force peaks
at abrupt changes in the tool engagement, e.g. when the tool
enters the workpiece, because they react to a deviation of the
force. “The basic problem arises from the fact that the effec-
tive process gains and time constants depend upon process
variables such as feed, speed, and depth of cut. Furthermore,
process related parameters such as tool geometry, work, and
tool material properties are difficult to characterize and can
have a significant effect on the process dynamics. This unpre-
dictability of the process can lead to poor performance, tool
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breakage, or even instability when fixed gain process con-
trollers are used” (Ulsoy and Koren 1993).

Advanced control methods address the limitations of
classic controllers. As one representative, model predictive
control (MPC) predicts the future behavior explicitly con-
sidering a process model and technological constraints (e.g.
actuator saturation).

Due to higher forces, the proposed method is focusing on
roughing processes. To avoid chatter and thus limit complex-
ity a rigid process setup with a minimal protruding length is
used. Further only the feed was manipulated and the cutting
speed was constant (vc = 80 mm s−1).

The previous works of the authors at the RWTH Aachen

University demonstrated the applicability of MPC to the
milling process focusing on distinct parts of the control sys-
tem (Stemmler et al. 2016; Adams et al. 2016; Stemmler
et al. 2017; Schwenzer et al. 2017; Ay et al. 2018; Stemmler
et al. 2019; Ay et al. 2019). The presented contribution out-
lines the entire system extending the work at the feedback
of the force. Therefore, the state of the art is presented in
“State of the art” section. The proposed force control sys-
tem is described in “Approach” section, while “Results and
discussion” section experimentally validates it.

State of the art

This sections presents first, the state of the art regarding force
control approaches inmilling (“Force control inmilling” sec-
tion) and second, regarding the identification of a process
model (“Force model identification” section).

Force control in milling

Inmilling, predominantly themaximum active force1 Fa,max

is used as the control variable. The feed rate is almost exclu-
sively the manipulated variable, which is the output of the
controller. Taking these definitions into account, the control
approaches of the state of the art can be clustered into:

• fixed-gain controllers,
• adaptive controllers, and
• simulation-enhanced and advanced controllers.

The fixed-gain controllers are characterized by a prede-
fined control lawwith a constant controller parameterization,
such as PID controllers. Tu and Corless (2014) examined
different controller designs and control variables at The

1 This work follows the CIRP Dictionary of Production Engi-

neering (CIRP 1997) explicitly distinguishing the terms cutting force
Fc ≡ Ft (also known as tangential force) and cutting normal force
Fcn ≡ Fr (or radial force). The active force Fa denotes the effective
value of cutting force and cutting normal force—induces bending of the
tool.

Boeing Company in the 1980s. They reduced spindle fail-
ure by 90% at the beginnings of high-speed milling focusing
on the spindle power as the control variable. Commercial
control systems for milling today still work with similar
strategies to avoid an individual design for eachmachine tool.
They control the effective power of the spindle, e.g. Cera-
tizit S.A.,Marposs Monitoring Solutions GmbH, or
MCU GmbH. All commercial vendors apply time-invariant
controllers—although misleadingly promoted as “adaptive
controllers” arguing that they adapt the feedrate. The reactive
nature of fixed-gain controllers make them unable to prevent
overshoots at abrupt changes of engagement conditions.

Adaptive controllers, on the other hand, often combine
online parameter estimation with an a priori determined con-
trol law (structure) (Ulsoy and Koren 1993). Altintas andMa
(1990) used a simple nonlinear model of the maximum force
(per revolution) to the feedrate based on a static deforma-
tionmodel. Simulation and experiments showed good results
for a slowly changing ramp in the depth of cut but overshot
the desired force level by 80% at sudden changes. Nonethe-
less, adaptive controllers eliminated the constant offset of
a P controller by adapting the controller gain e.g. Nolzen
and Isermann (1995). Fussell and Srinivasan (1991) could
not confirm a better transient behavior of adaptive control in
milling (as simulation) than fixed-gain control but concluded
that adaptive control was more stable over a wide range of
cutting conditions. As a consequence, more advanced tech-
niques, such as model reference adaptive control (MRAC),
have been examined.MRAC improved the transient behavior
in the occurrence of a change of the depth of cut but it suf-
fered from poor convergence in case of a constant reference
compared to a PI controller (Lauderbaugh and Ulsoy 1989).

