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Abstract
Design of automation system relies on experts’ knowledge and experience accumulated from past solutions. In designing
novel solutions, however, it is difficult to apply past knowledge and achieve design right-first-time, therefore wasting valuable
resources and time. SADT/IDEF0models are commonly used by automation experts tomodelmanufacturing systems based on
the manual process. However, function generalisation without benchmarking is difficult for experts particularly for complex
and highly skilled-based tasks. This paper proposes a functional task abstraction approach to support automation design
specification based on human factor attributes. A semi-automated clustering approach is developed to identify key functions
from an observed manual process. The proposed approach is tested on five different automation case studies. The results
indicate the proposed method reduces inconsistency in task abstraction when compared to the current approach that relies on
the experts, which are further validated against the solutions generated by automation experts.

Keywords Task analysis · Human factors · Clustering · Task function · Process design · Automation · Manufacturing

Introduction

The current manufacturing sector is experiencing transfor-
mational changes. New paradigms like Industry 4.0, Robotic
and Autonomous Systems (RAS) and a decentralisation of
decision-making driven by implementation of agent-based
intelligent systems have the potential to significantly enhance
the capabilities of manufacturing (Foresight 2013; Zhong
et al. 2017). Adapting to technical challenges and skill short-
ages is of crucial importance for modern manufacturing
businesses to stay competitive in a globalisedmarket (Sungur
et al. 2016). A potential solution is through increasing the use
of sensors to enhance flexibility and intelligence of automa-
tion solutions in applications beyond repetitive, dangerous
and traditional automation tasks, and decrease in the total
cost of ownership. However, more efficient ways to support
the implementation of automation into manufacturing busi-
nesses are required in the context of Industry 4.0 (Yao et al.
2019; Kong et al. 2019).
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Many industries, particularly in the UK, have not
embraced automation due to the uncertainty and difficulty to
design solutions that are flexible andmeet the current produc-
tivity of manual processes. Root causes for feasibility related
problems dealing with the automation of human tasks have
been recognised (Bainbridge 1983; Reason 1987; Xiao et al.
1997), in particular related to the requirement for deepknowl-
edge of the tasks for automation. (Goodrich and Boer 2003)
stated “a lesson learned from process automation is that, in
the absence of human factors consideration, even state-of-
the-art technological systems can be more problematic than
beneficial”. Part of the challenges is describing human tasks
in a useful way as the basis for implementing automation
(Everitt et al. 2015).

The investigation of human factors is the subject of exten-
sive research in complementary areas. Examples are the
investigation of trust-through-transparency impact on per-
formance (Oduor and Wiebe 2008) or the impact of system
complexity on trust (Bailey and Scerbo 2007). Even though
the analysis of human tasks for automation has been investi-
gated, for example Caird-Daley et al. (2013), no reliable way
to automatically abstract human tasks has been identified
when decision-makers evaluate automation business cases.

In this paper, a clustering-based approach is proposed to
identify automation functions from a human task analysis
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Fig. 1 Stages in automating a manual manufacturing process

enabling a more comprehensive and consistent specifica-
tion of automation design for business case evaluation. The
underlying assumption is that the automated solution is not
necessarily like the manual task due to different skills and
capabilities of humans and robots (de Winter and Dodou
2014). Nevertheless, the ability to identify the functions
provided by manual processes will enhance and widen the
solution search space in the early design phase prior to tech-
nology selection.

The paper starts with a literature review (“Literature
review” section) to identify the research gap and the method-
ology (“Proposed method” section) describes how a func-
tional abstraction of human tasks is developed and introduces
the proposed method before case studies are used to evalu-
ate and compare the results to industrial experts’ solutions
(“Results” section). Finally, the last section discusses and
concludes the paper reflecting on the contributions to the
research topic (“Discussion and conclusions” section).

Literature review

Research in manufacturing automation has highlighted the
need to consider human factors (Goodrich and Boer 2003).
The general process of automating a manufacturing process
consists of the creation of a process representation model
derived from a manual task to design and create a technical
solution. Figure 1 summarises the current methods and tools
to support the automation design from the human task analy-
sis to the evaluation and assessment. In this paper, the authors
assume an automation process would generically follow the
demonstrated stages:

1. Understanding the human task
2. Formalising the process representation

3. Synthesising the process representation model for
automation

4. Evaluating the proposed automation solution

Starting with the collection of information about the human
task via a human task analysis (HTA), process representation
models are used to formalise the production process. The
review of literature suggests there is a disconnect due to a
weak link between HTA performed by human factors experts
and process representation models typically constructed by
engineers. Furthermore, the transition of a task analysis into
the process representation model is exposed to the expert’s
interpretation. A solution is then created by synthesising the
processmodel to specify the appropriate automation solution,
relying on the accuracy and completeness of the formalised
representation.

Each of the steps in this process, as well as the overall
process, may be conducted iteratively until a desired level of
usability is attained. However, iterations are expensive and
time consuming. The first three stages of this process are
reviewed for the methods and tools used to date. The final
stage is an evaluation of the designed solution against the
business case, considering economic and other factors before
the solution is commissioned. For brevity, the readers are
referred to other publications (Ketipi et al. 2014;Koulouriotis
and Ketipi 2014) for more detail.

Human task analysis

Human factors has been studied widely in the manufacturing
domain but their focus is wide-ranging and not necessarily
on automation. For automation, the literature ranges from
applications of artificial intelligence to automatically trans-
fer human skills via demonstration to automation systems
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Table 1 Efficiency, effectiveness and empirical evidence in task analysis research derived and extended from Crystal and Ellington (2004)

Perspective Technique Efficiency Effectiveness Evidence

Continuous Machine learning Task demonstration Works rather on action than
on process level

Zhao et al. (2016)

Learning from demo

Discrete Hierarchical task analysis
(HTA)

Decompose complex tasks
into subtasks

Improves problem
diagnosis and useful for
concurrent operations

Sheperd (2005) and Annet
and Stanton (2004)

Complex activities demand
extensive hierarchy
construction

Does not account for
system dynamics

Discrete-elemental Sub-Goal Template (SGT) Builds upon HTA Improves the level of detail Ormerod et al. (1998)

Decompose tasks into
actions using elemental
building blocks

Irreproducible results due to
lack of user expertise
possible

Cognitive Cognitive task analysis
(CTA)

Defines a coherent
knowledge representation
of the domain being
studied

Increases the understanding
of cognitive aspects of the
task

Salmon et al. (2010)

Captures task expertise

Fails to fully incorporate
learning, contextual and
historical factors

Humanist Activity theory Analyse the activity, not the
task, implying a
potentially great increase
in scope and complexity

Accounts for learning
effects

Kuutti (1995)

Requires in-depth
knowledge of culture and
social aspects

Extents scope of technology

Requires a high level of
abstraction

No disciplined set of
methods

Difficult to apply
systematically

Demanding Competency assessment Analyse the required work
skills needed for a specific
task

Improves understanding of
the workers’ skill sets
needed for a specific task.

