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Abstract
The complexity of industrial processes imposes a lot of challenges in building accurate and representative causal models
for abnormal events diagnosis, control and maintenance of equipment and process units. This paper presents an innovative
data-driven causality modeling approach using interpretable machine learning and process mining techniques, in addition to
human expertise, to efficiently and automatically capture the complex dynamics of industrial systems. The approach tackles
a significant challenge in the causality analysis community, which is the discovery of high-level causal models from low-
level continuous observations. It is based on the exploitation of event data logs by analyzing the dependency relationships
between events to generate accurate multi-level models that can take the form of various state-event diagrams. Highly accurate
and trustworthy patterns are extracted from the original data using interpretable machine learning integrated with a model
enhancement technique to construct event data logs. Afterward, the causal model is generated from the event log using the
inductive miner technique, which is one of the most powerful process mining techniques. The causal model generated is a
Petri net model, which is used to infer causality between important events as well as a visualization tool for real-time tracking
of the system’s dynamics. The proposed causality modeling approach has been successfully tested based on a real industrial
dataset acquired from complex equipment in a Kraft pulp mill located in eastern Canada. The generated causality model was
validated by ensuring high model fitness scores, in addition to the process expert’s validation of the results.

Keywords Causality analysis · Interpretable machine learning · Process mining · Petri nets · Discrete event systems ·
Supervisory control

Introduction

One of the major contributing factors to the higher rates of
Greenhouse Gas (GHG) emissions of large-scale industrial
facilities is inefficient monitoring, which leads to impre-
cise control activities causing higher frequency of faults and
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maintenance activities, poor adaptability to system uncer-
tainties, and excessive energy consumption. Among these
complex processes are large final emitters (LFEs) found
in process industries such as oil refineries, steel & iron
production, the cement industry, chemical processes, and
pulp & paper mills (Talbot & Boiral, 2013). Those facil-
ities require massive amounts of energy and they emit an
average of 50,000 tons or more of GHG, specifically car-
bon dioxide (CO2) per annum (Climate Change Connection,
2018). In these large-scale facilities, building precise and rep-
resentative causal models that can handle the fast-evolving
dynamics and the high level of interactions between con-
trollers becomes significantly challenging, time-consuming,
and economically expensive in addition to the detailed
and extensive subjective knowledge required from process
experts and operators (Sun et al. 2021) and (Ragab et al.,
2014).

Accordingly, accurate monitoring and root cause analy-
sis tools are essential to promote more efficient supervisory
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control in these processes, which in return can have a posi-
tive impact on energy consumption rates, non-eco-friendly
emissions, maintenance costs, and overall system safety
(Naghoosi et al. 2013; Lindner et al., 2017). More specifi-
cally, there is a need to develop a concrete and representative
causality modeling approach that captures the system’s com-
plex dynamics, states evolution, as well as the interactions
between the controllers. The approach should also identify
the different factors that cause failures, performance dete-
rioration, and their root causes to enhance monitoring and
control tasks and, finally, to allow energy-efficient opera-
tions.

Causality analysis has become a vital research topic in
the industrial community with various applications includ-
ing fault diagnosis and prognosis, and others (Chen et al.,
2018; Chiang et al., 2015; Lindner et al., 2019). In gen-
eral, several methods have been introduced in the literature
for causality modeling, and they can be mainly divided into
knowledge-based and data-basedmethods (Chiang&Braatz,
2003). The former depends on existing knowledge based on
expertise and physical models of the system, and they usually
require a deep understanding of the process in order to have
an accuratemodel of the system (Ragab et al., Ragab, ElKou-
jok, et al., 2019). However, as modern system architectures
become more complex and the number of components sig-
nificantly increases, the process of formulating an accurate
model based on expertise and domain knowledge becomes
very difficult, which deems most knowledge-based methods
have some limitations when applied in large-scale industrial
processes. The latter is based on the exploitation of available
data to construct models by analyzing causality relationships
between process variables. The data-driven causality analysis
methods have attracted several industrial applications (Yang
et al. 2014). However, based on an investigation of the liter-
ature, we found that existing data-driven causality analysis
methods face challenges in complex industrial processes as
follows.

• Firstly, most of these methods are static and face diffi-
culties in capturing the temporal relations between events
when applied to systems with a large number of variables
and interacting components, where the computational
demand becomes excessive (Nauta et al. 2018). Moreover,
most of thesemethodsmake simplifying assumptions (Lee
& Chien, 2020), causing inaccurate results (Elhefnawy
et al. 2021).

• Most of the existing methods do not incorporate events’
sequential information and they mostly focus on finding
the direct root cause for a phenomenon of interest such
as a fault in a machine. However, in an industrial process,
we are more interested in finding the causes for any perfor-
mance deterioration and not necessarily faults only. This is
when the analysis of the sequence of events becomes cru-

cial, as it can reveal the effect of the order in which specific
events occurred on the state evolution of the system, which
is important to accurately represent the system’s dynam-
ics and to infer the correct causality relationships (Kabir,
2017a). An example is the occurrence of an event, which
might not cause deterioration, however, if that event occurs
in a specific sequence with other events, then the overall
performance of the process can be impacted.

• Based on insights from industrial partners, existing meth-
ods can become inefficient because it is insufficient to infer
causality between variables separately (change in variable
X1 causes a change in X2). The reason is that in complex
processes such as recovery boilers, there are hidden inter-
actions between controllers and it is extremely important
to identify those interactions and analyze their effect on
the system’s KPIs (Ragab, El Koujok, et al., 2019; Ragab,
Yacout, et al., 2019; Derigent et al. 2020).

• Existing methods deal with abnormal global events with-
out incorporating normal operations (Li et al., 2016),
which can be important to guide the operator to actions that
avoid performance deterioration or that return the system
back to normality.

These challenges cause the existing data-driven causality
analysis methods to perform inefficiently in complex equip-
ment found inmany process industries. The recovery boilers,
heat exchanger, evaporators and bleaching equipment in pulp
& paper mills are examples of these kinds of equipment. This
type of complex equipment has several interacted variables
and are identified as highly dynamical nonlinear systems.

Accordingly, there is a clear need to develop accurate and
representative causalmodels for such complex industrial sys-
tems. This paper proposes an innovative data-driven dynamic
causality analysis approach based on interpretable machine
learning (IML) (Molnar, 2020), process mining (PM) (Van
der Aalst, 2016), and human expertise, to fill the discussed
research gaps. The approach exploits historical data collected
from the process to automatically construct an accurate and
representative dynamic causal model.

The proposed approach aims at overcoming the above-
mentioned challenges that face existingmethods in industrial
applications. This work is also motivated by solving one
of the big challenges in the Artificial Intelligence (AI) and
causality analysis communities, which is “the discovery of
high-level causal variables from low-level observations”
(Schölkopf et al., 2021). This approach focuses on building
a dynamic causal model between high-level events rather
than between the low-level variables. In fact, this can be
beneficial to several industrial applications, where insights
and reasoning are sought on important events that occur in
complexprocesses and their effect on the system’s keyperfor-
mance indicators (KPIs). We attempt to solve this challenge
in an innovative way by adopting PM, to automatically build
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causal models, without heavily involving the process expert.
This allows the expert to analyze the temporal relations and
the dependencies between events from a higher level. PM
links data science and process science to model processes
through generating state-event graph models, analyzing bot-
tlenecks, and suggesting process improvement. It is based on
exploiting discrete event log data solely, without the need for
domain knowledge by analyzing the dependency relationship
between events.

PM has been applied widely and successfully in business
processes. However, to the best of our knowledge it has not
been yet applied to complex industrial processes. One main
reason is that most of these industrial systems do not possess
well-structured discrete event logs. Generally, data collected
in these processes contains low-level observations acquired
from sensors with continuous values of KPIs, control set-
points, and measured variables. Therefore, to build discrete
event logs that are exploitable by PM, we integrate IML in
this work to extract patterns from those low-level continuous
datasets. The patterns comprise combinations of conditions
on the system’s variables, including the controllable vari-
ables. Therefore, these patterns can model the interactions
between the controllers and their effect on the system’s KPIs.
More importantly, these patterns actually represent the dis-
crete events that occur in the process. Thus, the patterns are
used as representative events for these complex processes,
which can be exploited by PM techniques to build high-level
causal models in the form of state-event graphs. In this paper,
we build these models in the form of Petri nets (PNs) which
are one of the powerful tools for modeling and visualizing
discrete event systems (DES). More significantly, building
the causal model in the form of PNs does not only allow
inferring causal relations between important events but can
also support tracking the state evolution of complex systems
in real-time. This is due to the dynamic modeling capabili-
ties of PNs, which allow monitoring of the system trajectory
and state transitions. In addition, the reachability graph of the
PN causal model can be regarded as an event-driven process,
thus facilitating a suitable environment for applying intelli-
gent supervisory control approaches using machine learning
(ML) techniques such as reinforcement learning (RL). This
can add an essential element of robustness and reasoning
to the control approach, where more insights can be real-
ized from analyzing the consequence of actions (or events)
through the causal model (Schölkopf et al., 2021).

It is worth mentioning that this approach is bi-directional,
where the causal model built from the low-level variables
comprises the high-level discrete events and their sequential
relations. At the same time, each event in the model can be
broken down to its corresponding pattern and back to the
low-level variables that define the pattern.

The proposed approach comprises two phases. In the first
phase the dataset with continuous variables and KPIs col-

lected from an industrial process is transformed into an event
log. The event log is created by labeling the data using a
classification criterion based on the KPIs, and afterwards,
patterns are extracted using decision trees (Quinlan, 2014),
which is one of the top ten machine learning algorithms (Wu
et al., 2007), as an IML technique. These patterns represent
the different events that occur in the system in a sequential
manner. In the second phase, PM techniques are applied to
automatically construct a dynamic causalmodel from the cre-
ated event log. The dependency relationships are analyzed
between the events in the log to incorporate the temporal
information and a state-event diagram is generated. A Quan-
titative analysis is performed on the model to ensure high
accuracy and to allow for causality inference.

The contributions of this paper are summarized as follows.

• IML and PM are integrated to generate high-level causal
models for complex industrial processes in the form of
state-event graphs (e.g. Petri nets). The causal model is
built automatically from low-level sensory data without
heavily involving the process expert going through diffi-
cult, labor-intensive and time-consuming tasks. The role of
the expert is to supervise the modeling procedures, verify
and validate the generated model.

