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Abstract
In furtherance of emerging research within smart production planning and control (PPC), this paper prescribes a methodology 
for the design and development of a smart PPC system. A smart PPC system uses emerging technologies such as the internet 
of things, big-data analytics tools and machine learning running on the cloud or on edge devices to enhance performance of 
PPC processes. It achieves this by using a wider range of data sources from the production system, capturing and utilizing 
the experience of production planners, using analytics and machine learning to harness insights from the data and allowing 
dynamic and near real-time action to the continuously changing production system. The proposed methodology is illustrated 
with a case study in a sweets and snacks manufacturing company, to highlight the key considerations and challenges produc-
tion managers might face during its application. The case further demonstrates considerations for scalability and flexibility 
via a loosely coupled, service-oriented architecture and the selection of fitting algorithms respectively to address a business 
requirement for a short-term, multi-criteria and event-driven production planning and control solution. Finally, the paper 
further discusses the challenges of PPC in smart manufacturing and the importance of fitting smart technologies to planning 
environment characteristics.

Keywords  Production planning and control · Smart manufacturing · Internet of things · Machine learning · Industry 4.0 · 
Decision support systems

Introduction

Production planning and control (PPC) refers to the activi-
ties of loading, scheduling, sequencing, monitoring, and 
controlling the use of resources and materials during pro-
duction. Loading concerns how much to do; scheduling con-
cerns when to do things; sequencing concerns in what order 
to do things; and monitoring and control is concerned with 
whether activities are going to plan, and corrective actions 

needed to bring activities within plan (Slack et al., 2013). 
Commonly, these activities of PPC are carried out and coor-
dinated using enterprise resource planning (ERP) systems 
(Arnold et al., 2011) and spreadsheet solutions (de Man & 
Strandhagen, 2018). However, ERP systems are typically 
unwieldy and do not support real-time decision-making that 
today’s market environments demand. Furthermore, manu-
facturing execution systems (MES) and advance planning 
and scheduling (APS) systems have also been developed in 
the last two decades to address some of these weaknesses of 
ERP systems (Öztürk & Ornek, 2014). While APS systems 
have been associated with various potential benefits, includ-
ing support for real-time decision-making, the challenges 
associated with their implementation and integration with 
ERP systems render these benefits far from achievable in 
practice (Lupeikiene et al., 2014).

Currently, the business environment is typified by 
increasing market and supply chain complexity, globaliza-
tion and global competition, waves of protectionism, and 
customer expectations of more sophisticated products. 
From time immemorial, notable studies have highlighted 
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the aforementioned challenges as the impetus for increased 
efficiency in production systems and have devised strate-
gies that could be used to achieve this aim – including those 
that involve the use of information technology (IT) and lean 
manufacturing techniques (Chan, 2005; Hong et al., 2010; 
Skinner, 1974). Additionally, production systems are gener-
ating increasingly large volumes of data and the potential for 
enhancement of planning systems to use this data for per-
formance improvements has been widely promoted in indus-
try and academia, but with limited adoption (Chavez et al., 
2017; Fatorachian & Kazemi, 2020; Nagy et al., 2018). This 
brings one to the concept of smart manufacturing or Industry 
4.0, which presents a new frontier for the advancement of 
manufacturing planning and control for its potential reali-
zation, spurred by the concurrent maturation of emerging 
‘smart’ technologies such as cloud computing, internet of 
things (IoT), big-data analytics (BDA) and machine learning 
(ML) for improving the PPC system and processes (Bueno 
et al., 2020; Cadavid et al., 2020; Oluyisola et al., 2020).

For smart manufacturing (and the associated terms 
of industry 4.0), while many authors have addressed the 
potential impact, the expectations, industry implementation 
experiences, strategies for adoption, there is currently no 
clear methodological guide towards the design and devel-
opment of a smart PPC system – the valley that separates 
conceptual literature from implementation reality. There are 
gaps, of architectural designs and concepts, and more impor-
tantly about how to translate the system requirements and 
attributes to the lower level elements – of data structures, of 
class definitions, of entity-relationship diagrams, of match-
ing appropriate algorithms, etc. – in a way that supports the 
development of smart PPC systems that fit the near- and 
long- term requirements of a production system. This is par-
ticularly important for smaller companies who have more 
restrictive research and development budgets, and now for 
big industry leading companies at times of global economic 
crises. In this regard, Kusiak (2017) notes that:

“Academics push technological frontiers, from artifi-
cial intelligence to deep learning, without considering 
how they will be applied. Manufacturers want to know 
what types of data to sample, which sensors to use and 
where along the production line to install them.”

Smart PPC focuses on the ‘brain’ of manufacturing 
operations and aims to intelligently plan and control cur-
rent industrial assets and materials as well as future, more 
adaptive production systems. A Smart PPC system should 
employ emerging technologies to: enable the reduction of 
forecast uncertainty by using real-time demand and produc-
tion system data; offer dynamic re-planning in the sense that 
it enables frequently updating and the ability to re-plan when 
there are new developments in the production system; cap-
ture the influence of an expanded set of factors including 

telemetry factors especially for the process and semi-process 
industries; to capture the experience of the operators or the 
production planners over time; and predict short-term sys-
tem parameter values and enable increase agility (Bueno 
et al., 2020; Oluyisola et al., 2020; Strandhagen et al., 2017).

Currently, there is no systematic, holistic design and 
development guide for the design and development of a 
smart PPC system. This paper presents an attempt to address 
these gaps by discussing the design principles for smart PPC 
solutions and demonstrating (with a case illustration from a 
semi-process industry) the use of a 5-step methodology for 
designing and developing smart PPC solutions. Note that 
in this paper, design refers to the architectural design rather 
than a user-interface of graphical design. The presented 
method details how to capture a production system’s attrib-
utes into the design and development process. Consequently, 
the following research question motivates this study:

•	 How should a smart PPC system be designed and devel-
oped so that it is fitting with the current characteristics 
and the future requirements of the production system?

A design science research approach was used to address 
this research question. Design science, as an active problem 
solving research method, is useful when researchers aim 
to develop an artefact (Holmström et al., 2009). The case 
study used for illustrating the artefact – the methodology 
– was selected because it offers a production environment 
amenable to a smart process strategy where it is easier to 
demonstrate the benefits of smart PPC (Oluyisola et al., 
2020; Tenhiälä, 2011). The proposed smart PPC design and 
development methodology is developed from a combina-
tion of extant primary and secondary literature and thereaf-
ter illustrated by the case study. While the methodology is 
designed to be generic, the illustration highlights the impor-
tance of case context during application. Furthermore, while 
an attempt has been made at providing details for the imple-
mentation, the complete technical implementation tools 
are not within the scope of this paper. This is because the 
technology stack or platform each company chooses could 
differ based on company policy and currently held exper-
tise within the company and thus excessive implementation 
details will be of little cross platform value. Therefore, this 
study emphasizes only those details that present the elements 
which any sufficiently trained IT person can understand and 
use in designing a smart PPC solution for their case.

The remaining sections of the paper are structured as fol-
lows. In Sect. 2, a theoretical background is presented which 
covers PPC, emerging technologies applications for PPC 
processes, design considerations for complex information 
systems and data and systems’ architecture requirements. In 
Sect. 3, a derived method is presented. In Sect. 4, the method 
is illustrated in a case to show its strengths and weaknesses. 
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In Sect. 5, the implications of the proposed methodology for 
the future development of smart PPC within both research 
and practice are discussed. In the final section, conclusions, 
limitations, and further research ideas are presented.

Theoretical background

In this section, the practice and the fundamental chal-
lenges in current applications of PPC and the limitations 
of the enterprise planning systems to address most of 
the requirements of smart PPC are outlined. Thereafter, 
the uses of smart, emerging technologies within the PPC 
domain are evaluated, followed by design and development 
considerations.

Production planning and control theory 
and the limitations of classical PPC systems

Fundamentally, PPC is tasked with the problem of managing 
uncertainty in production systems, either through stabiliz-
ing the system (common with lean approaches) or through 
predicting and reacting effectively and speedily to events 
and changes in state of the production system. The latter 
requires few or frequent rescheduling depending on the kind 
of operation and the stability of the production environment 
(Vieira et al., 2003). In achieving these goals, various pro-
cess logics and methods have been developed at different 
levels of detail and time (hierarchical systems) and at dif-
ferent domains, for example, algorithmic research, strategic 
selection of PPC systems and implementation challenges 
and limitations. This diversity of topics and issues have led 
to different streams of research.