Green et al. (2016), Perry
and Helmschrott (2014)

Literacy, numeracy and
problem-solving skills
analysed

Does not consider process
order

(Chuck et al. 2017) and automation component mapping,
for example a humanoid task-component mapping (Hanai
et al. 2016). Other studies contribute towards the mental
assessment and strains on humans combined with related
decision-making for automation (Caird-Daley et al. 2013).

In this paper, the focus will be on a comprehensive task
analysis and decomposition informing later processes of
automation. The current state-of-the-art covers task decom-
position (Phipps et al. 2011) from a physical and mental
perspective. Other literature discusses the analysis of human
tasks illustrating the importance of learning via demonstra-
tion, the hierarchical task analysis (HTA), the Sub-Goal

Template (SGT), the Conceptual Task Analysis (CTA), and
the work-process and Program for the International Assess-
ment of Adult Competencies (PIAAC) approach. Table 1
summarises the efficiency and effectiveness for a selection
of commonly referred methods to date.

The automation research community recognised the issue
related to the abstraction of tasks without losing substantial
information. Some researchers have investigated the HTA
and cognitive work analysis to produce a comprehensive
picture of manufacturing task analysis and present a vari-
ety of different applications (Stanton 2006; Salmon et al.
2010). The first approach by Phipps et al. (2011) extended the
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HTA by adding cognitive elements of tasks and information
design requirements adding significant detail to the current
knowledge ofmanufacturing task analysis. Caird-Daley et al.
(2013) executed a task decomposition based on an HTA to
capture physical and cognitive tasks to include the physical
analysis for automation. Fasth-Berglund and Stahre (2013)
confirmed the need to consider cognitive as well as a physi-
cal task as part of the automation strategies for reconfigurable
and sustainable systems. Based on an HTA analysis, Everitt
and Fletcher (2016) tackled the goal of a “robust, formal skill
capture for assessing the feasibility and implementation of
intelligent automation”. Their dual methodology approach
combines the existing HTA methodology with a classifica-
tion system aimed to further increase the understanding of
what an automated solution might look like. They extended
the analysis with human perception senses, and a specific
task classification, as well as a description of the decisions.

The research literature demonstrates the transfer of human
tasks into automated tasks is essential. Yet, a transfer has
not been achieved without substantial effort for the user in
combination with a limited area of applications requiring
detailed domain knowledge (Wong and Seet 2017; Pedersen
et al. 2016; Wantia et al. 2016). In short, Zhao et al. (2015)
pointed out a knowledge gap, where the transition from an
extended HTA process towards automation system design is
still missing.

Process representationmethod

A model is used to systematically represent the inner rela-
tions and functions of a system in an abstract way, according
to a certain perspective, and to reduce the complexity. A
key aspect of production research is the development of
process representation models. Numerous standard process-
representationmodels have been developed. Existing process
representation models in manufacturing are divided into four
different categories: production layout, production informa-
tion, production schedule, and production optimisation:

• Production layout represents a category for process rep-
resentation tools capturing the setup of the production
system. Models are used to describe the dimension of the
production system, as well as skills and capabilities and
the components of the production system.

• Production information refers to the related models used
to provide information about the manufacturing system.
Thesemodels often display requirements of the production
process. The process models can inform various aspects
such as the representation of knowledge, dependencies
between tasks, or the workflow and value stream within
the production system.

• Production scheduling describes a category of representa-
tions for modelling the schedule of a production system.

The representations are used to provide information about
the time structure of a production process, the overlap
within the production, as well as the transition from one
production moment to another. The results can later be fed
into optimisation tools or inform the design of the produc-
tion system.

• Production optimisation methods are used to improve the
current situation by using a model that describes a pro-
duction reality. An improvement of the situation can be
achieved by predicting a future outcome, identifying bot-
tlenecks, or optimising the service at production stations.

The current landscape of existing production representation
models is analysed, and the outcomes are summarised in
Table 2. The third column is provided to indicate whether
the models will require the input of a task analysis, which
was described in “Human task analysis” section.

The results presented in Table 2 indicate a lack of con-
nection between the manual task analysis and the process
representation models. As evident from the table, many of
these models do not require a task analysis to be completed,
which suggests that the process models are usually made by
the opinion/understanding of engineers and not necessarily
based on observation of how the tasks are being performed
by the operators. This is important in automation because
any decisions/variations performed by the operators that is
not captured in the process models will be missed when
specifying automation solution. Therefore, for a successful
translation of a human task into an automation solution, this
gap needs to be overcome.

