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Abstract
Robotic vision plays a key role for perceiving the environment in grasping applications. However, the conventional framed-
based robotic vision, suffering from motion blur and low sampling rate, may not meet the automation needs of evolving
industrial requirements. This paper, for the first time, proposes an event-based robotic grasping framework for multiple
known and unknown objects in a cluttered scene. With advantages of microsecond-level sampling rate and no motion blur
of event camera, the model-based and model-free approaches are developed for known and unknown objects’ grasping
respectively. The event-based multi-view approach is used to localize the objects in the scene in the model-based approach,
and then point cloud processing is utilized to cluster and register the objects. The proposed model-free approach, on the other
hand, utilizes the developed event-based object segmentation, visual servoing and grasp planning to localize, align to, and
grasp the targeting object. Using a UR10 robot with an eye-in-hand neuromorphic camera and a Barrett hand gripper, the
proposed approaches are experimentally validated with objects of different sizes. Furthermore, it demonstrates robustness
and a significant advantage over grasping with a traditional frame-based camera in low-light conditions.
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Introduction

Robots equippedwith grippers has become increasingly pop-
ular and important for grasping tasks in the industrial field,
because they provide the industry with the benefit of cutting
manufacturing time while improving throughput. Especially
in the 4th industrial revolution, the desire for robots that
can perform multiple tasks is significant. Assisted by vision,
robots are capable to perceive the surrounding environment
such as the attributes and locations of the grasping targets.
The vision-based robotic grasping system can be categorized
along various criteria (Kleeberger et al. 2020). Generally, it
can be summarized into analytic and data-driven methods
depending on the analysis of the geometric properties of
objects (Bohg et al. 2013; Sahbani et al. 2012). Moreover,
according to whether or not building up the object’s model,
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the vision-based grasping can be divided into model-based
and model-free approaches (Zaidi et al. 2017; Kleeberger
et al. 2020). Model-based approaches are mostly used for
knownobjects due to the requirement of object’s prior knowl-
edge. Model-free methods are more flexible for both known
and unknown objects by learning geometric parameters of
objects based on vision. Lots of standard vision-based robotic
grasping systems are explored for many applications, such
as garbage sorting (Zhihong et al. 2017), construction (Asadi
et al. 2021) and human interaction (Úbeda et al. 2018).

With the development of neuromorphic vision in grasping
field, the robotic grasping system can be newly categorized
into standard vision-based and neuromorphic vision-based
approaches along the different perception methods. Standard
vision sensors continue to sense and save picture data as long
as the power is on, resulting in significant power consump-
tion and large data storage. Moreover, the grasping quality
would be affected severely due to the poor perceiving qual-
ity, such as the motion blur and poor observation in low-light
condition. For example, it is proved that the quality of the pic-
ture taken by standard camera will be affected by the moving
speed of the conveyor belt in production line (Zhang and
Cheng 2019), due to the motion blur and low sampling rate
of the conventional RGB camera. In addition, the actuating
speed of the electrical gripper is generally over 100 ms in
robotic grasping tasks. Meanwhile, standard cameras com-
monly have a frame rate of less than 100 per second. Even
for the high-speed frame-based camera, the frequency is also
generally less than 200 frames per second with a high con-
sumptionof bothpower and storage. Furthermore, computing
the complex algorithm for vision processing algorithm will
take additional time to slower the grasping process from the
vision resource. So the acceleration of vision acquirement
and process will contribute to the grasping efficiency. To
improve the reacting speed of vision-based grasping, a faster
detecting helps to reserve more time for the gripper’s actua-
tion. For instance, a high sampling ratewill assists the robotic
system by providing adequate time take actions to prevent
slip in a closed-loop control system. Distinct to the conven-
tional frame-based camera, individual events are triggered
asynchronously by event camera with a micro second-level
sampling rate (Gallego et al. 2019). Therefore, the unique
property of event camera becomes indispensable to improve
the performance for grasping tasks.

Neuromorphic vision sensors (Indiveri andDouglas 2000)
are inspired by biological systems such as fly eyes, which
can sense data in parallel and asynchronously in real time.
Initially, the neuromorphic vision sensor was known as sil-
icon retina only utilized for computer vision and robotics
researches (Etienne-Cummings and der Spiegel 1996). Then
it becomes known as an event-based camera because it cap-
tures per-pixel illumination changes as events (Gallego et
al. 2019). In contrast to traditional frame-based vision sen-

sors, event-driven neuromorphic vision sensors have low
latency, high dynamic range and high temporal resolution.
The event camera functions as a neuromorphic vision sen-
sor with the ability to asynchronously measure brightness
changes per pixel. It results a stream of events which has
microsecond-level time stamp, spatial address, and polarity
referring the sign of brightness changes (Gallego et al. 2019).
Hence, utilizing events-based segmentation and grasping
provides superiorities of no motion blur, low-light operation,
a faster response and higher sampling rate. It introduces new
opportunities as well as challenges for neuromorphic vision
processing and event-based robotic grasping. Recently, the
event-based camera has been utilized in a growing number of
applications such as object detection and tracking (Mitrokhin
et al. 2018), 3D reconstruction (Zhou et al. 2018), and
simultaneous localization andmapping (Milford et al. 2015).
However, only few works used event camera to address grip-
ping tendencies, such as dynamic force estimation (Naeini
et al. 2019, 2020), grasping quality evaluation (Huang et
al. 2020), and incipient slippages detection and suppression
(Rigi et al. 2018; Muthusamy et al. 2020).

The key tasks in robotic vision-based grasping can be sum-
maries as object localization, object pose estimation, grasp
generation, and motion planning (Du et al. 2019). In this
work, we assume no obstacles exist between objects and
the gripper, so the first three tasks are addressed in the real-
time grasping framework. Object localization aims to obtain
the target’s position, commonly involving object detection
and instance segmentation. Using object detection, the object
will be classified and located by the bounding box. With the
development of deep learning, CNN (Chen and Ling 2019),
YOLO (Redmon et al. 2016) and Faster R-CNN (Ren et al.
2015) are popularly utilized for the object detection. Dif-
ferently, object instance segmentation is pixel-wise for each
individual object. Instance segmentation can be achieved by
machine learning based clustering methods, such as KNN
(Peterson 2009), K-means (Likas et al. 2003), SVM (Cortes
and Vapnik 1995) and Mean shift clustering (Fukunaga and
Hostetler 1975). In these methods, mean shift clustering is
non-parametric method that can be applied without prior
knowledge. Local and global masks are another technique
generally used in deep learning based instance segmenta-
tion, such asYOLACT-the firstmethods attempting real-time
instance segmentationBolya et al. (2019) and SOLO-the seg-
mentation objects by locations (Wang et al. 2020). However,
mostly all the segmentation techniques are applied to stan-
dard vision like RGB images and videos. In this work, we
develop Multiple-object Event-based Mean-Shift (MEMS)
instance segmentation for asynchronous event data inmodel-
free approach, and utilize event-based multi-view clustering
method in model-based approach. As the other part of grasp-
ing, the object pose can be estimated by 3D point cloud
(Zhou et al. 2016) and image coordinate (Hu et al. 2020).
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But they are alsomostly applied on the standard vision-based
grasping, which suffers from motion blur and latency. Grasp
generation refers to estimate the grasping pose of gripper,
which can be divided into 2D planar grasp and 6DoF Grasp
(Zhou and Hauser 2017) based on standard vision. For event-
based grasp generation, the author in Bin Li et al. (2020)
constructed Event-Grasping dataset by annotating the best
and worst grasp pose using LED’s flickering marker. But the
frequency is constrained up to 1 KHz due to the limitation
of LED frequency. Based on the dataset, the grasping angle
is learned via deep learning as a “good” or “bad” classifi-
cation problem. In other words, the gripper is required to
adjust pose until the feedback of pose classification achieves
“good” class or the stop criteria is reached. Therefore, the
grasp pose generation is not efficient since it cannot provide
the proper grasp pose directly.

