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Abstract

In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring
these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the
material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed
for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the
signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting
experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple
classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close
to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using
a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of

similar machinability.
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Introduction

In metalworking, the material properties of different batches
might vary with significant impact on the respective met-
alworking process. These observations can be explained by
deviations in the material’s manufacturing procedure among
different suppliers as well as among batches from batch pro-
duction at a single supplier. In the material’s manufacturing
process, various factors, such as the chemical composition,
the fabrication procedure, or the heat treatment might deviate
slightly within their tolerances. These effects lead to small
changes of the material’s properties, such as microstructure,
grain size, and hardness, which directly impact a material’s
machinability (Schneider 2002).

In their study, Goppold et al. (2018) investigate batches
of metal sheets from multiple vendors, specified as the same
material, finding deviations in their chemical compositions.
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These deviations strongly influence the laser cutting process
but can be compensated by batch-specific adaption of cutting
parameters (Goppold et al. 2018). Similarly, it is found that
during the hardening process of gear pinions, small fluctu-
ations of the copper content within the material’s tolerance
among different batches significantly influence their harden-
ability (Suchmann and Martinek 2014).

In subtractive manufacturing processes, different process
behaviors among batches of the same specified material can
be observed as well (Jemielniak and Kosmol 1995). While
one batch of the raw material might be easy to machine with
a given set of cutting parameters, a different batch might
show unstable machining, increased tool wear, or even tool
breakage. Thus, when optimizing a subtractive manufactur-
ing process with regard to the machinability of one material
batch, non-ideal behavior can be expected when machin-
ing a batch with different machinability, using the same
parameters found before. However, as the material devia-
tions resulting in these differences in machinability are within
the given tolerance of the specified material, they cannot be
distinguished without further investigation. Thus, without
additional knowledge, each produced material batch from
each supplier needs to be considered as a unique material
batch with potentially different machinability.
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To handle these uncertainties, in practice typically one of
the following approaches is carried out: either the assigned
tolerances for the specified material are tightened, a set of
sub-optimal parameters is used for all batches, or material
testing is carried out for every single batch. While tighten-
ing the material tolerances might reduce the magnitude of
batch deviations, the manufacturing costs and testing efforts
increase on the material supplier’s side (Dong et al. 1994).
Thus, looser tolerances decrease the costs and reduce the
testing efforts but increase the effect of material batch devia-
tions. Assuming that all material batches behave similarly
enough, one set of sub-optimal parameters can be deter-
mined and used for all batches. This way, the effort and costs
for material characterization are minimized, however, the
overall manufacturing costs might increase due to additional
maintenance expenses and process operation under non-ideal
conditions, also worsening the product quality. Finally, while
carrying out material testing for every batch individually
enables the determination of batch-specific optimized cutting
parameters, the resources needed for material characteriza-
tion increase. Furthermore, even material batches with the
same machinability as previous batches have to be tested, as
no prior knowledge about their machinability is available.

Ideally, previously found ideal parameters are reused for
future batches of similar machinability. Thereby, material
characterization and determination of the respective ideal
cutting parameters needs to be carried out only once for
batches of similar machinability. This way, every material
batch can be machined with optimized parameters while
reducing the experimental efforts to a minimum. To achieve
this, it is necessary to identify a given work material during
operation by comparing it to previously machined batches
through process observation.

The machinability of a material can be assessed through
the tool-lifetime, the cutting forces, the surface finish, and the
chip form (Schneider 2002). Typically, tool-lifetime experi-
ments, as described in the ISO Standard 3685, are performed.
A simple cut with constant cutting conditions is carried out
with a new tool, measuring the machining time needed until
the tool reaches its defined end-of-life criteria. Repeating this
procedure for various cutting speeds, multiple data points of
cutting speed and the respective machining time until failure
are recorded. This data is used to fit a process model, such
as the Taylor model (Taylor 1906).