Automation design specification

Four common ways are generally used to specify automa-
tion systems, namely requirements engineering, database
approaches, technology selection, and generic design mod-
els. Requirements engineering is the development of an
automation system based on anticipated requirements from
the previous manual production process (Kaindl et al. 2009).
The basis of this production process is an observation of
requirements. The requirements can be recorded or extracted
differently like, for example, via demonstration or require-
ments analysis as well as a via a combination with process
representation models (Park et al. 2009). Examples for
requirements engineering can be found throughout the liter-
ature related to design and architecture for holistic solutions
(Hegenberg et al. 2012), functional requirements for recon-
figurability andflexibility (Boschi et al. 2016), vision systems
(Sitte and Winzer 2007), or software testing (Chung and
Hwang 2007). Database approaches have been used to
improve the design of automation solutions driven by CAD
and composite structural data (Mayer et al. 1992; Hunten
et al. 2013; Sanders et al. 2016). The overall use of multi-
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Table 2 Process representation models

Process representation model Abbrev. Task analysis required Production
layout

Production
information

Production
schedule

Production
optimisation

Control theory models CTM (Ragazzini and Bergen
1954)

No

Goals, operators, methods,
selection

GOMS Yes/No

HAMSTERS HAMSTERS No

Task (-RELATED)
KNOWLEDGE STRUCTure

TKS (Johnson et al. 1988) Yes/No

Signposting SP (Clarkson and Hamilton
2000)

No

Activity Networks (Flowcharts, PERT) (Kelley Jr
and Walker 1959)

No

Activity/phase overlapping AO, PO (Krishnan et al. 1997) No

Generalised precedence
relation

GPR (Elmaghraby and
Kamburowski 1992)

No

Graphical evaluation and
review technique

GERT (Pritsker 1966) No

Petri nets PN (Zhou 1995) No

Markov models MM (Doltsinis et al. 2014) No

System dynamics SD (Forrester 1997) No

Design structure matrix DSM (Radice et al. 1985) Yes/No

Structured analysis and design
technique

SADT, IDEF0 (Ross and
Schoman 1977)

Yes

Business process modelling BPM (White and I B M Corp.
2005)

Yes/No

Input-process-output,
entry-task-validation-exit

IPO, ETVX (Radice et al.
1985)

Yes/No

Process grammars/languages UML,SysML, YAWL,… (Ryo
Hanai et al. 2012)

Yes/No

Value stream mapping VSM No

Queuing theory No

Research aim ESDS Yes
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Fig. 2 Applied methodology

attribute analysis in the context of technology selection is a
decision-making support based onmultiple criteria. Formost
of the models, the criteria may also be qualitative or subjec-
tive. The number of multi-criteria decision-making tools has
steadily increased since the last decades and commonly used
approaches include the Analytic Hierarchy Process (AHP),
Analytic Network Process (ANP), and the Weighted Sum
Model (WSM) (Roy 1968; Ketipi et al. 2014; Koulouriotis
and Ketipi 2014). Other generic design methods that can be
used for the system design can be found in the tools Qual-
ity Function Deployment (QFD), Failure Mode and Effects
Analysis (FMEA) and Activity Based Costing (ABC) anal-
ysis to select different processes for manufacturing based on
cost, quality and risk aspects (Hassan et al. 2010). These
methods require robust input information from the process
requirements.

Summary

Although significant progress has been made regarding the
analysis of a production task, the issue of transferring and
mapping of human tasks against automation has not yet
been tackled sufficiently. Several authors have contributed
to the decomposition of human tasks and adding detail to
the HTA. However, the additional detail were reliant on
the experts leading to a higher variance and reduced repro-
ducibility (Sheperd 2005). The problem is a reliable and
systematic transfer of the qualitative human factors into
requirements engineering. One could envisage the automa-
tion of the task analysis, using technology such as tracking
and activity recognition (Rude et al. 2018), could be per-
formed in the future. Therefore, the identified research gap in
manufacturing literature is to provide an approach to bridge
the gap between task analysis and the automation system
design based on the identified task functions. The next section
presents themethodology adopted in this paper to address the
current knowledge gap.

Proposedmethod

The methodology presented in Fig. 2 is used to develop the
approach to bridge the gap between the manual task anal-
ysis and automation system design. The authors propose a
semi-automated approach using a clustering algorithm to
classify and map the manufacturing tasks against automa-
tion functions. More specifically, after the analysis of human

Table 3 HTA example—welding case study reported by Sanchez-Salas
(2016)

HTA level Process hierarchy level

1 Setup Process

1.1 Select filler rod Task with 1 operation

1.2Set up welding torch Task with 4 operations

1.2.1 Select electrode Operation

1.2.2 Grand tip of the electrode Operation

1.2.3 Select collet and ceramic nozzle Operation

1.2.4 Assemble torch Operation

1.3 Prepare the parent metal for welding Task

1.3.1 Remove grinding leftovers Operation

1.3.2 Setup welding pieces in a welding
fixture

Operation

… …

2 Simulate laying a weld Process

2.1 Place foot on foot pedal, and depress Task with 1 operation

2.2 Put on gloves Task with 1 operation

… …

tasks, the paper presents a classification scheme allowing task
breakdown from a process to be mapped against automation
functions. Those functions can later be linked to automation
components.

Hierarchical task analysis (HTA)

For each case study, multiple methods currently used for
the decomposition of human tasks are combined. The initial
input to the proposed approach is a hierarchical task analysis
(HTA) as presented in Table 3. The table shows a fraction of
the task analysis for the welding case study (the full opera-
tional structure is shown in Table 5). The task is decomposed
into operations performed during a manufacturing process.
At the same time, the operations are sorted with respect to
time in a chronological manner starting with the first task
(only operations are used in the clustering process in “Clus-
tering” section).

The data structure established of the operation analysis is
shown in Fig. 3, based on a defined decomposition structure.
The hierarchical task structures of five case studies presented
in “Results” section are used initially and extended to include
the different SGT elements based on Ormerod et al. (1998).
Every operation is labelledwith a name and a specific sequen-
tial ID. The operation contains not only physical actions but
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Operation

- LogisticProcess: Boolean
-OperationName: String
<< Sequence ID>>
-OperationNumber: int

CognitiveOperation PhysicalOperation 

- BodypartsNumber: int

CognitiveAction(Tool)

- CTTNumber: int

PhysicalAction(LeftHand)PhysicalAction(RightHand)

- SubGoalTemplateCode: string

PTRNumber: int

- CTParameter: string
- CTSense: string
- SubGoalTemplateCode: string
<< SequenceID>>

CognitiveAction(Object)

- CTTNumber: int

- CTParameter: string
- CTSense: string
- SubGoalTemplateCode: string
<< SequenceID>> <<SequenceID>>

- SubGoalTemplateCode: string
<<SequenceID>>
PTRNumber: int

• Cognitive Sense 
• Cognitive Parameter
• Cognitive Action

• Physical Action

Task

-TaskName: String

<< Sequence ID>>
-TaskNumber: int

Fig. 3 Extended HTA data structure for operation analysis

also cognitive actions performed during amanufacturing pro-
cess. The cognitive activity is related to the object or the tool,
whereas the physical activity is related to specific multiple
body parts.