According to these three tasks of grasping, the neuro-
morphic eye-in-hand 2D visual servoing approach for single
object grasping was developed (Muthusamy et al. 2021) in
our previouswork,which adopts an event-based corner detec-
tor, a heatmap based corner filter, an event-based gripper
alignment strategy. By comparison with the conventional
frame-based image-based visual servoing, our previous work
shows a superior performance on both time efficiency and
computation under different operating speeds and lighting
conditions. To improve our prior work for the multiple
3D objects grasping, there are several challenges includ-
ing the event-based segmentation of multiple objects, the
event-based Visual Servoing (EVS) method adopting depth
estimation, and the grasp generation according to segmented
information represented by spatial-temporal events. There-
fore, two event-based approaches for multiple objects grasp-
ing are developed in this paper, involving the Model-Based
Approach (MBA) and Model-Free Approach (MFA). Event-
based segmentation, event-based visual servoing adopting
depth estimation, and grasping generation using Barrett
hand are developed. In addition, we quantitatively evalu-
ate and compare the performance of these two approaches
experimentally. The primary contributions of the paper are
summarized below:

1. We devise an event-based grasping framework for robotic
manipulator with neuromorphic eye-in-hand configura-
tion. In particular, we propose a model-based and model-
free approach for grasping objects in a cluttered scene.

2. We study the computational performance of the two event-
based grasping approaches and assess their applicability
for the real-time and evolving industrial requirements.
In particular, we evaluate the grasping framework using
a robotic manipulator with a neuromorphic eye-in-hand
configuration, a robotic end-effector of Barrett hand, and
objects of various sizes and geometries.

3. We demonstrate the multiple-object segmentation, grasp-
ing and manipulation for multiple-object pick and place
applications. In factory automation, the completely event-
based strategies can boost production speed.

The remainder of this work is organized as follows:
“Overview of the proposed approaches” section introduces
the working principle and the data property of event-based
camera. “Model-based grasping approach” and “Model-
free event-based multiple objects grasping” section elabo-
rate our proposed method for model-based and model-free
multi-object grasping using neuromorphic vision, respec-
tively. The validation experiments and results analysis are
described in “Experimental validation on multiple-object
grasping” section. Based on the experimental performance,
two approaches are discussed and their pros and cons are
summarized in “Discussion” section. Then the conclusion
and future work are presented in the last section. The
video of demonstrations is in the link: https://youtu.be/
NBHkchnQfLY.

Overview of the proposed approaches

This section introduces the events data and describes the
overall description of Model-Based Approach (MBA) and
Model-Free Approach (MFA) using neuromorphic vision
for robotic grasping, which are elaborated in “Model-based
grasping approach” and “Model-free event-based multiple
objects grasping” section respectively.

The pixels of event-based camera can respond to logarith-
mic brightness (L = log(I )) variations independently. Once
the perceived logarithmic light intensity change exceeds the
threshold C , the events will be generated at a pixel (x, y) at
time t .

�L(x, y, t) = | L(x, y, t) − L(x, y, t − �t) |
= p ∗ C

∣
∣
∣
∣
C > 0, p ∈ {+1,−1} (1)

whereΔt is the interval time between the current and the last
event generated at the same pixel, ΔL represents the illu-
mination change, and p describes positive (+1) or negative
(−1) polarity of events indicating the brightness increase or
decrease. The stream of events has a microsecond tempo-
ral resolution with an event represented as e = (x, y, t, p)
(Gallego et al. 2019). In this research, DAVIS 346with a high
dynamic range (140 dB), low-power consumption (10 mW)
and 346×260 resolution will be used. The block diagram of
two designed 3Dgrasping frameworks utilizing event camera
is briefly summarized in Fig. 1.

The gray blocks indicate the common processes of the
two approaches, and the green and blue blocks repre-
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Fig. 1 Model-based grasping (green and gray blocks) and model-free
grasping (blue and gray blocks) summary (Color figure online)

sent processes that belong to model-based and model-free
approaches, respectively. From the Fig. 1, both approaches
acquire the 3D spatial and centroid information of individual
objects from raw event and depth estimation. Then execute
robot manipulation and grasping according to the obtained
object’s information and grasp planning. Themost significant
differences contain the segmentation and robotic manipula-
tion methods. The model-based approach segments objects
based on the 3D point cloud of features, but the model-
free approach utilizesmachine learning technique to segment
each instance. Moreover, position-based and velocity-based
visual servoing are applied for robotic manipulation in the
proposed model-based and model-free approach, respec-
tively.

Model-based grasping approach

This section explains an event-basedobjects grasping approach
that uses an inexact-sizedmodel fitting to estimate the pose of
the objects to be manipulated. An event camera mounted on

robotic manipulator in an eye-in-hand configuration is used.
Using pure events from an object in the scene, high-level
corner features are extracted using e-Harris corner detector
(Vasco et al. 2016), the use of this detectorwas justified in our
previous work (Muthusamy et al. 2021) which developed 2D
event-based visual servoing approach for single object grasp-
ing. As we are using an eye-in-hand setting with a monocular
camera, we are missing the depth information of the objects
we want to grasp. In the following subsection we will intro-
duce the Neuromorphic Multi-View Localization approach
used in this study for the localization of the objects in the
environment. The overall model-based grasping framework
is shown in Fig. 2.

Neuromorphic multi-View localization

Let us consider amoving calibrated event camera observing a
rigid static object in the scene. The movement of the camera
generates events on the sensor plane of the camera. Event
cameras uses the same optica as traditional cameras, so the
pinhole projection equation of a 3D point in the environment
can be still used. Figure 3 shows the pinhole projection, a 3D
point P = [x, y, z] is mapped into a 2D point p = [u, v] on
the camera sensor plane, which is expressed as:

z
[

u, v, 1
]T = K

[

R t
] [

x, y, z, 1
]T

(2)

where K is a 3 × 3 camera’s intrinsic parameters and R and
t are the relative pose between the camera and the object in
the environment.