To identify changes in the machinability during machin-
ing, a process monitoring system is needed. In their review,
Teti et al. (2010) cluster existing approaches based on the
monitoring scope. Most publications that were found deal
with tool conditions, chip conditions, process conditions,
surface integrity, machine tool state, and chatter detection.
Only a few approaches exist for the monitoring of the work
material.
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For the monitoring of different materials, Kramer (2007)
investigates acoustic emission signals while machining com-
pound parts containing steel and ceramic regions. Character-
istic dominant frequencies can be found for each material,
enabling the correct identification of both materials. Simi-
larly, visual properties of the work material can be observed
using machine vision and analyzed by machine learning
(ML) to classify the material. In their study, Penumuru
et al. (2020) evaluate such an approach using Support Vec-
tor Machines to distinguish between aluminum, copper, mild
steel rusted, and medium density-fiberboard. The detection
of the two metals steel and aluminum is also possible by
monitoring and evaluating the cutting force, spindle torque,
and material removal rate (Denkena et al. 2018). The lat-
ter approach can be further improved by the integration of
accelerometers while using ML for data analysis (Denkena
et al. 2019).

Focusing on different alloys of the same material, Denkena
et al. (2019) monitor the vibration of the tool, process forces,
and control signals, such as spindle torque and motor cur-
rents, to identify two different steel alloys. Therefore, various
types of features and ML algorithms are investigated. They
find the differences in material properties to be much smaller
for the alloys of the same material, compared to the two dif-
ferent materials steel and aluminum. Thus, the process forces
are rather similar for the two alloys, resulting in lower pre-
diction accuracy. Only the investigated k-Nearest-Neighbors
algorithm shows promising results for online identification.
(Denkena et al. 2019).

Looking at the level of material properties, Teti and La
Commare (1992) analyze a fused signal of acoustic emissions
and cutting forces. Using a k-Means Clustering algorithm,
samples of different heat treatments can be correctly iden-
tified. Kothuru et al. (2018) investigate the monitoring of
audible sound signals for detecting hardness variations of
the work material. With the investigated ML models, such
as Support Vector Machines and Convolutional Neural Net-
works, four different hardness levels within a workpiece can
be detected (Kothuru et al. 2018).

In summary, it can be said that there are some approaches
in research for differentiating among material types, rec-
ognizing different alloys of the same material type, and
identifying certain material properties directly. However, no
research has been found for the identification of material
batches of the same specified material in subtractive man-
ufacturing. The existing approaches in industrial settings
regarding this issue lead to increased manufacturing costs
either due to ignorance of batch deviations, tight tolerances,
or due to labor-intense experiments for repetitive material
batch characterizations.

Thus, a smart service is proposed in this paper for the
in situ classification of batches of the same material. This
service integrates well into the concept of smart machine
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tool systems, by monitoring and analyzing data while gen-
erating knowledge for improving the manufacturing process
(Jeon et al. 2020). As modern machine tools already provide
a variety of internal signals, such as current or torque values
of linear and rotary axes (Tong et al. 2020), these signals
are chosen and analyzed, as thereby the integration of this
service into existing systems is reduced to software com-
ponents. For the data analysis, ML methods are investigated.
ML has become a common tool for analyzing industrial data,
with many existing use cases in production and especially
machining (Mayr et al. 2019). In machining, ML is used for
applications such as predictive maintenance, quality predic-
tion, process monitoring, or parameter optimization (Kibkalt
et al. 2018; Yao et al. 2019).

In Sect. 2, the architecture of the proposed smart service is
detailed. In Sect. 3, the methodology used for evaluating the
proposed concept of using supervised learning for solving the
issue of batch identification and classification is explained.
The results are presented in Sect. 4 and discussed in Sect. 5.
Finally, Sect. 6 concludes the presented research and outlines
future research activities.

Service architecture

In this study, a smart service is proposed for in situ classifica-
tion of the material batch during machining. An overview of
the concept can be seen in Fig. 1. The proposed architecture
consists of three main parts: the data acquisition (Fig. 1a),
the data analysis and batch identification (Fig. 1b), and an
interface to the human operator, the human—machine inter-
face (HMI) (Fig. 1c).