One stream of research has focused on investigating the 
effectiveness of enterprise resource planning (ERP) systems 
for PPC in different industrial environments, e.g., in dynamic 
market environments (Tenhiälä & Helkiö, 2015), in make-
to-order manufacturing environments (Aslan et al., 2012, 
2015), in small and medium enterprises (Ahmad & Cuenca, 
2013), etc. The research within this stream has often been 
triggered by perceived limitations and inadequacies of ERP 
systems in supporting manufacturing planning and control 
activities. The most frequently mentioned limitation of 
ERP systems is generating unrealistic or infeasible produc-
tion schedules due to infinite capacity scheduling (Arica & 
Powell, 2014; Steger-Jensen et al., 2011). Meanwhile, these 
limitations of ERP systems have paved way for the second 
research stream, which concerns auxiliary planning and 
control systems such as MES and APS. Consequently, the 
infeasibility of production schedules generated by ERP sys-
tems and the inability to tightly control operations have led 
to some large manufacturers using APS systems for planning 

and MES for production control respectively (Saenz de 
Ugarte et al., 2009; Steger-Jensen et al., 2011).

While MES and APS systems can address some limita-
tions of ERP systems, these planning and control systems are 
known to have their own limitations. The processes within 
these systems have remained simplistic or too rigid, which 
limits the factors that can be considered within production 
planning and control decisions. Adjustment to schedules 
based on real-time or near-real-time data is infeasible and 
commonly avoided by production planners. It is also expen-
sive to integrate additional software (called ‘add-ons’) with 
the large, monolithic systems, often making it difficult to 
adapt to changing business needs and leading many manu-
facturing managers and planners to build simpler, easier 
to manage, but disparate tools outside their PPC systems 
(Carvalho et al., 2014; Shaikh et al., 2011). Consequently, 
another stream of research has looked at the development 
of complementary decision support systems for addressing 
some of the challenges being faced by companies imple-
menting ERP, APS and MES systems. Indeed, it is com-
monly reported that planners and supervisors, in many 
instances, tend to prefer simpler and more flexible tools and 
are more likely to avoid more complex, albeit theoretically 
performance-improved methods for addressing many of the 
production planning and control needs (de Man & Strand-
hagen, 2018; Tenhiälä, 2011). Therefore, while enterprise 
planning systems inhibited high efficiency for PPC processes 
by being unwieldy and not including additional real-time 
system data, flexible approaches have been limited in that 
they are often very manual, dependent on the availability of 
specific people and also not holistic (Oluyisola et al., 2020).

Emerging uses of smart technologies for smarter 
PPC

The adoption of smart technologies has seen tremendous 
increase in recent decades due to increased availability and 
affordability of computing power (Guha & Kumar, 2018). 
Generally, there are two ways in which companies adopt a 
technology: either a company (or its leadership) is pushed 
by its industry peers in the form of a market trend, or a busi-
ness need leads to a search for a technology solution (Beck-
man & Rosenfield, 2008). In either case, the technology’s 
potential value is fully harnessed only when there is a fit 
between the requirements and application of the technology, 
and the firm’s strategy, processes –  both manufacturing and 
support – and its planning environment (Bharadwaj, 2000; 
Buer et al., 2020). With the enormous hype that came with 
Industry 4.0, it could be said that technology push has been 
the driver for most of its recent research and applications 
thus far.

Within the last two decades, there have been huge inter-
est in research exploring the use of smart technologies to 
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improve the performance of production systems and these 
studies can be grouped into three categories. The first group 
consists of studies where smart technologies are used indi-
vidually. For instance, there are studies on the use of radio 
frequency identification (RFID) or other IoT technologies 
for tracking of materials and goods within a manufacturing 
system to provide data for evaluation and optimization of 
material flows and layouts (Lee & Özer, 2007; Ngai et al., 
2008). An example is Zhong et al. (2013) who used RFID in 
a mass-customisation production environment to track and 
trace items on the shop floor, collecting real-time production 
data to identify and control shop floor disturbances through 
an MES. In another example, Ngai et al. (2007) report on a 
case study on the development of an RFID-based traceability 
system for tracing repairable items in aircraft maintenance 
operations.

The second group are those that build upon the use IoT 
technology and other tracking and tracing technology, add-
ing the power of cloud computing to these solutions. This 
addition typically enables the management of several thou-
sands more IoT sensors thereby allowing for a more nuanced 
tracking of materials and resources on the shopfloor and 
in the wider supply-chain. The concept of digital twin falls 
within this category of research and application especially 
when applied to a factory or individual machines in the fac-
tory. For example, Qu et al. (2016) develop a concept and 
system for IoT-based dynamic logistics control with cloud 
manufacturing and demonstrate their approach within a 
paint-manufacturing company in China which uses the 
make-to-order strategy. The solution concept offers real-time 
tracking and dynamic re-planning based on changes to the 
state of the system. In another example, Tao et al. (2018), in 
their conceptual study on data-driven smart manufacturing, 
discuss the distribution and tracking of materials, and the 
integration of data from the production process into produc-
tion plans using an example in wafer production. The paper 
raises several points that can be useful in the design of smart 
PPC systems (such as the integration of digital twins and IoT 
technologies like edge gateways and edge computing) but 
does not address this explicitly. In a related study, Sun et al. 
(2020) propose a visual analytics approach to production 
planning, to address the need for solutions that will enable 
a quick response to sudden changes in the operations and 
market environment, and with the ability to handle the del-
uge of data in emerging industry 4.0 manufacturing systems.

The third group is newly emerging, with the recent inter-
est in advanced analytics tools and artificial intelligence 
and its derivatives/subsets – i.e., machine learning and 
deep learning (Bueno et al., 2020; Cadavid et al., 2020). 
The interest in using machine learning in PPC by itself is 
not entirely new. Garetti and Taisch (1999) long ago inves-
tigated the application of machine learning in production 
scheduling problems. However, as with several studies of 

its type, their approach to the use of machine learning to 
improve manufacturing through smart PPC suffers from 
the solution linearity problem (Cadavid et al., 2020). The 
solution linearity problem is the issue that most of these 
studies are linear from data cleaning, to data exploration, 
and so on until insights generation and retraining, typically 
carried out through desktop operations. However, for pro-
duction scenarios where scalability and autonomous system 
operation is desirable, these linear solutions are inadequate 
and will require continuous, often expensive human expert 
management to use in production. Thus, there is a need for 
self-sustaining solutions.

These studies have raised, although indirectly, some per-
tinent issues as regards the design and development of smart 
PPC systems. These issues are perhaps best synthesized in 
Bueno et al. (2020), where the authors identified several 
gaps and suggestions for future research in the smart PPC 
research domain. First, (on p.15), they highlight a scarcity 
in extant literature regarding the question of fit of industry 
4.0 solutions and the integration of PPC in different environ-
ments. This question determines whether a solution, even 
if well executed, will deliver any real and lasting value to a 
manufacturing operation. Secondly, they emphasize on the 
need for research within development of intelligent deci-
sion support systems, frameworks and architectures that can 
advance smart PPC. And thirdly, they highlight that there is 
the need to determine the types of data to collect and use, the 
types of sensors to use and where in the production system to 
deploy them. This paper aims to address these gaps.

Design and development considerations

Concerning the application of smart technologies for PPC 
processes, the common cases reported in the literature can 
be categorized according to whether they address the strate-
gic or long-term, tactical or medium-term, and operational 
or short-term scope within the PPC domain. The strategic 
use cases remain scarce in the literature (Bueno et al., 2020). 
This could be due to the immaturity of the emerging tech-
nologies to handle such broad data types and sources that 
typically feed into the strategic process, currently typified by 
use of managerial judgement who are able to also include 
those data sources that are difficult – but not impossible – to 
codify or assign a numerical value to. Meanwhile the tactical 
and operational PPC domains have seen increasing use of 
data with big data and machine learning for decision-mak-
ing especially because of greater automation in operations 
processes. Furthermore, the distinction in the application of 
emerging technologies at the tactical and operational levels 
is not always clear, and use cases often overlap. Examples 
of use cases include real-time visualization and scenarios’ 
simulations (Sun et al., 2020), product quality control, and 
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integrated production-maintenance scheduling (Biondi et al., 
2017).

When using machine learning, the choice of appropri-
ate algorithms and the system features to be used in train-
ing models can both be critical factors on project outcomes 
because different algorithms fit or perform better depending 
on the use case, features’ data quality and data architecture, 
and system architecture (O’Mahony et al., 2008; Pineda-
Jaramillo, 2019). As noted by James et al. (2013), “on a 
particular data set, one method may work best, but some 
other method may work better on a similar but different data 
set” [p. 29]. Therefore, it is crucial to find a fitting method 
to fit the use-case when using ML. An overview of machine 
learning algorithms in PPC use-cases and some architecture 
considerations follows.