The most common approach that tackles objects local-
ization using event-cameras is by using two or more event
cameras with known fixed attachment between them, and
sharing a common clock. This method requires to solve for
the events correspondence among the two cameras and then
localize the point feature in the environment. In our work we
used an approach that considers only a single camera with
a known camera trajectory. Event-Based Multi-View Stereo
(EMVS) introduced in Rebecq and Gallego (2016), was used
to estimate the exact pose of the object but utilizing only the
high-level corner features and the information of the known
trajectory of the event camera. The benefit of this approach
is that it considers the asynchronous and sparse nature of the
events generated by the event camera to warp them as rays
through a discretized volume of interest called the Disparity
Space Image (DSI). This method works directly in 3D space,
so it is not requried to recover the 3D location by associating
individual event to a particular 3D point. The event stream
ek generated by the event camera is the input point features
that are warpped into the DSI as rays according to the view-
point of the event camera at time tk . Then, the number of
rays passing through each voxel is counted and a 3D point is
considered present or not in each voxel by voxel voting. The
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Fig. 2 Model-based
multiple-object grasping
framework

approach back-projects the events from their corresponding
camera view to a reference camera view to find their exact
projection location in depth plane Zi . An event is back pro-
jected via two steps: first, it is mapped to the first depth plane
Z0 using the homography HZ0 and then to its correspondent
depth plane Zi using the homography HZi H

−1
Z0

, where:

HZi ∼ R + 1

Zi
teT3 (3)

and

e3 = (0, 0, 1) (4)

The back projected viewing rays passing through the DSI
are counted for each voxel. First the DSI is defined by the
camera pixels and a pre-defined number of depth planes Nz ,
therefore, it has a size of width× height × Nz . The amount
of viewing rays that intersect each voxel are stored as a score
in the DSI:

f (X) : V ⊂ R
3 (5)

where X = (X ,Y , Z)T represents voxel center. Finally,
EMVS algorithm produces a semi-dense depth map by
thresholding a confidence map c(x, y), which represents the
location and magnitude of the optimal score with the maxi-
mum value as follows:

f (X(x),Y (y), Z∗) =: c(x, y) (6)

The depth map can be then converted to a point cloud.

Fig. 3 Relative motion between the camera and the 3D object projects
a point (event) to the camera sensor plane

Point cloud processing

The model-based multi-objects grasping is achieved by exe-
cuting the following: point cloud downsampling, object
clustering, model registration, and robot manipulation with
grasp planning, which are explained in the following subsec-
tions respectively.

Point cloud downsampling

Post processing of the point cloud is performed to remove
the outliers in the point cloud. Using a space partitioning data
structure for organizing the points in a k-dimensional space in
a tree structure (k–d tree), we used a nearest neighbour search
to remove points that have a distance higher than a threshold.
This helps removing isolated points which are most likely
outliers.
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Object clustering

Grasping multiple objects requires finding and segmenting
the objects in the scene to individual object point clusters.
Since our point clouds contain only objects corner points
(i.e., maximum 8 points per object), we can use simple data
clustering approaches without worrying about the execution
speed of the clustering algorithm. We applied an euclidean
cluster extraction method, implemented using point cloud
library (PCL) (Rusu and Cousins 2011). This method divides
an unorganized point cloudmodel into smaller parts to reduce
the processing time. Same as themethod used in “Point cloud
downsampling” section, a tree data structure is used to sub-
divide the points and make use of the nearest neighbours to
search for points that are within a sphere of radius equal to
a threshold and adds them to a point cloud cluster {Ci }Ni=1,
where N is the number of objects detected.

Model registration

Because of camera visual constraints and objects geometrical
constraints, not all object corners can be viewed considering
the linear motion of the eye-in-hand, thus, this issue has to be
solved to provide an exact model of the object to be grasped.
Object registration aligns two point clouds to find the rela-
tive pose between the two point clouds in a global coordinate
frame. Iterative Closest Point (ICP) offers a good solution to
solve for the un-seen corners and performing model registra-
tion, but original ICP needs an exact model of the targeted
object to find the transformation between the target model
point cloud Ci and the source model point cloud P , thus, it
does not handle the case of models with different scales. In
addition, to increase the chance of good convergence and
successful alignment using ICP, an initial rough estimate
of the alignment is required to avoid converging in a local
minima (Rusinkiewicz and Levoy 2001). However, finding a
rough estimate requires finding feature descriptors to deter-
mine point-to-point correspondences, yet its a challenging
problem since we operate on a small sized point clouds, and
common feature based descriptors (i.e., spin image, PFH,
DH, etc.) were designed for dense point clouds.

In our paper, we used an inexact model P (i.e., 8 corners
relevant to a cube of length 1m) to generalize our registration
algorithm. According to Sankaranarayanan et al. (2007), the
registration problem is divided into 4 steps:

1. Selection: select input point cloud.
2. Matching: estimate correspondences.
3. Rejection: filter to remove outliers.
4. Alignment: find optimal transformation byminimizing an

error metric.

As discussed in “Object clustering” section and “Point
cloud downsampling” section, the input point cloud is the
clustered point cloud Ci after removing the isolated points.
We used Singular Value Decomposition (SVD), to find the
optimal transformation parameters (rotation R, translation t
and scaling c) between the set of points X = x1, x2, . . . , xn
in cluster Ci and the set of points Y = y1, y2, . . . , yn from
the source model after solving the correspondence, where
each set of points of m-dimensional space (i.e., 3D in our
case). We apply the mean squared error for these two point
sets to find the transformation parameters. The derivations
and equations below are from Umeyama (1991).

e2(R, t, c) = 1

n

n
∑

i=1

‖yi − (cRxi + t)‖2 (7)

where

μx = 1

n

n
∑

i=1

xi (8)

μy = 1

n

n
∑

i=1

yi (9)

σ 2
x = 1

n

n
∑

i=1

‖xi − μx‖2 (10)

σ 2
y = 1

n

n
∑

i=1

∥
∥yi − μy

∥
∥
2 (11)

∑

xy

= 1

n

n
∑

i=1

(yi − μy)(xi − μx )
T (12)

and let the SVD of Eq. 12 be UDV T where D is a diagonal
matrix of size m and

S =
⎧

⎨

⎩

I if det
(
∑

xy

)

≥ 0

diag(1, 1, . . . , 1,−1) if det
(
∑

xy

)

< 0.
(13)

where
∑

xy is a covariance matrix of X and Y ,μx andμy are

mean vectors of X and Y , and σ 2
y and σ 2

y are variances around
themean vectors of X andY , respectively.Hence, the optimal
transformation variables can be computed as follows:

R = USV T (14)

t = μy − cRμx (15)

c = 1

σ 2
x
tr(DS) (16)

For mathematical proof of the equations you can review
(Umeyama 1991).
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Robot manipulation and grasp planning

The robotmanipulation controller for themodel-based object
grasping is controlled by a Position Based Robot Controller
(PBVS). The PBVS stage guides the end-effector towards the
object features using the 6DoF pose estimate from the multi-
view detection and the model registration stage explained
in “Model registration” section. PBVS considers a known
intial and final poses of the robot’s end effector. The final
pose can be pre-defined as in the detection step, or it is
found by the EMVS and the point cloud processing stages,
which would represent the object centroid and orientation
angle. The desired joint angles vector of the robotic arm θ̂

is found using an inverse kinematic approach of the open-
source Kinematic and Dynamics Library. Afterwards, we
compute a trajectory for the joint angles on the Open Motion
Planning Library, and a PID controller regulates each joint
and tracks the joint angles.