The machine tool’s internal sensors are used as the data
source in the data acquisition module where the machine’s
numeric control (NC) is being used as an interface (Fig. 1a).
From the NC, data about the current cutting conditions (e.g.
cutting speed and feed rate) as well as process data (e.g.
position and torque for each linear and rotary axis of the
machine tool) can be observed.

The data is acquired continuously by the NC and for-
warded to the connected edge device. There, the data
handling service reads the incoming data packages and tem-
porarily stores the data in the buffer. Once data is available
for a predefined period of time, the respective data within that
window is forwarded to and analyzed with the data analysis
and batch identification routine.

In the data analysis and batch identification routine
(Fig. 1b), the process data is preprocessed and analyzed, and
the batch is identified. In the data aggregation module, a
rolling mean is applied on the torque time-series for each
machining axes to create features. These feature vectors are
now preprocessed in the data preprocessing module. This
involves scaling the feature vectors with a pre-fitted stan-
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Fig. 1 Architecture of the smart service for in situ identification of the
material batch displayed as block diagram according to the Fundamental
Modeling Concept (Knopfel et al. 2005)
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dardization to improve the prediction accuracy. By scaling,
the imbalance of features showing large differences with fea-
tures showing only small differences can be compensated.
Lastly, the preprocessed features are used to identify the
material batch in the batch prediction module. This mod-
ule uses a pretrained classifier to classify the batch. Using
the fitted decoder, the prediction result is decoded to the
detected batch. The respective models for data preprocess-
ing and classification have to be fitted prior to operational
use and are stored in the model storage.

Finally, the prediction about the material batch currently
machined is conveyed to the machine’s operator through an
HMI (Fig. 1c). The operator can now use this information to
adapt the cutting process according to the known character-
istics of the detected material batch.

Methodology
Consecutively, the data analysis and batch identification
module as a key component of the proposed concept for in-

situ identification of material batches is implemented and
evaluated. The used procedure can be seen in Fig. 2.

Cutting experiments

Experiments are conducted using a computerized numeric
control (CNC) lathe. The lathe is equipped with a cutting
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| Conduct cutting experiments |
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v

| Evaluate classifier on testing dataset |
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All relevant cutting
parameter combinations
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Return weighted averaged evaluation scores

Fig. 2 Training and evaluation procedure investigating each POI on its
own with cross-validation carried out on experiment level

tool using exchangeable inserts. During machining, the pro-
cess data, containing information about the torque of all
machining axes, is acquired with a frequency of 500 Hz.
Additionally, the commands issued to the machine, espe-
cially the unplanned interactions of the machine’s operator,
are stored. After each experiment, the condition of the cutting
tool insert, expressed as flank wear width, is measured with
the procedure described in Lutz et al. (2019). A unique iden-
tifier, batch A-E, is assigned to each investigated material
batch.

The experiments are carried out as sets of experiments.
Each set is started with a fresh insert and stopped at varying
degrees of tool wear. While the majority of experiments is
carried out until the insert reaches its end-of-life criteria,
others are stopped early, thus the data density is increased
as more combinations of cutting conditions are investigated.
Within a set of experiments, the cutting conditions, type of
cutting tool insert, cutting depth, cutting speed, feed rate, and
material batch, are kept constant. Only the tool condition,
expressed as flank wear width, worsens from start to end of
each set. Among all sets of experiments, combinations of
two different insert types (type A and type B), five material
batches (batches A—E), one cutting depth (4 mm), ten feed
rates (from 0.1 to 1.0 mm/rev in 0.1 mm/rev increments), and
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eight cutting speeds (from 180 to 300 mm/min in 20 mm/min
increments as well as 350 mm/min) are investigated.

Due to resource constraints, not all combinations of cut-
ting parameters and material batches are explored. Seven
combinations of cutting conditions are studied with a high
volume of experiments as seen in Table 1. 16 additional
combinations of cutting parameters are investigated with
fewer experiments. As previously described, for these cutting
parameter combinations only incomplete sets of experiments
are carried out. For each combination of cutting conditions
investigated in this manner, between two and six experiments
for three to five material batches are carried out.