Choosing an appropriate machine learning algorithm

As there are several ML tools and algorithms in the public 
domain currently, it can be a daunting task in finding one 
appropriate for a PPC use case. Within each of the three 
general categories of machine learning–that is, supervised, 
unsupervised, and reinforcement–new and more efficient 
algorithms and hybrids are being created continually, 
encouraged by the deluge of data, geometric reduction in 
computing cost that cloud computing brought about in the 
last decade, and advances in algorithm development and 
transference across multiple domains (Cadavid et al., 2020; 
Risi & Togelius, 2020).

Supervised learning concerns the approximation of 
a function based on a given set of input–output pairs. In 
this learning paradigm, the learning algorithm is provided 
(training) data which provides both, input values and output 
values, and the algorithm approximates the function that 

relates the inputs to the outputs. The approximated function 
can then be used to predict the outputs, given a set of inputs 
from outside the training set. The second machine learning 
paradigm, i.e., unsupervised learning is more exploratory in 
nature. Unlike supervised learning, there is no requirement 
for predefined input–output relationships in the training data 
that is used in unsupervised learning. Instead, the learning 
algorithm explores the data to find patterns and structures 
in the dataset, revealing which data-elements can be used 
as predictors of other elements. The third paradigm, i.e., 
reinforcement learning involves the use of iterative trial-and-
error logic to train an algorithm to generate responses to 
inputs, that are expected to yield the highest reward (Mon-
ostori et al., 1996). Some use cases for the different machine 
learning types are presented in the following paragraphs and 
a summary in Table 1.

Examples of supervised in the literature include Gyulai 
et al. (2014) who report on a case where supervised learn-
ing is used in optimizing the allocation of different products 
to two types of assembly lines, namely, reconfigurable and 
dedicated assembly lines. They use a random forest algo-
rithm for predicting production costs for given order vol-
umes and resource pools. In subsequent work, the authors 
use multivariate linear regression for predicting capacity 
requirements for future production scenarios on a flexible 
assembly line based on data from the manufacturing execu-
tion system (Gyulai et al., 2015). Heger et al. (2016) use 
Gaussian process regression for estimating the effect of dif-
ferent parameter settings on dispatching rules for scheduling. 
Examples of the use of unsupervised learning includes Pil-
lania and Khan (2008) who applied k-means cluster analysis 
for categorizing firms in a supply chain according to each 
firms agility. Huang et al. (2019) propose the use of deep 
neural network for predicting future bottlenecks in a flexible 

Table 1   Analytics and ML algorithms applied to PPC use cases

Key: 1—Gyulai et al. (2014); 2—Gyulai et al. (2015); 3—Heger et al. (2016); 4—Petroni and Braglia (2000); 5—Pillania and Khan (2008); 
6—Huang et al. (2019); 7 – Shiue et al. (2012); 8—Li et al. (2012); 9—Tuncel et al. (2014); 10—Aissani et al. (2012); 11—Palombarini and 
Martínez (2012)

Strategic Tactical Operational

Supervised [linear and non-
linear regression, support 
vector machine, k-nearest 
neighbors, linear discrimi-
nant analysis]

Predicting production costs 
for different scenarios—
dedicated vs. reconfigurable 
production lines (1) – Ran-
dom forests

Predicting capacity require-
ments (2) – Multi-variate 
linear regression

Dynamic selection of suitable dispatching rule 
(3)—Gaussian process regression

Unsupervised [principal 
component analysis (PCA), 
k-means, self-organizing 
map]

Vendor selection (4) – PCA; 
Strategic sourcing (5) – 
k-means

Prediction of future produc-
tion bottlenecks (6) –  
Levenberg–Marquardt;

Real-time shop floor control and selection of 
scheduling rules (7) – Self-organizing map

Reinforcement [Q-learning, 
Monte Carlo, SARSA, 
Relational]

Joint pricing and lead-time 
decisions (8) – Q-learning

Line balancing/ resource 
levelling under uncertain 
demand (9) – Monte Carlo

Adaptive multi-agent scheduling in multi-site 
production (10) – SARSA; and Real-time 
rescheduling (11) – Relational RL
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manufacturing system, which is a use case for unsupervised 
learning. In another example, Shiue et al. (2012) propose the 
use of self-organising maps for selection of scheduling rules 
in semiconductor wafer fabrication.

Reinforcement learning, despite its huge potential for 
systems such as manufacturing systems, has only seen 
timid interest for PPC applications. Of interest within PPC 
research is the type of reinforcement learning called inverse 
reinforcement learning (IRL). According to Ng and Rus-
sell (2000), IRL may be useful when an agent is learning a 
“skilled behaviour,” such as the planning optimal scheduling 
process, and for which the reward function being optimized 
is determined by “a natural system”, such as a production 
system. Li et al. (2012) propose the use of Q-learning algo-
rithm-based reinforcement learning for joint pricing and lead 
time decisions in a make-to-order system, where the decision 
problem is modelled as a semi-Markov decision problem. 
Tuncel et al. (2014) propose a Monte Carlo reinforcement 
learning algorithm for line balancing in disassembly opera-
tions under uncertain demand. Aissani et al. (2012) use a 
multi-agent based SARSA (state-action-reward-state-action) 
algorithm for production and distribution scheduling in a 
multi-site production network of a clothing company. Pal-
ombarini and Martínez (2012) use relational reinforcement 
learning for real-time (re)scheduling of extrusion operations 
in a secondary case study, i.e., the problem formulation is 
taken from literature. Lin et al. (2019) demonstrated an 
adaptation of the deep-Q network using an edge computing 
framework with multiple dispatching rules to demonstrate 
improved simulation results for job shop scheduling prob-
lems compared to methods using singular dispatching rules.

A related topic which has also seen significant recent 
developments is the use of ML algorithms in conjunction 
with heuristics and metaheuristics to address planning and 
control problems, especially at the operational level. Due 
to the mathematical intractability of production scheduling 
problems, using exact algorithms is often infeasible in prac-
tice, and heuristic policies are sometimes more pragmatic 
alternatives (Ðurasević & Jakobović, 2018). Metaheuris-
tics such as genetic algorithms, tabu search, particle swarm 
optimization, etc. provide better results than heuristics for 
some scheduling applications (Maoudj et al., 2019; Ouelh-
adj & Petrovic, 2009; Xiong & Fu, 2018). However, most 
metaheuristic algorithms are non-deterministic and require 
long solution times for large problem sizes (Maoudj et al., 
2019). Recent studies explore the use of ML to address these 
limitations and to support more efficient use of metaheuris-
tics, for example, by using ML for the reduction of the solu-
tion space for metaheuristics (Bouzary et al., 2021) or for 
identifying when it is beneficial to rerun the metaheuristic 
(Li et al., 2020). Bouzary et al. (2021) propose a combi-
nation of support vector machines and genetic algorithm 
for addressing the service composition problem in a cloud 

manufacturing context, where they use ML for identifying 
the solution space for the metaheuristic. Li et al. (2020) use 
tabu search and genetic algorithm for schedule optimiza-
tion, and a random forest classifier for identifying instances 
when production should be rescheduled based on whether 
the metaheuristic is likely to yield a more efficient schedule 
than the one available.

In all these developments, one important area that has 
seen little overage in the smart PPC literature is about the 
management of data acquisition and integration, data explo-
ration, and a process to continually update and retrain ML 
models during use (Cadavid et al., 2020). In practice, the 
absence of a complete (or “circular”) workflow leads to 
changes to the system going undetected over time, a phe-
nomenon known as concept drift. This is a major shortcom-
ing of extant data analytics and machine learning research in 
general, and especially with regards to application within the 
PPC domain (Cadavid et al., 2020; Hammami et al., 2017).

Data architecture considerations

The data architecture describes the design, structure and 
control of the data generating and collection elements. As 
data is the foundation for smart manufacturing and related 
concepts including smart PPC, the data architecture plays 
a vital role in the implementation and long-term viability 
and flexibility (to adjust to change) for any such system. 
For convenience and for hierarchical analysis, data from 
the manufacturing system should be amenable to grouping 
according the familial associations. This can be achieved 
using classes and objects belonging to those classes, in fit-
ting with the object-oriented architecture. The objects that 
are members of the same class with similar attributes such 
as usage area, etc. For example, a ‘Sugarproducts’ class can 
have members such as ‘Orangemix’, ‘Gingercandy’ (all ran-
dom names) which comprise that class. The machines can 
also be grouped into classes for instance the ‘Driers’ class 
could comprise all the driers in a factory’s production line.

