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Abstract
The use of composite materials is increasing in industry sectors such as renewable energy generation and storage, transport
(including automotive, aerospace and agri-machinery) and construction. This is a result of the various advantages of composite
materials over their monolithic counterparts, such as high strength-to-weight ratio, corrosion resistance, and superior fatigue
performance. However, there is a lack of detailed knowledge in relation to fusion joining techniques for compositematerials. In
thiswork, ultrasonicwelding is carried out on a carbonfibre/PEKKcompositematerial bonded to carbonfibre/epoxy composite
to investigate the influence of weld process parameters on the joint’s lap shear strength (LSS), the process repeatability, and
the process induced defects. A 33 parametric study is carried out and a robust machine learning model is developed using
a hybrid genetic algorithm–artificial neural network (GA–ANN) trained on the experimental data. Bayesian optimisation is
employed to determine the most suitable GA–ANN hyperparameters and the resulting GA–ANN surrogate model is exploited
to optimise the welding process, where the process performance metrics are LSS, repeatability and joint visual quality. The
prediction for the optimal LSS was subsequently validated through a further set of experiments, which resulted in a prediction
error of just 3%.

Keywords Machine learning · Artificial neural network · Genetic algorithm · Bayesian optimisation · Ultrasonic welding ·
Dissimilar materials

Introduction

Manufacturing of lightweight components is at the research
forefront in the transportation industry (Kim et al., 2019),
as a result of the ever-increasing demand for weight reduc-
tion due to increasing environmental restrictions regarding
harmful emissions. Carbon fibre reinforced polymer (CFRP)
composites offer superior strength toweight ratio in compari-
son to their traditional monolithic counterparts, making them
ideal candidates for such applications. Currently more than
75% of CFRPs are manufactured using a thermoset matrix
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(Long, 2005), however there is increasing interest in ther-
moplastic composites due to their short process times, long
shelf life, lack of solvent emissions during processing, and
inherent recyclability (Ramaswamy et al., 2020). Therefore,
the joining of thermoset matrix composites components to
advanced thermoplastic matrix components is an active area
of research that requires innovative joining technologies.

One such technology, showing promising potential in this
space is ultrasonic welding (USW). This joining method
works by converting high frequency electrical energy (typi-
cally 10–70 kHz) into high frequency lowamplitudemechan-
ical vibrations (10–250 μm). The local application of the
mechanical vibrations is directed at a joint interface where a
relative motion between adherends generates frictional heat
to achieve a temperature sufficient to melt the adherends
(Petrie, 2015). The adherends are then allowed to cool and
consolidate under a controlled pressure, resulting in a fusion
bond. USW is extensively used in industry due to its fast pro-
cess times, low energy consumption, and is environmentally
friendly (Wang et al., 2017). However, degradation of the
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matrix and fibre re-orientation, resulting in low-performing
components are drawbacks when joining fibre composite
materials. It has been shown that joint quality shows a strong
dependence on weld input parameters and the relationships
are extremely non-linear (Mongan et al., 2021). Therefore,
it is important to identify the appropriate weld input param-
eters during the process development stage. Moreover, the
complex non-linear relationships are difficult to model using
traditional techniques.

Recent advances in the digitisation of the manufacturing
industry have led to an increasing interest in the use of
machine learning in intelligent manufacturing technologies,
including welding systems (Wang et al., 2020). Machine
learning uses computational algorithms to convert empirical
data into predictive models (Edgar & Manz, 2017). Arti-
ficial neural networks (ANN), a class of machine learning
algorithms, are a data-driven modelling method with uni-
versal approximation capabilities and flexible structure that
enable the method to capture complex non-linear behaviours
(Markopoulos et al., 2008; Shokry & Espuña, 2018). ANN’s
have unprecedented utility in predicting the USW process
due to their ability to model the complex non-linear rela-
tionship between process parameters and joint performance.
Various researchers have investigated ANN modelling of
welding processes, Liu et al. (2020) optimised a laser weld-
ing process using an ANN trained on sixteen samples from
a Taguchi experimental design, concluding the process was
optimised by the reduction in porosity and the increase in
strength relative to the observed experimental data. Tafarroj
and Kolahan (2018) compared the performance between
ANN and regression models for a gas tungsten arc welding
applicationwhere the training data consisted of twenty-seven
experimental samples. The study found ANN modelling
provided a more accurate prediction. Similarly, McDonnell
et al. (2021) compared the performance of Gaussian pro-
cess regression (GPR), support vector machines (SVM),
and ANN’s for the multi-objective optimisation of a laser
machining process identifying ANN as the superior machine
learning method. Seyyedian Choobi et al. (2012) used forty-
one training samples to train an ANN with fifteen, twenty
and twenty-five neurons in the first, second and third hidden
layers, respectively. The model’s predictions of welding
deflections were validated by finite element simulations,
producing a mean error of 0.66%.Within the present context
of predicting the strength of USW joints, Pradeep Kumar
and Divyenth (*2020) trained an ANN to predict the perfor-
mance of copper wire joined by USW to copper sheet using
twenty-seven training samples and produced a correlation
coefficient of 0.96 between predicted andmeasured strength.
However, the model was not assessed on test data. Mongan
et al. (2020) developed an ANN to predict the weld quality
for USW aluminium 5754, achieving a correlation coeffi-
cient of 0.98 between predicted and actual values for lap