Data preprocessing

As described in Sect. 2, the data needs to be adjusted and
preprocessed. First, the preset cutting speeds and feed rates
are corrected into the actual values taking the machine oper-
ator’s override function into account. The flank wear width is
interpolated linearly within each experiment. For the torque
signals, redundant information is discarded, as some machin-
ing axes contain multiple motors with similar values.

Once all the signals are adjusted, the data preprocessing
is carried out following the procedure in Fig. 3. To gener-
ate the training and testing datasets for a given combination
of cutting conditions (metadata), all available data from the
experiments is filtered by the given metadata. Thus, only
experiments conducted at similar cutting conditions are used
for model training and testing. All selected experiments are
now split into experiments that will be used for model train-
ing, and experiments that will be used for model testing. As
the separation in training and testing dataset takes place at
experiment level with cuts being conducted at different parts
of the workpiece and not on the sample level with samples
from similar positions, over fitted models perform worse on
the testing dataset and can thus be discarded during hyper-
parameter optimization.

Consecutively, a sliding window approach is used to create
discrete samples from the time-series signal. Here, windows
with a length of 400 ms, containing 200 datapoints, are used.
All signals are aggregated by calculating the respective mean
values within the selected window as features. The aggre-
gated torque values from the machining axes contain the
relevant information about the cutting process that will be
used to determine the material batch.

As the material batch identifier is a categorical value that
will be used as a label for the supervised learning approach, it
is encoded using a one-hot encoder (Witten et al. 2011). Dur-
ing the training phase, the characteristic vectors are scaled by
standardization to a standard distribution with a mean of zero
and a variance of one by subtracting the mean of all samples
u from each value x; and dividing it by the standard deviation
o (1). Thereby, the training process can be improved (Witten
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Table 1 Overview of the conducted experiments at cutting parameter combinations with a high volume of experiments
Insert type Cutting speed (m/min) Feed rate (mm/rev) Wear Batches Experiments Samples
A 180 0.7 200 pm=£ 100 pm A,B,C 70 7161
A 240 0.7 200 pm=£ 100 pm A,B,and D 20 2060
B 240 0.5 200 pm=£ 100 pwm C,D,and E 86 7822
B 240 0.7 150 pm=£ 100 pm A,B,C 29 1986
B 300 0.5 250 pm=£ 100 pm B, C,and E 96 3146
B 300 0.7 50 pm = 100 wm A,B,C,D,and E 33 1010
B 350 0.5 150 pm=£ 100 pm B,C,D,and E 42 1181
T 2
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Experimental data i U o
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Fig. 3 Detailed overview of the data preprocessing procedure
et al. 2011). Both the encoder and the scaler are only fitted Model input Model output
on the samples of the training dataset but used to transform Mean torque x—axis Likelihood batch A
both the training and the testing dataset. Finally, all prepro- Mean torque y—axis Likelihood batch B
ML model Likelihood batch C

cessed samples contain the torque values, the metadata, and
the one-hot encoded material batch identifier.

=2 ey

Model definition

In the present approach, supervised learning models are
investigated for identifying the material batch. The models
are trained for a single combination of cutting conditions,
using the metadata to filter relevant experiments for generat-
ing the training and testing dataset (see Sect. 3.2). Thus, the
metadata are not used as an input for the model but rather
to filter relevant training data. Only the preprocessed torque

Mean torque z—axis

. Likelihood batch D
Mean torque c—axis,

Likelihood batch E

Fig.4 General design of the classification model

time-series values are considered as input features for the
models, while the one-hot encoded material batch identifiers
are the targets to be predicted by the classifiers (Fig. 4).

In terms of models, established ML models are investi-
gated and compared to a simple Logistic Regression (LR)
model as a baseline. The investigated models include Sup-
port Vector Machines (SVM), Random Forests (RF), Naive
Bayes Classifiers (NB), k-Nearest-Neighbors (kNN), Arti-
ficial Neural Networks (ANN), and Radial Basis Function
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Neural Networks (RBFNN). The RBFNN network consists
of a single hidden layer using k-means for center initializa-
tion. The designed ANN consists of multiple hidden layers,
with each consecutive hidden layer having twice as many
neurons as the previous one. For the input layer and all hid-
den layers, the ReLU activation function is used, while for
the output layer the softmax activation function is applied.
Dropout is used to prevent overfitting (Srivastava et al. 2014).
After initialization, each model is optimized regarding its
respective hyperparameters.