Furthermore, data quality played a key role in the value 
companies were able to derive from enterprise planning sys-
tems like ERP and MES systems before the emergence of 
smart PPC systems (Gustavsson & Wänström, 2009). The 
importance of data quality is now more crucial because of 
the data intensiveness of smart PPC systems which use data 
from a wide range of sources including from within the 
plant, (potentially) from other partner systems, and from the 
production system’s environment (Oluyisola et al., 2020). 
And while current enterprise systems collect sales transac-
tion data from external customers and transactions generated 
directly from operations such as materials consumption in 
warehouses and factory floor production data (Koh et al., 
2011; Mantravadi et al., 2019), the capacity to derive value 
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from the abundant data in real-life environments has been a 
challenge (Kusiak, 2017).

Furthermore, there are different types of data available 
to any PPC system. Based on the temporal proximity of the 
data generation and collection processes, they can be clas-
sified as being either batch data, where data is collected and 
updated periodically, or stream data, where data is being 
generated, collected, and potentially analyzed in real-time. 
In production environments, many data processing systems 
implement some kind of runner using the Apache Beam 
model (Li et al., 2018). Most of data from the factory’s envi-
ronment and some of the machines in the production lines 
are time-series, stream data. An example of the time-series 
data snippet from an IoT device on a production machine in 
the JavaScript Object Notation (JSON) format is as shown in 
Fig. 1 below. But there are also batch data which are seldom 
revised, for example the setup cost, and are input to the PPC 
processes.

Systems architecture considerations

An information system’s architecture can be defined as a col-
lection of artefacts, namely a definition of constituent com-
ponents of the IS, a specification of the properties of those 
components, and a description of the relationship among 
those components and their interactions during operation 
(Bass et al., 2013; Goepp et al., 2006). The use of the term 
design in this paper generally refers to the creation of the 
architecture of the smart PPC system. Because smart PPC 
systems are information systems, its developers must follow 
similar principles. This design must be made early in the 
overall development process, and in a way that allows for 
enough detail so that the developers have enough guidance, 
while at the same time it must allow sufficient freedom for 
the developers to make decisions during the actual develop-
ment stage (Bass et al., 2013).

Within the broader Industry 4.0 research domain, generic 
architectural models have been proposed for the industry 
4.0 production system and these can provide inspiration for 
the smart PPC solutions designers and architects. Common 
examples include the Reference Architecture Model for 
Industrie 4.0 (RAMI 4.0), the Industrial Internet Reference 
Architecture (IIRA) and the internet-of-things reference 
architectures (IoT RA) standard in the ISO/IEC 30,141:2018 
(Standardization, 2018). Nevertheless, these models should 

only serve as reference due to their generic nature and the 
fact that they do not cater for the context each production 
manager must address.

Typically, enterprise planning systems are designed as 
hierarchical control systems using a monolithic architecture 
(Themistocleous et al., 2005). This is the case in which the 
system is built on a single, large, highly powered computer 
hardware. Such an architecture has several benefits, not least 
its speed due to its low natural latency, its limited need to 
manage integrations with several units, and that there is only 
a single hardware device to be managed instead of poten-
tially several. And this was important for many decades 
before the advent of cloud computing, since companies had 
to create a physical datacenter with server hardware and all 
the attendant management requirements. But this architec-
ture also hard several shortcomings. It limited flexibility to, 
for example, add new tools and functionalities as this needed 
to be upgraded every time the main server itself received an 
upgrade from its suppliers who are often very big software 
vendors and who made upgrades based on general needs, 
and not on the specific needs of each customer. It is more 
costly to start-up, manage and run with a savings of up to 
50% in terms of total cost of ownership (Mattison & Raj, 
2012). This contrasts with the emerging smart technologies 
which are changing so fast, that there is an intrinsic need to 
design for flexibility and frequent changes.

These design considerations are addressed by the modular-
by-design microservices architecture instead of a monolithic 
architecture. The microservices architecture presents a con-
siderable benefit for several reasons: it can scale easily, and 
it is highly adaptable. It has been reported that self-adapting 
and self-optimizing multi-agent distributed production control 
systems have been demonstrated to perform better during tran-
sitions when used in job-shop environments where hierarchical 
systems are too rigid to adjust to the flexibility requirements of 
such environments (Ma et al., 2020). Thus, smart PPC systems 
initiatives have a better chance at success if they employ a 
microservices architecture.

Finally, most research on the use of ML in PPC suffer from 
workflow-design linearity in addition to being based on arti-
ficial or historic, sampled data (Cadavid et al., 2020). While 
these conditions make testing specific models for confined 
problems easy, they are not feasible in real-life industrial 
practice. The challenge with linear design is that to use it in 
practice, a human operator needs to administer the intelligence 

Fig. 1   Example of the telemetry 
data generated by an IoT sensor 
on a production line
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creation process of the system, as seem in reported case litera-
ture, for example, Garetti and Taisch (1999) and Brintrup et al. 
(2019). In real-life industrial scenarios however, the smart PPC 
system should be able to collect data, clean it, prepare it for 
analysis, retrain its models, and offer refreshed insights with-
out human intervention potentially self-adjusting its control 
parameters (Oluyisola et al., 2020; Rojas & Garcia, 2020). It 
should address the risk of concept drift, for instance by using 
adaptive time windows (Bifet & Gavalda, 2007). This could 
be achieved using data processing pipelines and monitoring 
scripts connected to a version control system for managing 
model versioning, a concept referred to as MLOps – that is, 
machine learning operations, which is a derivation of DevOps 
for ML.

In summary, there are two main perspectives in the liter-
ature through which topics related to smart PPC have been 
viewed. First, in the puristic production and operations man-
agement perspective, information and communication tech-
nologies (ICTs) are viewed as add-ons or auxiliary that can 
enable or improve information flow but are usually considered 
exogenous (Slack et al., 2013). A contrasting view is that of 
information systems-centered research within the context of 
manufacturing, that considers ICTs as an integral variable and 
focuses on opportunities for performance improvements by 
employing ICTs – for example, Huang (2017). In the meth-
odology proposed in this paper, an attempt is made at using 
a more balanced, multi-disciplinary view. In this context, 
material flow is controlled and monitored with ICT-enabled 
information flow, thus making ICTs integral components of 
the industrial system. Smart technologies or advanced ICTs 
are thus viewed as intrinsic elements of the smart production 
system as opposed to being add-ons.

A methodology for designing 
and developing a smart PPC Solution

Having already established the need for a systematic meth-
odology and guide for manufacturing firms who may want 
to develop a smart PPC solution, the key steps that such an 
initiative could follow and the elements that should be given 
proper consideration are presented in this section. Here, the 
presented ‘steps’ suggests ‘sequence’ suggesting which steps 
should precede what. However, as it will be explained in the 
case study, the process does not have to be linear. In prac-
tice, it is often necessary to revisit preceding steps while at 
another as the requirements become clearer to the stakehold-
ers of the project. The following steps can be followed in 
developing a smart PPC solution:

Stem 1. Preliminary study: determine objectives and pri-
orities in fitting with the planning environment variables.

Stem 2. System requirements specification: validate the 
operations’ problems and identify performance indica-
tors.
Stem 3. Identify data sources and select relevant analytics 
and machine learning algorithms that fits the problem.
Stem 4. Design system and data architecture with con-
sideration for integration with extant systems and IoT 
telemetry.
Stem 5. Implement with considerations for development 
methodologies, continuous innovation and long-term 
adaptability.

Step 1: preliminary study: determine objectives 
and priorities in fitting with the planning 
environment variables

Most digitalization projects are driven by either an identi-
fied business problem or a perceived market opportunity. 
And since they are innovation projects, the immediate goals 
of the smart PPC solution must be determined ex ante to 
reduce the risk of scope creep and to increase the chance of 
success. The preliminary study takes a high-level view of 
the problem or opportunity, and with particular emphasis 
on how the market, product, and process attributes inhibits 
or promotes the problem. Also, the management sets the 
objective regarding how much of the opportunity the com-
pany is willing to pursue or to what extent an issue needs to 
be addressed. For example, if a production planning process 
is having a fulfillment rate of 75 percent on average and 
leading to unacceptable underutilization of booked operator 
hours and wastage of materials, management could set an 
objective to improve this key performance indicator (KPI) 
with the use of smart technologies to, say, 90 percent in a 
year’s time. These objectives and priorities must be weighed 
against the constraints imposed by the planning environment 
attributes of the operation.