shear strength (LSS). Zhao et al. (2017) developed an ANN
on twenty-seven training samples to predict the strength of
aluminium 6061 joined to A36 steel, producing a correlation
coefficient of 0.998 between predicted and measured results.

While it is clear that USW has been reported for several
different alloy combinations, it has not been widely used for
polymer composite materials. Thus, understanding of the
influence of welding parameters on joint performance for
polymer composites is limited, and effective methods are not
currently available to predict joint performance (Sun et al.,
2021; Wang et al., 2017). It should also be noted that none of
the studies outlined above optimised the process or assessed
repeatability within the process and so gaps are evident in the
open literature. This study aims to deliver a multi-objective
optimisation model that is capable of predicting, with a high
degree of accuracy, the maximum achievable LSS of a USW
carbon fibre reinforced polymer dissimilar composite joint,
while ensuring a repeatable process and no process induced
defects.

Despite their promising results,ANNsare commonly clas-
sified as “black box” models (Oliveira et al., 2015) since, for
example in the context of joint strength prediction, theydonot
explain the underlying bonding mechanisms that give rise to
increased joint performance. Furthermore, the model’s per-
formance and its training convergence have a strong depen-
dency on the selection of the model hyperparameters (Le-
Hong et al., 2021). Therefore, identifying an appropriate set
of hyperparameters is essential to obtain acceptable results.
To this intent, in this study, Bayesian optimisation (BO) was
implemented to optimise the selection of the optimal ANN
hyperparameters. Various researchers have taken a similar
approach, where Shin et al. (2020) optimised neural network
hyperparameters using BO for predicting NOx in a diesel
engine and Wu et al. (2019) demonstrated that using BO for
hyperparameter tuning ofmachine learningmodels increases
the robustness of themodels. Snoek et al. (2012) also demon-
strated the benefits of using BO for hyperparameter tuning of
various machine learning models concluding BO surpasses
a human expert at selecting optimal hyperparameters.

The objective of this work is to demonstrate the benefits
of usingmachine learning approaches for the multi-objective
optimisation of a complex USW process for the joining of
dissimilar materials. The approach is as follows: three repe-
titions of a 33 design of experiment (DoE) parametric study
are first conducted to acquire insight into the joining pro-
cess. The experimental data are then analysed to identify
key contributors to the joints lap shear strength (LSS), the
repeatability of the process, and process induced defects. The
experimental data are then used to develop a robust hybrid
genetic algorithm-artificial neural network (GA–ANN) pre-
dictive model in conjunction with BO for hyperparameter
tuning. The GA-ANNmodel is then used to predict the weld
input parameters to achieve the maximum LSS for a defect
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Table 1 Description of the
laminates used during welding Material Supplier Stacking sequence No. of plies Matrix Thickness (mm)

CF/PEKK Teijin GmbH [0◦]16 16 Thermoplastic 2.2

CF/Epoxy Hexcel [−45◦/0◦/ + 45◦/90◦] 16 Thermoset 2.2

free and repeatable process. The prediction is then subse-
quently validated through experimentation.