Algorithm 1: Model-based grasping framework
Input: Events stream: position (xi , yi ), timestamp ti
Output: Objects centroid (X,Y,Z), Object Orientation Angle

1 Set starting point of the gripper P0
2 Scan the scene and extract objects corners
3 Perform the event-based multi-view localization
4 Perform point cloud downsampling
5 Perform object Euclidean clustering
6 for each cluster do
7 Perform model registration
8 Extract object centroid
9 Extract object orientation

10 Navigate to object and orient the gripper
11 Perform Grasp

Model-free event-based multiple objects
grasping

Distinct from the model-based approach, the model-free
approach acquires object information directly from the asyn-
chronous event data. For 3D object detection and grasping,
the depth information canbe obtained byEMVS, andmapped
into image coordinates for further visual servoing. Building
on that, the velocity control will be utilized to manipulate
the robot arm, ensuring the end-effector/gripper is aligned
with the centroid of the object. While the grasp hypothesis
is generated for the gripper according to the event stream,
then grasping operation will be executed to enclasp the aim-
ing object. Therefore, the designed event based multi-object
grasping consists of three parts: segmentation, visual servo-
ing, and grasping plan, which are explained in the following
subsections respectively.

Fig. 4 Event-based mean shift clustering principle

Segmentation

In this work, the Mean Shift (MS) algorithm is employed
for object segmentation due to its non-parametric character,
which is developed based on the assumption that different
clusters of data are of different probability density distribu-
tions (Fukunaga and Hostetler 1975). The working principle
is that by computing the shifting vectors of one point and
all neighbouring points in some range, the mean shift vector
can be obtained including shifting magnitude and orienta-
tion. Then repeating calculating this mean shift vector until
it converges. The main idea of object segmentation based on
events data is visualized in Fig. 4.

The probability density distributions can be expressed as
the Probability Density Function (PDF) shown in Eq. 17
(Fukunaga and Hostetler 1975):

Px = 1

nh2

n
∑

i=1

K
(x − xi )

h2
(17)

where K is the kernel function applied to each data point, n
denotes the number of data points, and h presents the band-
width parameter which means the radius of the kernel.
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For dealingwith the non-linear datasets, the data is usually
reflected into high dimension space by using kernel function
K (x). The most used kernel- Gaussian kernel is expressed
in Eq. 18.

KG(x) = e− x2

2σ2 (18)

where σ is the bandwidth of the window. In mean shift pro-
cedure, each point has its own weight and bandwidth which
can be an isotropic and diagonal matrix. To simplify the
expression, the case that all points have the same and scalar
bandwidth σ and the same weight 1

nh2
is considered most

practically. In addition, the Gaussian kernel is mostly used
in PDF because the bandwidth σ will be the only parameter
required for MS clustering.

Suppose x is a point to be shifted and N (x) are the sets
of points near the point x . D(x, xi ) is the distance from the
point x to the point xi , then the new position x ′ shifted from
x is calculated as Eq. 19 (Fukunaga and Hostetler 1975).

x ′ =
∑

xi⊂N (x) k(D(x, xi )2)xi
∑

xi⊂N (x) k(D(x, xi )2)
(19)

The new position will keep updating until the MS vector
is converged or the maximum iteration step is reached. The
MS vector is represented as Eq. 20 (Fukunaga and Hostetler
1975):

Vx =
∑

xi⊂N (x) k(D(x, xi )2)xi
∑

xi⊂N (x) k(D(x, xi )2)
− x (20)

However, the standard MS algorithm only considers the
spatial information of data points. For dealing with the asyn-
chronous and sparse evens data, both spatial and temporal
information is used for multiple objects in this research as
Multi-object Event-based Mean Shift (MEMS). The main
idea of instance segmentation based on events data is shown
in Fig. 4. By repeatedly updating a given point with the mean
of the shifting vectors with respect to all its neighbouring
points within a specified range, the process will eventually
converge to the distribution mode of the cluster to which the
starting point belongs.Currently,MEMSalgorithm is applied
on 2D spatio-temporal events stream which are represented
as (xi , yi , ti ), where (xi , yi ) and ti are spatial and tempo-
ral information respectively. The bandwidth of the searching
window is initialized before processing. The spatial cen-
ter point c(xi , yi ) will be randomly selected after obtaining
events data. Then iterating the procedure of mean computing
and shifting until it is converged.

Utilizing both spatial and temporal information, the event-
based PDF and Gaussian kernel are expressed as Eqs. 21 and

22 (Barranco et al. 2018):

Px,t = 1

n

n
∑

i=1

K ([x, t] − [xi , ti ]) (21)
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∣
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∣
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∣

∣
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∣
∣

)2

= ce− (x−xi )
2+(t−ti )

2

2σ2 (22)

where xi is a 2D vector representing the spatial coordinates,
ti is the time stamp of xi , and c is the coefficient of Gaussian
kernel which is equal to 1√

2πσ
. Underlying density Px,t is to

find the modes of this density. The modes are located among
the zeros of the gradient ∇ Px,t = 0 and the mean shift
procedure is an elegant way to locate these zeros without
estimating the density. The ∇ Px,t is obtained as:

∇Px,t = 1

n

n
∑

i=1

∇K ([x, t] − [xi , ti ]) (23)

By substituting Eq. 22 into Eq. 23, ∇Px,t is obtained as:

∇Px,t = c

n

n
∑

i=1

gi

[∑n
i=1 [xi , t] gi
∑n

i=1 gi
− [x, t]

]

, g = −k′

(24)

Then the MS vector can be expressed as Eq. 25, which is
important for target localization and gripper manipulation.

m([x, t]) =
⎡

⎣

∑n
i=1 [xi , t] g

( ||[x,t]−[xi ,ti ]||2
h

)

∑n
i=1 g

( ||[x,t]−[xi ,ti ]||2
h

) − [x, t]

⎤

⎦

(25)

Running the MEMS on the event data obtained by the neuro-
morphic sensor, the execution time is 12.861 ms presenting
a dramatic improvement of time efficiency compared to the
mean shift algorithm for standard vision (754.977 ms). To
further accelerate the segmenting speed of MEMS compared
to the event-based mean shift algroithm in Barranco et al.
(2018), we applied two strategies: soft speedup term and
downsampling data illustrated in “Strategy 1” and “Strat-
egy 2” sections, respectively. For robotic grasping tasks,
both efficiency and accuracy are key aspects for evaluating
the performance of MEMS. Therefore, the metric E-score is
designed as the following equations:

E − score = λ1 · Ere + λ2 · Fre (26)

where λ1 and λ2 are factors indicating the significance of
efficiency and accuracy considered in the task, and the sumof
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Fig. 5 Processing time and performance with varying acceleration hyperparameters α

λ1 andλ2 is constrained as 1 thatλ1+λ2 = 1.Comparedwith
the baseline when α = 0 in strategy 1 or β = 1 in strategy
2, Ere (Eq. 27) and Fre (Eq. 28) represent the relative error
of processing time per event and F1 score, respectively.

Ere = −Te(αorβ) − Te(α = 0orβ = 1)

Te(α = 0orβ = 1)
· 100 (27)

Fre = − F1(αorβ) − F1(α = 0orβ = 1)

F1(α = 0orβ = 1)
· 100 (28)

where Te and F1 are the processing time per event and F1-
score correspondingly. Time efficiency is themain concern in
this work, so the core contribution of MEMS is to accelerate
the standard mean shift. Therefore, λ1 and λ2 are set as 0.6
and 0.4 respectively to assess the overall performance.