It is also a common occurrence for there to be a need to 
make tradeoffs over which elements of the solution require-
ments to prioritize in the short and long term. For instance, a 
company in the process industry manufacturing, say, indus-
trial paint, may see several opportunities and use cases for 
digitalizing its operations and PPC processes. Easily, man-
agers could be interested in digitalizing the production line 
with IoT sensors that will collect various kinds of data about 
the production processes and send these data to the cloud for 
analytics and predictions, or on an edge device for real-time 
response. Another use case could involve attaching sensors 
to the packaging containers (which may be a bucket) or pal-
let, enabling a full tracking and tracing of the inventory com-
ing out of the production line; yet another could involve the 
tracking of weather or climate factors and how this affect 
demand or sales at the stores; and so on.
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Now, if this were a large multinational with millions of 
euros in research and development budget, then the company 
could start with and run multiple projects simultaneously, 
bearing in mind that results will be mixed. However, for a 
smaller company with a tighter budget, it will be critical to 
prioritize, focusing only on projects with a high expected 
return be it financial or digital competence gains for the 
company. In the example, following the argument that a 
process strategy is has great potential in this type of pro-
duction environment, and the budget-constrained producer 
will prioritize those initiatives that lead to a smart process, 
for instance digitalizing the production line with IoT sensors 
capturing parameters that affect the yield of the operations. 
This could also be combined with other telemetry data from 
the production line’s immediate environment.

Step 2: system requirements specification: validate 
the operations’ problems and identify performance 
indicators

Step 2 takes the preliminary objectives and initial assess-
ment from the top-management horizon in step 1 down to 
the detailed, solution-specific design requirements that could 
be used for the technical design and the actual development 
of the solution. As previously explained in step 1, the objec-
tives are typically the prerogative of the company’s manage-
ment team and often represent their interpretation of the 
problems that must be addressed from a top-down view of 
the operation. However, a lot of the data driven decisions 
and insights affect or are affected by junior managers and 
operators on the factory floor. Therefore, there is a need to 
validate the objectives of the solution from the perspectives 
of persons directly interacting with the production system 
before specifying the functional and non-functional require-
ments of the proposed solution. One way to achieve this is to 
formalize the requirements using user stories. User stories 
are written in the format “As an [role/persona], I want to 
[action] so that [why],” and each user story should be clear 
and descriptive. For example, a user story could go as fol-
lows: “As a production planner, I want to be able to upload 
productions orders for the next two weeks into the solu-
tion with approved production orders from the ERP system 
so that I do not have to copy this manually.” User stories 
should be independent, negotiable, value-focused, estimable, 
small, and testable. Later during implementation, produc-
tion managers and the system developers will determine how 
to prioritize the user stories for development. In addition, 
there should be flexibility in terms of which elements of the 
system remain on the list of functionalities to be developed, 
while allowing for future adjustments (Pressman & Maxim, 
2015).

In addition, performance indicators (PIs) are needed to 
monitor both the quality of analysis and predictions being 

generated by the smart PPC system and of the reliability 
of the system. The PIs relating to the quality of the results 
can include the standard deviation and errors for individual 
predictions determined through random spot measurements. 
Those relating to the performance of the smart PPC system 
can include prediction lag, simulation request processing 
time, and general indicators like availability/downtime hours 
and the like. While PIs relating to the quality of the analysis 
and predictions will be context specific, most of the system 
PIs are generic and common to service-oriented, cloud-
based ICT systems.

Step 3: identify data sources and select relevant 
analytics and machine learning algorithms that fits 
the problem

The user stories give an indication of the services that pri-
mary users – production planners and operations managers 
– require the smart PPC system to fulfill. After identifying 
these services, the next step is to determine the relevant data 
sources from the production system and identify the appro-
priate analytics tools and machine learning algorithms that 
works best for the kind of insight or prediction required. 
This determination and identification can be done by a small 
technical team involving a machine learning engineer or data 
scientist with a good understanding of not just the technical 
problem but also the business problem.

In many manufacturing use-cases, pilot projects could 
start with simpler ML algorithms such as Gaussian lin-
ear regression and logistic regression (supervised), and 
with PCA and k-means clustering (unsupervised) with an 
acceptable level of success. However, after the pilot phase 
of such projects–that is, during the real-life implementa-
tion–there will be a need to improve the performance of the 
solution and which can be achieved using hybrid models 
which combine multiple features of the basic algorithms. 
For example, when the use case involves sparse data inputs 
and an extensive feature list, the hybrid algorithm called  
the DNNCombinedLinearRegression can be used in 
place of the common supervised learning to combine the 
strengths of neural networks (generalization) and linear 
regression models (memorization of feature interactions) 
(Cheng et al., 2016).

Step 4: design system and data architecture 
with consideration for integration with extant 
systems and IoT technology

Many large manufacturing organizations, in addition to 
having an ERP system also have full-fledged solutions for 
the control of manufacturing operations on the factory 
floor–the MES. Some MES systems have basic analyt-
ics capabilities built in such as statistical process control 



320	 Journal of Intelligent Manufacturing (2022) 33:311–332

1 3

charts that allows process-tracking, and most collect time-
series stream data from the discrete units of production 
lines to which they are connected. Alone, using the MES 
for manufacturing control misses the opportunity that a 
holistic, connected smart system affords. Therefore, the 
system architecture should cater for the introduction of IoT 
sensors to the factory even for factories are already auto-
mated. The MES and ERP systems provide a good starting 
point for developing smart PPC solutions. The data from 
these systems and other factory IT systems might however 
require extensive transformations before they can be used 
in combination with newly installed IoT technology in the 
smart factory.

In general, modular smart PPC solution design would 
perform better than a monolithic solution since it will 
allow for future improvements within each module inde-
pendent of others and will also ensures that failure in one 
service does not break the entire system. Furthermore, 
when the solution is built on a service architecture from 
the onset, the it is easier to add more modules in the future 
and to update individual modules that are already in use. 
This is achieved by designing the modules as services and 
building application programming interfaces (APIs) to 
manage interaction among services. The data processing, 
model development, and prediction processes can be car-
ried out without manual human interaction by automating 
the data preparation and prediction processes using ML 
pipelines.

Moreover, in cases where an active control (rather than 
just a monitoring) of the production process is required, 
it is advisable to have the trained machine learning model 
interacting with the production machines and processes 
on the “edge” without the need to send to the cloud and 
send instructions back to the plant. However, because the 
real-time data processing occurs at the edge, this creates a 
challenge due to the limited processing power at the edge 
and need for continuously monitoring the performance of 
the model to avert model drift. Furthermore, edge devices 
may lose their connection to the cloud and thus the solu-
tion must cater for offline operations. Otherwise, where 
there is no need for any serious computing at the edge, 
it suffices to send all data generated from the production 
system to the cloud.

Step 5: implement with considerations 
for development methodologies, continuous 
innovation and long‑term adaptability

For the implementation of smart PPC solutions, there are 
at least four key considerations: whether to outsource or 
develop in-house, which software development methodol-
ogy to adopt, whether to choose managed-cloud services 
or to use completely open-source technologies, and how to 

design the system so that it supports continuous innovation. 
It is possible to develop in-house or to establish joint devel-
opment partnership arrangements with service providers for 
small-scale functionalities. But it is more likely to outsource 
major system development activities to established IT firms 
if the needed project execution competence is lacking in-
house. In addition, the development of the solution will often 
require the choice of building almost from scratch with the 
use of open source technologies, or – if faster deployment is 
desired – the use of any one or a combination of the several 
managed-cloud services for a faster development process, 
while allowing for agile development.

Smart PPC systems need to support continuous inno-
vation. Continuous innovation in this sense relates to how 
the established IT infrastructure and software development 
processes eliminates tedious manual processes for making 
changes and improvements to working system, and allow a 
seamless, continuous integration, testing, and deployment of 
those changes without any downtime. Therefore, non-agile 
methodologies will generally be insufficient for their devel-
opment because of the relative rigidity of such methods. And 
because many of the technologies being used in smart PPC 
systems are experiencing constant, fast-paced advancements, 
the success of any smart PPC solution requires that there 
is a smooth and simple process in place for its continuous 
improvement. Moreover, the alignment or integration of the 
workflows and processes of the both the machine learning 
engineers and software developers will enable the stream-
lining of continuous innovation and the refinement of ML 
models as new data becomes available from the production 
system being monitored.