Experimental procedure

Materials

Thematerials investigated in this study are Tenax®-EHTS45
carbon fibre reinforced polyetherketoneketone (CF/PEKK)
bonded to Hexcel IM7 carbon fibre reinforced HexPly®

8552 epoxy (CF/epoxy). PEKK is a semi-crystalline ther-
moplastic in the polyaryletherketone (PAEK) family, with
high heat resistance, chemical resistance, and the ability
to withstand high mechanical loads (ASTM International,
2012). The glass transition temperature (Tg) of PEKK is
162 °C (Li & Strachan, 2019). Epoxy is a thermoset poly-
mer with excellent adhesion, chemical and heat resistance,
goodmechanical properties, and very good electrical insulat-
ing properties (May, 1988). The Tg of the epoxy used in this
study is 154 °C (HEXCELCorporation, 2020). Polyetherim-
ide (PEI) is compatible with both PEKK and epoxy and was
used as an energy director at the joint interface to promote the
formation of strong joints (Villegas & Moorleghem, 2018).
A 0.125 mm thick Sabic Ultem 1000 PEI strip was co-cured
with the CF/epoxy sheet before welding. A description of
the laminates used in this study is shown in Table 1, while a
schematic of the welding configuration and the welded test
specimen geometry is provided in Fig. 1.

Ultrasonic welding

AnUSWmachine consists of five subsystems: (1) power sup-
plywith an integrated controller, (2) transducer, (3) a booster,
(4) a sonotrode, and (5) a pneumatic cylinder. During weld-
ing, the controllermonitors all subsystems through integrated
sensors to control the process. The power supply provides
high frequency electrical energy to an ultrasonic stack com-
posed of a transducer, booster and sonotrode. The core
of the transducer is a lead-zirconate-titanate electrostrictive
element that expands and contracts when subjected to alter-
nating voltage. Therefore, through the piezoelectric effect,
the transducer converts the high frequency electrical energy
into mechanical oscillations. The booster then amplifies the
vibrations based on a gain ratio before the sonotrode trans-
mits the ultrasonic oscillations through the weld substrates
and oscillations are finally imposed to the joint interface.

Fig. 1 a Schematic of welding configuration and b welded specimen
geometry.

Ultrasonic welding of polymer composites can be segregated
into two phases, a vibration phase in which sufficient heat is
generated through surface friction and viscoelastic heating to
melt the matrix allowing it to flow, and a solidification phase
where the adherends are allowed to cool under a controlled
pressure, achieving consolidation (Koutras et al., 2019).

In this study, the lap joints were manufactured using a
Branson 2000Xdt ultrasonic welder equipped with a 20 kHz
power supply and circular sonotrode with a diameter of
40 mm. The process was controlled using energy control
mode which terminates the vibration portion of the weld
when the joint interface absorbs the preselected welding
energy. The parameters varied in the DoE are: welding
energy, vibration amplitude and welding force. Their respec-
tive level combinations can be seen in Table 2. The effect
of welding input parameters on joint performance metrics is
material dependent, so existing process insight is not transfer-
able to the material combination examined here. Therefore,
a wide parameter space was selected to provide data to char-
acterise the process over a large application field. The LSS
of the joints was determined using a Zwick 100 kN tensile
tester with a crosshead speed of 13 mm/min in accordance
with ASTM D 5868 (ASTM International, 2001). To assess
process repeatability and to eliminate the effect of unknown
variables, three DoE repetitions were conducted and the run
sequence was randomised.
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Table 2 Parameter and level combinations for the DoE

Parameters Level 1 Level 2 Level 3

Welding energy (kJ) 1.0 1.75 2.5

Vibration amplitude (μm) 85 100 115

Welding force (N) 400 800 1200

Process repeatability and process induced defects

TheDoEdata are presented inTable 3.Anaverage of the three
experimental repeats is taken to represent the LSS. During
experimentation it was identified that for certain parameter
combinations the process has poor repeatability, and/or the
welding process induces defects in the weld area. There-
fore, additional modelling parameters were required. This
study incorporated a relative standard deviation (RSD) to
quantify the variation in the joints’ LSS performance. The

LSS response window is large (2.59–25.98 MPa), so RSD is
used due to its ability to provide a relative metric for process
repeatability. RSD is outlined as follows:

RSD � 100 × SD/x (1)

where x is the average result, and SD is the standard devi-
ation formulated as follows:

SD � 1√
n − 1

√
√
√
√

n
∑

i�1

(xi − x)2 (2)

where n is the number of values (three for this analysis).
To minimise the complexity of the optimisation problem,

this study categorised process repeatability into three classes,
as outlined in Table 4.