Nolzen (1997) noted that adaptive control systems have
not been reliable enough for a broad success in industry.
The primary reason was the limited reaction time (Cus
et al. 2011), which is inherent in terms of inertia (Park
and Altintas 2004). Adaptive control can stabilize process
setpoints at slowly varying process conditions. “Any effec-
tive control scheme must be able to anticipate geometry
changes” (Richards et al. 2002). Thus, simulation-enhanced
approaches were developed. A process simulation was used
as a separate source of information without a feedback in
conjunction with a closed-loop fixed-gain controller, e.g. in
(Spence and Altintas 1991; Yamazaki et al. 1991; Richards
et al. 2002). Spence and Altintas (1991) superposed the mea-
sured force with predicted force from simulation letting the
controller react to the future process behavior. Instead of
manipulating the feedback,Yamazaki et al. (1991) performed
an offline simulation of the milling process to generate the
optimal reference in terms of material removal rate (MRR).
This reference feedrate was then implemented by a fixed-
gain controller. Richards et al. (2002) picked up this concept
comparing a P controller and an adaptive controller for com-
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pensating inaccuracies of the model, which generated the
reference. Tukora and Szalay (2011) proposed an online pro-
cess simulation including an adapted force model, but the
demonstration was conducted offline. An approach using a
neural network was suggested by Zuperl et al. (2012) and
Zuperl and Cus (2012) combined it with an offline feed-
rate optimization. Only recently, Altintas and Aslan (2017)
applied the idea of identifying the forcemodel online in com-
bination with an adaptive controller. A 1-s prediction was
used in the model to anticipate changes in the engagement
conditions. Kluge (1999) even suggested MPC for metal
cutting processes but dismissed it because of its high metro-
logical effort.

Adams and Stemmler (Adams 2016; Stemmler et al. 2016;
Schwenzer et al. 2017; Stemmler 2020) picked up the idea
of advanced control implementing MPC for the first time in
order to control the active force in milling. They predicted
the future active force based on an a priori simulation of the
engagement conditions, the current feedrate and an online
calibrated force model. An overview on how it works and
the current trends in MPC is provided by Schwenzer et al.
(2021).

Forcemodel identification

Modeling the force in cutting technology is predominantly
conducted with so-called “mechanistic” force models relat-
ing data-driven material coefficients to the geometry of the
undeformed chip. For calibration or identification of these
models, recently the method of instantaneous undeformed
chip thickness has evolved. It is essentially a curvefit between
measured and simulated force. While often global optimiza-
tion algorithms were used, e.g. Ghorbani and Moetakef-
Imani (2015), Grossi (2017), Chen et al. (2018) and Zhang
et al. (2017), local optimization algorithms required less com-
putational effort with no loss in accuracy (Schwenzer et al.
2019). Freiburg et al. (2015) even reported a lack of conver-
gence if unconstrained optimizationwas used. If constrained,

local optimization algorithms can ensure a technologically
plausible result and may be suitable for online identification.

Adams (2016) identified the model coefficients online
every three cutter revolutions, which translated to 80 ms
allowed execution time or 1 mm tool path. A later study
showed only little reduction potential of the computation
through other optimization algorithms (Schwenzer et al.
2019). The discrete, independent nature of the identified
models demanded for an additional smoothing when used in
closed-loop control (Adams 2016; Stemmler 2020). Altin-
tas and Aslan (2017) picked this idea up using a fit based
on recursive least squares (RLS). Recent prior works of
the author introduced ensemble Kalman filtering for this
problem in simulations, demonstrating that this disturbance-
observer-based method outperforms RLS (Schwenzer et al.
2020).

Approach

First, the overall system is introduced in “System overview”
section. Then, the major modules are explained in detail.
Finally, “Experimental setup” section outlines the experi-
mental setup.

System overview

The model predictive force controller (MPFC) consists of
MPC-based controller, a reference generator, and an ensem-
ble Kalman filter (EnKF)-based identification. Figure 1
illustrates the system. The feed velocity v f ,act is con-
trolled bymanipulating the commanded feed velocity v f ,cmd

through MPC. MPC considers a model that describes the
behavior of the controlled actuators of the machine tool.
The reference generator translates the desired active force
Fa,des to a reference of the feed velocity by inverting the pro-
cess model (“Process model” section). The feedback loop of
the force is closed by identifying the parameters of the pro-
cess model online. The identification is performed on force

Fig. 1 Block diagram of the model predictive force control system
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measurements in the coordinate system of the machine tool
F = [FX FY ]ᵀ.

From the control point of view, the controlled system is
divided into two parts: one with time delay (the machine
tool) and another part with an immediate reaction (the pro-
cess). Although the machine tool is controlled over time, the
MPCworks in the one-dimensional space along the tool path
(position domain).