The models are compared using a repeated k-fold cross-
validation or repeated leave-one-out cross-validation strat-
egy, depending on the amount of training data available at the
selected cutting conditions. For 20 experiments and more, a
ten-fold cross-validation strategy is used. Otherwise, a leave-
one-out validation strategy is used due to the limited number
of experiments. Both validation strategies are repeated ten
times to compensate for statistical effects in data splitting and
model training. Once the validation procedure is completed
for every combination of cutting conditions, the weighted
averaged evaluation scores are computed. Here, the sample
quantity of the respective combination of cutting conditions
is used as weight. Besides calculating the prediction accu-
racy, the computation time needed to train the model is
also investigated. The training times for cutting parameter
combinations with high and low data volume are reported
separately, as the differences in volume might influence the
computational effort needed for creating the models. Addi-
tionally, the inference times for each model are recorded. All
models are trained on the same hardware.

Results
Machinability investigation

First, the material batches are investigated regarding their
differences in machinability. Within the sets of experiments
where the cutting tool inserts were used from fresh to worn-
out, the total lifetime of each insert is measured. In Fig. 5,
the Taylor curves are displayed for a feed rate of 0.7 mm/rev
(Fig. 5a) and a feed rate of 0.5 mm/rev (Fig. 5b) for different
types of cutting tool inserts. Besides batch A, all batches
align well with the fitted curve.

As assumed, large differences in machinability can be
observed. For a feed rate of 0.7 mm/rev and a cutting speed
of 300 m/min using insert type A, a similar trend among
batches B and C can be observed. The machinability of batch
B, having five minutes lifetime, is higher than batch C with
a lifetime of 3 min. Batch A also shows good machinability,
however, for lower cutting speeds such as 180 m/min, batch
B lasts 66 min, whereas batch A only lasts 33 min. For a feed
rate of 0.5 mm/rev and a cutting speed of 300 m/min, batch B
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Fig.5 Calculated machinability for the tested material batches showing
differences in insert lifetime for similar cutting speeds

shows the highest machinability with 21 min of tool life. In
comparison, batches C, D, and E only last 9, 11, and 6.5 min,
respectively.

Additionally, in Fig. 5b it can be observed that batches C,
D, and E show rather similar behavior compared to batch B.
For a cutting speed of 300 m/min batches C, D, and E exhibit
aninsertlifetime of around 9 min 42 min compared to 21 min
for batch B. For a cutting speed of 350 m/min, batches C, D,
and E exhibit an insert lifetime of around 4 min=+1 min
compared to 7.5 min for batch B.

Model optimization

For building the material identification model, ML tech-
niques are used. The algorithms are implemented using
Python with the scikit-learn library (Pedregosa et al. 2011).
The ANN is implemented using Tensorflow (Abadi et al.
2016) and Keras (Chollet 2015). Each algorithm is tuned
by investigating multiple hyperparameters in a grid search
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Table 2 Investigated and optimal hyper parameters for each model

Algorithm  Parameter Investigated Optimal
parameters parameter
SVM C 1e3, 5e2, le2, 5e2
Sel, lel, 1,
le—1, le—2
Kernel Linear, Poly, Poly
RBF
Degree 2,3,4,5,7 2
Gamma Scale, 1e2, lel, Scale
1, le—1, le—2
RF Estimators 10, 50, 100, 150, 150
200, 500
Criterion Gini, entropy Gini
Max depth 4,5,7,9 5
Max features 2,3,4,5 5
NB Var smoothing  le—3, le—4, le—4
le—5
kNN Neighbors 1,5, 14, 39 39
Weights Uniform, Distance
distance
Leafsize 15, 30, 50 15
P 1,2,4 1
Metric Minkowski, Minkowski
cosine
ANN Neurons 16, 32, 64, 128, 256
256,512
Hidden layers 1,2, 4 2
Dropout 0.0,0.2,04 0.4
Optimizer RMSprop, Adam
Adam, SGD
RBFNN Neurons 4,8,16, 32,64, 32
128, 256, 512
Beta 0.01, 0.05, 0.1, 2.0
0.5,1.0,2.0,5.0
Initializer Random, k-means
k-means

manner and rated using the previously introduced cross-
validation strategies. All investigated hyperparameters and
the ones with the best results are reported in Table 2 for each
algorithm.