When conducting the DoE, it was noted that although
some parameter combinations performed well (under LSS

Table 3 Experimental results
with categorised defects and
repeatability

Physical run
number

Welding
energy (kJ)

Vibration
amplitude
(μm)

Welding
force (N)

LSS (MPa) RSD (%)
[repeatabil-
ity
class]

Defect class

29/30/69 1 85 400 12.90 24.41 [2] 2

39/40/74 1 85 800 13.50 52.99 [3] 2

25/26/67 1 85 1200 22.04 13.83 [2] 1

37/38/73 1 100 400 10.79 54.87 [3] 3

35/36/72 1 100 800 17.43 21.47 [2] 1

21/22/65 1 100 1200 23.41 11.71 [2] 2

45/46/77 1 115 400 14.48 8.35 [1] 1

31/32/70 1 115 800 17.38 8.52 [1] 1

49/50/79 1 115 1200 6.04 18.90 [2] 1

21/52/80 1.75 85 400 22.26 9.98 [1] 2

15/16/62 1.75 85 800 10.56 28.80 [2] 2

19/20/64 1.75 85 1200 2.59 35.98 [3] 3

9/10/59 1.75 100 400 16.38 13.15 [2] 2

23/24/66 1.75 100 800 19.71 6.45 [1] 2

3/4/56 1.75 100 1200 25.98 1.01 [1] 3

41/42/75 1.75 115 400 17.12 25.31 [2] 1

17/18/63 1.75 115 800 16.26 24.84 [2] 2

11/12/60 1.75 115 1200 16.22 14.80 [2] 1

7/8/58 2.5 85 400 15.48 24.95 [2] 3

1/2/55 2.5 85 800 14.33 18.74 [2] 1

47/48/78 2.5 85 1200 5.06 95.03 [3] 3

43/44/76 2.5 100 400 9.70 25.50 [2] 3

33/34/71 2.5 100 800 6.62 70.70 [3] 3

53/54/81 2.5 100 1200 6.79 73.03 [3] 3

13/14/61 2.5 115 400 11.59 78.05 [3] 3

27/28/68 2.5 115 800 12.46 5.76 [1] 3

5/6/57 2.5 115 1200 7.57 82.76 [3] 2
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Table 4 Classification of process repeatability

Class RSD (%)

1 0<RSD≤10

2 10<RSD≤30

3 30<RSD

criteria), there were unacceptable visual defects present on
the joint (matrix degradation and fibre pushout). Process-
induced defects are a key concern when joining dissimilar
materials and add additional complexity to the optimisation
process. Therefore, to prevent mapping defective relation-
ships, a visual quality classification method was devised to
account for process induced defects, as outlined in Fig. 2, i.e.,
Class 1 corresponding to zero visual defects, Class 2 corre-
sponding to minor visual defects, Class 3 corresponding to
major visual defects.

Experimental data analysis

Main effects plots and Pearson’s correlation coefficient
(PCC) have been used to analyse theDoEdata.Amain effects
plot illustrates the response for the different input levels (as
in Table 2), while the PCC quantifies the statistical strength
of a relationship between variables (Lee Rodgers & Alan
Nice Wander, 1988). An effect is declared as the variation in
the response as a result of changing a factor from one level
to another (Jawaid et al., 2018). Figure 3 presents a main
effects plot of the DoE with associated PCC. It is apparent
from this figure that the process was characterised over a
large application field, indicated by the regions of positive
correlation between DoE Levels 1 and 2, and the negative
regions of correlation between DoE Levels 2 and 3 for the
welding energy and vibration amplitude. The variation in

Fig. 3 Main effects plot and Pearson’s correlation coefficient (PCC)
between input parameters and LSS

LSS caused by welding energy is larger than those caused
by other parameters. However, welding energies above DoE
level 2 (1.75 kJ) produce joints of reduced LSS performance,
which is attributed to process induced defects (thermal degra-
dation). A similar relationship can be seen between vibration
amplitude and the LSS—when vibration amplitude exceeds
100 μm (level 2), the LSS decreases.