After the HTA is performed on the process, the clustering
algorithm is applied to identify the task functions.

Clustering

The application of clustering is to create task functions based
on a HTA. The necessary requirement to enable clustering is
a database to represent specific operation attributes of a spe-
cific action. Those attributes should be used to differentiate
among dissimilar task functions. Before the clustering algo-
rithm can be applied, however, a decision had to be made
on the granularity as well as the factors of interest for the
application. In this case, the clustering algorithm is abstract-
ing manufacturing functions to define automation solutions.
Therefore, a classification scheme is developed based on
existing standards and the existing literature to attribute the
process operations.

Classification scheme

The first task in developing a classification scheme is to
identify existing classifications to enable a structured sep-
aration of manufacturing operations. At this point, different
attributes according to the current literature of human factors
are feasible for the classification process. For the application

of a classification in this paper, the author has selected man-
ufacturing attributes to create a functional task abstraction.

A careful analysis of the environment in this case has led
the authors to the DIN8580 standard, which is (numerically)
followed by other more specific standards. The application
categories represent sub-levels of the manufacturing main
categories joining, forming, etc. presented in DIN 8580.
It is noted that the presented manufacturing classification
considers physical manufacturing operations only. Support-
ing operations related to the perception mechanisms (visual
perception, haptic feedback) are not covered in the related
classification.

Hence, the authors have extended the existingmanufactur-
ing classification standards with perception mechanisms. A
combination of research by Groover (2007) with Lederman
and Klatzky (1987) informed the classification scheme. The
first adapted part by Groover presents a categorisation of
visual perception mechanisms for robotic automation. The
second part incorporated the research by Lederman et al.
focuses on the tactile perceptionof the humans. In accordance
with their findings, a classification containing multiple per-
ception attributes for a specific operation has been developed.
The result is a combination of tactile and visual perception
senses as a decision criterion to identify the required sensorial
requirements (see Fig. 4). Examples of resulting operation
attributes are Visual Perception Object Shape or Tactile Per-
ception Temperature.

Table 4 presents the detailed developed classification used
for this work. As it can be seen it demonstrates both percep-
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Human Task Derived Parameter Automated 
Mechanism ATTRIBUTE

Lateral Mo�onLateral Mo�on

Pressure

Sta�c Contact

Contact Measurement

Non-contact 
measurement

Contact Measurement

Contact Measurement

Visual Percep�on Texture

Tac�le Percep�on Texture

Tac�le Percep�on 
Counterforce

Non-contact 
measurement

Tac�le Percep�on 
Temperature

Contour Following

Op�cal 

Tac�le Percep�on Object 
Shape

Visual Percep�on Object 
Shape 

Non-op�cal Use of other energy 
sources

Lateral Mo�onTexture

Counterforce

Temperature

Object Shape

Visual Percep�on Colors

Contact Measurement

Human Eye Colours

Object Shape

Distance

Speed

Non-contact 
measurement
Non-contact 

measurement
Non-contact 

measurement
Non-contact 

measurement

Visual Percep�on Colors
Visual Percep�on Object 

Shape
Visual Percep�on Distance

Visual Percep�on Speed

Texture Non-contact 
measurement Visual Percep�on Distance

AccelerometerContact measurement

Fig. 4 Tactile and visual perception senses as extension for DIN8580

tional and operational classification for the identification of
automation functions.

Clustering for automated function identification

The manufacturing classification against the operation as
many-to-many relationship is expressed by binary variables.
One operation can have multiple attributes and one attribute
can be connected to multiple operations. Consequently, a
database is created. The user will identify the attributes for
every operation as depicted in Table 5 for welding case study
(see “Results” section).

The user will enter as many different attributes to theman-
ufacturing operations as the HTA requires. Every operation
must be fully determined with the physical and perceptional
attributes defined in the classification scheme. One operation
can require multiple attributes for an operation. An example

is grinding tip of the electrode operation (Operation 1.2.2)
performed by an operator. In reality, the grinding operation
is not just determined by an attribute responsible for grind-
ing (cutting with geometrically undefined cutting edges), but
also requires human-haptic feedback to control the produc-
tion process (auxiliary operation).

For every process operation i recorded via the HTA anal-
ysis, the process attribute aij related to the manufacturing
classification attribute j is represented as a binary value.

Process Attribute ai, j ai, j ∈ {0, 1} (1)

The binary value expresses, whether the specific process step
incorporates operations that fulfil the criteria/pattern of a spe-
cific distribution of attributes. The different process attributes
result in an attributematrixA,which can be created as a result
of the previous Eq. (1):
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Table 4 Selection of classification categories based on standards around
DIN8580

Attribute Attribute Standard

Changing material characteristics
through transfer of particle

a1 DIN 8580

Changing material characteristics
through particle screening out

a2 DIN 8580

Changing material characteristics
through particle insertion

a3 DIN 8580

Coating from a gaseous or vaporous
state

a4 DIN 8580

Coating from a liquid or mushy state a5 DIN 8580

Coating from ionised state through
electrolytic or chemical separation

a6 DIN 8580

Coating from a solid or powdery state a7 DIN 8580

Pick and place a8 DIN 8593-1

Filling (e.g. impregnating) a9 DIN 8593-2

Pressing in and on (e.g.
screwing/riveting)

a10 DIN 8593-3

Joining through primary shaping (e.g.
grouting)

a11 DIN 8593-4

Joining through forming (e.g. seaming) a12 DIN 8593-5

Joining through welding (e.g. Laser-,
WIG—welding)