Strategy 1

In iterations of MEMS, each event will be shifted along the
shifting vector with the magnitude. The speedup term is then
added to calculate the final new positions as expressed in
Eq. 29.

x′ =
⎡

⎣

∑n
i=1 [xi , t] g

( ||[x,t]−[xi ,ti ]||2
h

)

∑n
i=1 g

( ||[x,t]−[xi ,ti ]||2
h

) + α · m
⎤

⎦ (29)

whereα is the acceleration coefficient that controls howmuch
extra distance the shifted points move along the shift vector.
While hyperparameter α is set properly, the procedure will
be accelerated compared with the standard MS. We tested
the mean shift speed for individual events and iteration using
different α within 1 as shown in Fig. 5a.

As shown in Fig. 5a, the processing time occupied by
each event and iteration demonstrates a similar pattern, that
declines when α ≤ 0.35 and increases while α > 0.35,
and almost the smallest deviations are demonstrated when
α = 0.35. In other words, the efficiency of MEMS in event
and iteration levels will be improved within some range of α.
However, theMEMSwill divergewhen α reaches 1. Besides,
the clustering accuracy of MEMS is assessed by precision,
recall and F1 score as recorded in Fig. 5b. Although three
metrics demonstrate slightly better when α = 0, the average
differences are only around 1%.

The overall evaluation considering both efficiency and
accuracy is computed in Eq. 26. Figure 6 illustrates the
relationship between E-score and α value, that our MEMS
with strategy-1 performs better than the standard MS when
α < 0.75, especially at α = 0.35.

Strategy 2

To accelerate MEMS algorithm, one of the most intuitive
approaches is to reduce the processing data. Building on that,
the hyperparameter β is introduced to downsample the orig-
inal events expressed in Eq. 30 evenly. The downsampled
events are represented in Eq. 31, that the size will be reduced
to 1/β of the original size.

Original events: X = {x1, x2, ..., xi } (30)

Downsampled events: X′ = {

x1, x2β, ..., xnβ

}

, nβ ≤ i (31)

Similarly, the processing time of each event and mean shift
iteration are computed to assess the efficiency, as illustrated
in Fig. 7.
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Fig. 7 Processing time and performance with varying downsampling rate β

Fig. 6 The relationship between E-score and α value

From Fig. 7a, the processing time evaluated on both sin-
gle event and iteration demonstrates a decaying trend with
increasing β. The smaller β results in the greater reduction
slop which means a more significant improvement of effi-
ciency. When β exceeds 4, the processing time per event can
even reach around 1µs. Figure 7b presents the assessment of
the clustering accuracy, where recall, precision and F1 score
outperforms the standard MS as β = 1. With the reduction
of original events, the noise captured and included in the
original data will also be reduced. As a result of the reduced
influence of noise disruption, clustering and segmentation
will function more accurate. Based on the processing time
per event and F1 score, the overall evaluation E − score of
MEMS with strategy-2 is calculated with varying β values
as illustrated in Fig. 8. It shows a rising improvement with

Fig. 8 Overall evaluation with varying downsampling scale β

increasing β values, and at least around 16% improvement
is reached when β = 2.

Visual servoing

The traditional Visual Servoing (VS) is based on the informa-
tion extracted from standard vision sensors, which was first
proposed by the SRI International Labs in 1979 (Hill 1979).
Distinguishing to the eye-to-hand configuration relying on
observing the absolute position of the target and the hand,
an eye-in-hand camera is attached on hand and observes the
relative position of the target. The major purpose of VS in
this study is to manipulate the gripper to the desired posi-
tion of the target’s centroid in a 2D plane. An Event-based
Visual Servoing (EVS) method for multiple objects adopting
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Fig. 9 Four layers of surfaces of active events for robust centroid detec-
tion. a Raw events on SAE. Red and blue blocks represent negative and
positive polarity events. b Corner features (yellow blocks) on SAFE. c

Corners of targeting object on SALE. d Virtual robust centroid (purple
block) on SAVE (Color figure online)

depth information with the eye-in-hand configuration is pro-
posed based on our previous work (Muthusamy et al. 2021).
The centroid information obtained by the proposed MEMS
will guide EVS to track the object. Then the robust corner is
further calculated using a heatmap to ensure a stable manip-
ulation.

Four layers of active events surfaces are considered as
shown in Fig. 9. The Surface of Active Events (SAE) shows
all the raw events captured by the event-based camera. By
using a feature detector, only the corners will be extracted
and projected into Surface of Active Feature Events (SAFE).
In this work, eHarris detector is applied to detect corner fea-
tures of the objects. Themask is applied to remove the corners
of other objects, so only the useful features are remained and
projected to the Surface of Active Locking Events (SALE).
The robust centroid information will be calculated and vir-
tually projected into the Surface of Active Virtual Events
(SAVE).

According to the robust centroid and depth information,
the robot will be manipulated to track the object. The block
diagram for completing the manipulation task by EVS is
depicted in Fig. 10. Pd and Pa represent the desired and the
actual/current planar position of the object’s centroid. θd and
θa indicates the desired and the actual/current orientation of
the object. The error ep and eθ can be calculated as Pd − Pa
and θd − θa . According to the position error, a forward and
lateral correction will be executed to move the gripper to the
proper position. Then the angular correction will be imple-
mented in order according to the angular error. Based on the
control and manipulation, the orientation and position error
will be eliminated until the robot aligns with the object.

The UR robot utilized in this work provides the secondary
velocity control v(v f , vl , vr ) for end-effectors/grippers, and
the relationship between themoving distance dist and planar
velocity vp is as dist = | f (vp)|. Here v f , vl and vr repre-
sent the forward, lateral and rotational velocity, respectively.
Besides, the planar velocity can be computed as vp = v f +vl .
The velocity control based visual servoing is illustrated in

Fig. 10 The block diagram of event-based visual servoing

Fig. 11, that consists of two stages - translational (forward
and lateral) correction and angular correction in order.

Figure 11a, b show the sequence of translational cor-
rection, and the estimated position error dist in image
coordinate will be eliminated by velocity vp(v f + vl) until
dist is smaller than the threshold. For Barret hand with three
fingers, the grasp hypothesis generated is required to ensure
a proper and stable grasp. In this work, grasp is planned
based on the principal orientation which will be elaborated
in “Grasping plan”. As depicted in Fig. 11c, d, the gripper
will keep rotating with vr until the angle difference θ is elim-
inated to near 0. After accomplishing correction, the gripper
will move down to pick the object up according to the depth
information mapped.