Figure 4a illustrates the dependence of the LSS on the
process input parameters. It is seen that the LSS response is
non-linear with respect to input parameters, characterised by
no consistent flat regions and large fluctuations in values of
LSS (from 5 to 25 MPa). Figure 4a shows that at a weld-
ing energy of 1 kJ, high values of LSS are achieved at low
vibration amplitudes and high welding force. However, sim-
ilar trends are not observed at welding energies of 1.75 kJ,
and 2.5 kJ. Figure 4b highlights process repeatability for the
different input parameters. The lack of process repeatability
for certain process parameters is assumed to be the sharp
melting temperatures of the CF/PEKK (Wang et al., 2021).

Fig. 2 Classification of joint quality based on visual assessment
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Fig. 4 Surface plots displaying the results of the DoE, a distribution in LSS, b repeatability of the process and c the variation in defect class

Therefore, identifying the correct process parameters is cru-
cial to establish a stable process. Figure 4c displays the defect
classes identified for the different process parameters. It is
seen that increasing the welding energy increases the density
of defects. It may also be noted in Fig. 4c that high values of
vibration amplitude are associated with fewer defects. This
is attributed to the reduction in process time at higher vibra-
tion amplitude, preventing thermal degradation of the matrix
because higher amplitudes exert the required energy quicker

at the joint interface. In general, for the parameter ranges
chosen a significant number of defects have been detected.

As indicted in “Ultrasonic welding” section, a wide
parameter rangewas selected to characterise the process over
a large application field. However, this has shown to pro-
duces uncertainties within the dataset, thus increasing the
complexity of the optimisation task. Therefore, optimising
the process using traditional techniques would require, at a
minimum, one additional DoEwith refined parameter ranges
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Fig. 5 Schematic displaying process flow for generating the supervised optimisation model

to capture the local responses in the region that has a high
potential to contain the global optimum. This would lead to
high experimental waste (adherends, time, resources). As an
alternative, this study optimises the multi-objective problem
through machine learning.

Machine learning

Due to the complex and non-linear nature of the process,
the authors considered multiple machine learning methods
such as ANNs, gaussian process regression (GPR), random
forest (RF), and support vector machines (SVM). However,
published studies have demonstrated the excellent capabili-
ties of ANNs in accurately capturing the non-linearity in the
USW process (Mongan et al., 2020, 2021; Pradeep Kumar
& Divyenth, 2020; Zhao et al., 2017). Therefore, this study
adopts an ANN modelling approach.

Predictive modelling procedure

The optimisation of USW process is challenging due to the
number of process evaluations which are severely limited
by time and the cost associated with the adherends. The rela-
tively small dataset adds additional complexity to the process
resulting in a high dependency of the prediction performance

on the ANN’s hyperparameters. Furthermore, the drawbacks
of ANN modelling such as local minima convergence, poor
natural global search ability and the tendency to overfit on
the training data, must be mitigated. For the aforementioned
reasons, in this study, the ANN is combined with a genetic
algorithm (GA) to initialise the networks weights, allowing
for random exploration of the loss surface through gradient
free optimisation. The GA–ANN model’s hyperparameters
are optimised using BO, where the BO objective function is
used to maximise the GA–ANN’s performance on validation
data by varying the models hyperparameters. To ensure that
the GA–ANN provides a true representation of the model’s
ability to generalise, this study implements k-fold cross vali-
dation. The procedure for developing the model is illustrated
in Fig. 5. Each aspect of the flowchart is next discussed in
detail.

Bayesian optimisation

BO is an efficient method for the global optimisation of
unknown objective functions by iteratively evaluating the
function at carefully chosen locations. Thus, it is ideal for
hyperparameter tuning (Snelson, 2007). BO combines prior
distribution of the function f (x) with sample information to
obtain the posterior of the function (Wu et al., 2019). The
posterior information is used to identify the location of the
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functionmaximum, according to a particular criterion. In this
study the criterion is the negative average k-fold cross vali-
dation MAPE. The BO procedure for hyperparameter tuning
is summarised by the following pseudo code:

BO algorithms aim to find the global maximiser θ∗ by
leveraging two main components: (i) a probabilistic func-
tion (surrogate) model, used to approximate the unknown
objective function F , and (ii) the acquisition function U ,
which determines the next set of hyperparameters to query.
This study assumes the optimisation function to be Gaussian
distributed. Therefore, the prior distribution of the hyperpa-
rameters can be determined usingGPR. TheGPRmodel used
in this study is based on Rasmussen and Williams (2006),
where a detailed description can be found. The kernel func-
tion is critical to the accuracy of theGPRprior (AlBahar et al.,
2021), for that reason, this study used a Matérn covariance
kernel defined as follows:

(3)

Matérn(x, x ′)

� 1

2v−1� (v)

(√
2v

∣
∣x − x ′∣∣

l

)2

Bv

(√
2v

∣
∣x − x ′∣∣

l

)

,

where l is the correlation length parameter, � is the standard
Gamma function, Bv is the modified Bessel function, (Tolba
et al., 2019), and v is a hyperparameter that controls the
smoothness of the resulting function.