In order to model the milling process, the current unde-
formed chip parameters are required, which depend on the
current feed per tooth and the macroscopic engagement
conditions, s. “Process model” section. The engagement is
predefined along the tool path (in peripheral milling: depth of
cut ap and the difference in the engagement angle from start
of the engagement to the exit of the cutting edge ϕex − ϕin ,
which relates to the width of cut ae). The engagement
conditions are determined once beforehand by a geometric
simulation considering the diameter of the (cylindrical) tool
and are stored as a look-up table. The table is synchronized
online via the position of the tool and used within the iden-
tification and the reference generator.

Model-based predictive controller

The popularity of MPC “comes in great part from the fact
that a suitable model being given, the controller can be eas-
ily implemented with a direct physical understanding of
the parameters to be tuned and easy constraints handling
(Richalet 1993). According to this, the MPC algorithm of
this contribution makes explicit use of a time-discrete state-
space model:

x(k + 1) = f m(x(k), u(k)), (1)

y(k) = h(x(k)), (2)

with state vector x, output vector y, and input u. The model
function f m(·) (the m in the index shall indicate that it
is the machine tool model in the case of MPFC) and the
measurement function h(·) predict the future behavior of
the controlled system. The output vector y consists of the
measured position yp and the feed velocity yv . Their corre-
sponding predictions are defined by the trajectories yp, yv ,
respectively. The optimization problem2 considers the track-
ing accuracy of these trajectories:

min
Δu,ξ

Hp∑

i=0

‖w(k + i |k) − yp(k + i |k)‖2Ww
+ · · · (3)

2 The quadratic norm can be resolved to a matrix multiplication:
‖v‖2W = vᵀ W v. Where the matrix W denote weight matrices for
each single term. Lower case, bold typed variables denote a vector or a
matrix; upper case, bold variables a matrix. The predicted outputs y in
time step k + i calculated from the discrete time step k are indicated as
y(k + i |k).

Hu−1∑

j=1

‖Δu(k + j |k)‖2Wu
+

Hp∑

i=0

‖ξ(k + j |k)‖2W ξ
(4)

s.t. ulb I ≤ u(k) + Δu(k + j |k) ≤ uub I,

yv(k + i |k) ≤ yub(k + i |k) + ξ(k + i |k),
0 ≤ ξ(k + i |k),

∀ i ∈ {0, . . . , Hp} and j ∈ {0, . . . , Hu}.

The problem is solved at each time instance k in such a way
that the tracking error between the predicted positions y p and
the desired reference w is minimized within the finite pre-
diction horizon Hp (Stemmler 2020; Stemmler et al. 2017;
Schwenzer et al. 2021). providing an optimal sequence u
of the manipulated variable, of which only the first entry
u is implemented (principle of “receding horizon”). Thus,
the feed velocity u = v f ,cmd is maximized along the 1D,
flattened tool path under consideration of the constraints on
the feed velocity to yub. This limitation is calculated by the
process model and the predicted positions yp.

Furthermore, the change Δu of the manipulated variable
is considered within the finite horizon Hu in order to avoid
high-frequent control changes. The last term of the cost func-
tion includes so-called slack variables ξ , which quantify the
violation of output constraints in the cost function. Soften-
ing the output constraints in this way guarantees feasibility of
the constrained optimization problem. Each term posses an
individual weighting matrix Ww, Wu and W ξ , respectively.

The implicit formulation of the controller maintains phys-
ical interpretability of the system shifting the design effort
towards modeling of the to-be-controlled process (Schwen-
zer et al. 2021). The double-lined arrows in Fig. 1 shall
indicate that the problem is solved for Hp time steps, so
that the variables become vectors.

With regard to setup and tuning of theMPFC in this work,
the sample time was set to Ts = 20ms, which is three times
smaller than the time delay of the machine tool and eight
times smaller than its reaction time, “Machine model” sec-
tion. The sampling time allows the MPFC to manipulate the
feed twice per revolution. The hard box constraints on the
controller output u, which are bounded by the upper limit
uub, the lower limit ulb and the identity matrix I , are applied
to protect machine and tool from overload: feed per tooth
fz ∈ [0 mm; 0.25 mm].
The control horizons were indirectly determined by the

model of themachine tool. The timedelay of themachine tool
was considered in themodel of its behavior. Theupper predic-
tion horizon Hp was defined by the settling time T95% and
a maximum feed velocity of v f ,max = 21.225 mm s−1 =
1273.5 mm min−1, which resulted in a maximum prediction
horizon of ten time steps Hp = T95%

Ts
= 10. The control hori-

zon was set to Hu = Hp in order to determine the control
behavior for the prediction horizon.
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In the MPC, the open-source optimization algorithm
qpOASES was used as it is dedicated for linear MPC prob-
lems (Ferreau et al. 2017). The weight matrices of the cost
function, Eq. 3, were tuned by experience to Ww = 0.1 I ,
Wu = 0.01 I and W ξ = 104 I , with identity matrix I .