a13 DIN 8593-6

Joining through soldering a14 DIN 8593-7

Gluing a15 DIN 8593-8

Textile joining a16 DIN 8593-9

Severing a17 DIN 8588

Cutting with geometrically defined
cutting edges

a18 DIN 8589

Cutting with geometrically undefined
cutting edges

a19 DIN 8580

Removal operations a20 DIN 8590

Disassembling a21 DIN 8590

Cleaning a22 DIN 8592

Forming under compressive conditions a23 DIN 8583

Forming under compressive and tensile
conditions

a24 DIN 8584

Forming under tensile conditions a25 DIN 8585

Forming by bending a26 DIN 8586

Forming under shearing conditions a27 DIN 8587

Primary shaping from liquid state a28 DIN 8581

Primary shaping from plastic state a29 DIN 8581

Primary shaping from mushy state a30 DIN 8581

Primary shaping from powdery or
granular state

a31 DIN 8581

Primary shaping from fibrous or
filamentary state

a32 DIN 8581

Primary shaping from gaseous or
vaporous state

a33 DIN 8581

Primary shaping from ionised state a34 DIN 8581

Table 4 continued

Attribute Attribute Standard

Tactile perception texture a35 EXTENSION

Tactile perception counterforce a36 EXTENSION

Tactile perception temperature a37 EXTENSION

Tactile perception object shape a38 EXTENSION

Visual perception colours a39 EXTENSION

Visual perception object shape a40 EXTENSION

Visual perception distance a41 EXTENSION

Visual perception speed a42 EXTENSION

Visual perception texture a43 EXTENSION

Tool changing and setup a44 EXTENSION

Labeling a45 EXTENSION

Attribute Matri x A Adim(i, j) �
⎡
⎢⎣
a1,1 . . . a1, j
...

. . .
...

ai,1 . . . ai, j

⎤
⎥⎦ (2)

One process step can have multiple cluster features. The col-
lected process operations are used by the clustering algorithm
as a collection of many cases to determine the optimal num-
ber of clusters related to the distance measurement between
certain clusters with the initial aim to maximise the jump
between n-cluster and (n − 1)-cluster solutions.

The attribute matrix A represents the matrix of the anal-
ysed operations and will further be used for the abstraction
process. The algorithm aims to divide n operations into k
different clusters appending every observation (operation) to
a cluster centre (so-called centroid) with the closest mean
(Macqueen 1967). The closest mean is related to the dis-
tance of the contained clustering attributes from the centroid
attributes. K-means clustering is considered difficult from a
computational perspective, however, many algorithms con-
verge quickly to an acceptable local optimum (Mahajan et al.
2012).

The generic K-means algorithm is as follows.
A set of observations (x1, x2,…, xn) has anm-dimensional

real vector. K-means clustering divides the n observations
into k subsets S � {S1, S2, …, Sk} to minimise the sum of
squared distances (Macqueen 1967).

k-means Clustering Algori thm arg min
s

k∑
i�1

∑
x j∈Si

∥∥x j − µi
∥∥2

(3)

Starting the K-mean clustering with randomised values lim-
ited only by the max/min sample value throughout every
operation is generally possible. The assumption at this point
is, that the patterns will translate into categorical data or
attributes carrying binary values. In case the attribute values
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Table 5 Process attribute matrix for human operation analysis—welding

Operation name; attributes → # Joining
through
welding

Cutting with
geometrically
undefined
cutting edges

Pick and place Tool changing
and setup

Visual
inspection

Visual
perception
distance

1.1 Select filler rod 1 0 0 0 1 0 0

1.2.1 Select electrode 2 0 0 0 1 0 0

1.2.2 Grind tip of the electrode 3 0 1 0 0 0 0

1.2.3 Select collet and ceramic
nozzle

4 0 0 0 1 0 0

1.2.4 Assemble torch 5 0 0 0 1 0 0

1.3.1 Remove grinding
leftovers

6 0 1 0 0 0 0

1.3.2.1 Place based on holder
on bench

7 0 0 1 0 0 0

1.3.2.2 Attach gas supply 8 0 0 0 1 0 0

1.3.2.3 Secure welding piece 9 0 0 1 0 0 0

2.1 Place foot on foot pedal,
and depress

10 1 0 0 0 0 0

2.2 Put on gloves 11 1 0 0 0 0 0

2.3 Hold torch in right hand
using pen grip

12 1 0 0 0 0 0

2.4 Hold filler rod in left hand 13 1 0 0 0 0 0

2.5 Move torch and filler rod 14 1 0 0 0 0 0

2.6 Adjust equipment position 15 0 0 0 0 0 1

2.7 Remove objects impeding
movement

16 0 0 1 0 0 0

3.1.1 Set and turn on power at
the welding set

17 1 0 0 0 0 0

3.1.2 Turn on gas at the gas
cylinder

18 1 0 0 0 0 0

3.1.3 Put on welding mask
(visor raised)

19 1 0 0 0 0 0

3.2.1 Position torch at tack
location

20 1 0 0 0 0 1

3.2.2 Pull down visor 21 1 0 0 0 0 0

3.2.3 Pick up and position filler
rod

22 1 0 0 0 0 0

3.2.4 Fully depress foot pedal 23 1 0 0 0 0 0

3.2.5 Dip filler rod in centre of
the weld pool

24 1 0 0 0 0 0

3.2.6 Remove rod 25 1 0 0 0 0 0

3.2.7 Gradually release foot
pedal

26 1 0 0 0 0 0

4.1 Position torch at weld start 27 1 0 0 0 0 1

4.2 Pick up and position filler
rod

28 1 0 0 0 0 0

4.3 Fully depress foot pedal 29 1 0 0 0 0 0

4.4.1 Stroke filler rod in and
out of weld pool

30 1 0 0 0 0 0

4.4.2 Feed filler rod through the
fingers

31 1 0 0 1 0 0
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Table 5 continued

Operation name; attributes → # Joining
through
welding

Cutting with
geometrically
undefined
cutting edges

Pick and place Tool changing
and setup

Visual
inspection

Visual
perception
distance

4.5 Control torch movement 32 1 0 0 0 0 1

4.6 Modulate current 33 1 0 0 0 0 0

4.7 Control foot pedal 34 1 0 0 0 0 0

5.1 Take off equipment 35 1 0 0 1 0 0

5.2 Turn off power and gas
supply

36 0 0 0 1 0 0

5.3 Remove welding plates
from piece holder

37 0 0 1 0 0 0

5.4.1 Visually inspect top
surface of weld

38 0 0 0 0 0 1

5.4.2 Visually inspect under
surface of weld

39 0 0 0 0 0 1

are all binary, the identity matrix Ij,n can be used to represent
the starting centroids for the clustering process to advance
the centroid handling algorithm explained in detail in the
following paragraph.