Besides optimizing the hyperparameters of the ML mod-
els, the proposed system can be adapted based on the criteria
for selecting experiments for model training. Experiments
with exactly the same cutting speed, feed rate, and type of
cutting tool are selected for a given combination of cutting
conditions by default. Only for the tool condition, experi-
ments within a range of = 100 pm of the defined flank wear
width are included. However, besides considering only exper-
iments with exactly matching cutting speed and feed rate,
tolerances can be applied to those as well to increase the
number of training data. The effect of widening the toler-

ances for the cutting speed, the feed rate, and the flank wear
width is shown in Fig. 6. The results are reported separately
for combinations of cutting conditions with a high data vol-
ume (Fig. 6a—c) and a low data volume (Fig. 6d—f).

It appears that for the cutting conditions with high data
volume, most algorithms do not benefit from a widened tol-
erance of the cutting speed but rather show the best results
with exactly matching speeds at a tolerance of +0 m/min
(Fig. 6a). Besides the LR, all algorithms perform signifi-
cantly worse for the broadest tolerance of 60 m/min. For
the feed rate (Fig. 6b), similar results can be observed. In
contrast, for the flank wear width, a different behavior can be
seen (Fig. 6¢). The SVM, ANN, RF, and kNN algorithms
all show the best results at the middle default tolerance
level of £100 pwm, with rather similar prediction results
across all tolerances. The NB algorithm shows similar, good
results for£ 50 pwm and =+ 175 wm but a worse performance
for = 100 wm. The RBFNN shows decreasing prediction per-
formance with broadening the tolerance, while the LR shows
the opposite trend.

For cutting conditions with low data volume, all algo-
rithms seem to greatly benefit from broader tolerances. For
the cutting speed (Fig. 6d), an increase in accuracy between
15 percentage points (p.p.) and 25 pp. can be observed by
increasing the tolerance from % 0 to & 60 m/min. For all algo-
rithms, the best results are achieved with tolerances of £ 60
m/min, considering nearly all available data. For the feed rate
(Fig. 6e), the strongest prediction improvement with broader
tolerances can be seen. The SVM, ANN, and LR show
improvements above 40 p.p., while the remaining algorithms
show improvements between 20 and 30 pp. for increasing the
tolerance level from £ 0.0 to = 0.2 mm. Lastly, the flank wear
width (Fig. 6f) seems to significantly influence the SVM,
ANN, RF, kNN, and LR, where an increase of 10 pp. can be
seen between £ 100 and &= 175 pm. For the other algorithms,
only slight increases can be observed. Between the tolerance
levels of £50 and + 100 pwm, no significant differences can
be detected.

Comparing the accuracies among the models, similar
trends can be seen. For the cutting conditions with high data
volume, the best results are achieved by the SVM, followed
by the ANN and the RF with rather similar prediction accura-
cies. The remaining algorithms kNN, NB, and RBFNN show
similar or worse performance compared to the LR. For the
cutting conditions with low data volume, most algorithms
can’t differentiate among the different batches. Only for the
highest level of tolerances prediction accuracies above 60%
can be seen for the SVM, ANN and LR.

Summarizing the findings, the SVM performs best for
large amounts of data, which can be seen by the high accura-
cies for the cutting conditions with high data volume and the
steep increase in accuracy for low data volume cutting condi-
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(a) Cutting speed - high data volume
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Fig.6 Influence of increasing the tolerance for including data in the model training on the resulting prediction accuracy for cutting condition

combinations with high data volume (a—c) and low data volume (d—f)

tions in combination with high tolerances, thus considering
the most data for training.