Machinemodel

Thiswork used a five-axis, verticalmachining centerMazak

VARIAXIS i600 with a numerical controller (NC) of type
Siemens SINUMERIK 840D SL. The spindle is mounted
on the Z-axis, which rests on the X-axis, which again rests on
the Y-axis. The identical construction of the X- and Y-axes
allowed to describe their behavior by a single joint model.

The position controller was a proportional controller (P
gain), while the velocity control loop was a PI controller
(Siemens 2016). Since the feed was manipulated, the MPC
algorithm required amodel of the velocity behavior along the
tool path, which was amixedmovement of the involved axes.
The linear axes ofmachine toolswere oftenmodeled as a sec-
ond order system, e.g. Fussell and Srinivasan (1991), Altintas
(1994), Rober et al. (1997) and Zuperl and Cus (2012), with
time delay Td :

Gs = K ω2
0

s2 + 2 ζ ω0 s + ω2
0

e−s Td , (5)

in frequency domain s with a gain K , a damping constant ζ ,
and the cut-off frequency ω0.

Step tests in the XY-plane suggested an overdamped
behavior of the feed velocity: ζ = 1.5552, K = 0.9978,
ω0 = 80.5162, with a time delay of Td = 60 ms. This trans-
lated to a rise time of T95% = 167 ms, in which 95% of the
commanded valuewere reached. Figure 2 illustrates the reac-
tion of themachine and of the suggestedmodel to a command
profile of pseudorandom steps.

Modernmotion controllers strive to reduce the attack time
by additional feedforward control yielding a step-variant
behavior, i.e. depending on the value of the manipulated

Fig. 2 Reaction of the X- and Y-axis of the Mazak VARIAXIS i600

to pseudorandom step changes in the commanded velocity modeled as
a second order system

variable. Ay et al. (2018) and Ay et al. (2019) modeled this
nonlinear behavior with support vector regression (SVR), a
data-drivenmachine learningmethod.Nonetheless, thiswork
refrains from activating feedforward control and uses a sec-
ond order system as machine tool model.

Process model

A model of the process was build from a mechanistic force
model together with a model of the radial deviation and the
current macroscopic engagement conditions.Without lack of
generality, the nonlinear model according to Kienzle (1952)
was used as force model:

Fi = ki bh
1−mi , where i ∈ {t, r , p}, (6)

presents a nonlinear relationship of the force to the unde-
formed thickness h while the undeformed width b of the
chip exhibits a constant influence. The parameters ki and mi

represent coefficients specific to the combination of work-
piece material and tool. The same function is assumed for
the tangential (index t), radial (index r ), and passive force
(index p).

Other well-established models, e.g. by Altintas and Lee
(1996), assume a linear relation but are often extended by
modeling the coefficients again as an exponential function
of the undeformed chip thickness (Wan et al. 2007, 2009;
Guo et al. 2017; Zhang et al. 2018). Studies suggested that
nonlinear models may be generally more accurate than linear
versions (Adem et al. 2015; Wei et al. 2018; Wimmer et al.
2018).

Radial deviation of a tool—often also called “runout”—
provokes a dissimilar feed per tooth yielding a periodically
varying chip load. The most common modeling approach
was introduced byKline andDeVor (1983) andKline (1982).
Theymodel it as a parallel offset of the axis of rotation (and an
additional tilt whose influence is often neglected). The error
manifests itself in a different local radius for each tooth t of
all Nz teeth. Even considering just the radial offset improves
the accuracy of the simulated force significantly (Rivière-
Lorphèvre and Filippi 2009).

In combination of both models, the force of the milling
process can be modeled as a function of the current rotating
position of the cutting edge ϕz :

Fi (ϕz) = ki
b

Ns

Ns∑

n=1

φn

Nz∑

j=1

{

· · · fz sin

ϕz,s︷ ︸︸ ︷[
ϕz − (n − 0.5) Δϕβ

]
︸ ︷︷ ︸

hnominal(n)

−Δhoffset(n, j)

⎫
⎪⎬

⎪⎭

1−mi

,

(7)

123



1912 Journal of Intelligent Manufacturing (2022) 33:1907–1919

where the nominal undeformed chip thickness hnominal(n)

is the as circle-movement approximated trochoidal path of
a point on the cutting edge. The tool is sliced into Ns disk
elements, in which the helical cutting edge is approximated
as an upright cutting edge (to obtain orthogonal cutting). This
staircase-like approximation is standard to model the helix
angle β. The force Fi (ϕz) is the sum over all Nz teeth. The
effect of the radial offset (polar coordinates, amount ρ and
direction λ) is calculated by:

Δhoffset(n, j) = 2ρ sin

[
tan(2β)

D

b

Ns
(n − 0.5) − λ+

· · · π

Nz
(2 j − 3)

]
sin

(
π

Nz

)
. (8)

The equation assumes that the tool is sliced into Ns disk
elements—as it is common practice to approximate the helix
angle β of the cutting edge. Modeling the cutting edge as a
spiral staircase accounts for that mechanistic force models
originate from turning, thus, assume orthogonal cutting con-
ditions. The helical cutting edge let it tilt backwards from the
tip. The amount of this projection Δϕβ per slice is:

Δϕβ = b

Ns R tan(π/2 − β)
. (9)

The model describes the height of the tool by the center of
each disk element (n − 0.5).

The boolean function φn models whether a slice ϕz,s is
engaged or not at a certain time step:

φn =
{
1 ϕz,s ≥ ϕin andϕz,s ≤ ϕex = 180◦,
0 otherwise.

The undeformed chipwidth b can be easily determined for
peripheral end milling since the tool is always perpendicular
to the feed direction resulting in the depth of cut being b =
ap.

Process model identification by EnKF

As a further development of works in simulation, e.g.
Schwenzer et al. (2020), the online identification of the
process model is conducted by an EnKF. The idea coin-
cides with an disturbance observer but since the model was
nonlinear and nonobservable (i.e. it was not biunique), this
particle-based method was used. The particles in the EnKF
approximate the underlying probability distribution of the
model parameters instead of the expectation value (Evensen
1994), which is why the demand of an “observable” system
could be dropped. The mean of the particles was taken as
the current best guess of the EnKF. The computation time
scales linearly with the ensemble size J while the error of

the estimation follows an inverse square root of the number
of particles 1/

√
J (Evensen 2003). The approach presents

an instantaneous identification and can be considered unique
compared to other works.

Introduced by Evensen (1994), the idea was to propagate
a group of particles (states x):

Xk|k−1 =
{
x1k|k−1, . . . , x

J
k|k−1

}
, (10)

forward in time k rather than just a single state vector x as
the classic Kalman filter (KF) does. The EnKF simultane-
ously propagates independent solutions that share the same
measurement-based update. The index k|k − 1 indicates that
the value in the current time step k is based on the information
from the previous time step k − 1.

First, the empirical covariance matrix P is calculated
based on the output of the model f p(u, x)—in the case here,
this is the process model equation 7 (therefore the index p)—
for each ensemblemember x j of the previous time step k−1:

X̂k|k−1 = f p
(
uk, x

j
k−1

)
j ∈ {1, . . . , J }, (11)

Pk = 1

J
(X̂k|k−1 − Xk|k−1)

· · · (X̂k|k−1 − Xk|k−1)
ᵀ. (12)

Lines ( · ) denote mean values and hats ( ·̂ ) predicted values
while undecorated symbols indicate the actual or corrected
values. The covariance matrix represents how much to trust
the model in comparison to the measurements z j . The
predicted state vectors x̂ j are then updated through mea-
surements weighted by the Kalman-gain Gk :

Gk = Pk Hᵀ
k

[
Hk Pk Hᵀ

k + Rk
]−1

, (13)

x j
k|k = x̂ j

k|k−1 + Gk

[
z jk − Hk x̂ j

k|k−1

]
, (14)

where the output matrix H extracts those states that can be
measured y j = H x̂ j . All members share the samemeasure-
ments z, which are artificially augmented with zero mean
gaussian noise η ∼ N (0, Γ ) creating individual measure-
ments for every member:

z jk = yk + η
j
k , with j ∈ {1, . . . , J }, (15)

Rk = 1

J
ηk η

ᵀ
k ≈ Γ . (16)

In the limit of infinite ensemble members J → ∞, the
empirical measurement noise covariance R coincides with
the measurement noise covariance Γ .