Centroid Matri x C Cdim( j,n) �

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

. . . 0

...
. . .

...
0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

� I j,n

(4)

K-means minimises the distance between the centroids cj,n
and the attribute matrix by manipulating the centroid matrix
C to reduce the distance vector Dopt values over all distances.
The following functions show a detailed description of the
steps needed to achieve the aim of Eq. (3).

Distance di,n di,k �
(

i∑(
ai,k − c j,k

)2
)1/2

(5)

The distance matrix D can be expressed according to the
following equation:

Distance Matri x D D �
⎡
⎢⎣
d1,1 . . . d1,k
...

. . .
...

di,1 . . . di,k

⎤
⎥⎦ (6)

Table 6 depicts an example of a distance matrix for the weld-
ing case study.

The created distancematrix can nowbe optimised in away
that the distances are being minimised for different sizes of
k. The value k represents the number of different cluster-
centres used. The optimal solution creates a distance vector

Dopt, which can beminimised using the sumof distances. The
optimised distances in the previous table are marked by a (*).
The distance vector represents the smallest distance of every
column distance (di,1, …, di,n) according to the following
equation.

Minimum Distance min Dopt min Dopt �
n∑

i�1

(
min
1≤k≤n

di,k

)

(7)

The results of the equation are the minimum distances of
different centroids. Table 7 shows different accumulated dif-
ferences for specific k.

Five different centroids are used to cluster the existing
sample. An increase of the cluster number k leads to an
overrepresentation of centroids as the distances converge
to zero. A comparison of the distances is an indication of
the k-effectiveness. Once the distances are all zero for k,
the centroids are purely a representation of all the single
cases available (in terms of attribute distribution) and did not
achieve the goal of reducing the dimension of the operation.

A possible solution to address this issue is a selection of
an optimal k via an investigation of the distances between
min Dopt . As seen in Table 7, the optimal distances can be
summarised to understand how well a specific number of
centroids k covers the attribute vectors of the created attribute
matrix A. Two criteria should be respected for the evaluation
of a suitable cluster number k:

• Firstly, k cannot be chosen in a way that allows the pro-
duction of a trivial solution. A trivial solution means the
selection of different cluster centroids k reproducing the
original operations. Such an approach would not effec-
tively reduce or cluster the operations.
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Table 6 Distance matrix (k�
5)—example welding Distances d1 d2 d3 d4 d5

1.1 Select filler rod 1.4142 1.4142 1.4142 0* 1.4142

1.2.1 Select electrode 1.4142 1.4142 1.4142 0* 1.4142

1.2.2 Grind tip off the electrode 1.4142 0* 1.4142 1.4142 1.4142

… 1.4142 1.4142 1.4142 0* 1.4142

… 1.4142 1.4142 1.4142 0* 1.4142

1* 1 1 1 1

1.4142 1.4142 1.4142 0* 1.4142

1.7321 1.7321 1* 1.7321 1

0* 1.4142 1.4142 1.4142 1.4142

… 0* 1.4142 1.4142 1.4142 1.4142

5.4.2 Visually inspect under surface 0* 1.4142 1.4142 1.4142 1.4142

Table 7 Minimum distance
matrix DOpt—welding case
study

Minimum distance Min2 Min3 Min4 Min5 … … Min n

1.1 Select filler rod 1.4142 1.4142 0 0 … 0 0

1.2.1 Select electrode 1.4142 1.4142 0 0 … 0 0

1.2.2 Grind tip of the electrode 0 0 0 0 … 0 0

… 1.4142 1.4142 0 0 … 0 0

… 1.4142 1.4142 0 0 … 0 0

… 1 1 1 1 … 1 0

… 1.4142 0 0 0 … 0 0

… 1.4142 1.4142 0 0 … 0 0

… 1.7321 1 1 1 … 1 0

… 0 0 0 0 … 0 0

… … … … … … … …

… … … … … … … …

… … … … … … … …

… … … … … … … …

… 1.4142 1.4142 1.4142 1.4142 … 0 0

… 1.4142 0 0 0 … 0 0

… 0 0 0 0 … 0 0

… 0 0 0 0 … 0 0

… 1.4142 1.4142 1.4142 1.4142 … 1.4142 0

… … … … … … … …

Sum 25.945 20.971 13.899* 12.485 … 6.8284 0

• Secondly, k should be pointing out the biggest ‘jump’ in
the sum of optimal distances related to the chosen attribute
matrix and cluster number k.

As seen in Table 7, the accumulated optimal distances
decrease with a growing k. However, a rapid decrease of
the optimised distance vector at a specific time is noticeable.
This step points to several clusters significantly reducing the
distance to the dataset’s attribute distribution. The centroids
indicate the main characteristics of the dataset. The next step
considers the biggest jump in the optimised solution.

In this case, the biggest jump occurs for the optimal num-
ber of cluster centroids k � 4 (Table 7, the largest difference
betweenmin Dopt from k� 3 to k� 4). Particularly the deter-
mination of k is a research field itself. The authors have
modified the Bayes Information Criterion (BIC) idea to find
a possible solution to the depicted problem. The presented
solution shows sufficient results for the application. Different
reasons are responsible for that:

• Firstly, an HTA generally has a dataset length (number of
operations) considerably smaller than what is considered
a large dataset in the data analysis community.
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Table 8 Hierarchical task structure and allocated centroid—welding
example

HTA structure Allocated centroid Sequential helper

1.1 Select filler rod 4 Keep

1.2.1 Select electrode 4 Keep

1.2.2 Grind tip of the
electrode

2 Keep

1.2.3 Select collet and
ceramic nozzle

4 Keep

… … …

2.4 Hold filler rod in left
hand

1 Keep

2.6 Adjust equipment
position

1 Keep

2.7 Remove objects
impeding movement

3 Keep

… … …

• Secondly, the attribute values are binary (ai,j � {0,1}) and,
therefore, the created distances will be in similar dimen-
sions and do not require a manipulation of the dataset.

• Thirdly, the number of different attributes accumulated
within operations is limited.

A combination of those factors reduces the number of cases
in all dimensions of the dataset and the minimum distances
significantly. For the case studies, the presented criterion was
proven to deliver sufficient results, as reported in “Results”.