Grasping plan

For model-free object grasping, there is no geometric model
or any prior knowledge of the object. A mount of researches
rely on exploring the geometrical information such as shapes,
edges, and saliency. It suffers from low efficiency, since
the exploration by moving the camera around the unknown
objects takes time. Another popular approach is using deep
learning techniques such as DCNN to train robots to gener-
ate a proper grasping hypothesis but it requires a vast amount
of manually labeled data for training. Therefore, a fast grasp
generation is proposed for unseen objects using Principal
Component Analysis (PCA), which is relatively more effi-
cient by avoiding online exploration and offline training.
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Fig. 11 Velocity control
principal of EVS which includes
two parts in order: translational
correction (a, b) and angular
correction (c, d)

In this work, the principal axis of objects obtained from
PCA is utilized to generate a proper grasp position. The prin-
cipal component is equivalently defined as a direction that
maximizes the variance of the projected data, which can be
computed by eigen decomposition of the covariance matrix
COV of the data matrix as described in the following equa-
tion:

COV =
(

σ 2
xx σ 2

xy
σ 2
yx σ 2

yy

)

(32)

where σ 2
xx , σ

2
xy, σ

2
yx and σ 2

yy are the covariance values of
2D coordinate. It is based on calculating the eigenvalues
(λ1 > λ2) and the corresponding eigenvectors (u1, u2) to
find the principal component, where eigenvectors and eigen-
values are used to quantify the direction and the magnitude
of the variation captured by each axis. Then u1(u1x , u1y) can
approximate the direction θ of the principal axis as:

θ = arctan
u1y
u1x

(33)

The grasping pose will be generated by the centroid C and
the direction θ . To ensure a robust principal orientation, all
the orientations detected before grasping will be stored in a
histogram with 3-degree bins. The final rotation is converted
into the range of [−90, 90] to ensure the shortest rotation
path, resulting in 61 bins in the histogram. Then the final
robust orientation is determined by the bin value with the
maximum probability in the histogram.

The Barrett hand used in this work has three fingers of
eight joints with only four degrees of freedom. Each finger
contains two degrees of freedom controlled by a servo-
actuated joint. Two of the fingers have an extra joint which
allows them to rotate synchronously around the palm with

a certain spread angle relative to the third finger up to 180
degrees. The threefingers are commandedwith the same joint
value, simplifying the grasp plan and limiting the number
of possible configurations. Figure 12 shows the knowledge-
based approach that is used in our case to find the appropriate
grasp plan, (1) the grasping point on the object (centroid), (2)
the principal axis of the object. To perform a grasp, a Tool
Center Point (TCP) is defined first on the Barrett hand. The
hand ismoved to the grasping point on the object and rotate to
be perpendicular to the object’s principal orientation. Next,
the fingers are closed around the object until contacts or joint
limits prevent further motion. This configuration is executed
after ensuring that theBarret handmovingfingers can achieve
stable contact points with the object’s side surfaces. The dis-
tance between the two moving fingers is pre-measured and
compared with the edge length of the side surface to confirm
the grasp.

Event-basedmodel-free grasping framework

The whole framework of the proposed model-free neuro-
morphic vision-based multiple-object grasping is illustrated
in Fig. 13.

In this approach, each object will be numbered from one
after segmentation and grasped orderly according to their
IDs. The depth information obtained by EMVS will be used
only once before grasping, since the additional movement
and time are required and consumed. Thus the one-time
EMVS will be executed in the initial stage before segmenta-
tion when the cluster ID is equal to one, and the depth map
of the initial position will be frozen. By using the developed
MEMS, objects will be clustered with their IDs and centroid
position. Through mapping the frozen depth map with the
segmented object information, the 3D spatial information of
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Fig. 12 Barrett hand grasp alignment

Fig. 13 The whole framework of proposed model-free event-based multiple-object grasping

each object at the initial position will be obtained and locked
to provide the depth information for the next grasping. As
depicted in “Visual servoing” section, the robust centroid of
the current tracking object will be obtained and projected into
SAVE. Based on the position error and orientation error, the
translational and angular correction will be employed until
the gripper is aligned to the targeting object. Then the object
will be picked up and placed at the specific dropping area.
After that, the cluster ID will be accumulated by 1, and the
gripper will return to the initial position and start the next
grasping task. The framework of model-free multiple-object
grasping is summarized in Algorithm 2.

Experimental validation on multiple-object
grasping

This sectiondescribes the experimental validationofmultiple-
object grasping and discusses the experimental results.

Experimental setup and protocol

The real experiments are performed to validate the proposed
grasping approaches. As demonstrated in Fig. 14, the exper-
imental setup consists of a robotic grasping system and an
evaluation system.

The grasping system includes a Universal Robots UR10
6-DOF arm [43], a Barrett hand gripper [44], and a Dynamic
and Active pixel VIsion Sensor (DAVIS346) [45] placed in
an eye-in-hand configuration. The UR10 arm features a 10
kg weight capacity and 0.1 mmmovement accuracy, making
it ideal for packaging, assembly, and pick-and-place tasks.
The DAVIS346 sensor has an outstanding dynamic range
(> 100 dB) and 346 × 260 resolution. The stream of events
encodes time t , position (x, y) and sign of brightness change
p. Objects of different sizes and shapes are used as the grasp-
ing targets. To perform the proposed approach successfully,
it is assumed that the targeting objects are within the grip-
per’s manipulation range since the robot is installed in a fixed
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Fig. 14 Experiment setup
consists of two parts: a Robotic
grasping system for
experimental validation of
proposed approach; b evaluation
system for assessing the
grasping performance

Algorithm 2: Model-free Grasping Framework
Input: Events stream: position (xi , yi ), polarity pi , timestamp ti
Output: Cluster ID, cluster centroid (xc, yc)

1 Initialize cluster ID = 1
2 Set starting point of gripper P0
3 while ID = 1 or ID ≤ The number of objects do
4 if ID = 1 then
5 Move gripper and record the trajectory
6 Perform EMVS and MEMS
7 Map and freeze depth with 2D spatial and centroid

position of each object
8 else
9 Perform MEMS to detect the centroid of the targeting

object
10 Obtain depth, 2D spatial and centroid information of each

object

11 Detect corners in SAE by applying e-Harris, and project
corner events to SACE

12 Extract object corners in SACE using heatmaps
13 Calculate the robust centroid of the targeting object
14 Calculate the position error ep between the current position

and robust centroid position
15 if abs(ep) > 0 then
16 Perform EVS to eliminate ep
17 else
18 Perform EVS to eliminate the angular error er
19 Execute grasping

20 if grasp accomplished then
21 Cluster ID +1
22 Move back to the initial position

base. Moreover, the sizes of objects are expected to be within
the maximum opening of the gripper.

To estimate the grasping performance, we developed an
evaluation system that consists of ArUco markers and a stan-
dard camera Intel D435. The identity of an ArUco maker
is determined by its binary matrix inside of the black bor-
der, that facilitates a fast detection and applicability for

camera calibration and pose estimation. By conducting 10
experiments of measuring the static object’s pose using our
evaluation system, the estimation error of angle and posi-
tion are evaluated as only 1◦ and 0.1 cm, respectively. In this
work, the identifiedArUcomarkers are attached on the lateral
side of gripper and targeting objects, so their poses can be
determined by detecting and estimating the pose of ArUco
markers. According to the evaluation metrics for grasping
performance detailed in “Evaluation metrics” section, we
focus on the poses in three stages: initialization, optimal
grasping and object grasping as demonstrated in Fig. 15. In
the beginning, the object’s pose will be recorded as Pobj .
After visual servoing, the gripper will reach the optimal
grasping pose as Pgrip. Since the ArUco marker would be
covered by the finger of Barrett hand after grasping, Barrett
will hold the object for one second and release it. After open-
ing the gripper, the object pose will be estimated as Pobj ′ to
evaluate the object deviation.