Finally, for information systems’ developers, the con-
cept of DevOps has emerged as a preferred way to man-
age the continuous, version-controlled, code development 
cycle – that is, write, test, (revise,) build, (revise,) deploy 
(revise). While machine learning engineers and data scien-
tists take the ML cycle – that is, experimentation, model-
creation, testing, operations, and maintenance. By integrat-
ing these two workflows – to have what is now referred to 
as DevOps for machine learning (MLOps) – productivity 
can be improved significantly through software development 
process automation, allowing machine learning engineers 
and data scientists to focus on the model performance rather 
than being bogged down in tedious software development 
operations’ activities. One way this is achieved is by using 
infrastructure-as-code and process automation in managing 
the system’s improvements and the revisions’ process. Pro-
cess automation could be achieved using Bash or Python 
scripts, or through robotic process automation software 
that allows automation using drag-and-drop tools. The lat-
ter, less programming-intensive option can be managed by 
a trained production planner, thereby lowering the cost of 
development.
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Case study

In this section, the method and processes presented above 
are illustrated with an application within a case, which will 
be referred to as Sweets and Nuts ASA (not real name) or 
SNASA for short. The company manufactures sweets and 
nuts-based products in its factory based in Norway from 
where it supplies grocery chains, kiosks, and petrol stations’ 
mini-stores in the Scandinavian region. The nuts production 
section of the factory is isolated from the rest of the fac-
tory in line with regulations concerning the control of aller-
gens. The rest of the factory produces chocolate-based and 
non-chocolate sweets such as pastilles. The unit of analysis 
in this case study is the non-chocolate-based (henceforth, 
NCB) section of the operation.

Determine objectives and priorities in fitting 
with the planning environment variables

The NCB production is serviced by two production lines. 
The production process for the NCB products is as shown 
in the Fig. 2 below.

The operations at the NCB section falls into the semi-
process class. Raw materials are fed into the cooking drums 
in amounts determined by the recipe for the batch to be pro-
duced. When the cooking process is completed, the output is 
temporarily stored in a cooking buffer before molding, using 
mold trays with the shapes of the sweets engraved. The trays 
are thereafter arranged in racks which are loaded into one of 
the seven drying chambers in the drying section of the fac-
tory. The production data currently used in the production 
planning process includes the estimated lead time for all 
processes, stock levels of the different stock keeping units 
(SKUs) in the finished goods warehouse, recipes (which also 
provide a bill of materials). The maximum batch size the line 
can produce for each product is pre-calculated based on the 
capacity of the production processes.

The challenges of this current PPC system can be 
described in three categories namely, market (demand and 
supply) related, product related, and process related. First, 

market related demand related challenges stem from the 
high competitiveness of the industry and the fickle nature 
of human taste preferences. A popular product can some-
times loose its spark with consumers or get overshadowed 
by new trending products. For this reason, the NCB industry 
witnesses a lot of promotions and discount sales to drive 
and sustain demand. Secondly, the product related chal-
lenges are minimal in this case because the products are 
neither complex nor have any deep bill-of-materials which 
could have required extensive materials requirements plan-
ning tools. Furthermore, the simplicity of products made by 
this case company (packed sweets) and the price per unit 
implies that the product itself will not benefit from a smart 
product strategy. Rather, a smart process strategy will be 
for fitting for this type of case (Oluyisola et al., 2020). Such 
process approach must be able to track the remaining life 
for any product or batch in the finished goods storage and 
in the various warehouse within the company’s value chain 
and must also be able to trace its journey through the value 
(Høyer et al., 2019).

Lastly, the process related challenges are generally due 
to the nature of the materials being processed and the level 
of maturity of the process technologies. Currently, there is 
a long set-up and changeover time due to the need to wash 
the machines and equipment producing every new batch. 
This is also required to meet regulatory requirements for 
cleanliness and food safety. There is also a yield uncertainty 
that planners currently must guess when issuing production 
orders and this causes additional variability in the produc-
tion system. Also related to the process is the operator-plan-
ning related challenges relate to how labour is planned in the 
company. Over several years, the company has developed 
a practice of planning batch sizes that can be completed 
within a production shift. This is a suboptimal constraint on 
the planning process. Therefore, with the attributes of this 
production environment, this company’s approach to smart 
manufacturing should take a smart process strategy, rather 
than a smart product strategy since the product is simple and 
the unit price is very small.

Fig. 2   The NCB production 
process at SNASA
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System requirements specification: operations’ 
problems and performance indicators

Problem specification

The company SNASA faces an immediate challenge: finding 
an optimal production schedule and managing the sched-
uling process to minimize variation. Thus, the production 
planning problem for this case comprises two main ele-
ments, namely: the determination of the optimal plan, which 
maximizes throughput through the bottleneck drying process 
and assumes no yield variation (that is, yield = 1.0 or 100%); 
and an estimation of the yield uncertainty factor, to improve 
the accuracy of production plans. Currently, planners must 
guess the what the yield will be and add some buffer to the 
amount that is produced so that at least the final production 
output for each batch exceeds the planned amount required 
to meet order forecasts. This leads to overproduction, and 
it particularly expensive for products which serve as inputs 
into ‘mix’-type products. The mix-type products are made 
by combining three to five different types of products into 
one assortment.

The planning problem can be summarized as follows:

o	 Given a set of firmed customer orders, and master pro-
duction scheduling orders (MPS orders are those gener-
ated by the ERP system based on demand and supply 
forecasts), with each order characterized by: its drying 
time (which is an indication of the throughput time), its 
due date, its volume or amount; and

o	 Given a set of drying sections or rooms, each with a 
fixed drying capacity, and given a set of packaging lines, 
each characterized by a fixed capacity;

o	 Find the schedule of orders that maximizes the number 
of completed orders at the two stages drying and packag-
ing.

Furthermore, the planning problem can also be viewed 
as a multi-stage or multi-echelon scheduling problem for 
which although the drying stage, which is used for all prod-
ucts from the production line, is not always the bottleneck. 
This is because the average speed of the packaging machines 
is low enough that they can cause delays if poorly sched-
uled and depending on the product. This is partly because 
there are several packaging lines with varying speeds and 
no single product has a dedicated packaging machine. After 
production schedule is made, the plan must be adjusted for 
reality by estimating a yield uncertainty factor. This yield 
uncertainty is a factor of environmental parameters such as 
humidity and temperature.

Requirements specification

The requirements, shown in Table 2, were gathered from the 
production managers and planners of SNASA during this 
research-based improvement project towards smart manu-
facturing. An overview of the solution concept is presented 
in Fig. 3. KPI result data going into recommender system 
will include actual production performance (lateness, earli-
ness, on-time, etc.), specific operator working the process 
(this shows how specific operators affect performance), etc. 
The newly added elements of this smart PPC system are 
described in Sect. 4.3. A description of each step in Fig. 3 
is provided in Table 3.

Performance indicators

It is important to have predetermined how the performance 
of the system will be measured. In the selection of perfor-
mance measures or indicators for this case, there are two 
categories namely, operations reliability and services qual-
ity. The operations reliability measure has to do with how 
the software system is designed, architected, and developed. 
It is measured by reliability measures such as up-time (a 
maximizing measure) or downtime (a minimizing meas-
ure), percent failed schedule requests from the user inter-
face and waiting time between schedule launch and results 
presentation on the dashboard. The services quality refers 
to the quality of the results, estimates and recommendations 
offered by the smart PPC solution. Measures include the 
amount of deviation of the estimated yield from the actual 
yield, the average performance of the recommended sched-
ule logic over period.

Step 3: identify relevant tools and algorithms

There are two choices to be made regarding the two appli-
cations of machine learning within this SNASA case: one 
for estimating the yield and the other for recommending 
which schedule logic alternative will perform best for each 
planning scenario. The yield estimation (or prediction) can 
be hypothesized to be the dependent variable of a linear 
or non-linear system. As such, a simple linear regression 
model is a good start for this use case. Once the system is 
built and in place, other variants of the linear regression can 
be tested in a development environment to see how much 
improvement in performance is possible. Examples of those 
are models combining basic models with more performant 
neural networks such as the wide and deep DNNCombin-
edLinearRegression algorithm or similar. This model 
will be fitting for this purpose due to the potential sparseness 
of the features. The data fields that will be used in the model 



323Journal of Intelligent Manufacturing (2022) 33:311–332	

1 3

are shown (without telemetry) in the class diagram in Fig. 5 
and a detailed list (with telemetry) is provided in the table in 
Fig. 5. Meanwhile, the subsystem for recommending which 
planning logic option to choose appears amenable to inverse 
reinforcement learning.