In essence, the EnKF is a particle-based sequential opti-
mization that offers a cheaper derivative-free approximation
than traditional methods (Iglesias et al. 2013; Chada et al.
2019).
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Table 1 Coefficients of the
Kienzle-model: selected
examples and a technological
reasonable range for
X5CrNi18-10

Coefficient unit kt ( N mm−2) kr ( N mm−2) mt (–) mr (–) ρ (µm) λ (◦)

AlZnMgCu1.5 540 56 0.25 0.69

Inconel 718 2112 311 0.29 0.69

X5CrNi18-10 1700 350 0.18 0.55

Upper bound 2400 1000 0.60 0.80 40 360
Nz

Lower bound 300 40 0.10 0.25 0 0

Parameters taken from König et al. (1982)

Without presenting the theory further, this work uses an
EnKF with J = 50 particles to identify the process model
equation 7. The interested reader is referred to the original
references (Evensen 1994, 2003), the mathematical analy-
sis of its well-posedness (Iglesias et al. 2013; Kelly et al.
2014; Schillings and Stuart 2017, 2018), or a recent work
describing the application to the problem of identifying a
mechanistic force model (Schwenzer et al. 2020).

The filter converges within the search space spanned by
the initial distribution of the particles (this is the so-called
“subspace property”). An advantage of mechanistic force
models—especially the Kienzle-model—is the extensive
literature on them, which allows to determine a technolog-
ically reasonable range of their parameters (Table 1). The
polar coordinates of the radial offset automatically limit the
parameters (by wrapping at 360◦) but impose the challenge
of defining a continuous mean in them. The EnKF requires a
proper mean of its particles in order to converge. As a trick,
we suggest to transform the polar coordinates ρ, λ of the
radial offset to cartesian coordinates ρx , ρy for the EnKF
and transforming them back to polar coordinates when eval-
uating the process model equations 7–8.

The technological bounds, Table 1, were additionally
imposed as box constraints in the EnKF to keep the filter
from running into model-induced singularities.

For an undeformed chip thickness h smaller than a criti-
cal thickness, cutting turns into ploughing and mechanistic
models loose their validity. In the mechanistic models, this
is called “size effect”, which manifests itself in drastically
increasing model coefficients. These rather unreasonable
coefficients pull the filter towards higher coefficients in
every cutter revolution. Thus, the identification benefits from
excluding the size effect in identification by putting the EnKF
on throughout if the undeformed chip thickness is below the
critical undeformed chip thickness hT H . Although, the recur-
sive nature of the EnKF provides a certain robustness against
the size effect, the identification was set to ignore samples
where the sum of the undeformed chip thicknesses along the
helical cutting edge was less than:

Ns∑

n=1

h(n) < hT H = 0.05 mm. (17)

It is a reasonable choice, comparing it to other works where
the size effect was observed e.g. below h = 0.01 mm for
Al2618 (Wan et al. 2008) or below h = 0.2 mm for TiAl6V4
(Wang et al. 2012).

Experimental setup

The experiments were conducted on the five-axis, vertical
machining center of type Mazak VARIAXIS i600 with an
NC of type Siemens SINUMERIK 840D SL. Figure 3 is
showing the experimental setup.

Furthermore, stainless steel X5CrNi18-10 (AISI304) was
manufactured by a solid carbide end mill (number of teeth
Nz = 2, diameter D = 10 mm, helix angle β = 46◦,
Seco JS512100D2C.0Z2- NXT) at a cutting speed of vc =
8 mm s−1, which was recommended by the manufacturer
Seco Tools GmbH. Theworkpiece geometry (Fig. 4) com-
bines all features that are especially challenging for force
control in milling: abrupt changes in the engagement condi-
tions, slow changes, as well as different depths of cuts.

The tool center point (TCP) was read from the internal
bus system at 200 Hz, which was four times faster than the
sample time Ts = 20 ms of the MPFC. The feed velocity
f was calculated based on the velocity of the X- and Y-
axes. Due to the high noise level, the internally commanded
and measured values were fused in a Kalman filter for an
improved measurement.

Fig. 3 Experimental setup on the Mazak VARIAXIS i600 includ-
ing a Kistler type 9255B dynamometer, a X5CrNi18-10 (AISI304)
workpiece and a Seco JS512100D2C.0Z2- NXT solid carbide cutting
tool
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Fig. 4 Tool path of the workpiece

The force was measured by a piezoelectric dynamometer
(Kistler 9255B) at 10 kHz with a low-pass filter of fedge =
300 Hz for proper signal conditioning.

The rotary position of the cutting edgesϕz was determined
via a spindle encoder, the knowledge of the spacing of the
cutting edges, and measuring the fixed rotary offset between
spindle encoder and cutting edges.

The velocity command was fed to the numerical control
unit (NCU) via an analog I/O module that manipulated the
overwrite as it is a common approach, e.g. reported by (Tu
and Corless 2014).

The MPFC ran on an AMD Ryzen7- 2700 eight-core
(3.06 GHz) CPU, with Microsoft Windows 10 and 16
GB DDR3RAM.