• By using IML to extract the patterns from the continuous
observations, the approach is able tomodel the interactions
between the controllers and identify the most important
events (both normal and abnormal) that affect the per-
formance of the system. These patterns are exploited as
events to form the causal model, thus inferring causality
on a higher level and not between low-level variables.

• The exploitation of PM techniques allows generating a
dynamic causal model in the form of PNs that incorporates
temporal information, and the sequential relations between
events, which are important in finding the causes for KPI-
related changes. The PN model allows for tracking the
system’s state (based on KPIs) in real-time, as well as the
events that cause state transitions.

• The generated model can be easily updated upon system
changes and the acquisition of new data through the use
of PM enhancement techniques, without depending on the
process experts for tedious remodeling tasks. This allows
for online real-timeprocess simulation and fast remodeling
tasks and also serves as a dashboard for operators. The
approach is applied and validated on an industrial dataset
collected from a recovery boiler in a pulp & paper mill.

The rest of the paper is organized into six sections as
follows. Section 2 presents the related works for causality
analysis in industrial processes. The preliminaries involv-
ing state-event graphs (Petri nets) and an illustration for the
process mining approach are represented in Sect. 3. The pro-
posed causality analysis methodology is detailed in Sect. 4.
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Section 5 comprises a case study of a recovery boiler sys-
tem of a pulp & paper mill located in eastern Canada and
presents the results obtained from the proposed methodol-
ogy. Discussion and future work directions are presented in
Sect. 6, followed by a conclusion in Sect. 7.

Related work: causality analysis methods
in industrial processes

Causality analysis, which is a major monitoring activity, has
become a vital research topic in the industrial community
(Yang et al., 2014). Causality analysis can provide the oper-
ators with the knowledge and process insights to support
decision-making in fault prevention. In general, the tradi-
tional causality analysis approach was based on planned
or randomized experiments, where for example, an input
variable would be manipulated in a process, while other
variables are fixed and the outcome (variable of interest)
would be observed to conclude if there is a causal relation-
ship between the input variable and the outcome. However,
this approach is time-consuming and sometimes infeasible
in complex processes, due to the massive number of vari-
ables and also for safety measures where experimentation
is not tolerated (Spirtes, 2010). Consequently, attention was
shifted to searching for causal models based on background
knowledge and validating them using statistical tests, as well
as data-driven methods that can infer causality relationships
between process variables by analyzing sensory data using
machine learning techniques.

This section presents a background on causality analysis
methods in the literature. As mentioned in the introduc-
tion section, causality modeling methods in the literature
can be divided into knowledge-based and data-based meth-
ods (Chiang & Braatz, 2003). Maurya et al. have devolved
knowledge-based modeling approaches based on the sys-
tem’s mathematical equations (Maurya et al., 2003, 2004,
2006), as well as instrumentation diagrams (Thambirajah
et al., 2007, 2009). Gil et al. (2011) have developed a
topology-based method for process connectivity based on
the physical description of systems. Several causal modeling
techniques exist for constructing fault trees (FT) fromprocess
knowledge, which are named Model-Based Dependability
Analysis (MBDA) techniques, and they depend on discover-
ing dependency relationships from an existing system model
(Aizpurua & Muxika, 2013; Sharvia et al., 2016; Kabir,
2017b). Another approach was developed by Leitner-Fischer
and Leue (2013) to generate an FT expressing causality. The
approach extracts counterexamples from the system’smodel,
where some test conditions are utilized to discover events
combinations that lead to different system states. Although
knowledge-based methods have experienced some success
in various applications, they are deemed ineffective when

applied to large-scale systems and complex processes. This
is more specifically due to the dependence of these methods
on the existence of precise and representative models, which
are extremely difficult to obtain in these large-scale systems
and would require extensive effort by the experts and a very
deep understanding of the process (Ge et al., 2017).

Therefore, it is appealing to learn causality models using
data-driven techniques from historical data. Different tech-
niques have been introduced to exploit historical data in
the form of time-series observations to discover causality
relations between the variables.Among thewell-knowndata-
driven techniques is the Granger causality (Granger, 1969).
The Granger causality is based on the vector autoregres-
sive model (VAR), which is a class of linear regressive
models. A statistical significance is determined based on aG-
causality index, which imposes a causality relation between
two time-series if the cause can reduce the prediction error of
the effect. One of the main applications of Granger causal-
ity was to establish root causes for plant-wide oscillations,
which can propagate easily through the system due to the
high level of interactions between components (Yuan &
Qin, 2014). Several variants of the Granger causality have
been developed. Landman et al. developed an approach that
utilizes the Granger causality in combination with topology-
based methods (Landman et al., 2014), where a causality
matrix is initially constructed from the Granger causality,
and afterward, each element in that matrix is validated for
directness analysis using a connectivity matrix, which is cap-
tured from piping and instrumentation diagrams (P&IDs).
Zhong et al., (2020) exploit data-driven Granger causality
followed by further diagnosis using a topology-based model,
which incorporates domain knowledge. The approach was
tested to investigate solid oxide fuel cell system oscillations.
Another method was proposed by Liu et al., (2020), which
builds a simplified Granger causality map by determining its
maximum spanning tree to overcome the complications of
traditional causal maps such as process loops. Other variants
were developed combining Granger causality with kernel
entropy component analysis (KECA) for monitoring batch
process (Fei et al. 2019), principal component analysis (PCA)
for feature space reduction and early detection (Yuan &
Qin, 2014), and with singular value decomposition (SVD)
to amplify the contributing variables (Pyun et al., 2020). A
topological causality approach has been introduced by Zhai
andYang, (2020), which builds a cross-map to infer causality
and is validated using the Lorenz system and transfer entropy
through causality index.

Various approaches were developed to exploit data and
generate graphical causal models. One of the most com-
mon is causal Bayesian networks (CBNs), which have been
applied widely (Neapolitan, 2004; Pearl, 2009). Li and Shi
(2007) introduced an algorithm to generate casual Bayesian
networks in rolling processes based on the integration of
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domain knowledge for parameter learning, and a data-driven
approach based on the Peter-Clark (PC) algorithm (Spirtes
et al. 2000). The PC algorithm initially constructs a fully
connected, undirected causal graph from the historical data
as a first step and then determines the adjacencies between the
variables and the directions. Peng et al. (2014) have proposed
a novel approach based on multilogic probabilistic signed
directed graphs (MPSDG) in the TEP, which consists of two
modeling stages; anoffline andonline stage. In the former, the
MPSDG is designed using historical frequency probabilities
and logic gates describing the causality between variables.
In the latter, the initial fault causes are discovered using a
backtracking algorithm, and then the Bayesian inference is
used to calculate the conditional probabilities of the causes.
Moreover, Bauer and Thornhill (2008) have used a cross-
correlation (CC) function to detect peaks and to estimate
time delays between the system’s variables in a large plant
at the Eastman Chemical Company. The approach exploits
historical data and the time delays to create a data-driven
causality model verified by a statistical inference procedure
to validate the peaks discovered from the CC function. Zhang
andGeng (2015) have proposed an approach named dynamic
uncertain causality graphs (DUCG), which deals with novel
faults and represents uncertain causalities, by assessing an
efficient probabilistic hypothesis. The approach is based on
the decomposition of dynamic evidence into discrete time
units and tests a global probabilistic hypothesis that is a
combination of all-time units. Li and Yue, (2020) have modi-
fied DUCG to overcome difficulties in inferring the causality
between events based on crisp numbers. The authors pro-
pose an intuitionistic fuzzy set based on dynamic uncertain
causality graph (IFDUCG), which uses intuitionistic fuzzy
sets to handle the uncertainty of events by integrating expe-
rienced knowledge into the traditional model. Jiuyong Li
et al., (2016) proposed an approach based on causal deci-
sion trees (CDT). The approach exploits the advantages of
decision trees to discover causality based on the “divide
and conquer” strategy; however, the emphasis was on the
distinction between the decision trees’ correlation and cau-
sation. Causality is inferred in the algorithm based on the
Mantel–Haenszel partial association test (Mantel & Haen-
szel, 1959). The output of the algorithm is in the form of
causal decision trees, where non-leaf nodes are contributors
to the outcome variable. It has also been concluded from
the literature that fault trees are exploited significantly for
extracting causality information (Kabir, 2017a; Malika et al.,
2017; Waghen & Ouali, 2019; Zhou & Zhang, 2017). The
hierarchy of events in a fault tree is used for interpretation
of the dependency relations between basic and intermediate
events up to the top-level event (fault).

An interesting approach has been developed by Bozorgi
and et al., (2020), which gives recommendations for apply-
ing specific solutions based on uplift trees, which is a causal
machine learning technique. The approach proposed in that
workwas applied to a financial business process. It was tested
on loan applications problems, where the event logs are ana-
lyzed to increase the probability of the desired outcome. In
that work, the authors assume an event log already exists, as
well as candidate solutions to form action rules that solve a
specific problem.

Nauta et al. (2018) have proposed the approach LIFT
(learning fault trees from observational data) to generate
data-driven static fault trees. Based on the Mantel–Haenszel
statistical test, a system top event is analyzed to discover
the sequence of contributing basic events by checking differ-
ent combinations ofAND/ORgates. The algorithmdiscovers
causality between cause and effect and emphasizes data strat-
ification to exclude the effect of other variables. Ragab et al.,
(2018) proposed a causality analysis methodology that com-
bines human expertise, in the form of fault tree analysis
(FTA), with additional knowledge extracted by a machine
learning method. The proposed methodology was demon-
strated using fault trees constructed for a reboiler system in
a thermomechanical pulp mill.

Research has been conducted to use the state event graphs
as powerful dynamic causality analysis tools, particularly
by converting fault trees into state event graphs such as
PNs, since these networks have more powerful mathematical
modeling capacity than FTA, thus supporting more accu-
rate quantitative analysis (Zhang et al. 2009; Steiner et al,
2012; Kabir et al., 2015). PNs are powerful visualization
tools that can model the sequential and concurrency behav-
iors and allow for process simulation (David & Alla, 2010;
Murata, 1989). These networks are convenient and efficient
for building causal models for DES to analyze normal and
faulty events temporal dependencies (Zhang et al., 2009).
Therefore, we are exploiting PNs as themodeling framework
in our proposedmethodology. In what follows, the basic con-
cepts and characteristics of PNs are presented.