Model-free grasping experiment protocol

According to Algorithm 2, the experiments are designed and
performed in the following steps:

(1) Depth exploration stage. Move the gripper in a linear
trajectory to the initial position and perform EMVS to
obtain the depth information. This stage is only activated
once at the start of the whole experiment.

(2) Segmentation stage. Slosh gripper to generate some
movement for observing the objects, since only illumi-
nation change can be captured by the event camera. Then
segment each object by the developed MEMS to obtain
the centroid information. Meanwhile, the orientation of
each object is acquired by PCA. Sort objects according to
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Fig. 15 Pose estimation by
developed evaluation system in
three steps: a Initial pose. b
Optimal grasping pose. c
Deviated object pose after
grasping. The coordinate of
ArUco markers is indicated at
the left top corner

volume, and update centroid and orientation information
of the largest object to visual servoing.

(3) Visual servoing stage. Extract the robust corner feature
and virtual object centroid in SAVE, and track the object
until the object and camera centers are matched.

(4) Optimal grasping stage.Rotate theBarrett hand to align to
the object, and adjust the gripper’s position to compensate
the installation deviation between the camera and gripper.
After rotation and adjustment, Barrett handwill reach the
grasping point and hold the object.

(5) Pick and place stage. Barrett hand lifts and places the
object into the drop box in this phase.

Model-based grasping experiment protocol

Themodel-based grasping framework shown inAlgorithm 1,
shows that the grasping approach is divided in the following
steps:

(1) Scene scanning stage: the robot end-effector starts from
a known point and scans the scene in a linear trajectory
set of movements.

(2) Object Localization stage: detected objects’ corners are
used as an input for the event-based multi-view localiza-
tion approach, and the objects are localized.

(3) Point cloud processing stage: point cloud downsampling
and object Euclidean clustering is performed to divide
the objects in the scene to separate point clouds.

(4) Model registration stage: for eachobject an inexactmodel
is fitted to to the detected objects, and the transformation
matrix is extracted.

(5) Grasping stage: The robot gripper is navigated towards
the object using PBVS and grasp is performed with the
required manipulation.

Fig. 16 Two metrics of grasping performance evaluation–positioning
error egp and angular error egr

Evaluationmetrics

Propermetrics are crucial to quantify the grasping quality and
evaluate the performance of real grasping. In this work, the
accuracy of grasping is assessed by the position and orienta-
tion error in two phase: optimal grasping and object deviation
evaluations. Building on that, the success rate of grasping
pose and the grasping quality score are computed to indicate
the overall grasping performance.

Optimal grasping evaluation

The goal of optimal grasping evaluation is to meaure the
difference between the optimal grasping pose and the actual
grasping pose of the gripper after the alignment and before
enclasping the object, using two components as illustrated in
Fig. 16 including the position error egp and the orientation
error egr of the planning grasp pose.

The position error egp and the orientation error egr repre-
sent the distance and the angle between the gripper’s center
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Fig. 17 Experimental
sequences of proposed
neuromorphic vision based
multi-object grasping
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Table 1 Model-free
experimental results of grasping
different-size objects using
event camera

Object size egp (cm) egr (◦) SS DP (cm) DR (◦) QG

Small 1.477 2.14 0.800 1.099 2.10 0.655

Medium 1.461 2.46 1.000 1.684 1.47 0.530

Large 1.498 2.62 1.000 1.343 1.46 0.616

Average/overall 1.479 2.41 0.933 1.375 1.68 0.600

Table 2 Model-based
experimental results of grasping
different-size objects using
event camera

Object Size egp (cm) egr (◦) SS DP (cm) DR (◦) QG

Small 0.891 4.88 1.000 0.821 10.70 0.438

Medium 0.742 3.73 1.000 0.361 0.51 0.893

Large 0.481 3.88 1.000 0.711 2.46 0.740

Average/overall 0.705 4.16 1.000 0.631 4.56 0.690

and the actual object’s center, respectively. We set the lim-
itation of position error LP and orientation error LR to 2
cm and 15◦. Only when both grasping errors are within the
limitations, the grasping can be considered as successful as
described in Eq. 34, where SS indicates the success sign of
the current grasping. Then the overall success rate can be
computed as SS = ∑

N SSi/N , where N denotes the total
number of grasping performed.

SSi =
{

0 if (egp ≤ LP and egr ≤ LR)

1 if (egp > LR or egr > LR)
(34)

Object deviation evaluation

However, the overall grasping quality can not be estimated
only using the planed grasping error before the real grasping.
Then the deviation of object pose D is taken into account,
reflecting the relative pose before ( Pb, Rb) and after ( Pa, Ra)
trapped by the fingertips of the gripper. The deviation can be
quantified as two parts: the position deviation DP and the
orientation deviation DR as expressed in Eq. 35.

D = {DP , DR}
DP = ‖ Pb − Pa‖
DR = |Rb − Ra |

(35)

The grasp quality score QG is calculated according to the
deviations and the predefined limitations as expressed in
Eq. 36. Grasping with less object deviation is considered
to be of better quality, as the deviation of the object’s pose
would cause grasping failure.

QG =
{

1 − DP
2∗LP

− DR
2∗LR

if (DP ≤ LP and DR≤LR)

0 if (DP > LP or DR>LR)

(36)

Experimental results and analysis

The five stages of the proposed neuromorphic vision-based
robotic grasping approaches with multiple cubic objects of
different sizes as demonstrated in Fig. 17.

To quantify the grasping performance, we conducted 15
experiments of hexahedron objects with three different sizes
using bothmodel-based andmodel-free approaches. The size
of small, medium and large object is 15 × 10 × 12 cm3,
15 × 10 × 10 cm3 and 10 × 7 × 8 cm3, respectively. For
individual object, five experiments are repeated and the errors
are averaged. Tables 1 and 2 show the experimental results
of grasping error and object deviation of the model-free and
the model-based approaches.

Seen from Tables 1 and 2, both proposed neuromorphic
vision-based grasping approaches can successfully accom-
plish the grasping tasks, and all of those evaluation metrics
are within the limitations. By analyzing, the source of error
is considered coming from several aspects. First, the error
is caused by the experimental setup that the camera is not
installed exactly parallel to the work plane. As segmentation
and tracking are executed at some height, the positioning
error will occur after reaching the center at a certain height
and amplified while the gripper is moving down for grasp-
ing. In addition, there are two manually induced errors in
the grasping phase and evaluation stage. Since the object
segmentation and visual servoing are accomplished in the
camera frame, the position adjustment is executed after visual
servoing to compensate the manually measured deviation
between the centers of event camera and Barrett hand. The
similar deviation exists in the evaluation system, while cal-
culating the optimal grasping pose by transformation from
ArUco marker center to object top surface center. Besides,
the low spatial resolution of DAVIS 346C utilized can also
cause the error.
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Table 3 Model-free
experimental results of grasping
different-size objects using
event camera in low-light
environment

Object size egp (cm) egr (◦) SS DP (cm) DR (◦) QG

Small 1.443 2.61 1.000 1.373 2.74 0.565

Medium 1.551 2.91 1.000 1.046 2.32 0.661

Large 1.411 2.88 0.600 1.203 1.96 0.503

Average/overall 1.478 2.80 0.867 1.207 2.34 0.576

Table 4 Model-based
experimental results of grasping
different-size objects using
event camera in low-light
environment