This study implements the expected improvement acqui-
sition function because of its ability to automatically bal-
ance the trade-off between ‘exploration’ and ‘exploitation’
(Archetti & Candelieri, 2019). The hyperparameters opti-
mised were the number of hidden layers (NL), the number
of neurons (NN ), and the initial learning rate (α). Table 5
provides the hyperparameter bounds ([min, max]) and their
respective values for the best performing model.

k-fold cross validation

ANN modelling has a tendency to over-fit on training data.
To mitigate this phenomenon, validation data is incorporated
to control the training process while providing insight into

the model’s ability to generalise (Vidyasagar, 2003). How-
ever, as a result of the relatively small dataset selecting one
particular subset as validation data can lead to biased esti-
mates of the model’s ability to generalise. Therefore, this
study implements k-fold cross validation with an early stop-
ping technique, which divides the dataset into several ‘folds’
of equal size (k � 9 for this study). Each fold is selected
in turn as validation data, with the remaining folds used for
training. The process is repeated until all folds have been
assessed once, and then the average of all prediction accura-
cies is used to represent the ANN’s performance. The early
stopping technique terminates training when the validation
error starts to increase. To ensure training does not termi-
nate prematurely due to a temporary fluctuation in validation
error, a patience interval is incorporated to provide the model
a further ten epochs to reduce the validation error, and if suc-
cessful, training continued.

Genetic algorithm (GA)

A GA is a robust optimisation algorithm inspired by the
process of biological evolution (Kapoor, 2019). This study
exploits the global search ability of the GA with the local

Table 5 Hyperparameter bounds for BO

Hyperparameter Bound Optimal

NL [1, 4] 2

NN [4, 30] 20, 20

α [0.0001, 0.5] 0.054
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Table 6 Hyperparameters values of the GA

Hyperparameter Value

Number of models 12

Number of mating parents 8

Mutation rate (%) 10

Generations 2500

search of the ANN. GAs are used to solve linear and non-
linear optimisation problems by exploring regions of the
parameter space through crossover, mutation, and a selec-
tion function based on a fitness value. In this study, after a
random population of twelve models is generated and their
performance is evaluated, the best eight performing models
are ranked and progress to the crossover stage. The crossover
stage pairs the models in groups of two and creates an off-
spring with half the weights from each model. The role of
the mutation phase is to provide diversity in the population
by randomly changing 10% of the weights for a randomly
chosen model. When evaluating the individual model’s per-
formance, the GA vector representation is mapped to the
ANN matrices representation to emulate the ANN predic-
tion process.Once all operations are performed, the process is
repeated in a new generation that is genetically better than the
previous. The process continues until the pre-set maximum
number of generations (2500) is reached. The procedure for
integrating the GA and ANN in this study is illustrated in
Fig. 5 and the GA hyperparameters are presented in Table 6.

Artificial neural network (ANN)

AnANN consists of layers of neurons interconnected to each
other by weights. The first layer is defined as the input layer,
the last layer is the output layer, and the remaining layers
in between are the hidden layers. Layers are composed of a
number of compute neurons. Each compute neuron is char-
acterised by its input, bias, activation function, and output.
ANNs are trained in an iterative approach, whereby the pre-
diction errors are evaluated by a metric; a training algorithm
then updates the connecting weights and bias to reduce the
succeeding error. The process continues until the model con-
verges, based on a termination criterion. ANN’s have a high