The determination of a specific k, representing the number
of centroids, enables the allocation of specific attribute distri-
butions to a specific cluster centre. Based on this distribution,
a table (see for example Table 10) can be created present-
ing the percentage distribution of manufacturing attributes
within the clusters. The clusters identified will be assigned
as a process function.

The deliverable for this part of the work is a functional
task abstraction. Based on the functional task abstraction,
where specific manufacturing operation attributes have been
allocated to specific centroids.

Before the results of the clusters can be finally demon-
strated, the user must also determine whether the specific
processes can be allocated in a specific cluster consider-
ing sequential criteria. If a process must be performed after
another process (for instance grinding on different scales),
sequential information must be provided. Therefore, the user
is asked to answer for every process step, whether specific
operations should be allocated in a stand-alone function due
to a sequential importance or it should be kept in the existing
cluster (“Keep”, see Table 8). This step allows the tool to
show the final process function considering sequential con-
straints.

Results

The proposed approachwas tested on five industry processes,
detailed descriptions of the cases studies can be found in the
cited literature in Table 9. All of them are currently manual
processes that are being considered for automation by the
companies motivated by efficiency, skill shortage, flexibility
and quality. The advanced automation solutions require sen-
sors and intelligence to deal with process variabilities due
to the highly skilled nature of the tasks. All studies were
recorded and the HTA and IDEF0 representations were pro-
duced by the researchers for those processes.

IDEF0 results

First, the IDEF0 results are presented (see Fig. 5) before the
results from the clustering algorithms are displayed in the
next section. The IDEF0 have been produced by researchers

Table 9 Advanced automation
case studies requiring in-depth
task analysis

Case study Description DIN 8580 Main investigator

Welding MIG welding Joining through
welding

Sanchez-Salas (2016)

Grinding Grinding and polishing
of complex-shaped
surfaces

Cutting with
geometrically
undefined cutting
edges

Kalt et al. (2016) and
Kalt (2016)

Beater winding Production process of
drum beaters

Textile joining Zhao et al. (2016)

Threaded fastener
assembly

Automated freeform
assembly of threaded
fasteners

Assembly Dharmaraj (2015)

Deburring Removing defects/burrs
from manufactured
parts

Cutting with
geometrically
undefined cutting
edges

Sanchez-Salas (2016)
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Fig. 5 SADT/IDEF0 results from experts
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Table 10 Clustering results—welding

Process
function

Joining
through
welding (%)

Cutting with
geometrically
undefined
cutting edge
(%)

Pick and place
(%)

Tool changing
and setup (%)

Visual
perception
texture (%)

Visual
perception
distance (%)

Automation
function

1 100 0 0 25 100 100 Welding +
inspection

2 0 100 0 0 0 0 Grinding

3 0 0 100 0 0 0 Pick and place

4 0 0 0 75 0 0 Tool changer

Table 11 Clustering results—grinding

Process function Cutting with
geometrically
undefined cutting
edge (%)

Visual perception
texture (%)

Pick and place (%) Tactile perception
(%)

Tool changing
and setup (%)

Automation
function

1 100 0 0 100 20 Grinding

2 0 100 0 0 0 Visual inspection

3 0 0 100 0 0 Object orientation

4 0 0 0 0 80 Tool changer

Table 12 Clustering results—beater winding

Process
function

Textile joining
(%)

Pick and place
(%)

Tool changing
(%)

Visual
perception
texture (%)

Tactile
perception (%)

Cutting with
geometrically
defined cutting
edge (%)

Automation
function

1 100 0 0 100 0 100 Sewing

2 0 100 0 0 100 0 Thread
winding

3 0 0 100 0 0 0 Tool changer

Table 13 Clustering results—threaded fastener assembly

Process Function Pressing in and
on (%)

Pick and place (%) Tool changing
and setup (%)

Visual perception
distance (%)

Visual perception
object shape (%)

Automation
function

1 100 0 0 50 20 Fastening

2 0 100 0 50 80 Pick and place

3 0 0 100 0 0 Tool changer

who studied the processes for automation, which is the cur-
rent and widely adopted approach.

Clustering results

The clustering results are presented as a percentage distri-
bution of individual attributes among different process func-
tions for the operations identified in the HTA. In Tables 10,
11, 12, 13 and 14, the process functions (identified clusters)
are displayed on the left-hand side and the manufacturing
process attributes on top of the table. The manufacturing

process attributes are as defined in Table 4, which could be
expanded for customised attributes as appropriate to the pro-
cess.

Analysis and validation

Table 15 compares the functional abstraction with IDEF0
produced by the experts, clustering results and with the
actual solutions implemented in the original case studies.
The results for each case study are discussed in turn next.
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Table 14 Clustering results—deburring

Process
function

Cutting with
geometri-
cally
undefined
cutting
edges (%)

Tactile
perception
texture (%)

Tactile
perception
object shape
(%)

Visual
perception
object shape
(%)

Visual
perception
texture (%)

Visual
perception
distance (%)

Tool
changing
and setup
(%)

Cleaning (%) Automation
function

1 100 0 0 20 20 100 0 100 Grinding

2 0 100 100 40 40 0 0 0 Visual–tactile
control

3 0 0 0 40 40 0 0 0 Visual
control

4 0 0 0 0 0 0 100 0 Tool changer

Table 15 Comparison of clustering and IDEF0—results summary

Process Manual abstraction (IDEF0) Clustering Actual solution

Welding 5 functions (preparation � tool
setup, positioning, positioning 2,
welding, inspection)

4 functions (welding + inspection,
grinding, pick and place, tool
changer)

4 functions (welding, inspection,
tool setup, pick and place)

Grinding 3 functions (part geometry
following + visual detection, belt
feed rate control + grinding &
force/torque, visual inspection)

4 functions (grinding with
force/torque sensor, visual
inspection, object orientation,
tool changer)

2 function (auto-grinding + with
manipulator force/torque sensor
and gripper, part inspection)

Beater winding 3 functions (winding, secure top
bottom stitching, pattern
stitching)

3 functions (stitching, customised
process � winding, tool changing

3 functions (stitching, winding,
tool changing)