State-event graphs and process mining:
preliminaries

This section introduces the preliminaries of the state-event
graphs and the process mining techniques. It presents the
Petri nets models that illustrate these graphs and their build-
ing techniques. The objective is to give an overview to the
readers who are not familiar with these concepts and help
themunderstand how they are used in the proposed approach.

123



62 Journal of Intelligent Manufacturing (2023) 34:57–83

State event graphs: the petri net modeling approach

PN is a mathematical and graphical tool used extensively for
themodeling and control ofDES (David&Alla, 2010). These
networkswere first introduced byCarl Adam tomodel chem-
ical processes (Petri, 1966). PNs serve as a promising tool
for describing and analyzing event-driven processes that are
characterized as non-deterministic, stochastic, concurrent,
and/or time-dependent (Murata, 1989). Several extensions
to PNs have been developed including timed PNs, hybrid
continuous PNs, colored PNs, stochastic PNs, fuzzy PNs,
etc. (David & Alla, 2010). Similar to flow charts, PNs can be
utilized as a promising visual tool to simulate the dynamical
evolution of interacting events in the system. Furthermore,
PNs allow developing state and algebraic equations to serve
as a mathematical analysis tool to model and analyze the
system’s behavior. In what follows, we present the PN back-
ground material necessary to follow the ideas presented in
the paper. It can be read on a need-to-know basis. For fur-
ther explanation of PNs concepts, elements, definitions, and
applications, the interested reader is referred to (Murata,
1989; David & Alla, 2010; Mansour et al., 2013).

Graphically, PN is a directed bipartite diagram,which con-
sists of nodes describing system states represented by circles
called Places, and rectangle-shaped bars called transitions.
The transitions represent the events that occur in a systemor a
specific process, e.g. turning a machine on and off, or chang-
ing the set points of some controllers, which as a result can
change the state of the system. The elements of the PNs are
shown in Fig. 1. The nodes inside the PNs are connected by
arcs, which can be weighted to describe the evolution of the
system between the different states triggered by events that
would occur as a result of specific conditions. The number
of Places and transitions inside a PN are finite and non-zero.
The state of the system is determined by the number and dis-
tribution of tokens (dots) inside the Places of the PN model,
which is called marking. A marking is represented mathe-
matically as a vector, where each entry indicates how many
tokens are located in eachPlace. Changing themarking or the
distribution of tokens will reflect a change in the state of the
system. Transition nodes, which control the token dynamics,
are enabled or ready to fire if and only if the number of tokens
at each of its inputPlaces is greater than or equal to theweight
of the directed arc connecting the Place to the transition. The
firing of one transitionmoves a number of tokens determined
by the weight of the input and output arcs, from the transi-
tion’s inputPlaces to its outputPlaces. Unweighted arcs have
weights equal to one. A PN model, if built accurately, can be
very helpful in explaining observational data collected from
an industrial process. The transitions in the petri net can
represent patterns in the data resembling changes in mea-
sured and controllable variables, which can be regarded as
events occurring in the process. Moreover, the firing of the

transitions would result in a change in the marking of the
PN, which represents the current state of the system. Since
the state of the system in reality can be determined by the
KPIs, the marking can represent different ranges for those
KPIs in the data. Mathematically, a PN is represented as
Q � (

P , T , p+, p−, M0
)
, where P and T donate the sets

of Places and transitions, respectively. The notions p+ and
p− represent the arc weights from Places to transitions, and
from transitions to Places, respectively and M0 represents
the initial marking. The incidence matrix [nxm] is denoted
by S � p+ − p−, while the firing vector σk [mx1] refers to
the enabled transitions at epoch k. Finally, the evolution of
states is given by M(k + 1) � M(k) + Sσk .

There are important properties that characterize PNs such
as concurrency, conflict, liveness, boundedness, reachabil-
ity, reversibility, and deadlock. Concurrency represents the
occurrence of multiple events simultaneously, which sig-
nifies one of the essential aspects of PNs as a modeling
tool. Conflict is a property of PNs that represents the non-
determinism of events, where the firing of an event disables
another event from firing due to the limitation of available
resources as an example. Liveness refers to events that are
continuously enabled or that could occur at any time during
the process. Boundedness refers to the maximum number
of tokens that any Place can hold in the network. A PN is
considered “safe” if all Places are bounded by only holding
one token. Reachability refers to the possibility of reach-
ing a specific marking from any other marking through a
finite sequence of fired transitions or events. Reversibility is
a property where the initial marking is reachable from any
other marking. Finally, deadlock is a condition that occurs
when no transitions are enabled to fire after reaching a par-
ticular marking; particularly, deadlock avoidance is one of
the main challenges of PNs supervision.

The analysis of DES modeled as a PN can be conducted
by multiple methods. The most common is the coverabil-
ity graph analysis. It consists of a tree-like structure, which
has a start node that represents the initial marking. The
growth of the tree branches represents other markings that
are reached from a preceding marking, and the arcs connect-
ing the nodes represent the specific transition that caused
the marking change and state evolution. An important note
is that in the case where the PN is bounded, the coverability
tree can be transformed into the simpler reachability graph,
where the difference lies in the infinite markings, which only
the coverability tree can represent (Murata, 1989).

Given the properties and modeling capabilities of PNs,
these networks are exploited in this paper to model the
causality relations between interacting events in industrial
processes. Information about the sequence of events and their
dependency relationships are realized through the analysis
of coverability graphs to understand how the occurrence of a
specific event could trigger other events. However, the con-

123



Journal of Intelligent Manufacturing (2023) 34:57–83 63

Fig.1 Elements of Petri Net

struction of PNs models is a tedious task that requires the
involvement of human experts with deep domain knowledge
about the system to be modeled. This becomes a signifi-
cant challenge when modeling large-scale complex systems.
However recently, the process mining approach (PM) (Van
der Aalst, 2016) has emerged and has proven to be a promis-
ing tool in building PN models solely from data without
the heavy dependence on domain knowledge and human
effort. Therefore, wewill exploit PM to build dynamic causal
models in the form of PNs from the historical data that are
collected from the monitored industrial systems.

Process mining

PM is an emerging approach that has gained a lot of interest.
The availability of big data in most organizations’ informa-
tion systems represents an important asset that is not being
fully exploited. PM supports model discovery from data,
process enhancement as well as providing deep structural
insights for business processes (BP), where a BP is a col-
lection of sequences of events performed by equipment or
individuals to provide a particular service or product for
customers (Grisold et al. 2020; Weske, 2012). PM com-
prises a set of data-driven tools that discover, analyze and
enhance process models to support decision-making, gain
insights, apply verification of process models to locate errors
in systems’ procedures, and provide simulation techniques
to conduct performance analysis and assistance in process
redesign (Reinkemeyer, 2020; Van der Aalst, 2016). The
essence of PM lies is in the exploitation of event data with-
out the need for domain knowledge or expertise, as well as to
uncover bottlenecks and non-compliance patterns that arise
when event data and existing process models are compared
and do not reflect the same behavior (Diba et al., 2020; Van
der Aalst, 2016). The PM framework is mainly categorized
into three tasks; process discovery, conformance checking,
and process enhancement, which are depicted in Fig. 2. (Van
der Aalst, 2016). Each of these tasks is dependent on the
problem at hand. In the discovery task, process models are
generated automatically from event logs using data-driven

discovery techniques. The conformance task validates the
generated models and measures their accuracy by compar-
ing the behavior they allow with the event logs. The third
task, edits and enhances the models upon the arrival of new
event logs. In what follows, these tasks are briefly explained.

Process discovery

Process discovery constructs and discovers a model from
event data logs by analyzing the dependency relationships
between events that occur in particular sequences during
executing different procedures in an organization. Examples
of these dependency relations are; directly follows; never
follow; parallelism; and loops. An event log, which is the
input to process discovery techniques consists of a number
of events, each assigned a Case id, and a timestamp, where
a Case represents a specific time period where the system
has been operating, such as an hour, day, or week depending
on the problem at hand. An example of an event log for a
machine operation is shown in Table 1. A Case here repre-
sents a day of operation. This event log is named E1 and has
five different events {P1, P2, P3, P4, P5} and three Cases
corresponding to three days of operation.

The first PMdiscovery algorithm introducedwas the alpha
algorithm (Van Der Aalst et al., 2004). The alpha algorithm
takes an event log and generates a workflow net (a class of
Petri nets) that can probably replay the sequences found in the
event logs correctly. Further improvements have been devel-
oped to the alpha miner algorithm by De Medeiros et al.
(2003) such as the alpha + algorithm where pre- and pro-
processing stages are added to deal with event loops. The
heuristic miner (Weijters & Ribeiro, 2011), another process
discovery algorithm, utilizes casual nets as the representation
of the discovered models. The heuristic miner’s framework
is formulated by creating a dependency graph where the fre-
quency of an event x followed by an event y is calculated and
afterwards, the dependency graph is transformed into state-
event graph after applying noise filtering based on specified
thresholds. Another algorithm is the β-algorithm (Wen et al.,
2009), which takes into consideration different event types
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Fig. 2 The three tasks of Process
Mining

Table 1 Event log E1 of an industrial machine operation

Case Id Timestamp Event Event ID

1 01/02/2019, 11:50 Machine Start P1

01/02/2019, 11:59 Set Point 1 Change P2

01/02/2019, 12:40 Set point 2 change P4

01/02/2019, 12:49 Machine Stop P5

2 02/02/2019, 9:30 Machine Start P1

02/02/2019, 9:45 Set point 2 change P4

02/02/2019, 10:03 Set Point 1 Change P2

02/02/2019, 10:20 Machine Stop P5

3 03/02/2019, 9:10 Machine Start P1

03/02/2019, 9:20 Set point 3 change P3

03/02/2019, 9:20 Machine Stop P5

such as start and completion of tasks to build PN models
with richer information. For more about PM techniques, the
interested reader is referred to (Van der Aalst, 2016).

In this paper, we utilize one of the most exploited pro-
cess mining discovery algorithms: the inductive miner (IM).
This algorithm can deal with huge event data logs, interactive
events, and noise filtering while preserving the correctness
of the model and rediscoverability (Van der Aalst, 2016).
The Inductive Miner generates what is called process trees,
which can be easily converted to other notations such as PNs.
The Inductive Miner is the one of the few process discovery
techniques guaranteeing soundness (total execution of pro-
cess phases, while reaching a defined end-state), high fitness
(accuracy criterion of process models) in finite time (Lee-

mans et al., 2013a). In what follows we explain how the IM
algorithm works (Van der Aalst, 2016).