Object size egp (cm) egr (◦) SS DP (cm) DR (◦) QG

Small 1.031 5.98 1.000 0.83 5.01 0.626

Medium 0.951 5.41 1.000 0.40 3.12 0.795

Large 1.120 6.22 1.000 1.05 5.15 0.566

Average/overall 1.034 5.87 1.000 0.76 4.43 0.662

Robustness testing

To test the robustness of the proposed grasping approaches
using an event camera, the additional experiments were con-
ducted in low-light condition and using objects of other
shapes.

low-light conditions One of the advantages of an event cam-
era is high sensitivity to the change of light intensity, that
can observe objects even in the low-light environment. How-
ever, more noise will also be captured in low-light condition.
So the noise filter is applied to eliminate the noise and cap-
ture more meaningful events. We conducted 5 experiments
for each cubic/hexahedron object. The experimental results
of model-free and model-based approaches are recorded in
Tables 3 and 4, including grasping pose error in terms of
egp and egr , and the object deviation in terms of DP and DR .
The success rate SS and grasp quality QG are also calculated
with the same position limitation LP = 2 cm and orientation
limitation LR = 15◦.

Seen from the results, the average errors are all within the
limitations and the success rate and grasp quality score are
similar to those in the normal light environment. However, by
comparing the standard deviation of themodel-free approach
as shown in Fig. 18a, the overall performance in the low-light
condition is more unstable with a higher standard deviation,
even though the value of position error of graspingorientation
under normal light is slightly higher. For the model-based
approach, it presents a higher standard deviation value of
object deviation in low-light condition as depicted inFig. 18b.
On the whole, both of our proposed approaches can reach the
grasping goal successfully in low-light environment.

The comparison between the two proposed approaches
is depicted in Fig. 19, where MFA and MBA presents the
model-free approach andmodel-based approach, GE andOD
indicates the grasping error and object deviation, and LL
expresses the low-light condition. From Fig. 19a, the model-

free approach reaches a relative smaller orientation error
and a larger position error comparing to the model-based
approach. In both low-light and normal-light conditions, the
model-based approaches reaches a higher successful rate and
grasp quality score as indicated in Fig. 19b.

Objects with different shapes In addition, the experiments
of grasping different shapes were also conducted to test the
robustness. Besides of hexahedron, twooctahedronswith dif-
ferent shapes demonstrated in Fig. 20 are utilized as unknown
objects to validate the robustness of the proposed approach.

Since the model-based approach is designed for known
objects with the prior model, only the model-free approach
can achieve this task as the two octahedrons are considered
as unknown objects. Table 5 shows the grasping pose error,
object deviation, success rate and grasp quality of exper-
iments on objects with varying shapes. Octahedron-6 and
octahedron-8 represent the octahedronwith six and eight vis-
ible corner features from the top view as shown in Fig. 20.

By experimental validation, all those objects with differ-
ent shapes can be pick and placed effectively. Seen from
Table 5, the grasping of three objects of different shapes
demonstrates a comparable performance. Furthermore, the
proposed model-free approach is also validated on real
objects in daily life. The whole pick and place process is
demonstrated in Fig. 21, that achieves a successful pick and
place task for multiple objects.

Discussion

Both model-based and model-free approaches proposed are
valid for multiple-object grasping using an event camera.
By comparison, the pros and cons of two approaches are
concluded in Table 6.

From the experimental results in “Experimental results
and analysis” section, the model-based approach shows a
slightly better grasping performance with less error because
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Fig. 18 Standard deviation of grasping errors and object deviations in normal-light and low-light condition by model-free approach

Fig. 19 Comparison of the proposed model-based and model-free approaches

of the position based visual servoing. But the model-based
approach is limited to known objects as it requires offline
modeling of objects. However, the objects are generally
unknown requiring online process in real scenarios. It indi-
cates that the model-based approach more suitable for grasp-
ing tasks for the specific or pre-defined objects. By contrast,
the proposed model-free approach can obtain the position
information of unknown objects without prior knowledge,
which shows a great advantage in practical and real appli-
cations. Moreover, it is quite less sensitive to the imperfect
perception than the model-based approach. In addition, the
model-free approach also shows the flexibility and possibility
to deal with the moving object besides of the static object.

Conclusion

We proposed an event-based grasping framework for robotic
manipulator with neuromorpihc eye-in-hand configuration.
Particularly, a model-based and a model-free approaches for
multiple-object grasping in a cluttered scene are developed.
The model-based approach provides a solution for grasp-
ing known objects in the environment, with prior knowledge
of the object shape to be grasped. It consists of the 3D
reconstruction of the scene, euclidean distance clustering,
position-based visual servoing and grasp planning. Differ-
ently, the model-free approach can be applied to unknown
objects grasping applications in real time, which consists
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Fig. 20 Two octahedrons
utilized in grasping experiments.
Octahedrons with six corners
(Octahedron-6) in the top view
(a) and in the side view (b).
Octahedrons with eight corners
(Octahedron-8) in the top view
(c) and in the side view (d)

(a) Octahedron-6: top view (b) Octahedron-6: side view

(c) Octahedron-8: top view (d) Octahedron-8: side view

of the developed event-based segmentation, visual servoing
adopting depth information and grasp plan.

By experimentally validating with objects of different
sizes and in different light conditions, both approaches
can effectively achieve the multiple-object grasping task
successfully. From the quantity evaluation of the grasp-
ing pose, success rate, object deviation and grasp quality,
the model-based approach presents slightly more accurate
because of the position-based visual servoing. However,
the model-based approach is constrained to known objects
with prior knowledge of models. The model-free approach
is more applicable in real scenarios for operating unknown
objects, which is experimentally validated with real objects
in this paper. To conclude, both model-based and model-free

approaches are applicable and effective for neuromorphic
vision-based multiple-object grasping applications, which
can boost production speed in factory automation. Accord-
ing to their pros and cons, the particular approach can be
selected in different specific scenarios. This paper demon-
strates grasping for multiple-object in simple scenarios, we
will focus on the event-based object segmentation for more
complex situations such as objects with occlusion in the
future.

Table 5 Experimental results of
grasping different-shape objects
by model-free approach using
event camera

Object Shape egp (cm) egr ◦ SS DP (cm) DR
◦ QG

heptahedron 1.479 2.41 0.933 1.375 1.68 0.600

octahedron-6 1.557 2.82 1.000 0.901 2.04 0.707

octahedron-8 1.530 2.79 0.800 0.993 2.43 0.671

Average/overall 1.522 2.67 0.880 1.090 2.05 0.659
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Fig. 21 Picking and placing
process of real objects by the
proposed neuromorphic vision
based multi-object grasping
approach

(a) initial state with real objects: soft doll, badminton tube and tape

(b) grasp tape (c) drop tape

(d) grasp badminton tube (e) drop badminton tube

(f) grasp soft doll (g) drop soft doll
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Table 6 Comparison of the proposed model-based and model-free approaches

Terms Model-based approach Model-free approach

Pros Higher accuracy Model free Unknown and moving
objects Robust to imperfect
perception

Cons Prior knowledge of model is required Sensitive to imperfect perception Relatively lower accuracy
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