Evaluation of prediction performance

After optimizing the hyperparameters and tolerances for each
algorithm, the final metrics for evaluation are computed
(Table 3). The best results can be achieved using the SVM,
producing an accuracy of 88.9% averaged over all combina-
tions of cutting conditions with high data volume, followed
closely by the RF with 86.1% and the ANN with 85.7%.
Thereby, these models outperform the LR as a baseline with
a prediction accuracy of 81.7% by between 4 and 8 pp. For
the remaining cutting conditions with low data volume, the
best results are achieved with the ANN with 71.0%, closely
followed by the SVM with 70.3% and the LR with 68.9%.
As the best model, the SVM is used to compute the con-
fusion matrix (see Fig. 7). The confusion matrix displays
the predicted batch identifiers versus the true identifiers.
Here, differences among the batches can be observed. Batch
A can be identified nearly perfectly with an accuracy of
99.9%. Similarly, batch B shows a correct identification rate
of 97.3%. Batch C, D, and E show prediction accuracies of
86.0%, 80.0%, and 73.8%, respectively. Analyzing the errors
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of these material batches, the incorrect predictions are not
split evenly among the remaining batches but are concen-
trated on a few. For batch E with an accuracy of 73.8%, 6.9%
of all samples are classified as batch C and 18.6% as batch
D with close to no predictions for batch A and B.

Evaluation of computational performance

For operational use, the computation time for model training
and inference are compared (see Table 3). The times for low
data volume represent a newly set-up system with little data
available, whereas the times for high data volume represent a
version with a large experience database. The average train-
ing dataset contains 2785 samples for high data volume and
1585 samples for low data volume after filtering.

For training the models with the high data volume, two
groups can be observed. NB and kNN show the fastest
training with 6 ms and 10 ms, respectively. The remaining
algorithms are up to three magnitudes slower in training with
0.4 s for the LR, 2.6 s for the RF, 4.6 s for the RBFNN, 5.3 s
for the SVM, and 20.7 s for the ANN. For a low data vol-
ume, similar results can be observed among the algorithms.
Comparing the training times between high and low data vol-
ume, no significant differences are seen for the RF, NB, kNN,
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Table 3 Comparison of the different models regarding their accuracy, training time, and inference time for high data volume (vol.) and low data

volume cutting conditions

Algorithms Accuracy Training time Inference time
High data vol.% Low data vol.% High data vol. (s) Low data vol. (s) High data vol. (ms) Low data vol. (ms)
Support vector 89.0 70.3 5.2 1.8 0.7 0.9
machine
Random forest 86.1 62.8 2.6 2.3 52.9 56.8
Naive Bayes 81.2 473 0.6 x 1072 0.6 x 1072 0.7 0.8
K-nearest-neighbors ~ 82.6 63.6 0.1 x 107! 0.8 x 1072 2.3 2.7
Artificial neural 85.7 71.0 20.7 10.8 223.0 199.6
networks
Radial basis function 76.7 58.0 4.6 4.7 234.0 270.3
neural networks
Logistic regression 81.7 68.9 0.4 0.4 0.4 0.4

Batch A JEEREA| 0.0% 0.1% 0.0% 0.0%
- 80
Batch B - 1.9% 0.0% 0.8%
g - 60
S BatchC 4 0.0% 0.0% [Coeial 6.6% 6.9%
£ - 40
BatchD 4 0.0% 0.0% 9.4% 10.6%
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Fig.7 Confusion matrix showing the prediction accuracy of the batch
identification algorithm

RBFNN, and LR, while the training times for the SVM and
the ANN are reduced by a factor of 3 and 2, respectively.

For inference, as expected, no significant differences
between high and low data volume can be observed. Compar-
ing the different algorithms, the SVM, the kNN, the NB, and
the LR all have inference times of about a millisecond. The
inference times for the RF, ANN, and RBFNN are between
one and two magnitudes higher.