The inductive miner algorithm starts by creating what is
called a directly follows graph, which represents the follows
relations between the events in an event log. The algorithm
comprises two steps, described in what follows.

Steps 1: {Creation of Directly follows graph}.
Let E be an event log, the directly follows graph of E is

represented as D(E) �(SE , �→E , Sstart
E , Send

E ), where:

• SE is the set of all events in E
• �→E is the directly follows relations
• Sstart

E is the set of start events
• Send

E is the set of end events

The algorithm recursively divides the original event log
into sub logs, and for each sub log a directly follows graph
D(E) is created using directly follows relations such as
x �→E y, if x is followed directly by y anywhere in E . Also,
x �→+

E y, if there exists a path from x to y that is non-empty. To
give an example, for the event log E1 � [{P1, P2, P4, P5},
{P1, P4, P2, P5}, {P1, P3, P5}] shown in Table 1, E1

consists of three cases and five different events. Therefore,
SE1 � {P1, P2, P3, P4, P5}, Sstart

E1 � {P1}, which is
shown in Fig. 3 by the incoming arc and Send

E1 � {P5}, which
is shown in the figure by the outgoing arc. And the directly
follows relations are:

P1�→E P2, P1�→E P4, P1�→E P3, P2 �→E P4,
P4 �→E P2, P2 �→E P5, P4 �→E P5, P3�→E P5,
P1�→+

E P5. Based on these four elements, the directly
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Fig. 3 Creating a directly follows graph for event log E1 and finding cuts that represent the dependency relationships using the IM algorithm
(Adopted from (Van der Aalst, 2016))

follows graph is constructed as shown in the first box on the
left side in Fig. 3.

The inductive miner algorithm will divide E1 iteratively
until reaching sub logs that contain only one event, which are
called base event sub logs. In order to execute these divisions,
the algorithm applies cuts in the directly follows graph of the
log or sub logs. In this work, we consider three kinds of cuts
namely, sequence cuts, exclusive choice cuts, and parallel
cuts, represented in process trees notation as →, ×, and∧,
respectively.

Step 2: {Determination of Dependency Relation Cuts}.
As mentioned, the directly follows graph of an event log

E is represented as D(E) �(SE , �→E , Sstart
E , Send

E ), where
SE is the set of events in E . A cut will divide SE into pairwise
disjoint sets S1, S2, . . . , Sn , where Si ∩ S j � ∅ for i �� j

• Sequence cut of D(E) takes the form (→, S1, S2, . . . ,
Sn), where ∀i , j∈{1, ..., n}∀x∈Si ∀y∈S j i< j =⇒ x �→+

E y and
the opposite is false.

• Exclusive choice cut of D(E) is represented as(×, S1, S2,
. . . , Sn), where ∀i , j∈{1, ..., n}∀x∈Si ∀y∈S j i �� j =⇒ x �→E y
is false.

• Parallel cut of D(E) takes the form (∧, S1, S2, . . . , Sn),
where ∀i∈{1, ..., n}Si ∩ Sstart

E �� ∅ AN D Si ∩ Send
E �� ∅

AN D ∀i , j∈{1, ..., n}∀x∈Si ∀y∈S j i �� j =⇒ x �→E y

Returning to the example, after creating the directly fol-
lows graph D1, the algorithm will cut it into three smaller
graphs namely, D1a , D1b, and D1c as shown in the figure,
based on the sequence cut(→, {P1}, {P2, P4, P3}, {P5}).
This divides the set of events into three subsets where arcs
connecting those subsets only go from left to right. There-
fore, due to this sequence cut, three sub logs are created
from the original event log E1, namely E1a � [{P1}],
E1b � [{P2, P4}, {P4, P2}, {P3}], E1c � [{P5}] and cor-
respondingly, we have.

IM(E1) �→ (IM(E1a), IM(E1b), IM(E1c)), where
IM(E1a) � P1, IM(E1c) � P5, and therefore.

IM(E1) �→ (P1, IM(E1b), P5).

It is worth mentioning that an event cannot appear in more
than one sub log. Now since E1a and E1c contain only one
event, therefore, no cutting is further needed. Afterwards,
D1b is cut into two smaller directly follows graphs namely
D1d , D1e as shown in the figure, based on an exclusive choice
cut (×, {P2, P4}, {P3}). This divides the set of events into
two subsets where there are no arcs connecting the two sub-
sets together. Due to this exclusive choice cut, two sub logs
are created from E1b namelyE1d � [{P2, P4}, {P4, P2}],
E1e � [{P3}], and we have.

IM(E1b) � ×(IM(E1d), IM(E1e)), where IM
(E1e) � P3, and therefore IM(E1b) � ×(IM(E1d), P3).

The sub log E1e is a base case sub log, however, the sub
log E1d still needs more cuts. Therefore, D1d is cut into two
sub logs, namely D1 f , D1g as shown in the figure, by the
parallel cut (∧, {P2}, {P4}), which divides the events of into
two subsets where every event in each subset is connected to
all events in the other subsets. Due to this parallel cut, two
sub logs are created from E1d , namelyE1 f � [{P2}], E1g �
[{P4}], and we now have.

IM(E1d) � ∧(IM(
E1 f

)
, IM

(
E1g

)
), where IM(

E1 f
) � P2 and IM

(
E1g

) � P4.
Finally, by substituting, we get IM(E1d) � ∧(P2, P4),

then IM(E1b) � ×(∧(P2, P4), P3), and then.
IM(E1) �→ (P1, ×(∧(P2, P4), P3), P5). The

equivalent process tree is depicted in Fig. 4. The conver-
sion from process trees to Petri nets is based on the rules in
Fig. 5.

Other variants exist for the framework to deal with noise
and infrequent behavior such as the Inductive Miner Infre-
quent Behavior (IMf) (Leemans et al., 2013b). The authors
show that the IMf is able to discover sound, deadlock-free PN
models that can accurately display the observed behavior in
the event log, while filtering infrequent behavior and noise
as it analyzes the frequency of events, while maintaining
high fitness scores, in addition to preserving an appropriate
balance betweenmodel simplicity, precision, and generaliza-
tion.
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Fig. 4 Process tree obtained after applying the inductive miner algo-
rithm on event log E1

Conformance checking

Conformance checking is the analysis of an existing or
discovered model in terms of accuracy, simplicity and gen-

eralization. Particularly, by comparing the event log with the
model, the goal is to mark the similarities and key differ-
ences between both to analyze how accurate the model is in
representing the observed behavior in the log. The main cri-
terion for conformance checking is the fitness value, which
is a model accuracy measure representing the percentage of
Cases in the event log that could be modeled correctly by
the discovered process model. Another conformance crite-
rion is precision, which examines if the model allows for too
much behavior that is not observed in the log. A number of
techniques have been designed to calculate the fitness value.
Token replay (Van der Aalst, 2016) is one of the methods
for evaluating the accuracy of the PN models in representing
the event log. For each Case in the log, the model is run to
simulate those Cases, by placing a token in the start Place. A
simulation for each Case begins and as the tokens progress,
the behavior of the model is compared to the Case in the
log. The comparison is conducted by mapping the event log
behavior on top of the model for each Case and then cal-
culating four variables related to the number of tokens; the
number of produced tokens by the transitions; the number of
consumed tokens by the transitions; the number of missing
tokens due to an occurrence of an event in the event log, while
there are not enough tokens for the corresponding transition
to fire in the model; the number of remaining tokens in the

Fig. 5 Rules for converting process trees to Petri nets
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PN if there are tokens in any Place in the PNs other than
the end Place after the all events in a specific Case are com-
pletely executed. Normally, a perfect Case modeling (100%
Casefitness) by themodelwouldmean that; produced� con-
sumed; missing� remaining� 0. In the situation of different
values for the four mentioned variables; they are substituted
into a formula to calculate the fitness of that Case. This step
is repeated for all Cases in the event log and then averaged
to calculate the total fitness of the model. Another confor-
mance checking approach is the alignment method (Van der
Aalst et al., 2012), where each Case in the log is simulated
by the model and a corresponding alignment table is created.
This approach can provide a detailed diagnostic procedure
for each given Case and can be applied to any modeling pro-
cess notation.

Process enhancement

The third task of Process Mining is process enhancement,
which is the modification of an existing discovered model X
that doesn’t align with a certain event log to a new model Y
that conforms with the event log while still capturing most
of the structure of model X. This can be significantly bene-
ficial for a smooth and automatic model update when a new
event log is collected, resembling changes that occurred in
the process. An approach was developed in (Fahland & Van
Der Aalst, 2015), which applies the repair actions based on
the fitness criteria calculated by conformance checking. By
applying a threshold on the model’s fitness value, one of
three repair actions can be executed; (1) No repair due to per-
fect alignment; (2) Total event log-based rediscovery due to
very low fitness and extreme divergence; or (3) Partial redis-
covery only to the non-fitting parts to incorporate the new
behavior found the updated event data, while preservingmost
of the original model’s structure. Werner-Stark et al. (2011)
applied the method for exploiting the process enhancement
and conformance checking techniques to update a model of
a discrete event parking system. A normal behavior model
was initially built representing the system’s reference model,
and after acquiring new event data logwhich contained faults
that occurred in the system, the logs were replayed on the ref-
erence model to detect and pinpoint the divergencies, which
were used to modify the reference model to include the new
abnormal events in the model.

Proposedmethodology

This paper proposes a data-driven dynamic causality analysis
approach based on AI and structure learning from low-level
observational data. Themethodology combines interpretable
machine learning (decision trees in this paper), process
mining, specifically the process discovery task for model

generation and the conformance checking task for model
validation and fitness calculation, and human expertise for
defining the process’ operating regions and verification to
construct accurate and representative dynamic causal graphs
for complex industrial processes. It can serve as a building
block for different tools in process industries such as sys-
tems’ trajectory visualization and supervisory control. The
methodology can be applied in industrial plants to avoid
abnormal events and to maintain the desired process behav-
ior that achieves energy-efficient operations. The schematic
diagram of the methodology is depicted in Fig. 6.