Results and discussion

We present here the performance of the force control system
in different configurations:

– MPFC with EnKF-based identification,
– MPFC with EnKF-based identification, whose ensemble
is repeatedly inflated, and

– a process with constant feed as the current state-of-the-
industry benchmark.

The first presents the MPFC with the novel identification
method based on the EnKF. The second extends the iden-
tification by a repeated inflation of the ensemble in order
to maintain its initial agility as Schwenzer et al. (2020) sug-
gested in a simulation study. The last entry in this list presents
a process designed based on the suggestions of the tool man-
ufacturer (Seco Tools GmbH).

The results are presented in Figs. 5, 6 and 7 providing
the signals of the active force (top row), the feed velocity
(second row), the identified model parameters (if apply, third
and fourth row), and the engagement conditions of the tool
for orientation (bottom row). All figures share the same axes

limits for an easy comparison. All signals are presented over
the position on the tool path p. The three columns show
the three phases of engaged tool according to the tool path
(Fig. 4) when the tool is engaged, ignoring the phases of air
cutting in between.

The first rows present the active force Fa , as the controlled
variable, in three ways: the measured force (gray line), the
simulated maximum active force per revolution Fa,sim |max

(blue line), and the desired force reference Fa,max,des (red,
dashed line). The simulated force uses the instantaneous
model parameters from the identification and representswhat
the MPC-based controller thinks that the force was.

Thefigures further (second row) illustrate the feedvelocity
v f , which was the manipulated variable. The signal of the
measured velocity v f ,act is drawn in red. The output of the
MPFC, which is the commanded velocity v f ,cmd , is denoted
in blue, and the desired velocity reference v f ,des as black
line. The last presents the translation from the desired force
Fa,des by an inversion of the current process model in the
reference generator.

The identification output of the Kienzle-model (third
row) and of theKline&DeVor-model (fourth row) are pro-
vided as continuous signals of the EnKF.

The bottom row illustrates the engagement conditions
depth of cut ap (black line) and the difference of the exit
and the entry of the rotation angle ϕex −ϕin (light blue area),
as well as the feed direction angle α f (dark blue line). The
feed direction angle α f is required to transform the mod-
eled force in the coordinate system of the cutting edge to the
coordinate system of the machine tool, in which the force is
measured.

The proposed work showed a method for tracking a
desired force, which is dependent on the tool in use. The
determination of the desired force is not within the scope of
this work.

MPFCwith an EnKF-based identification

This work used a novel identification method based on an
EnKF. Figure 5 presents the results of an MPFC with a non-
inflated EnKF-based identification.

Thefirst contact of tool andworkpiece is particularly inter-
esting since the identification started with a randomly chosen
initial guess (or rather randomly distributed initial ensem-
ble). Therefore, when the identification became active, this
guess was drastically corrected. It becomes visible in peak of
the simulated maximum force Fa,sim |max in the first column
where the MPC overestimated the force, right after it entered
the material. The large changes of the model parameters
caused a somehow erratic control behavior at the beginning
until the parameters settled.
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Fig. 5 Results of theMPFCwith EnKF-based identification (no ensem-
ble inflation). The three columns are showing the three phases along the
toolpath (Fig. 4) when the tool is engaged

There are three other exceptional points in the force (top
row). First, when the tool exited theworkpiece under an angle
(first column), theMPFC presumed a higher force than it was
measured. Second, at the beginning of the second column
(the tool entered under an angle), the circumference of the
measured active force Fa formed a dent, of which the con-
troller was unaware. Both observations suggested that the
parameters of the process model were not accurate in this
section. Apparently, the identification was not accurate at
changes of the engagement conditions (the engagement angle
in this case). Third, the last column shows constantly overes-
timated force, which did not meet the reference—however,
the MPC-based velocity controller perfectly met its refer-
ence. Again, the error was caused by an inaccurate process
model. Although the model parameters adapted (as a result
one can see a steady increase in the measured force), the
identification was incapable of identifying the parameters at
one time step.

MPFCwith an EnKF-based identification and
repeated ensemble inflation

In particular, the constantly inaccurate identification sug-
gested a limited agility of the EnKF. The particles were
dragged towards the same value at every step. However, the
subspace property states that they converge only in the sub-
space spanned by the initial ensemble. With induction one
can deduce that at every time step, the particles converge
in the subspace spanned by them. Therefore, the ensemble
looses the ability to explore the entire search space at every
step in time. If one assumes that the model parameters can
change (i.e. leading to a time-variant inverse problem), they
may pop out of the ensemble subspace. As long as the ensem-
ble exhibits a minimum spread, it maymove towards the new
ideal set of parameters. In fact, literature suggests to main-
tain a minimum inflation by constantly inflating the variance
P of the filter (Kelly et al. 2014). Based on these observa-
tions, the authors introduced a repeated drastic inflation of
the ensemble itself (of the particles, not just of its variance)
(Schwenzer et al. 2020). This ensured larger agility of the par-
ticles while allowing it to converge to the best guess between
these inflations.