Threaded fastener assembly 3 functions (approach and
alignment, fastener insertion,
torque control)

3 functions (auto-fastening, pick
and place, tool changer)

3 functions (auto-fastening, pick
and place, tool changer)

Deburring 2 functions (selection of tool � tool
setup, removing � deburring)

4 functions (grinding, visual–haptic
process control, visual inspection,
tool changer)

Not-automated (–)

Welding

The welding process was divided by the automation expert
into 5 different functions (Fig. 5), whereas the clustering
algorithm has identified 4 key functions (Table 10). The algo-
rithm clustered welding (100%) and inspection (100% for
texture and distance) into one function. A grinding process
was identified as a function (Function 2) because in the man-
ual process (and the HTA) the tip of the welding tool was
ground by the operator. This step does not occur in the actual
automation solution. Despite this, the 4 functions identified
from clustering algorithmwere accurate. The IDEF0method
divided the process functions in a repetitive pattern of tool
preparation and setup but visual inspection and grinding the
welding tip were neglected by the experts.

Grinding

Thegrindingprocesswasmanually abstracted into 5 different
functions (Fig. 5), in contrast to 4 according to the cluster-
ing algorithm (Table 11). The clustering algorithm combines

cutting with a geometrically undefined cutting edge (100%)
with a tactile force perception (100%) and a tool chang-
ing attribute (20%). The second function contains a visual
perception of the part surface/texture (100%). The turning
of the workpiece in between the grinding processes was
attributed to the pick and place function (100%). The remain-
ing function is related to a tool changing attribute (80%).
The automation system implemented consists of a grinding
application (abrasive belt) and a separate gripper containing
the force/torque sensor element. In addition to that, a visual
inspection system was suggested although not implemented.
The tool changer was not needed as the actual solution does
not require a change of the abrasive belt, due to a different
type of component and it was only a prototype solution. The
tactile feedback of force and torquewas allocated to the grip-
ping system since commercial grippers typically come with
force and torque sensors.
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Beater winding

The beater winding process was manually translated into 3
different functions (Fig. 5). The clustering algorithm also
produces 3 functions (Table 12). The first function contains
three attributes: textile joining (100%), visual perception of
the texture (100%), and cutting with a geometrically defined
cutting edge for the thread (100%). This function can be
interpreted as the sewing function of the process. The second
function contains the attribute for pick and place (100%)
extended by ameasuring device for the counterforce based on
tactilemeasurements. This function represents thewindingof
the thread. After the winding process is finished, the operator
used to cover winding gaps in the pattern. This results in a
visual inspection to identify the texture and correct the errors.
To switch between both functions, a tool changer has been
identified in function 3. However, the clustering algorithm
has attributed the visual inspection to the sewing function.

Threaded fastener assembly

The results for threaded fastener assembly process were sim-
ilar fromboth the expert (Fig. 5) and the algorithm (Table 13).
The expert identified approach and alignment, which was
identified by the clustering algorithm as the pick and place
function. The process function included 100% of the pick
and place attribute as well as 50% of visual determination of
a distance and 80% of the visual perception to recognise an
object shape. The fastening function (Function 1) accumu-
lated the remaining visual shares (distance and object shape)
and 100% of the ‘pressing in and on’ attributes. The remain-
ing percentages were connected to the tool changer. This
tool changer is used to switch from a pick and place to a fas-
tening process function. The auto-fastening function include
both insertion and torque control, which were identified by
the experts as separate functions.

Deburring

The deburring process has not been automated. A possible
reason was due to the complexity of the automated solution.
This complexity is not specifically indicated by the manual
process abstraction (Fig. 5). The manual process abstraction
identified three different functions. The functions are a selec-
tion of the appropriate tool and the deburring process. The
clustering algorithm results (Table 14), however, indicate that
a complex tool is needed requiring a visual–haptic process
control and a decoupled visual inspection process after that.
Those two automation functions require an in-depth knowl-
edge and indicate a high complexity from a programming
perspective.

Discussion and conclusions

Twomajor limitations associatedwith the current approaches
in automation requirements engineeringwere identified. First
of all, approaches related to manual task analysis processes
have been criticised throughout the current literature as unre-
liable (Olsen and Shorrock 2010) and highly influenced by
the level of expertise of the analyst (Sheperd 2005). Secondly,
the way a task is fulfilled by a human operator might differ
highly from the way that the automation system performs
the task. Consequently, the method proposed in this paper
assumes that a comparison and mapping must take place on
a functional level leading to the research aim to provide an
approach to bridge the gap between task analysis and the
automation system design based on the identified task func-
tions.

The clustering algorithm overcomes the influence of an
HTA hierarchy as perceived by the expert, which overcomes
the chronological structure and sequential dependencies
unless indicated of the task performance. This means that an
attribute of themanufacturing process could be allocated, fol-
lowing the determination of its nearest centroid, independent
of the HTA hierarchy thus reducing the expert’s influence in
the function allocation process. The results indicate that the
clustering algorithm achieves the goal of a functional task
abstraction and, in some of the cases, the functions identi-
fied through the clustering algorithm are closer to the optimal
functions required in the actual automation solution.

Based on this functional task abstraction, the issue
whereby the functions performed by automation may dif-
fer from the manual process is addressed by separating the
mapping of HTA to functional task abstraction to automa-
tion requirements (Fig. 6). Amapping between the functional
abstraction and requirements engineering can be produced to
complete the requirements engineering,which is a subject for
future work. One possible approach is using an ontology to
match functional requirements with the skill set of a specific
automation system, see Lohse (2006).

These findings are comparable with the earlier findings,
for example Everitt et al. (2015) highlighting the functional
approach (Bullock et al. 2013) related to a robotic manipula-
tor as very practical.More detail, in contrast to that, increases
the chance of human deviation and, therefore, decreases the
repeatability and quality of a task analysis.

Due to the complexity of the individual case studies, only
key parts of the results have been presented in this paper.
Therefore, the HTA being used in the case studies presented
here are reduced for testing the clustering algorithm and it
is possible that some iterations were not being captured.
An important basis for the method to be transitioned into
industrial applications would involve elaborate testing with
multiple observations to avoid missing key process informa-
tion.
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