The detailed steps of the proposed methodology are
explained in two main phases, namely, (1) operating region
definition based on experienced KPI thresholding and pat-
tern extraction using IML, (2) event data log preparation and
causal model generation using process mining techniques.

Phase 1. Operating regions definition based on KPIs
thresholding and pattern extraction using IML

In this phase, low-level observational data is collected by
a data management system from an industrial plant, which
comprises three types of time-sampled information: mea-
sured variables, controllable variables (variables that opera-
tors have direct control on), and KPIs (measured). The KPIs
demonstrate howeffectively an industrial facility is achieving
its objectives. The KPIs can represent ratios and quantities of
key production elements, the efficiency of energy consump-
tion, aswell asmeasurements ofwastes and non-eco-friendly
emissions.

Following the acquisition of data, the first step is to define
the operating regions of the process based on the KPIs.
Specifically, the aim of this step is to transform the KPIs in
the data from continuous values to discrete classes represent-
ing how efficient the process is operating in each timestep.
The process experts, who are deeply familiar with the plant,
would construct a classification criterion particularly based
on the KPIs to partition the state space of the system’s oper-
ation into several operating regions representing normal and
abnormal levels of operations. The definition of operating
regions is mainly dependant on human experts and domain
knowledge repositories, and in some situations, experts can
rely on different data analytics. The process expert defines
specific thresholds to be applied to the KPIs in order to define
different operating regions. Each defined threshold is a cut
point that would determine if a KPI value is normal, slightly
abnormal, or severely abnormal, etc. As a result, the KPI val-
ues for each observation in the data would satisfy one of the
defined operational classes. Examples of these classes are
shown in the “KPI Class” column in the table of Fig. 9. The
class labels of observations are assigned automatically by
projecting them on a set of deductive IF–THEN rules using
the thresholds defined on KPIs based on the human expert.
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Fig. 6 Schematic of the proposed methodology

Thus, we can exploit those labels as target variables to apply
supervised learning techniques, particularly IML, in order to
gain some insights on the reasons forKPI class change,which
would be the following step in this phase. It is important to
note that the human expert is mainly involved to define and
confirm those thresholds, as he/she is deeply familiarwith the
process and its KPIs’ related targets or objectives. In fact, this
task is important to extract accurate patterns from the data
and this thresholding procedure is done with minimal effort
from the expert who will be only involved in the validation
of the resulting causal models.

In the second step, we utilize the DT, an inductive rule-
based classifier, as the IML method. It is commonly used
as a supervised learning method for extracting rules from
data. DTs represent a flowchart structure, such that each node
in the tree is an evaluation on a specific variable or feature
and the result of that evaluation is represented by the out-
put branches. These branches would link the tree nodes until
reaching the leaf nodes. Each leaf node corresponds to the
classification or decision label. Thus, the classification rules
are represented by the paths from the top node to the leaf
nodes. The quality of each split in the tree is evaluated by
different criterions. Two of the most common are the Gini
Index and Information Gain. The Gini Index will measure
the frequency at which any observation in the dataset will
be misclassified with random classification. While Informa-

tion Gain measures the reduction in entropy after splitting a
dataset is split based on variable.

In this approach, the input variables to the DT method are
the measured and controllable variables in the data, while the
target classes are the operating regions defined from step one.
The main goal of using DTs is to exploit its interpretability
to extract meaningful patterns that would explain the rela-
tion between each observation and its assigned class/label.
Thus, acquiring information about the specific combinations
of variables with different values that would lead to differ-
ent KPI classes (e.g. normal KPI, slightly abnormal KPI,
severely abnormal KPI, etc.). Each extracted pattern from
the classification DTmodel is a combination of cut points on
the measured variables, controllable variables, or both, with
different value ranges, as illustrated in Fig. 7. The objective
of the pattern extraction step is two folds (1) to identify the
important events that occur in the process and affect the over-
all performance and their effect on the KPI, (2) to transform
the original data, which comprises KPIs and continuous vari-
ables (measured and controllable) into discrete event logs,
primarily because event logs are the appropriate input for
PM discovery techniques.

To ensure highly accurateDT classification and the extrac-
tion of strong representative patterns,we apply an IMLmodel
enhancement approach based on the work done in (Dhu-
randhar et al., 2018) to integrate the accuracy of powerful
models (such as ensemble of weak learners) and the inter-
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Fig. 7 Definition of extracted pattern

pretability of simple models. The main concept is to train
a teacher model (powerful model), which has low inter-
pretability; however, can achieve a high test accuracy on a
specific dataset (Lee et al, 2021) and use this trained model
to assign weights to each observation in the dataset, so that
observations that are easy to classify would be assigned
higher weights, while the ones that are difficult to classify
are given lower weights. Specifically, for each observation
in the dataset, the weight is calculated as the probability of
assigning the correct (true) label by the trained teachermodel.
These probabilities can be easily acquired from the prediction
probabilities of the trained teacher model for each and every
observation. Afterwards, we train the student model (simple
model having high interpretability but low test accuracy on
the original dataset), using the weighted dataset. The obser-
vation weighting forces the simple classification model to
focus onpredicting the correct class of observationswith high
weights and now the model can learn while ignoring difficult
observations (they are considered outliers) that will probably
cause the simple model to have low accuracy. The student
model can eventually obtain higher generalized accuracies
while still maintaining its interpretability. The paper (Dhu-
randhar et al., 2018) uses a deep neural network as the teacher
model in order to enhance the performance of a CART based
on DTs. It starts by adding logistic classifiers to the interme-
diate layers of an accurate pre-trained deep neural network.
Each classifier provides the prediction from the layer it is
attached to. A confidence profile curve is generated which
contains the confidence scores based on the logistic classi-

fiers output and the true labels of the input. The observations
in the original dataset are weighted after by using the area
under curve (AUC) as a function of the confidence scores.
In this paper, we adapt this method to use Random Forests
as the teacher model instead of a deep neural network, and
we use the prediction probabilities of the Random Forest to
assign weights to each observation.

The technique is powerful since there is no trade-off
between the interpretability and the accuracy of the simple
model, i.e., the high interpretability of the simple model will
not be affected andonly its accuracy could be improved (Dhu-
randhar et al., 2018). The interpretability of the DT model
(student) lies in its ability to extract patterns that are repre-
sented by the paths from the top node to the leaf nodes where
each leaf node is assigned one of the target classes. After
applying the IMLenhancementmethod, the observations that
are misclassified by the teacher model are assigned lower
weights hence can be ignored by the student model. Conse-
quently, after the student is trained based on the newweighted
dataset, the output would still be an interpretable tree-like
structure comprising more accurate patterns. Furthermore,
there is no fixed boundary for accuracy improvement, since
the efficiency of the technique depends on the performance
of the teacher model and the complexity of the data in terms
of data cleanliness, noise, and outliers. An illustration of the
DTs model enhancement step is shown in Fig. 8.

By mapping the extracted patterns to the original dataset,
sets of observations would be assigned to each pattern if
they satisfy the pattern’s rules i.e. satisfy the variables’
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Fig. 8 Training of enhanced IML models

ranges defined by that pattern. At the same time, each pattern
explains a specific operational class based on the DTs leaf
nodes (one of the operating classes defined in step 1), which
is the target label used in the training of the DTs classifier.
The mapping is performed in the next phase.

Phase 2: Event data log preparation and causal
model generation based on Process Mining

As the first step in this phase, the patterns that were extracted
in the form of tree-like structure in Phase 1 using classifica-
tion DTs are transformed into IF–THEN rules consisting of
a set of cut points on the values of the measured or the con-
trollable variables, or both. These rules are mapped to the
dataset to assign each extracted pattern to a set of observa-
tions that satisfy this pattern. Figure 9. shows this step with
an illustrative example of a small dataset consisting of four
input variables (X1, X2, X3 and X4) and one KPI. There
is one threshold on the KPI set by the expert to define two
operating regions (Normal, or Abnormal) which are shown
in the “KPI Class” column. The data listed in the table is used
to train a classification DT model with the four variables as
inputs and the KPI class as the target variable. After training
the DT model, a tree structure is generated as shown on the
right side of Fig. 9. Each path in the tree (from the top node
to a leaf node) represents a pattern, which is translated to a
set of nested IF–THEN rules. The pattern P3 is shown as an
example. Afterward, each observation in data is run through
the sets of IF–THEN rules to determine which pattern cov-
ers the observation then the covering patterns are added to

the “Event/Pattern” column. Each pattern is an event that
occurs during the process. We illustrate the relation between
the event and the pattern by this example: by manipulating
some of the controllable variables in a real process, the sys-
tem can transition to a new state and, therefore, this would
be considered an event. Also, satisfying the pattern’s values
regarding its controllable variables can be similarly consid-
ered an event that occurs in the real process, which would
also transition the system to a new state.

Therefore, the original continuous dataset is now trans-
formed into an event log, comprising discrete events (which
are the extracted patterns), timestamps, and Case ids which
would mark the start to the end of a process operation period,
and all events that happened in between, such as all events
that occurred during in one day of operation. In this paper, all
events that happened in one day are assigned the same Case
id. Therefore, the output of this step is an event log con-
taining sequentially ordered events (the generated patterns
mapped on the observations), which occurred during the pro-
cess describing the system’s evolution through its operational
states. The event log, which is built based on the example in
Fig. 9 is shown on the left side of Fig. 10.

In the second step, the generated event log is fed as input
to the PM platform for preprocessing and causal model gen-
eration. Information about the log such as min, max, and the
mean number of events perCase, the frequency of occurrence
of each event, and frequency ofCases are inspected.Based on
the cleanliness and complexity of the original data, some fil-
tering might be needed after the analysis, where some events
could be filtered to remove low-frequency events, which are
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Fig. 9 Event log generation from low-level continuous observations

Fig. 10 Causal model discovered from the event log in Table 1

considered as outliers or sensor errors. Afterwards, the event
logs are exploited to build an accurate and representative
causal model for the process. For this task, we utilize the
IMf as the PM discovery technique to process the event log
data, analyze the dependency relationships between events,
and generate state-event graphs models. The output would
be a PN with states representing the operational classes and

transitions representing the events in the log. The steps for
building the Petri Net model from the event log using the IM
algorithm are explained in Sect. 3.2.1. The output Petri net
model for the event log listed in Table 1 is shown in the right
side of Fig. 10.