Ensemble inflation can be tuned by the step size k∗, in
which the ensemble should be inflated, and to what size the
covariance matrix of the inflated should be P = 1/λ∗ PX0

based on the covariance PX0 of the initial ensemble.
Figure 6 provides the results ofMPFCwith inflatedEnKF-

based identification. The measured force Fa agrees much
more with the simulated force Fa,sim |max of the controller. In
particular at the last column, the signals present amuch better
course. The model parameters show the same trend over the
entire tool path indicating a constantly good identification.

Milling with constant feed

Tool manufacturers today provide extensive tables on what
process parameters to pick for a given engagement. In the
case presented here, the tool manufacturer recommended a
feed velocity of v f = 266 mm min−1 = 4.43 mm s−1 (and a
cutting velocity of vc = 80 mm s−1, aswas also used before).

Figure 7 presents the signals from such a conventionally
designed process. One may note the higher force in the last
column due to the increased depth of cut ap = 2.5 mm as
well as the descending course at the exit of the tool in the
first column. If compared to the figures before, this down-
ward slope emphasizes the productivity gain of MPFC. At
the next entry (beginning of column two), there is again a dent
in the force, which may not be caused by the velocity. This
might be a resonance artifact of the dynamometer, which is
more pronounced whenX- andY-axes are excited simultane-
ously (it is less pronounced at the entries in the first and third
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Fig. 6 Results of the MPFCwith EnKF-based identification (ensemble
inflation k∗ = 50, λ∗ = 10). The three columns are showing the three
phases along the toolpath (Fig. 4) when the tool is engaged

column, where the movement is only in X- or Y-direction,
respectively).

Table 2 compares the times of the different approaches: the
total process time Ttotal for the entire tool path and the cutting
time Tcut , in which the tool was engaged. The difference to
the process with constant feed was striking. Both measures
of time show a reduction by 55% with MPFC. The small
improvement of the MPFC with ensemble inflation over the
experiment without the repeated inflation is small but clear.
The shorter time is a result of the closer match of measured
force and desired force reference.

Due to the higher relevance of forces in rough milling,
this work focuses on this case. Nonetheless, the method is
equally applicable to finishing or micro milling but may
require a more sophisticated force model (e.g. incorporating
ploughing or extending to ball-shaped tools as are common
for finishing) and specialized measurement equipment for
an even higher signal-to-noise ratio. The current setup is
only applicable for 2.5 dimensional milling as moving the

Fig. 7 Results of a process with constant feed v f = 4.43 mm s−1. The
three columns are showing the three phases along the toolpath (Fig. 4)
when the tool is engaged

Table 2 Comparison of the total time Ttotal and of the engaged cutting
time Tcut

Configuration Ttotal (s) Tcut (s)

Constant velocity 63.64 22.57

MPFC + EnKF 35.11 12.70

MPFC + EnKF, k∗ = 50, λ∗ = 10 33.62 12.56

dynamometerwould introduce an acceleration-induced error.
There are efforts to correct force signals from such effects
as well as substituting the dynamometer by indirect force
measurement methods.

Conclusion

This work described a model predictive approach to con-
trol the active force in rough milling. It was build upon an
model-based predictive feed velocity controller, which was
turned into a cascaded force controller by a reference gener-
ator and an online identification of the process model. The
reference generator inverts the process model translating the
desired force reference into a feed velocity reference for the
model-based predictive feed velocity controller. The result-
ing system was called a model predictive force controller
(MPFC).

The process model was based on the well-established
mechanistic force model according to Kienzle (1952) and
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the popular radial deviation of Kline and DeVor (1983). For
the recursive identification based on an EnKF, the parameters
of the radial deviation model were expressed in cartesian

coordinates to obtain a proper definition of a mean.
The experiments demonstrated the effectiveness of the

proposed system. It reduced and increased the velocity just
in time so that the force almost perfectly met the desired
force reference. This held in spite of abrupt changes in the
engagement between tool andworkpiece—or of slowly vary-
ing changes. With regard to state-of-the-industry solutions,
the improvement was a reduction of the manufacturing time
by 55% compared to a conventionally designed process with
constant feed. The obtained improvement does not claim to
be representative whatsoever. Apart from the improvement
over the conservative feed suggested by the tool manufac-
turers, the system works particularly well at tool path with
changing engagement conditions.
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