Step 4: solution architecture –data and systems 
architecture design

While academic projects on the use of ML in PPC tend to 
use linear development processes, live production projects 
require the use of recyclable, reproducible machine learning 
pipelines which can be automated. For the SNASA case, an 
illustrative system architecture for the yield estimator use-
case is presented in Fig. 4.

In the illustrative smart PPC architecture in Fig. 4, the 
‘connected’ production system which is connected by IoT 
sensors sends data via secure connections to a cloud data-
ingestion service. This service can use a distributed com-
mit log technology such as the open-source Apache Kafka 
or one of the easier-to-use IT vendor solutions. This is to 
be configured so that it guarantees that every data sent by 
a sensor is delivered, and so that the data are in the right 
sequence when they arrive at the Analytics Service. The 
real-time analytics output from the analytics service could 
be made available on a dashboard on the factory floor or in 
the production supervisor’s office for real-time monitoring 
of the factory. This data then flows from the analytics ser-
vice to the data warehouse where it is accessed by the ML 
solution. The ML solution, which also runs in the cloud, 
will continuously check for model drift and it will activate 
retraining when set KPI thresholds are met. The ML model 
works within a web app with a graphical user interface 

for the production planner to interact with. The planner 
will input the actual yield and production order data after 
every production order is fulfilled. The web app will also 
ingest production plan data from the ERP system for the 
computation of the yield, and it will continually send both 
the estimated and actual yields to the data warehouse for 
later use during model retraining. (Fig. 4).

In this case study, the assumption of a one week “fixed” 
planning window is made in line with current practices by 
the production planners, during which the list of orders 
to be processed is assumed to be deterministic – except 
if a major disruption or urgent firmed customer order is 
received. However, during this one-week period, the fore-
casts for some of model feature variables (for example, 
environmental data) are only precise for two days into 
the future at any given point. Therefore, there will be a 
need for re-scheduling at least once every two days to 
take advantage of the trained model. In the future, when 
a lengthy historical data has been gathered, it will be 
possible to train the model using only the historical data 
without the need to use the weather forecast data whose 
accuracy diminishes materially beyond a 48-h from the 
reference point.

Steps 5: implementation considerations 
and performance assessment

This use-case is illustrated using open source technologies 
for the sake of demonstration. However, for production, the 
company might be better served by using managed services 
on any of the major cloud platforms. One could start with a 
small pilot to test an idea, or go big, with a large-scale project 
and iterate on improvements. The latter approach can lead to 

Table 2   SNASA’s requirements for the smart PPC solution

Purpose
“We want a tool that helps the planner schedule production more efficiently.” – Senior Manager. More precisely, the system shall provide deci-

sion support capabilities to the production planner especially regarding the short and medium-term planning
Functional requirements
Schedule options The solution should generate the optimal production when the planned orders for the short-term 

planning period (next two weeks) is provided
Integration with ERP system The production planner will be able to upload the details of the new orders to the next planning 

period
Dynamic rescheduling The solution should allow dynamic rescheduling when the attributes of production system 

changes for example, if an order is delayed or if there is machine breakdown
Using telemetry factors The solution should capture the effects of external factors that influence the production yield, to 

ensure for a more precise planning process
Capture planner experience The planning system should capture the practical experience of the planners with the production 

system which cannot be expressed in planning input parameter values
Non-functional requirements
Ease of use The tool should be easy to use for non-advanced computer user, that is, anyone with experience 

using spreadsheet solutions like Microsoft Excel
Layout The layout should be designed in such a way that important values are easy to read
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faster business impact. There are also pilot versus real-life 
production implementation considerations. The nature of this 
production planning is such as that the properties of the system 
of interest changes frequently relative to the target precision 

of prediction results. Furthermore, as the data scientist and 
the developers working on this project will need close col-
laboration, and there is a requirement to be able to scale the 
solution to address other PPC use cases as the companies gains 

Fig. 3   Conceptual overview of the as-is compared to the to-be smart PPC solution
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organizational competence with PPC. These factors strengthen 
the need for MLOps.

Insights from the case study 
and implications for research and practice

In the preceding sections, a methodology for design-
ing and developing smart PPC systems was described 
and the application of this methodology was illustrated 
through a case study. In this section, the application of 

the methodology within the case study is reviewed, after 
which insights gained from the case study and the implica-
tions for research and practice are discussed.

The objectives and priorities identified in the first step 
of the methodology were used as basis for formalizing the 
problem and specifying the requirements and relevant per-
formance indicators. This step helped refine the require-
ments that were put forth by production managers and 
planners, who are the intended beneficiaries of the smart 
PPC system. These requirements included having multi-
ple schedule logic options, integration with existing ERP 

Table 3   Comparison of the as-is and to-be processes (reference to Fig. 3)

1 This measurement and reporting are key to future improvements and will be managed by a strict company policy requiring the operators to take 
necessary measurements in the absence of an automatic measurement system which can be later integrated

As-is planning process To-be planning process

1. Input demand forecasts and customer orders into ERP system. Based 
on the demand forecasts and firmed customer orders provided by the 
marketing team, the master scheduling processes in the ERP is initi-
ated periodically. The schedule comprises a list of production orders to 
be executed on the production floor with due dates, quantity or amount 
to be produced

1. Input demand forecasts and customer orders into ERP system. 
Same as in the as-is system except that a new plan can be triggered 
if the changes to the system is significant enough that it reaches the 
threshold set for a parameter of the factory. For example, if the yield 
is estimated to be significantly low for the current orders, then it can 
trigger a new batch or bring forward a batch originally scheduled for 
a later production date

2. Generate preliminary production schedule. From this ordered list of 
production orders, the production planners then manually allocated 
the orders to production shifts based on several constraints including 
capacity at the drying stage, planned repairs, and shift planning

2. Generate preliminary production schedule. Same process as in the 
as-is process

2b. Regenerate multiple schedule options based on different planning 
logics. Unlike in the as-is situation, the to-be state will allow the 
generation of multiple schedules. In the pilot phase, two methods or 
‘logics’ (x and y) will be implemented with the option to add others 
later as additional features. The modular design and cloud infra-
structure allow this, taking advantage of either autoscaling or the use 
of serverless computing services such as Cloud Functions

3. The production planner estimates the yield based on their experience. 
A record of this yield is stored in a spreadsheet and updated periodi-
cally every second year (see Fig. 6). NB:—In real time, the planners 
adjust the yield uncertainty factor upwards or downwards based on 
what their expectations by considering environmental factors and 
preceding yields

3. Yield uncertainty factor estimate generated by ML model. The 
trained machine learning model estimates the yield uncertainty for 
each production order so that the schedule options from Task 2b 
then reflects the realistic estimat

4. Adjust schedule with yield estimates and other constraints. The orders 
are adjusted to reflect this yield uncertainty factor and other con-
straints such as machine breakdowns and drying stage requirements

4. Human or computer planner chooses schedule option. If a human 
planner is involved, the planner can then choose the adjusted sched-
ule option based on his or her preference. These choices will be 
recorded and over time, will capture the intrinsic experience of the 
planner by capturing his/her schedule choices for different scenarios 
over time, and this data can then be used as input to improve the 
performance of the computer planner. And if a computer planner is 
involved, it will use historical data and rank the different options

5. Report actual production outcomes in shift reports. After the pro-
duction is completed, the paper-based end-of-shift report is filled. 
The ERP system is also updated to indicate that the order has been 
produced. However, the details in the shift report (for example, input 
mass, output mass, etc.) are not digitally stored to allow data-based 
improvements in the future

5. Report actual outcomes and KPI results. After production is 
complete, the production data is digitally recorded, and the data is 
stored in the data warehouse which will serve the ML programs and 
over time, will lead to an improvement in the accuracy of the yield 
estimate predictions and scheduling logic selection1
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system, dynamic rescheduling or more frequent scheduling 
updates, yield estimation using telemetry factors and cap-
turing the experience of managers. While these were the 
functional requirements for the PPC system, non-functional 

requirements such as ease of use and readability of the 
user-interface layout were also identified although the lat-
ter non-functional requirements were not the subject of this 
case study. Consequently, operations reliability and services 

Fig. 4   An example smart PPC 
solution architecture for the 
yield estimator use-case

Fig. 5   Class diagram for a demo in UML notation
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quality were deemed as the relevant performance measures 
for the smart PPC solution design.