In what follows, we explain how the three cases in the
event log in Fig. 10 are properly modeled using the IM algo-
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rithm. From the discovered PN model shown in the figure, it
can be noticed that the event P1 is a start event and P5 is an
end event, which indicates that the IM algorithm is able to
properly represent the event log, since all Cases start with P1
and end with P5 in the event log. Furthermore, in the event
log, P1 can be followed by P2 or P3, or P4, which is rep-
resented properly in the PN since the firing of the transition
P1 will remove a token from the place S1 and add a token
in places S2 and S3, thus only transitions P2, P3, and P4 are
enabled to fire afterwards (see Sect. 3.1 for the enabling con-
ditions of transition firing). If P3 is fired then the tokens in
places S2 and S3 will be removed and a token will be added
to each of the places S4 and S5, thus, P2, and P4 are not
enabled to fire while P5 is the only enabled transition. This
indicates that the PN model represents Case 3 properly. In
the situation where P2 is fired instead of P3, then only the
token in S2 will be removed and a token will be added in S4,
thus P4 will be the only enabled transition. Afterwards, P4
is fired and the token in S3 will be removed, and a token is
added in S5 and therefore P5 is enabled afterwards. This rep-
resents Case 1 correctly. The same can actually happen if P4
is fired instead of P2, which will only enable P2 afterwards
and then P5, which indicates the model represents Case 2
properly.

The dynamics of the system and its trajectory through time
can be tracked by observing the tokens’ movements inside
the discovered PN model. Causality relationships could be
inferred by observing the event sequences and their temporal
dependencies in the Petri net’s coverability graph. The cov-
erability graph is created during quantitative analysis, which
shows all possible state changes and the transitions responsi-
ble in a sequential manner, due to the occurrence of an event
or a group of events. By analyzing the graph, operators could
gain insights into how certain events could eventually trigger
other events causing state transitions. Following the process
model discovery, we proceed to the second task of process
mining, which is conformance checking. As mentioned pre-
viously, conformance checking measures the accuracy and
precision of the models by comparing the behavior or event
sequences that the model allows with the event log. More
specifically, we are interested in measuring the fitness of the
model, which is a measure of how many Cases in the event
log could be modeled correctly by the discovered model. By
ensuring a high fitness score, a representative and trustable
model of the system can be possessed.

In a situation where new data is collected, the third task
of process mining, which is process enhancement, is used to
update the discovered PNs model by only editing to incor-
porate the novel event sequences observed in the new event
log, while preserving most of the structure of the existing
discovered model. This is significantly advantageous, as we
are able to update the PNs model in an automated fashion
whenever new data is collected, which would save time and
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Fig. 11 Aschematic for theBLRB, adopted from (Vakkilainen&others,
2005)

effort rather than the traditional way of totally reconstruct-
ing the model from scratch. Finally, quantitative analysis is
performed on the generated Petri Nets model to ensure the
correctness of the model in terms of boundness, liveness, and
being deadlock-free.

Case study: A black liquor recovery boiler
in a Kraft pulp & paper mill

We implemented the proposed methodology on an indus-
trial case study introduced in (Vakkilainen & others, 2005),
involving a black liquor recovery boiler (BLRB) in a pulp &
paper mill located in Eastern Canada. The BLRB is one of
the major equipment in Kraft P&P mills, made up of several
units and it is very important tomaintain theBLRBprocess at
a high level of efficiency and availability. The BLRB restores
the used chemicals in the process, removes wastes and dis-
posable by-products, and combusts the organic components
from the black liquor for steam production. A schematic of
the BLRB is depicted in Fig. 11.

The proposed causality analysis methodology exploits the
sensory data collected from the BLRB in order to generate an
event log comprising sequentially ordered events, and after-
wards build a process model that represents the evolution
of the system and causality relations. The data consists of
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75,694 observations including 72 variables: 16 controllable
and 56 measured. The observations were collected every five
minutes for almost one year with an average of 275 obser-
vations per day. The dataset contains two KPIs: Vapeur vs
Solide (m3/Kg) (KPI-1), and STR corrigé à 8% cheminée
(KPI-2). The KPI-1 is an economical indicator that indicates
the ratio of the steamproduction to the black liquor consump-
tion. The KPI-2 is an environmental indicator and measures
the amount of total reduced Sulphide (TRS). The dataset was
prepared and pre-processed (including removing noise and
outliers) by the process expert and by using the EXPLORE
software (NRCan, 2015).

Phase 1: definition of operating regions and pattern
extraction from the BLRB dataset

In the initial phase, thresholds for the KPIs are set by the
process expert to define the operating regions (classes).
For KPI-1 the threshold was chosen to be 3.5 t vapeur/
t solides and 8 pmm for KPI-2. Therefore, 4 operating
classes are defined namely, Normal, Abnormal_1, Abnor-
mal_2, Abnormal_3, which are used to label each of the
75,694 observations. The Normal class refers to both KPIs
having acceptable values; Abnormal 1 refers to only KPI-
1 being acceptable; Abnormal_2 indicates that only KPI-2
is acceptable; and Abnormal_3 refers to neither KPIs hav-
ing acceptable values. A graphical illustration of this step is
shown in Fig. 12, considering theKPIs and the four operating
classes defined. Asmentioned, the output of this step is label-
ing the dataset where each observation is assigned one of the
operating classes based on each observation’s KPI values.
The labels are distributed in the dataset as 35,322 observa-
tions for Normal class, 19,458 for Abnormal_1 class, 10,854
for Abnormal_2 class, and 10,060 for Abnormal_3 class.

In the next step, the dataset is imported in Python for pat-
tern generation using DT classifiers with the measured and
controllable variables as the input variables, and the operat-
ing classes defined from the first step as the target variable.
TheDTs algorithmwas applied on the dataset using the hold-
out strategy with 80% for training, and 20% for testing using
the scikit-learn package (Pedregosa et al., 2011), scoring
a test accuracy of 84.25%. We applied the IML enhance-
ment method found in (Dhurandhar et al., 2018) in order to
enhance the performance of the DTs classifier (the student)
while maintaining its interpretability characteristic to gener-
ate meaningful patterns. The method is explained in Phase
1 of the proposed methodology and illustrated in Fig. 8. For
the teacher model, we utilized the Random Forests classi-
fier as a powerful model (teacher) to obtain a higher testing
accuracy, scoring 92.71% on the testing data. The prediction
probabilities from the Random Forest model were used to
assign weights to each observation in the dataset (Pedregosa
et al., 2011). The DTs model (the student) is trained again

with the weighted dataset, to avoid difficult to classify obser-
vations, while focusing on the relatively easier observations
that would contribute to better generalization performance
and higher testing accuracy.

Afterwards, we perform hyperparameter optimization
with GridSearch and post-pruning to obtain high-quality pat-
terns that can represent the data and the different operating
states of the system. Four hyperparameters were optimized
with Gridsearch:

• min_samples_leaf ranging from (1–10);
• max_depth ranging from (1–14);
• min_samples_split ranging from (2–10);
• criterion � [gini, entropy]

The DT with the highest accuracy was found from
the Gridsearch with the following hyperparameters:
{min_samples_leaf� 5; max_depth� 5; min_samples_split
� 2; criterion� gini}. Post-pruning was performed using the
cost_complexity_pruning_path function to avoid overfitting
to the training set and to improve the model generalization.
The final model obtained after applying the IML enhance-
ment method in (Dhurandhar et al., 2018), hyperparameter
optimization, and post-pruning scored 89.95% on the test
set. The values of precision recall and F1-Score for each
class are shown in the confusion matrix given in Fig. 13.
These values are calculated as follows: precsion � T P

T P+F P ,
recall � T P

T P+F N . The F1-score is calculated based on
the average of both precision and recall, defined as: F1 �
2 · precsion·recall

precsion+recall � 2T P
2T P+F P+F N , where TP (true positives),

FP (false positives), TN (true negatives) and FN (false nega-
tive). The readers may be referred to (Witten et al., 2016) for
more details.

Furthermore, we used the k-fold cross-validation method
which splits the data into k smaller independent sets (folds)
to avoid overfitting (Witten et al., 2016). In that method, the
classification model is trained k times, each time with k-1
folds for training and the remaining fold is used for testing.
The result is the average of the computed accuracies for all
testing folds. In this work, we set k � 5 and the obtained
testing accuracies were 90.4%, 88.8%, 91.1%, 89.7%, and
88.7%, with a mean of 89.7%. The model generated 32
patterns including 8 ‘Normal’ patterns, 9 ‘Abnormal_1’
patterns, 9 ‘Abnormal_2’ patterns, and 6 ‘Abnormal_3’ pat-
terns. Some of the extracted patterns are represented in Table
2. As shown in the table, each pattern is a combination of
IF–THEN rules representing the paths from the top node of
the DT classifier to each leaf node.
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Fig. 12 Operating region definition based on the experienced KPI thresholding

Fig. 13 Confusion matrix of the enhanced DT classifier

Phase 2: generating the event log and discovering
the causal model for the Reboiler case study

The main objective of using the DTs was for interpretation,
i.e., to extract the rules/patterns governing the classification,
which is a significant strength of DTs. By applying an algo-
rithm coded in Python, the patterns of the DTs are converted
into IF–THEN rules to be mapped to the original dataset.
The mapping would allow assigning each observation to one
of the 32 extracted patterns, which satisfies its value ranges.
The original dataset is now transformed into an event log,
which comprises events (the extracted patterns), each with
a timestamp and a Case id. In this event log, the Case id
represents the events that occurred in one day of operation.