Discussion

Looking at the tolerances used for filtering the historic
training database, different behavior depending on the data
volume for the selected cutting conditions can be seen. It is
shown that for cutting conditions with a natively high data

volume, lower tolerances achieve higher accuracies. Thus, as
expected, data that is the most similar to the cutting condi-
tions under investigation provides the most information about
the machined batch, as there is no influence on the signal from
changed machining conditions.

For natively low amounts of training data available, such
as cutting conditions that are seldomly used, or during the set-
up phase of the system with little historic data available, low
prediction performances are observed, especially with tight
tolerances. Even simple algorithms such as the LR or the
RBFNN, which typically work well with small amounts of
data, do not show improved results. However, great benefits
can be seen by loosening the tolerances. Thereby, the pre-
diction performance can be increased from~20% to above
60%, due to the larger amount of data available for training
each model. However, the performance remains below the
89% accuracy level, which is achieved for high data volume
cutting conditions. This can be explained by the fact that the
additional data originates from different cutting conditions.
As these strongly influence the investigated cutting forces, it
becomes more challenging for the algorithm to learn whether
signal deviation is caused by a change in material batch or
by a change in cutting conditions. Thus, by increasing the
tolerances the deficit of small data can only be compensated
partially.

Considering the machinability of the batches, as seen in
the Taylor curves for a feed rate of 0.5 mm/rev (Fig. 5a),
two clusters of curves can be observed. The lines for batches
C, D, and E show similar slopes, while the curve for batch
B appears to be decreasing more rapidly. Even though there
is some variation among the insert lifetimes for batches C,
D, and E, the machinabilities are closer to each other com-
pared to batch B. Therefore, it seems reasonable to consider
batches C, D, and E as batches with similar machinability,
such that information from the one batch can be applied to the
other. Considering this assumption in the prediction matrix,
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Fig.8 Assuming batch C, D, and E can be treated as similar due to
their close machinabilities, the accuracy of the identification algorithm
increases to above 98%

it can be seen that the algorithm nearly perfectly separates
the samples of batch A, batch B, and the combined batches
C, D, and E, with 99.9%, 97.3%, and 99.8% prediction accu-
racies, respectively (see Fig. 8). This proves the feasibility of
the proposed model, as predictions errors only appear among
batches of similar machinability (see Fig. 7).

Lastly, as expected, it can be observed that the comput-
ing times increase for higher amounts of data, especially for
the best performing algorithm, the SVM. For even larger
datasets, a further increase in computation time is expected.
This issue can be addressed in operation using two different
strategies. One option is to use the best performing but slow-
to-train algorithm only if a pretrained model exists, thus no
training needs to be carried out during operation. If the mate-
rial batch must be classified at cutting conditions without a
pretrained model, one of the faster models can be trained
with the trade-off of lower accuracies. The other option is
to outsource the training to cloud computing solutions with
higher computing power available, if the training takes too
long on local resources.

Conclusion

In this study, a smart service is proposed for identifying the
material batch during machining. This information can be
used consecutively to optimize the cutting process for each
batch individually.

To achieve an in situ material batch identification, the
torque values of the machining axes are averaged over a slid-
ing window and evaluated. A database of historic data is
filtered by the current cutting conditions for relevant exper-
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iments. With the selected data, a ML model can be trained
to predict the material batch. For cutting conditions with a
low volume of training data, the prediction accuracy can be
improved significantly by considering data from nearby, less
similar, cutting conditions in the training dataset. However,
for cutting conditions with a high volume of training data
available, the best results are achieved while only consider-
ing data acquired at exactly the same cutting conditions for
model training.

Comparing different classification approaches, it is shown
that ML outperforms the LR baseline model. The algorithms
SVM, RF, and ANN are capable of identifying the material
batch with an accuracy of 89.0%, 86.1%, and 85.7% respec-
tively. Analyzing the prediction errors, it is observed that the
batches that are misclassified the most are closest to each
other in machinability. Treating these batches with similar
machinability as a single batch, the prediction accuracy is
further increased to 98.9%.

In future research, the proposed smart service has to be
adapted for operational needs. Besides implementing the
concept as a service-based architecture, strategies for han-
dling an unknown amount of material batches have to be
investigated.
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