capacity to model complex non-linear problems such as the
USW process under investigation. However, the accuracy of
the solution depends on the network’s hyperparameter con-
figuration. Key hyperparameters affecting the performance
of ANNs are: the number of layers (NL), the number of
compute neurons in each layer (NN), the initial learning rate
(α), the activation function, the training algorithm, and the
number of training epochs (Uguz & Ipek, 2020), where NL,
NN and α were optimised using BO. The activation func-
tion is a key element that enables ANNs to resolve complex
nonlinear relationships. This study selected the rectified lin-
ear unit (ReLU) because of its computational simplicity in
achieving a high degree of accuracy and its fast compute
times in comparison to other activation functions, such as
Tanh and Sigmoid (Krizhevsky et al., 2012). There is a
large unit difference within the input data, which can lead
to increased computational complexity. Therefore, the data
was normalised into the values between [0, 1]. The evaluation
metric quantifies the ANN’s performance and is a key tool in
comparing the performance of different ANNs. The problem
being investigated in this currentwork ismulti-objectivewith
a large unit difference within the output data. Therefore, to
ensure the model’s accuracy is consistent across all outputs
the mean absolute percentage error (MAPE) is selected as
the evaluation metric, due to its ability to provide a relative
error. The MAPE metric is defined as:

MAPE � 1

n

n
∑

i�1

(
actual value − predicted value

actual value
× 100

)

.

(4)

The model’s weights and biases were refined using the
adaptive moment (Adam) estimation algorithm. Adam is
an algorithm for first-order gradient-based optimisation that
is computationally efficient while having small memory
requirement (Kingma et al., 2015). Using the Adam algo-
rithm, each parameter being optimised has its own adaptive
learning rate which is determined by calculating the first-
moment and second-moment estimations of the gradient. The
Adam algorithm and the associated parameters used in this
study are summarised by the following pseudo code:
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Final model and process parameter optimisation

Figure 6 illustrates the ANN configuration for the best per-
forming model (NL � 2; NN � 20, 20). As indicated,
the metric to identify the optimal hyperparameters was the
average k-fold cross validation error. Therefore, to ensure
performance consistency when predicting the parameter
space, each trained instance of the model was stored (i.e.,
nine instances as k � 9) and then combined to create an
ensemble prediction approach. The ensemble prediction rep-
resents the mean of all nine base learners. Ensemble learning
combines multiple diverse base learners to obtain robust-
ness and superior generalisation accuracy comparedwith any
of the constituent learners (Shaikhina & Khovanova, 2017).
In the USW process the input parameters take integer val-
ues, therefore, the parameter space is discrete. Once trained,
interrogating the GA–ANN ensemble to retrieve LSS, defect
and repeatability predictions for the entire bounded param-
eter space took less than 180 s. A similar approach was
implemented by McDonnell et al. (2021) when optimising
a multi-objective laser machining process, where the opti-
mised process was superior to the observed DoE data. In
this study, the predictions were formatted to return the input
parameters corresponding to the maximum LSS achievable
when the model predicts the process to produce zero defects
while having class one repeatability.

Results: multi-objective optimisationmodel

The average k-fold validation MAPE for the optimised con-
figuration is 3.74, which is an assessment of the model’s
ability to generalise. The low MAPE value indicates the

model’s hyperparameters were accurately optimised and the
model can predict with a high degree of accuracy unseen
parameter combinations. The resulting ensemble model
demonstrated 100% accuracy in predicting the correct defect
and repeatability classes for both training and validation data.

To evaluate the LSS prediction accuracy, a regression and
residual analysis was performed and is displayed in Fig. 7.
The results of the regression analysis shown in Fig. 7a indi-
cate that there is a very high PCC (� 0.998) between the
experimental LSS values and the corresponding predicted
values, showing excellent agreement. The residual analysis
shown in Fig. 7b highlights the magnitude of the prediction
errors and the residual confidence region. The residual is
defined as follows:

ri � experimentali − predictedi . (5)

The 95% confidence interval is calculated as follows:

r ± 1.96 × SD. (6)

where r is the residual mean and SD is the stan-
dard deviation calculated using Eq. (2). The residual mean,
SD and confidence interval are 0.0085 MPa, 0.29 MPa,
and±0.56 MPa, respectively. In comparison to the joint’s
strength the magnitude of the SD is small, and the residual
mean is close to zero, indicating the model has a high degree
of accuracy. It is evident from Fig. 7b that all prediction
residuals are within the residual confidence region of 95%.