The constructed event log is imported into the ProM 6.9
software (Dongen et al., 2005) for analysis and process dis-
covery. The ProM 6.9 software is one of the most famous
open-source processmining tools. The software offers awide

variety of techniques for process discovery. Furthermore,
the tool comprises plugins that execute conformance check-
ing and process enhancement by providing new event logs
to the existing model extracted in the discovery phase. By
analyzing the event log, it was found that some noise exists
especially for the Case start events, e.g., some Cases started
with an event only one time through the whole event log and
this can be considered as noise. Therefore, the ProM pack-
age, namely, “Filter Log Based on Heuristics,” was utilized
in order to remove noise from the starting events. The pre-
processing step can be important, due to the significance of
cleaning the event log and filtering the outliers in discovering
accurate and representative models. The filtering threshold
was adjusted to the default value of 0.8 based on the occur-
rence frequency. The frequencies of all event occurrence,
start events, and end events are shown in Table 3. These fre-
quencies can help the operators identify the persistent as well
as the rare events.
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Table 2 Examples of patterns extracted from the BLRB data using the DT classifier

Pattern Variable description Variable type Pattern rules Operating Class

P12 X42: Ratio air (m3)/ Solides (kg) Controllable X42 ≤ 3.18 AND Abnormal_2

X41: Solides Recup Measured X41 ≤ 1937.82 AND

X30:Débit air tertiaire (m3/min) Measured X30 > 278, 035 AND

X8: Débit air secondaire nord (m3/min) Controllable X8 ≤ 696.49 AND

X72: Émanation CO becs coulée nord Measured X72 ≤ 0.4

P16 X42: Ratio air (m3)/ Solides (kg) Controllable X42≤ 3.18 AND Normal

X41: Solides Recup Measured X41≤ 1937.82 AND

X30:Débit air tertiaire (m3/min) Measured X30 > 278,035 AND

X8: Débit air secondaire nord (m3/min) Controllable X8 > 696.49 AND

X9: Débit air tertiaire (m3/min) Controllable X9> 380.01

P28 X42: Ratio air (m3)/ Solides (kg) Controllable X42 ≤ 3.18 AND Abnormal_3

X41: Solides Recup Measured X41 > 1937.82 AND

X37:Ratio air primaire (%) Controllable X37 > 33.83 AND

X30:Débit air tertiaire (m3/min) Measured X30 ≤ 285, 452.16 AND

X3: Pression vapeur atomisation (kPa) Controllable X3 > 860.39

P36 X42: Ratio air (m3)/ Solides (kg) Controllable X42 > 3.18 AND Abnormal_1

X38: Ratio air secondaire (%) Controllable X42 ≤ 3.32 AND

X35: Analyseur Oxygène (%) Measured X38 ≤ 32.54 AND

X4: Débit savon brûlé (lpm) Controllable X35 ≤ 1.55 AND

X4 ≤ 15.74

The next step is the model/process discovery, where
the event log is processed by PM discovery techniques to
generate causal models that allow conducting visual and
mathematical analysis of the process. Therefore, we ran the
IMf technique on the event log with a threshold parameter
of 0.3. The Petri net model generated after running the IMf
algorithm is depicted in Fig. 14.

As shown in the figure, the start Place is the circle with
the blue color, which contains one token (black circle) to
start the process. The end Place is the circle with the grey
color. When a token reaches the end Place, it corresponds
to the ending of a Case, thus a token in the end Place will
leave all other Places empty. The discovered model com-
prises the different patterns (transitions in Petri net notations)
represented by the colored rectangles. Each color represents
the operating class of the pattern (Normal, Abnormal _1,
Abnormal_2, Abnormal_3). The black transitions are silent
transitions. These silent transitions do not represent events in
the real process or the event log, however, they are important
to allow the model to represent some complex sequences in
the real process. Event loops and event skipping are examples
of such sequences. Undetermenism can be observed in the
model where there can be a choice or conflict between two
or more events and only one can occur, such as the conflict
between P23 and P12. The firing of a transition corresponds
to the occurrence of an event in the real process and will

cause a change in the distribution of tokens. By simulating
the model with a Petri net simulator software like Workflow
Petri Net Designer (WoPeD), the dynamics of the system
could be observed and the operator can track the system’s
trajectory in real-time through the tokens’movements (mark-
ing change). Since each event is classified with one of the
operating classes, operators can gain insights into avoiding
specific events that would lead to abnormal operation and,
thus, maintaining normal KPI values.

Following the model discovery, we conducted confor-
mance checking to calculate the fitness and precision of the
generated model. Specifically, we utilized the ‘Replay a log
on Petri Net for Conformance Checking’ package in ProM
6.9 in order to compare the Cases found in the log with the
discovered Petri net model. The model scored a total Case
fitness of 98.66% and a precision score of 100%, where the
former measures the percentage of the event log Cases that
aligns with the discovered model, while the latter measures
how precise the model is in not allowing for extra behavior
that does not exist in the event log.

An important trade-off can be found between the accuracy
of theDTclassifier and the number of extracted patterns.Ulti-
mately, we aim to find a DTmodel with the highest accuracy,
without generating a large or excessive number of patterns.
Defining a large number of patterns is subjective to the pro-
cesses being modeled, however, too many patterns can result
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Table 3 Frequency of events
Event All events Start events End events

Occurrence
(absolute)

Occurrence
(relative %)

Occurrence
(absolute)

Occurrence
(relative %)

Occurrence
(absolute)

Occurrence
(relative %)

P36 1849 19.14 29 12.90 24 10.67

P40 1372 14.20 8 3.56 9 4.00

P54 1219 12.62 21 9.33 17 7.56

P46 751 7.78 20 8.90 18 8.00

P13 640 6.63 17 7.56 15 6.67

P55 571 5.91 63 28.00 50 22.22

P43 507 5.25 12 5.33 10 4.44

P12 443 4.59 – – – –

P6 306 3.17 9 4.00 7 3.11

P9 247 2.56 21 9.33 19 8.44

P5 237 2.45 8 3.56 8 3.56

P16 232 2.40 – – – –

P44 163 1.69 8 3.56 – –

P28 160 1.66 9 4.00 – –

P39 159 1.65 - – – –

P15 132 1.37 – – – –

P8 128 1.33 – – – –

P21 79 0.82 – – – –

P37 75 0.78 – – – –

P27 73 0.76 – – 8 3.56

P47 65 0.67 – – – –

P30 64 0.63 – – – –

P23 50 0.52 – – – –
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Fig. 14 The Petri Net discovered from the BLRB dataset using the inductive miner infrequent behavior technique
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in the causalmodel discovered fromprocessmining being too
complex, difficult to visualize and track the system’s trajec-
tory, and in some cases having a lowmodel fitness (accuracy)
score. Thus, a minimal number of meaningful and represen-
tative patterns is desired, while maintaining a high accuracy
from the classification DT model. However, most impor-
tantly, these patterns have to accurately reflect the events
that happen in the process.

Based on the process expert’s validation of the generated
model, the approachwas able to identify the effects ofmanip-
ulating the controllers’ set points on the measured variables
and the system’s state, which was displayed in the extracted
patterns.Moreover, thePetri netmodel revealed thedynamics
of the process in terms of the state evolution,which helped the
expert identify some of the persistent trends regarding event
sequences that occur frequently during the process operation.
We would like to share with the readers a few, among many,
insights obtained by the process expert through the analysis
of the discovered PN model.

This model allowed the expert to pinpoint some of the
events or control setpoints that have a high probability of
transitioning the system to low KPIs operating regions, e.g.
P27 (Abnormal_3 transition), where setting the controllable
variableX3 <860.38, while themeasured variableX42 <3.19
will cause an abnormal operating state. Similarly, some of
the events or control set point ranges are realized that can
maintain the process under normal behavior, e.g. P16, where
setting the two controllable variables X8 >696.5, X9 >380,
while the measred variables X42 <3.19, X41 <1937.83 can
maintain or transition the system to a normal operating state.
Particularly, P16 is an example of the approach’s ability to
identify the interactions between the controllers and their
effect on the system’s KPIs.

According to the model, if P44 occurred, which is defined
as {3.18 <X42 < � 3.32, X38 >32.5, X30 < � 278,961.4,
X41 >1884}, the KPIs’ values fall in the Abnormal_1 region.
The variable X30 only is the only measured variable and the
rest are controllable, therefore, this is a controllable event.
Based on the model, when P44 occurs, P27, or P46 can most
probably occur afterwards and both are controllable events.
The eventP27 is defined as {3.18 <X42< � 3.32, X38 >32.5,
X30 < � 278,961.4, X41 < � 1800}, while the event P46
is defined as {3.18 <X42 < � 3.32, X38 >32.5, X30 < �
278,961.4, 1800 <X41 < � 1884}. The event P27 leads the
system to Abnormal_3 region, while P46 returns it to the
Normal region. It can be observed from the definition of those
two events that the difference is in the controllable variable
X41. Therefore, based on dependency information from the
model regarding these three events and their definition, the
expert got this important conclusion:

• If P44 occurred, setting the controllable variable X41
afterward to a value≤1800 would further deteriorate the
performance from Abnormal_1 to Abnormal_3, while if

X41 is set to be between 1800 and 1884, the system can be
returned back to the Normal region.

Based on the dependency relationships in the discovered
PN model, the event P12 can mostly occur after P21 occurs.
The definition of P12 is {X42 ≤3.18, X41 ≤1937.82, X30
>278,035, X8 ≤696.49, X72 ≤0.4}, where X30 and X72
while the definition of P21 is {X42 >4.32, X41 ≤1937.82,
X30 >278,035, X8 ≤696.49, X72 ≤0.4}. It can be seen that
the difference between both events is the range of the con-
trollable variable X42. Once this condition {X41 ≤1937.82,
X30 >278,035, X8 ≤696.49, X72 ≤0.4} is satisfied and X42
is set to a value≤3.18 (event P12), the system would transi-
tion to the abnormal region Abnormal_2. However, based on
the PN model, this specific event sequence (P21 then P12)
could be avoided, if instead of executing P21, the operator
can execute P54, which leads to the Normal region, since
there is a choice between P54 and P21. The definition of the
event P54 is {X41 ≤1937.82, X30 >278,035, X8 >700, X72
≤0.4}. It can be observed that the difference between the
two events P54 and P21 is in the controllable variable X8.
Therefore, the expert got a second important conclusion:

• When this condition {X41≤1937.82, X30>278,035,
X72≤0.4} is satisfied, setting X8 to a value>700 would
transition the system to a Normal region, and avoid other
events that can lead to abnormality such as the event P12.

Finally, we conducted a quantitative analysis on the Petri
net model. For such analysis, we exploited some packages
in ProM 6.9 such as the ‘Analyze Behavioral Property of
Petri Net’ package, as well as the WoPeD (Freytag, 2005)
software for simulation. Based on the analysis, we found that
the discovered model is safely bounded where no Place can
hold more than one token; the model has no dead transitions;
the model is not live, i.e. the dynamics of the model does not
continue infinitely, where a Case has to begin from an initial
marking and has to terminate by reaching the end marking or
sink Place. Furthermore, the model doesn’t comprise dead
markings (except the sink/end Place), and it is deadlock-
free, where it is always guaranteed that at least one transition
will be enabled to fire from any marking. Finally, using the
WoPeD software we generated the coverability graph to have
a detailed analysis of the model’s dynamic. The graph is
shown in Fig. 15.