Of interest in this case study was the problem of yield 
of estimation at the drying station. This was important in 
this case because the yield, which affects the precision of 
the entire planning process, is highly influenced by exog-
enous factors, e.g., temperature, humidity, etc., factors 
which can be modelled and predicted using analytics and 
ML tools. This again reemphasizes the importance of fitting 
smart technologies to production systems according to fit as 
pointed out in Oluyisola et al. (2020). By the same principle, 
a smart product strategy would not be beneficial in this case 
company. In addition, the formalized problem and specified 
requirements were used to identify candidate tools and algo-
rithms to address the problem and fulfill the requirements. 
For the purpose of this case study, this selection of tools 
and algorithms was based on extant literature on smart PPC 
(reviewed in Sect. 2.3.1). While this was lightly covered in 
this paper, this as an area that future research need to address 
for the ML value in PPC to be realizable. The final step 
in the methodology focuses on continuous innovation and/
or development, i.e., the system should be adaptable when 
weaknesses are identified during use or as opportunities for 
utilization of better or more mature technologies become 
available. The performance of the current, as-is process is 
compared with the improvements that can be achieved by 
the proposed smart PPC (when fully operational) in Table 4. 
These are measured against the general goals of the smart 
PPC system established in the literature. By reason of the 
capacity, consistency and flexibility that the smart PPC sys-
tem affords, as the case illustration highlights, the improve-
ments are such that the manufacturing organization will be 
able to anticipate and react more precisely to changes in the 
production environment.

The general implications of having a methodology such 
as the one presented in this paper are significant for research 
and practice. By having a methodology which starts with the 
determination of fit according to the planning and control 
environment variables, it will be possible to streamline smart 
PPC initiatives and increase their chances of success. Based 
on the PPC environment characteristics, it was possible to 
determine early in the process that the case company would 
benefit more from a smart process strategy rather than a 
smart product strategy. And while the issues of interest in 
the case study are primarily operational, the methodology 
itself is not constrained vis-à-vis the application context or 
decision levels and can be applied for initiatives pursuing 
strategic and tactical decision support.

Furthermore, due to the current rate of innovation within 
the disciplines of big-data analytics and machine learning, 
the availability of tools and algorithms for a given set of 
problems is constrained by the state of art at any point of 
time and may change as time progresses. Therefore, this 
step of the methodology could be reviewed after an interval, 
which should be decided during the initial or pilot imple-
mentation. The next step in the methodology concerns archi-
tectural considerations for the implementation of the solu-
tion. This step not only considers the architectural design for 
the proposed solution itself, but also considers the integra-
tion of the solution with the existing enterprise systems, thus 
re-emphasizing the focus of the methodology on ensuring 
fit of the smart PPC system with the planning environment. 
Furthermore, while designing the data architecture in this 
step, due consideration must be given to future scenarios, 
such that the developed system is scalable and amenable to 
future operational demands.

Additionally, as Cadavid et  al. (2020) highlight in a 
recent review paper, there is a need to address the linearity 

Table 4   A comparison of as-is and to-be PPC systems

Smart PPC Goals Current state performance Proposed Smart PPC performance

1. Be dynamic, by using real-time 
demand and production system data 
thereby reducing variability due to 
forecasts

Not dynamic, and uses planning 
data some of which (e.g., the yield 
estimate) are updated only once per 
year or less frequently

Use near real-time data from the production system and its envi-
ronment to monitor and ensure planning and control processes 
are reflective of the actual system data

2. Use an expanded set of factors 
and data sources including system 
telemetry data

Uses only order due dates and plan-
ners guess of what other factors 
could affect the plan

Uses telemetry from within the production process and from the 
system environment and can determine correlations with yield

3. By using historical and real-time 
production system and demand data, 
be able to accurately predict factors 
and events and thereby also support 
increased flexibility

Historical data currently inadequate or 
unusable for advanced analytics due 
to inconsistencies and poor records

The system is designed to allow real-time control or human 
planner control of the production system using data from the 
IoT sensors

4. To capture and use the experi-
ence of the operators and planners 
currently managing the production 
system

If planner retires, he goes with all his 
experience and a new planner gets to 
re-learn the same mistakes

The system keeps records of decision patterns and success 
ratios of different planning logics, providing a log and sum-
mary of the planner’s experience
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limitations of extant research on ML-enhanced PPC and also 
a need to link tools, techniques and activities for industry get 
real benefits from research on the subject. The architectural 
considerations prescribed in this methodology addresses this 
key issue and should be a major consideration for future 
applied research on the subject. This cannot be overempha-
sized considering how small and medium sized manufac-
turing companies must grapple with the uncertainties of a 
pandemic-battered global economy and the post-pandemic 
global market.

Additionally, anecdotal evidence with manufacturing 
companies in the Scandinavia region shows that while 
increasing automation and digitalization has led to the crea-
tion of massive volumes of big data in manufacturing sys-
tems, a lot of the data is neither used nor is useful. The 
reasons vary for each case, but a recurring theme is that the 
data architectures are often designed primarily as a logging 
system for use in maintenance activities and many manu-
facturing companies still are yet to fully adoption an IoT 
strategy. All these factors then make it more challenging to 
derive value using analytics or machine learning to build 
intelligence into these production environments.

From the foregoing, the several considerations to be made 
when developing a smart PPC solution include the planning 
environment challenges which are often relatively consist-
ent in the long-term, and the technology-related challenges 
which are related to the fast-paced evolution. And due to 
the significant uncertainty involved in the innovation pro-
cess, and the high risk of project failure, the selection of 
use cases cannot be done randomly or based sole on what is 
trending with competitors. Indeed, while over 60 percent of 
IT projects fail outrightly or when defined by one of the per-
formance metrics of timeliness, cost or quality (Mark, 2016), 
anecdotal evidence suggests that this may be even worse for 
projects involving emerging technologies. In one example, a 
major distribution and logistics center recently had an inno-
vation project where it tried to deploy autonomous robots 
with machine learning capabilities in one its warehouses. 
The project failed both technologically and operationally, 
and the company did not share information about this failure 
publicly potentially because it does not help the company’s 
brand posture as a technology savvy organization.

It can therefore be assumed that there is a greater likeli-
hood or perhaps a tendency for companies to want to report 
only successful digitalization projects. This may, over time, 
lead to a ‘survivorship bias’, as researchers would only have 
cases of successful projects to extract knowledge from, 
while losing access to the valuable knowledge that could be 
extracted from the failed implementations. Furthermore, this 

creates a lacuna because while there may be ‘local learning’ 
within each company, there is a global loss due to several 
companies repeating pilot projects that many others previ-
ously tried and failed at. Therefore, a systematic method 
of the type proposed in this study can help reduce the risk 
of smart PPC project failure and can reduce the variation 
amongst several subsequent smart PPC initiatives, thus ena-
bling easier shared learning.

Conclusions, limitations, and further 
research

The question of how a smart PPC system should be designed 
and developed for an environment has been addressed in 
this paper through a five-step methodology. The steps of the 
methodology have been formulated and structured with the 
consideration that the resulting PPC system should fit the 
characteristics of the environment in question. Furthermore, 
the importance of contextual fit in algorithm selection, solu-
tion scalability and amenability of the smart PPC system to 
address future demands have been highlighted. In summary, 
the principles and considerations that guide the design in a 
smart PPC system are as follows:

The design of the smart PPC system should fit the char-
acteristics of planning environment. This highlights an 
issue that has been observed in numerous ERP and APS 
implementation case studies – expensive monolithic 
systems forcing managers to modify the production 
system to fit an inflexible PPC system. The proposed 
methodology can guide the design and development of 
such a fitting smart PPC system.
The design and architecture of the PPC system should 
be scalable and amenable to variations in future demand 
volumes, demand patterns, product portfolios, number 
of users, etc. Since these parameters cannot be con-
trolled or accurately predicted in advance, it is impor-
tant to have provisions in the architecture to adapt as 
these parameters change during drift.
The implementation plan of a smart PPC system should 
also include a period of ‘incubation’ where data can 
be collected to train the ML models, if the data is not 
already available. Simultaneously, the models can be 
tested for accuracy, such that the estimation errors can 
be accounted for in the planning activities.
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However, this study has the following limitations. 
First, implementing the methodology requires experi-
ence and judgement to ensure that the relevant contex-
tual variables have been considered in assessing the fit of 
objectives and priorities with the planning environment 
variables. A framework of contextual variables could pro-
vide an exhaustive reference and reduce the requirements 
for experience in implementing the methodology effec-
tively and will be addressed by future research. Finally, 
in future studies, this methodology will be tested in other 

types of production environments and industry sectors 
to assess its weaknesses and improve its robustness and 
generalizability.

Appendix

Figures  5 and 6, Table 5.

Fig. 6   The current manually updated yield estimate spreadsheet
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