To evaluate the model’s ability to optimise the USW pro-
cess for the dissimilar materials, a complete scan of the
bounded parameter spacewas conducted using theGA–ANN
model. Of these predictions, the parameter combinations
that yielded the highest LSS while also satisfying class one
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Fig. 6 The optimised ANN configuration and the ANN process of prediction through a single compute neuron

Fig. 7 Summary of predictions. a Regression analysis, b residual analysis

defects and class one repeatability was determined to be the
optimal. The model predicted that the optimal parameters
of weld energy � 1.263 kJ, welding force � 842 N and
vibrational amplitude � 106 μm will produce a joint with
a LSS of 25.3 MPa. The model’s prediction was then subse-
quently validated by experimentation. Figure 8 displays the
joint produced with the optimised process parameters before
and after destructive testing. It is evident from the figure that
there was complete contact at the joint interface and no un-
welded regions, indicating an optimal joint interface with
zero defects present (Class 1).

The results of the experiment are in good agreement
with the predicted values, where the mean LSS across

three experiments using the optimal welding parameters was
24.5±0.3 MPa with RSD � 1.26% (Class 1). A compari-
son between the predicted and actual values is highlighted in
Table 7. The LSS prediction error is just 3%, with 100%
accuracy in predicting the correct class for repeatability
and process induced defects. Therefore, the robust multi-
objective optimisation model developed in this study has
optimised the process of joining dissimilar materials through
USW. The procedure identified and mitigated the key draw-
backs associated with USW, which are process repeatability
and process induced defects. It may be noted from Table 3
that only two cases from the DoE (Run 7 and 8) achieved
Class 1 defects and repeatability, with the associated LSS of
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Fig. 8 Joint before and after
destructive testing produced
under the predicted optimal
input configuration

Table 7 Comparison between
the predicted and actual
responses achieved under
optimal conditions

Output Actual (all) Actual (average±SD) Predicted Accuracy (%)

LSS (MPa) [24.11, 24.61, 24.65] 24.5±0.3 25.3 97

Defect class (1–3) [1, 1, 1] 1 1 100

Repeatability class
(1–3)

[1, 1, 1] 1 1 100

less than 9 MPa, while the maximum LSS achieved in the
DoE (25.98 MPa for Run 15) has Class 3 defects.

Limitations and future research

The main objective of this study was to demonstrate that a
USW process for CF/PEKK to CF/epoxy can be optimised
with a 33 DoE dataset in conjunction with machine learning.
The results presented in this study indicate that the process
has been efficiently optimised using a BO GA–ANN mod-
elling approach. Due to the complex nature of the USW
process for the aforementioned dissimilar materials and the
limited data available, the authors cannot state with abso-
lute certainty that the BO GA–ANN approach found the
true process global optimum. However, the authors can state
that relative to the observed DoE data, the optimised process
parameters produce a joint of superior performance. There-
fore, the BO GA–ANN modelling approach implemented in
this study captured the non-linearity in the system and in
doing so enabled the process to be optimised to a degree
acceptable for the study and application.

The authors recognise the limitations in the pre-planned
DoE approach which can produce a sparse dataset. Through
ongoing research, the authors are investigating the effec-
tiveness of replacing the pre-planned DoE approach with a

discrete Bayesian optimisation (DBO) method, thus creat-
ing a sequential optimisation approach. Using the sequential
approach, the authors are trialling different machine learning
methods for developing surrogatemodels such as the popular
GPR, and neural network Gaussian process models consid-
ering input uncertainty, which was developed by Lee et al.
(2020) for modelling composite structure assemblies. The
effectiveness of the DBO approach will be evaluated against
the current study.

Conclusions

The lap shear strength (LSS) response envelope for the
ultrasonic welding scenario implemented in this study is
extremely non-linear with respect to process input parame-
ters. It has been found that repeatability and process induced
defects are of key concern when optimising the process.
Optimising the process using traditional techniques requires
multiple DoE’s with refined parameter levels for each DoE
iteration. However, the multi-objective optimisation model
developed in this study demonstrates the ability to efficiently
optimise the LSS using a hybrid GA–ANNmodel from a sin-
gle DoE dataset. The multi-objective approach ensures the
LSS is optimised while simultaneously accounting for pro-
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cess repeatability and process induced defects. Therefore,
this study indicates that hybrid GA–ANN models combined
with Bayesian optimisation for hyperparameter tuning, are
efficient tools for process optimisation. Although the pre-
dictive model developed in this study was focused on USW
joints, the model development approach is relevant to the
optimisation of any manufacturing process. To our knowl-
edge this is the first application of a hybrid GA–ANNmodel
in conjunction with BO to optimise a dissimilar USW com-
posite joint.
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