As shown in the figure, the colored rectangles represent
the different markings, which are interpreted as the differ-
ent states of the system. The directed arrows represent the
dynamics of the system. Each arrow has a label comprising a
single or a group of transitions connectedwithOR gates. The
occurrence of one of the events on the label will cause the
transition from the previous state (beginning of the arrow)
to the next state (tip of the arrow). Causality can be inferred
by analyzing the sequence of transitions, i.e. how specific
events always follow other events. Furthermore, we are able
to conduct a model simulation on the software using the “To-
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Fig. 15 Coverability graph of the discovered Petri net model

kenGame” option in WoPeD displaying visual animation of
the progression of the tokens inside the Petri net Places by
firing the transitions (events/patterns). The simulation serves
as a dashboard for operators to track the system’s dynamics,
providing a complete overview of the process in real-time.
The generated causal model obtained is useful for the pro-
cess operator, allowing him to deeply understand the different
causes for the abnormal situations related to the deterioration
of both KPIs. Consequently, the operator gained insights in
selecting the appropriate corrective actions that align the pro-
cess performance with the desired objectives towards energy
efficiency and the reduction of GHG emissions.

Discussion and future work

The increasing availability and development of sensor tech-
nology and data acquisition systems have introduced huge
monitoring capabilities for industrial systems, serving sev-
eral crucial activities such as fault diagnosis, supervisory
control, predictive maintenance, and others (Reis & Gins,
2017). One of the main goals of system monitoring is to
develop analytic tools that provide operators with estimates
of the system’s states and conditions based on causal mod-
els that reflect the actual behavior of the monitored system
and detect abnormalities, along with their root causes (Yang
et al., 2014). The efficiency of monitoring techniques in
these complex industries is heavily dependent on the posses-
sion of precise models. Therefore, we propose a multistep
methodology that integrates IML, PM, and human exper-
tise to generate causal models that can accurately describe
the system’s dynamics and state evolution. We believe that

this methodology could have a significant positive impact on
industrial applications, particularly for complex processes.

Our approach is data-driven, where historical data that is
collected from sensors inside the actual process is exploited
without the dependence on domain knowledge and existing
models. In complex processes such as pulp and paper mills,
this introduces a great advantage by conserving the experts’
time and efforts to construct accurate and reliable models,
which is rarely feasible in such large-scale processes. How-
ever, it is important to mention that our goal is not to omit
human involvement or responsibilities. What we seek is to
harness our AI-based methodology to support the human
experts in such complicated tasks, where the expert’s indis-
pensable background and knowledge will be used to verify,
validate and supervise the model generated by our proposed
approach.

The conceptwe used in ourmethodologywherewe extract
patterns from measured and controllable continuous vari-
ables to be employed as process events allows for analyzing
and identifying the interactions between the controllers. This
can support operators in the development of enhanced control
strategies that allow controllers to work more cooperatively,
rather than competitively.

It is important to mention the effect of the IML perfor-
mance on the causal model generation. In order to effectively
inspect the events that contribute to changing or maintaining
operation performance, we need to accurately define those
events, which translates to extracting patterns. The reason is
that in the real process, a slight change of one or more vari-
ables whether they are manipulated or measured could cause
a change in the KPIs. In this approach, the patterns extracted
from the data using the IML represent the events that occur
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in the process. Therefore, it is essential to ensure generating
strong and representative patterns, as they will be used to
construct the event log. This event log will be the input to
process mining techniques to build the casual model. Thus,
the accuracy of the patterns increases the creditability of the
final causal model, where these patterns would be more reli-
able in describing the actual events that happen in reality and
affect the system’s KPIs.

Our approach constructs dynamic causal models by
inspecting the temporal information between the interactive
process variables to infer causality relationships and allow for
sequential event-based modeling. Based on the literature, we
found that the majority of existing methods do not incorpo-
rate such temporal relations, which can significantly enhance
the modeling accuracy and credibility. We achieve this in our
approach by utilizing PM, which has emerged as an excep-
tional framework for discovering and enhancing business
processes. According to (Van der Aalst, 2016) who is a PM
pioneer, PM has been successfully implemented in over 100
organizations, varying from government departments like
Justice Department, and Centraal Justitieel Incasso Bureau,
media agencies like Winkwaves, Health care systems like
Catharina hospital and AMC hospital, insurance companies,
and banks. These organizations are classified as Lasagna pro-
cesses, which are characterized by a relatively clear structure.
However, we have not found applications of PM in large-
scaled industrial systems. Therefore, we are aiming to be the
first to apply PM for modeling complex industrial systems.

The dependency on KPIs for defining the operating
regions allows for the process events to be classified as
normal or abnormal from an environmental and economi-
cal perspective. Since PM generates state-graph models such
as PNs, the inclusion of KPI information during the model
discovery allows for normal and abnormal behaviors to be
incorporated in the generated model, which can be utilized
as an efficient visualization tool that serves as a dashboard for
process operators to track the system’s trajectory and allow
for real-time process simulation. This can also allow for cru-
cial applications such as fault diagnosis and prognosis, and
supervisory control.

Furthermore, the PM framework includesmodel enhance-
ment features based on augmented data. Therefore, updating
the model can be performed automatically whenever new
data is collected. The update process is data-driven and
thus, reduces the human effort needed for reconstructing the
model in the case of complex processes. As a result, the
approach can serve as an important building block in the
formation of digital twins. Particularly, the modeling and
simulation of a digital twin comprise four primary com-
ponents, namely, planning simulation (design simulation),
simulation for virtual commissioning, training simulation
(OTS: operator training system), and simulation during oper-
ation (Oppelt et al. 2020). The proposed methodology can

contribute to the fourth component, which focuses on the
simulation of the actual process through the integration of
the virtual model and system operation in real-time. This
integration can provide important insights about the actual
process and allows for improved monitoring and enhanced
real-time decision support, which can elevate the system’s
performance.

In this work, defining the operating regions is mainly
dependent on the KPI-related thresholds set by the expert.
However, in some industrial data, this task needs careful
attention to ensure that the specified KPIs partition the data
properly. Therefore, one of our future research directions is to
automatically partition the data using unsupervised machine
learning methods. Of course, everything related to data parti-
tioning will be done under the full supervision of the human
expert who will verify and validate the results obtained from
these unsupervised methods. In our approach, we have raw
low-level continuous data coming from a complex industrial
process andweuse IML to identify the representative patterns
and convert them into high-level events to build the event log.
Also, in this work, we treat the events in the event log data
as discrete. However, the involvement of timed events can be
one of our future research directions.

Other, future work involves fault prognosis, since the gen-
erated model allows visualizing the system’s state evolution
in real time, and thus operators can predict the transition
to faulty states before they occur. Another future work is
the application of predictive maintenance by incorporating
maintenance activity datasets to support improved planning
& scheduling and to increase the lifetime of equipment.
Furthermore, since powerful supervisory control systems
for industrial systems rely heavily on accurate and repre-
sentative models, building precise causal models from data
is a cornerstone for applying efficient supervisory control
methodologies to prevent abnormal events and enhance per-
formance. Particularly, the generated state-event graph from
our approach is classified as aMarkov decisionmodel, which
can be the platform to apply an AI-based supervisory control
approach. In that case, the KPIs would be key for formulating
optimization objective functions to modify control setpoints.
Moreover, some of the extracted patterns may contain value
ranges for measured variables only, and such patterns repre-
sent real events that are uncontrollable in the process (they do
not comprise controllable variables for the operators to con-
trol). Therefore, the supervisory control approach in this case
can attempt to avoid these uncontrollable events beforehand.
Finally, we are looking forward to conducting a quantitative
analysis to measure the direct environmental and economic
impacts of applying our approach to process industries. Our
main goal for proposing this approach is developing reliable
tools that can identify the main factors for inefficient control
and energy consumption to increase industrial profits and to
reduce GHG emissions.
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Conclusion

The majority of existing data-driven causality analysis meth-
ods face challenges when applied to industrial applications
such as the ability to model interactions between controllers,
incorporating temporal information, and identifying events’
sequential relations that lead to process performance dete-
rioration and not just equipment faults. Therefore, in this
paper, we have proposed an approach to construct high-level
dynamic causal models from low-level observations based
on the exploitation of historical operation data in industrial
processes. The approach integrates interpretable machine
learning (IML), process mining (PM), and human expertise
to build an accurate and representative dynamic causal model
that is able to analyze events’ sequential relations, deal with
a high number of variables, identify the interactions between
system components, and incorporate the normal and abnor-
mal behavior of the system. The most common industrial
data is numerical, which contains continuous observations of
measured and controllable variables in addition to key perfor-
mance indicators (KPIs). The approach realizes the important
events from these observations through the use of IML tech-
niques. These events are identified by extracting patterns
from the input data, based on different KPI-related operating
regions set by the expert. Furthermore, an IML enhancement
technique based on transfer learning is adapted to ensure
the generation of accurate and representative patterns. These
patterns can model the interactions between the controllers
(controllable events) as well as uncontrollable events. The
identified events are then used to generate a discrete event
log for the process. Afterward, the dynamic casual model
is built using PM discovery techniques. More specifically,
the PM takes as input the discrete event log and finds the
appropriate cuts that explain the dependency relationships
between the events. These relationships are represented in a
state-event graph such as Petri nets, which allows for pro-
cess simulation and causality inference. Process experts can
use the generated Petri net model as a dashboard to track
the system’s trajectory and state evolution. The approach is
tested successfully on an industrial dataset collected from a
recovery boiler in a pulp & paper mill and validated using
conformance checking (a class of process mining tasks) to
measure the discovered model’s fitness (accuracy) and preci-
sion in representing the event log. In addition, the modeling
procedure and the results have been validated and verified by
the process expert. A quantitative analysis of the generated
model is conducted to ensure model appropriateness as well
as to infer causal relationships between events, allowing for
better decision-making in fault prevention. This approach can
serve various future applications that are critical to the indus-
try, such as supervisory control, predictive maintenance, and
fault prognosis. In addition, an automatic model update is
facilitated whenever new data is collected, which can have

a significant role in building a virtual digital twin for the
system.
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